US4798651A - Process for preparing pulp for paper making - Google Patents

Process for preparing pulp for paper making Download PDF

Info

Publication number
US4798651A
US4798651A US07/079,928 US7992887A US4798651A US 4798651 A US4798651 A US 4798651A US 7992887 A US7992887 A US 7992887A US 4798651 A US4798651 A US 4798651A
Authority
US
United States
Prior art keywords
pulp
cooking
hydrogen peroxide
brightness
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/079,928
Inventor
Bohuslav Kokta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunopta Inc
Original Assignee
Stake Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stake Technology Ltd filed Critical Stake Technology Ltd
Assigned to STAKE TECHNOLOGY LTD. reassignment STAKE TECHNOLOGY LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KOKTA, BOHUSLAV
Application granted granted Critical
Publication of US4798651A publication Critical patent/US4798651A/en
Assigned to SUNOPTA INC. reassignment SUNOPTA INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STAKE TECHNOLOGY LTD.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/02Pretreatment of the raw materials by chemical or physical means
    • D21B1/021Pretreatment of the raw materials by chemical or physical means by chemical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/14Disintegrating in mills
    • D21B1/16Disintegrating in mills in the presence of chemical agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/30Defibrating by other means
    • D21B1/36Explosive disintegration by sudden pressure reduction
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting

Definitions

  • This invention relates to an improved process for preparing pulp suitable for paper making.
  • the factors for importance in processes for preparing pulp include:
  • TMP thermo mechanical pulping
  • RMP refiner mechanical pulping
  • the object of this invention is to provide a process in which the energy saving advantage of explosive decompression is achieved but in which good brightness, high yield, and good fiber strength are also maintained.
  • the higher temperatures enable higher pressures to be used, thereby greatly improving steam penetration inside the fibers and softening of the hydrogen bonds in the mainly crystalline region of the fibers.
  • the major problems accompanying previous processes using explosive decompression are believed to have been the degradation due to the oxidation of wood and acid hydrolysis leading to loss in brightness, deterioration of fiber and paper properties and loss of yield.
  • the approach adopted by this invention is therefore to attempt to curtail hydrolytic and oxidative wood degradation and thereby to protect against loss of yield, brightness and fiber strength.
  • the loss of fiber strengh will be particularly great if the degree of polymerization of the cellulose falls below the critical value which is about 500-600. Hydrolytic degradation will also cause yield loss due mainly to degradation of hemi-cellulose.
  • the process of this invention tries to achieve a positive improvement in the strength of the paper that will be produced from the fibers by increasing the number of hydrophilic groups on the fiber surfaces thereby adding to the potential sites for hydrogen bonding.
  • the wood fragments, having fibers suitable for paper making, such as chips, are in a form in which thorough chemical impregnation can be achieved in a reaonable time.
  • the softened chips are preferably washed and then without undue delay, and preferably immediately, refined to provide pulp.
  • the starting material will normally be chips in which the fibers are of a length suitable for paper making. Shavings could also be used but sawdust would be undesirable except as a minor part of the total furnish as the fibers are partially cut.
  • the chips should also, as is well known, be suitable in the sense of being free from bark and foreign matter.
  • impregnation is to protect the chips against oxidation during cooing and during transfer from the cooking vessel to the refiner. It is also an objective to provide a positive increase in strength by developing hydrophylic groups on the fiber surface during steam treatment. This will then provide additional sites for hydrogen bonding.
  • the preferred anti-oxidant is sodium sulphite Na 2 SO 3 which also forms hydrophilic groups, and which is available at a low cost. It is used to provide a concentration of absorbed chemical of about 1 to 10%. Concentrations below 4% would be used where brightness protection is unimportant and high strength is not required. Where, however, brightness is important the sodium sulphite should be at least 4%. If physical properties are important thesa will be improved by using a coneentration of at least 4% sodium sulphite and will be further improved as the concentration is further increased towards 10%.
  • the concentratipn of the solution is preferably about the same as percent of chemical to be absorbed where there are equal quantities of chips and liquor.
  • a ton of chips of 50% consistency mixed with one ton of 8% solution will result in 8% absorbed on the pulp.
  • Other antioxidants that can be used are potassium sulphite or magnesium sulphite.
  • Ammonium sulphite could be used if cooking conditions are not severe or with a buffer.
  • Complexing agents such as ethylene diamine tetracetic acid (EDTA), sodium diethylene triaminepentacetate (DTPA), sodium tripolyphosphate (TPF) and other complexing agents known in the art as being usable under alkaline conditions may be added to minimize the catalytic effect of metals such as iron on oxidative degradation.
  • a swelling agent to assist the antioxidant or hydrophilic agent in penetrating the wood and this contributes also to softening the chip.
  • Suitable swelling agents are sodium or potassium hydroxide and ammonium hydroxide which will contribute also to providing hydrophilic groups.
  • Other swelling agents that can be used and which may be desirable as auxiliary swelling agents for high density wood are zinc chloride, sodium chloride, sodium bromide, calcium isocyanate, Schweitzers' solution, cupriethylenediamine (C.E.D) tetraethylammonium hydroxide, dimethyldibenzylammonium hydroxide.
  • the concentration of swelling agent and conditions of swelling must be controlled in such a way as to avoid any dissolution of the hollocellulose.
  • the percentage of swelling agent in the impregnating solution will be in the range of about 1 to 4% depending on the agent and the conditions.
  • the impregnating solution must be alkaline and have enough free hydroxyl to be able to neutralize the liberated wood acids such as formic acid and acetic acid. Normally the starting pH is about 7.5 or higher and the final pH after steam cooking should be at least 6 or higher.
  • the time of impregnation at atmospheric pressure in holding tanks typically ranges from about 12 hours to 24 hours at a temperature of about 30° C. to 60° C.
  • Approximately equal weights of chips and of aqueous impregnating solution can be used.
  • the time may be shortened to an hour or to minutes by impregnating with steam under pressure and at a higeer temperature.
  • the pressure should be up to about 1 atmospheric extra pressure at a temperature of about 100° C. to 110° C.
  • the chips should be compressed in advance of impregnation. Under these conditions, penetration will be achieved in a shorter time, but penetration is what predominantly occurs. There is no significant cooking.
  • the impregnated chips are steam cooked at a high temperature and pressure.
  • the temperature of cooking should be within the range of about 170° C. to 210° C. and preferably within the range 180°-195° C., which is in excess of the temperatures considered possible according to the publications of Asplund and Higgins previously referred to. These temperatures correspond with a pressure of 7.9 atmospheres for 170° C. and 15.5 atmospheres for 200° C. It is these high pressures which make a very important contribution to ensuring excellent penetration of the chips by the cooking liquor.
  • the cooking may be preceded by steam flushing under low pressure steam at 100° C for a short period such as one minute.
  • steam flushing under low pressure steam at 100° C for a short period such as one minute.
  • This preliminary treatment is then followed by cooking for about 30 seconds to 6 minutes and preferably about 1 to 4 minutes.
  • the chips resulting from the explosive decompression are softened and partially defibrated.
  • Refining erergies are unusually low and can be expected to be in the range 3.6 to 4 MJ/kg to provide a freeness of about 700 and about 4.6 to 5 MJ/kg for a freeness of 100 which is about one half of the energy demand of refiner mechanical pulp (RMP) or thermomechanical pulp (TMP).
  • RMP refiner mechanical pulp
  • TMP thermomechanical pulp
  • CMP chemi-mechanical pulp
  • the refiner energy is about 40% higher than that of explosion pulp for the same properties.
  • physical properties such as burst, tear and breaking length will be considerably better than those of CMP as illustrated below in Table 1.
  • Table 3 shows a correlation between refining energy and other factors such as cooking time and concentration of sodium sulphite together with the physical properties. It also indicates the balance between factors such as cooking time and chemical content as against the refining energy required to achieve a given freeness.
  • Table 4 is a further example showing that at similar freeness the improved explosion pulp develops similar properties at lower energy as compared with a chemi-mechanical pulp (CMP).
  • CMP chemi-mechanical pulp
  • the process of this invention is particularly suitable for bleaching with hydrogen peroxide.
  • the formula of chemicals used for bleaching may also include sodium hydroxide, a substance such as magnesium sulphite and a complexing agent such as sodium diethylene triaminepentacetate (DTPA).
  • DTPA sodium diethylene triaminepentacetate
  • Table 6 provides a further illustration of the effect of bleaching the products of the improved explosion process with hydrogen peroxide.
  • Table 7 gives additional results showing the effect of bleaching with 4% hydrogen peroxide applied to the product of the improved explosion process as compared with CTMP pulp.
  • the preferred bleaching conditions for the improved explosion pulp are 3-5% hydrogen peroxide, 3-5% sodium hydroxide; 0.5 to 3% sodium silicate; 0 to 0.1% magnesium sulphate, time 1 hour to 4 hours, temperature 50° C. to 90° C., consistency 10 to 35%.
  • DTPA 0 to 0.5%. These conditions should give a good compromise between cost and effectiveness.
  • the most important chemical additives are the hydrogen peroxide and the sodium hydroxide.
  • the pulp should be washed, preferably with a solution of sodium metabisulphite (for example a 2% solution) or a solution of water saturated with sulphur dioxide. These solutions will provide sulphur dioxide which will react with and neutralize the excess of hydrogen peroxide.
  • the improved explosion process will provide a product having a yield in the range 90 to 94% and an energy of defibration of 3 to 4.9 MJ/kg in one stage refining or 4 to 6.5 MJ/kg in two stage refining.
  • the brightness without bleaching will be in the range 55-60% and after bleaching with 4% hydrogen peroxide will have a brightness in the range 80-82%.
  • Hardwood will have a brightness without bleaching in the range 60-70% and after bleaching with 4% hydrogen peroxide will have a brightness of 85-87%.
  • the physical properties of softwood are comparable or superior to those produced by the CMP or CTMP processes.
  • the properties of the hardwood are up to 50% superior to the products produced by the CMP or CTMP processes. It is reasonable to expect that, by applying the principles disclosed herein further optimization will result in even better results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)

Abstract

This invention relates to an improved process for preparing pulp suitable for paper making. Although processes using explosive decompression have been known in the past, it has been believed that these must be conducted at relatively low temperatures. Although such known processes of explosive decompression resulted in a saving of power, the physical strength was low, the color was relatively dark and there was a considerable yield loss. This invention is to provide a process to achieve the saving of power resulting from the use of explosive decompression but in which there is good brightness, high yield and good fiber strength. The process of this invention defines conditions for achieving these objectives. These conditions include impregnation of the chips of other wood fragments under specified conditions and cooking with saturated steam at a high temperature and pressure followed by explosive decompression and refining.

Description

This invention relates to an improved process for preparing pulp suitable for paper making.
BACKGROUND
The factors for importance in processes for preparing pulp include:
(1) physical properties of the fiber which carry over to the paper product to give satisfactory strength. These are conventionally evaluated in terms of burst, tear, and breaking length.
(2) freeness which is related to dewatering on conventional paper making equipment.
(3) brightness--It is desirable for most purposes that the paper made from the pulp be white or at least light coloured. The greater the brightness of the pulp the less the cost of chemicals for bleaching.
(4) yield--The higher the yield, the greater cost efficiency in the utilization of forest products.
(5) chemical consumption--Chemicals are required for pulping processes but these are costly and it is therefore desirable to minimize chemical consumption and also to use chemicals which are available at a reasonable cost.
(6) time of pulping. This also affects cost in that it involves the use of costly equipment and energy in terms of heat input to maintain the cooking temperature.
(7) refining energy--The cost of the energy required for pulping processes that include mechanical refining is an important cost factor.
Chemical pulping leads to strong papers, but is costly in terms of low yield and high chemical consumption. There are also accompanying problems of pollution abatement.
Mechanical pulping provides good yields but the refining costs are high, especially in the case of thermo mechanical pulping (TMP) and refiner mechanical pulping (RMP) and the strength of paper produced is rather low. In the case of groundwood, even though the defibrating energy is low, the pulp and paper properties are so low that it can be used only in admixture with other pulps.
There has been increased interest in recent years in so-called chemimechanical or semi-chemical processes which provide pulps of a strength that is adequate for most purposes and in which the yield is of the order of 90% or more. The drawback is, however, the high power requirements for the mechanical refining part of the chemimechanical or semi-chemical process due to the high percentage of lignin and fiber stiffness. The chips are not as soft as those produced by chemical pulping.
An alternative to high energy mechanical refining in equipment such as a disc refiner, is to soften wood chips with steam under high pressure followed by explosive decompression. This was indeed the process invented by Mason in the 1920's and used for hardboard manufacture. Chips were steamed at low pressure for about one minute then at high pressure for two minutes, and then brought to an even higher pressure followed by discharge of superheated chips to atmospheric pressure to explode the chips into a pulp called gun stock which was then further refined. Although the pulp resulting from the Mason process had high freeness and bulk and although the step of explosive decompression resulted in a saving of the power needed for further refining, the physical strength, as evaluated in terms of burst, tear and breaking length, was low. The fibers were therefore unsuitable for papermaking. Another problems was the relatively dark colour which would have required excessive chemical consumption for bleaching. There was also considerable yield loss due to acidic hydrolytic degradation due to the wood acids liberated at the high temperature used.
According to Asplund Svensk Papperstid (1953) 56,550 pulp with good paper making properties can be produced by a process involving explosive decompression if the steam temperature is controlled to between 100° C. and 160° C. Higgins et al in Appita 32(3) 187-200 (November 1978) suggested that the Asplund process could be improved if the chips were chemically pretreated and the steam temperature was limited to less than 130° C. In Higgins' modification of the Asplund process the pressure at a temperature of 130° C. will be about 1.5 atmospheres.
OBJECTS
The object of this invention is to provide a process in which the energy saving advantage of explosive decompression is achieved but in which good brightness, high yield, and good fiber strength are also maintained.
It is also an object to provide a process that is conducted at higher temperatures than those considered to be desirable according to the publications of Asplund and Higgins referred to above. The higher temperatures enable higher pressures to be used, thereby greatly improving steam penetration inside the fibers and softening of the hydrogen bonds in the mainly crystalline region of the fibers.
The Invention
The major problems accompanying previous processes using explosive decompression are believed to have been the degradation due to the oxidation of wood and acid hydrolysis leading to loss in brightness, deterioration of fiber and paper properties and loss of yield. The approach adopted by this invention is therefore to attempt to curtail hydrolytic and oxidative wood degradation and thereby to protect against loss of yield, brightness and fiber strength. The loss of fiber strengh will be particularly great if the degree of polymerization of the cellulose falls below the critical value which is about 500-600. Hydrolytic degradation will also cause yield loss due mainly to degradation of hemi-cellulose.
The process of this invention tries to achieve a positive improvement in the strength of the paper that will be produced from the fibers by increasing the number of hydrophilic groups on the fiber surfaces thereby adding to the potential sites for hydrogen bonding.
The conditions for the achievement of the foregoing objects in accordance with the process of this invention are as follows:
(1) The wood fragments, having fibers suitable for paper making, such as chips, are in a form in which thorough chemical impregnation can be achieved in a reaonable time.
(2) There is an initial thorough impregnation of the chips or other wood fragments by an alkaline aqueous liquor having at least one agent acting to produce hydrophilic groups and as an antioxidant which is capable of protecting the chips against oxidation and develops hydrophilic groups during the cooking stage. The same chemical may act as both an agent to produce hydrophilic groups and as an antioxidant or these functions may be performed by separate chemicals. At the end of cooking the pH should not be lower than about 6.0, so that acids released during cooking will be neutralized. Preferably a swelling agent is also used in the case of high density wood.
(3) The impregnated chips are cooked using saturated steam in the substantial absence of air at high temperature and pressure.
(4) The chips that have been steam cooked are subjected to explosive decompression to result in chips which are softened and partially defibrated.
(5) The softened chips are preferably washed and then without undue delay, and preferably immediately, refined to provide pulp.
The steps of the process of this invention which will for convenience be referred to as the improved explosion process, will now be considered in more detail.
The Wood Fragments
The starting material will normally be chips in which the fibers are of a length suitable for paper making. Shavings could also be used but sawdust would be undesirable except as a minor part of the total furnish as the fibers are partially cut.
The chips should also, as is well known, be suitable in the sense of being free from bark and foreign matter.
It is desirable for the purposes of this invention that coarse chips be avoided as otherwise the subsequent impregnation may deposit chemicals only on the chip surface, unless impregnation is carried out for a very long time. Another problem with coarse chips is that cooking would not be complete. It is best to use shredded or thin chips. In the examples, except where otherwise stated, industrial softwood chips were used which were 75% spruce, 20% fir and 5% aspen. These were shredded, the energy for which was of the order of 0.1 MJ/kg. It has been found that this process is applicable also to hardwoods, jack pine and larch, giving 50% stronger papers at only 40% of refiner energy compared with conventional chemo-thermo mechanical pulping.
Impregnation
The purpose of impregnation is to protect the chips against oxidation during cooing and during transfer from the cooking vessel to the refiner. It is also an objective to provide a positive increase in strength by developing hydrophylic groups on the fiber surface during steam treatment. This will then provide additional sites for hydrogen bonding.
The preferred anti-oxidant is sodium sulphite Na2 SO3 which also forms hydrophilic groups, and which is available at a low cost. It is used to provide a concentration of absorbed chemical of about 1 to 10%. Concentrations below 4% would be used where brightness protection is unimportant and high strength is not required. Where, however, brightness is important the sodium sulphite should be at least 4%. If physical properties are important thesa will be improved by using a coneentration of at least 4% sodium sulphite and will be further improved as the concentration is further increased towards 10%. The concentratipn of the solution is preferably about the same as percent of chemical to be absorbed where there are equal quantities of chips and liquor. For example, a ton of chips of 50% consistency mixed with one ton of 8% solution will result in 8% absorbed on the pulp. Of importance is thorough impregnation to distribute the antioxidant evenly rather than depositing it just on the surface. Other antioxidants that can be used are potassium sulphite or magnesium sulphite. Ammonium sulphite could be used if cooking conditions are not severe or with a buffer. Complexing agents such as ethylene diamine tetracetic acid (EDTA), sodium diethylene triaminepentacetate (DTPA), sodium tripolyphosphate (TPF) and other complexing agents known in the art as being usable under alkaline conditions may be added to minimize the catalytic effect of metals such as iron on oxidative degradation.
It is desirable also to use a swelling agent to assist the antioxidant or hydrophilic agent in penetrating the wood and this contributes also to softening the chip. This is of particular value in the case of high density wood. Suitable swelling agents are sodium or potassium hydroxide and ammonium hydroxide which will contribute also to providing hydrophilic groups. Other swelling agents that can be used and which may be desirable as auxiliary swelling agents for high density wood are zinc chloride, sodium chloride, sodium bromide, calcium isocyanate, Schweitzers' solution, cupriethylenediamine (C.E.D) tetraethylammonium hydroxide, dimethyldibenzylammonium hydroxide. The concentration of swelling agent and conditions of swelling must be controlled in such a way as to avoid any dissolution of the hollocellulose. Thus the percentage of swelling agent in the impregnating solution will be in the range of about 1 to 4% depending on the agent and the conditions.
The impregnating solution must be alkaline and have enough free hydroxyl to be able to neutralize the liberated wood acids such as formic acid and acetic acid. Normally the starting pH is about 7.5 or higher and the final pH after steam cooking should be at least 6 or higher.
The time of impregnation at atmospheric pressure in holding tanks typically ranges from about 12 hours to 24 hours at a temperature of about 30° C. to 60° C. Approximately equal weights of chips and of aqueous impregnating solution can be used. For industrial purposes, however, the time may be shortened to an hour or to minutes by impregnating with steam under pressure and at a higeer temperature. The pressure should be up to about 1 atmospheric extra pressure at a temperature of about 100° C. to 110° C. To improve impregnation the chips should be compressed in advance of impregnation. Under these conditions, penetration will be achieved in a shorter time, but penetration is what predominantly occurs. There is no significant cooking.
In the examples, unless otherwise stated, 150 grams of chips were mixed in plastic bags with 150 g. of an aqueous solulion of the specified concentration of the chemicals indicated in the examples. The time of impregnation was 24 hours and the temperature of impregnation was 60° C. for softwood and 48 hours and 600° C. for hardwood. The foregoing is applicable only on a laboratory scale. In industry the impregnation time would be shortened as described above.
Steam Cooking
The impregnated chips are steam cooked at a high temperature and pressure.
Equipment and methods that can be used for preliminary compacting of the impregnated chips, for cooking the chips with steam and for the discharge of the chips under conditions of explosive decompression are described in Canadian patent Nos. 1,070,537 dated Jan. 29, 1980; 1,070,646 dated Jan. 29, 1980; 1,119,033 dated Mar. 2, 1982 and 1,138,708 dated Jan. 4, 1983, all of which were granted to Stake Technology Ltd. The equipment used in the examples was acquired from that company.
The temperature of cooking should be within the range of about 170° C. to 210° C. and preferably within the range 180°-195° C., which is in excess of the temperatures considered possible according to the publications of Asplund and Higgins previously referred to. These temperatures correspond with a pressure of 7.9 atmospheres for 170° C. and 15.5 atmospheres for 200° C. It is these high pressures which make a very important contribution to ensuring excellent penetration of the chips by the cooking liquor.
The cooking may be preceded by steam flushing under low pressure steam at 100° C for a short period such as one minute. This is a matter of convenience, in that with a batch reactor the cooking vessel is initially open to the atmosphere, to eliminate air. This air would be disadvantageous in that it would result in oxidation if it were trapped in the cooking vessel. Additional antioxidant may if desired be added at this stage. Steam flushing is desirable with a batch reactor but would not be necessary for a continuous reactor.
This preliminary treatment is then followed by cooking for about 30 seconds to 6 minutes and preferably about 1 to 4 minutes.
It has been found that within reasonable limits there is a property improvement by increasing the time--temperature (K). By increasing this constant from 285 to 760 in the case of black spruce at about the same freeness (157-167) the burst index increased from 3.15 to 4.41 and breaking length from 6.3 to 7.6 and tear from 5.6 to 5.8. Refining energy dropped from 3.2 to 3.1 and brightness dropped from 53.7 to 49.1 (equivalent to 59.7 to 55.1. These figures are adjusted to those that ordinarily would be obtained by using an industrial refiner in place of a laboratory refiner. Impregnation was with 8% sodium sulphite and 1/2% of DTPA.
Explosive Decompression
After cooking the pressure is instantaneously released and the chips are exploded into a release vessel. If there is to be a delay between release of the chips and refining it is important to cool the chips down by washing them. Washing may also be desirable for the purpose of chemical recovery.
It is desirable immediately to refine the chips after explosive decompression. Otherwise, if the chips are stored, some oxidation will occur with resultant loss of brightness. The rapidity with which this will occur depends on how much residual antioxidant is present at that time and on the temperature of the chips and the extent of exposure to oxygen. Preferably, therefore, refining is immediate so that it is unnecessary to incur the cost of excess antioxidant. In any event, undue delay should be avoided. Such delay is regarded as being undue if oxidation takes place to an extent that will materially affect brightness.
The chips resulting from the explosive decompression are softened and partially defibrated.
Refining
Refining in the experiments described below and labelled "PFI" was conducted at a 10% consistency level according to TAPPI standards using an atmospheric laboratory refiner. The refining energy reported is the industrial energy obtained by dividing the PFI energy by factor 3.5. In most cases however, laboratory refining was conducted at 2% consistency level using a blender coupled with an energy meter model EW 604.
According to A. C. Shaw "Simulation of Secondary Refining" Pulp and Paper Canada 85'6 T 152-T155 (1984) the blender results closely match those obtained with industrial refiners. Properties were evaluated after preparing paper sheets according to standard CPPA testing methods.
Refining erergies are unusually low and can be expected to be in the range 3.6 to 4 MJ/kg to provide a freeness of about 700 and about 4.6 to 5 MJ/kg for a freeness of 100 which is about one half of the energy demand of refiner mechanical pulp (RMP) or thermomechanical pulp (TMP). In the case of chemi-mechanical pulp (CMP) the refiner energy is about 40% higher than that of explosion pulp for the same properties. Moreover, physical properties such as burst, tear and breaking length will be considerably better than those of CMP as illustrated below in Table 1.
                                  TABLE 1                                 
__________________________________________________________________________
PAPER PROPERTIES OF IMPROVED EXPLOSION AND CMP PULPS                      
                                SUNDS                                     
        BLENDER +SUNDS  ++BAUER (1)          SUNDS                        
REFINER *IMPROVED                                                         
                IMPROVED                                                  
                        IMPROVED                                          
                                IMPROVED                                  
                                        SUNDS                             
                                             (1)                          
PULP    EXPLOSION                                                         
                EXPLOSION                                                 
                        EXPLOSION                                         
                                EXPLOSION                                 
                                        **CMP                             
                                             CMP                          
__________________________________________________________________________
CSF (ml)                                                                  
        704     702     687     590     282  72                           
ENERGY  3.6     3.96    4.0     5.0     5.1  8.75                         
BRIGHTNESS                                                                
        47.3    51.9    52.1    51.3    57   55.4                         
OPACITY (%)                                                               
        92      88.5    88.5    89.2    87.8 86.7                         
BULK (cm.sup.3 /g)                                                        
        3.48    3.26    2.77    2.78    1.77 1.84                         
POROSITY                                                                  
        5302    5140    4980    4600    1585 54                           
(ml/min)                                                                  
BURST   2.34    2.54    2.56    2.81    1.77 2.79                         
(mN · m.sup.2 /g)                                                
BREAKING                                                                  
        3.7     4.37    3.7     5.3     3.5  5.5                          
LENGTH                                                                    
STRETCH (%)                                                               
        1.54    1.58    1.67    1.68    2.25 2.4                          
TEAR    13.8    14.5    13.8    11.7    10.1 6.4                          
__________________________________________________________________________
 **Improved Explosion: 8% Na.sub.2 SO.sub.3 ; 190° C.; 4 min, (75% 
 Spruce; 20% fir; 5% Aspen)                                               
 Yield 91.3%                                                              
 **CMP: 13% Na.sub.2 SO.sub.3 ; 160° C.; 110 min; (75% Spruce; 20% 
 Fir; 5% Aspen)                                                           
 Yield: 87%                                                               
 +Sunds: Sunds Defibrator, 1000 kg/day,                                   
 ++Bauer: Bauer Defribrator, 4500 kg/day                                  
 (1) 2 Stage Refining                                                     
In Table 2, a comparison is provided at similar burst between the properties of the improved explosion process as compared with TMP or CTMP processes. It will be noted that brightness is comparable and physical properties are improved with far less expenditure of energy.
                                  TABLE 2                                 
__________________________________________________________________________
COMPARISON OF PAPER PROPERTIES                                            
          BLENDER BAUER                                                   
DEFIBRATOR                                                                
          *IMPROVED                                                       
                  *IMPROVED                                               
                          SUNDS SUNDS                                     
PULP      EXPLOSION                                                       
                  EXPLOSION                                               
                          TMP (1)**                                       
                                **CTMP (1)                                
__________________________________________________________________________
FREENESS (ml)                                                             
          704     687     130-140                                         
                                180-260                                   
ENERGY (MJ/kg)                                                            
          3.6     4.0     9.4   8.4                                       
BRIGHTNESS (%)                                                            
          47.3 (+54)                                                      
                  52.1    54.5  59.0                                      
OPACITY (%)                                                               
          92      88.5    93.2  90.3                                      
BULK (cm.sup.3 /g)                                                        
          3.48    2.77    3.5   3.2                                       
POROSITY  5302    4980    --    --                                        
(ml/min)                                                                  
BURST     2.34    2.56    2.2   2.2                                       
(kPa.m.sup. 2 /g)                                                         
TEAR      13.8    13.8    8.3   10                                        
(mN · m.sup.2 /g)                                                
RUPTURE (km)                                                              
          3.7     3.7     --    --                                        
STRETCH (%)                                                               
          1.54    1.67    --    --                                        
__________________________________________________________________________
 +Brightness 54% if the defibrator had been the SundsDefibrator           
 *8% Na.sub.2 SO.sub.3 ; 190° C.; 4 min; soft wood (75% Spruce; 20%
 fir; 5% aspen)                                                           
 **100% spruce; 2% Na.sub.2 SO.sub.3 for CTMP; Pressure 250 kPa; Time: 5  
 min.                                                                     
 (1) D. Laliberte; P. M. Shalhorn; A. Karnis. Comparison of TMP and CTMP  
 properties from spruce and pine sawmill chips. Proceeding of Papers, 72nd
 CPPA annual meeting, p. 159-166 *1986.                                   
Table 3 shows a correlation between refining energy and other factors such as cooking time and concentration of sodium sulphite together with the physical properties. It also indicates the balance between factors such as cooking time and chemical content as against the refining energy required to achieve a given freeness.
                                  TABLE 3                                 
__________________________________________________________________________
PROPERTIES OF BLACK SPRUCE IMPROVED EXPLOSION PULPS                       
__________________________________________________________________________
                              *REFINING               SCATTERING          
Na.sub.2 SO.sub.3                                                         
           **COOKING          ENERGY BRIGHTNESS***    COEFFICIENT         
% ml DTPA %                                                               
           TIME min.                                                      
                   PFI rev.                                               
                        CSF ml                                            
                              MJ/kg  %         OPACITY %                  
                                                      Cm.sup.2 /g         
__________________________________________________________________________
1 150                                                                     
     1     1.5     20 000                                                 
                        465   1.52   48.1      93.7   408                 
                   40 000                                                 
                        321   2.88   48.8      94.3   435                 
                   55 000                                                 
                        259   4.27   48.5      94.5   436                 
1 150                                                                     
     1     4       20 000                                                 
                        374   1.86   38.5      96.8   404                 
                   40 000                                                 
                        180   2.77   38.6      97.0   416                 
                   55 000                                                 
                        149   4.58   39.0      97.5   431                 
4 150                                                                     
     0.5   1.5     20 000                                                 
                        521   1.57   54.9      89.4   397                 
                   40 000                                                 
                        314   2.32   55.1      89.7   407                 
                   55 000                                                 
                        194   2.35   55.3      90.4   417                 
4 150                                                                     
     0.5   4       20 000                                                 
                        502   1.77   49.5      91.4   381                 
                   40 000                                                 
                        264   2.52   49.2      91.6   384                 
                   55 000                                                 
                        192   3.04   49.3      92.0   389                 
8 150                                                                     
     0.5   1.5     20 000                                                 
                        513   1.48   54.2      88.8   373                 
                   40 000                                                 
                        327   2.91   54.3      88.7   376                 
                   55 000                                                 
                        167   3.23   53.7      88.9   373                 
8 150                                                                     
     0.5   4       20 000                                                 
                        535   1.68   50.0      89.1   349                 
                   40 000                                                 
                        212   2.42   49.3      88.5   332                 
                   55 000                                                 
                        157   3.11   49.1      88.6   332                 
__________________________________________________________________________
Na.sub.2 SO.sub.3                     TEAR INDEX                          
                                               BREAKING                   
% ml BULK Cm.sup.3 /g                                                     
              POROSITY ml/min.                                            
                         BURST INDEX KP m.sup.2 /g                        
                                      nM · m.sup.2 /g            
                                               LENGTH Km                  
                                                       STRETCH            
__________________________________________________________________________
                                                       %                  
1 150                                                                     
     3.15     4432       0.61         2.32     1.58    0.73               
     3.07     2620       0.58         2.54     1.75    0.68               
     2.84     1935       0.73         2.76     2.18    0.79               
1 150                                                                     
     2.82     2477       0.83         3.80     2.39    0.90               
     2.47      616       1.33         4.03     3.34    1.12               
     2.41      327       1.43         4.23     3.56    1.15               
4 150                                                                     
     3.15     4292       0.98         4.52     2.57    1.00               
     2.63     1435       1.51         4.61     3.34    1.03               
     2.51      423       1.74         4.91     4.19    1.41               
4 150                                                                     
     2.79     3318       1.56         6.24     3.87    1.40               
     2.35      575       2.30         6.08     4.98    1.64               
     2.26      232       2.60         5.60     5.39    1.86               
8 150                                                                     
     2.72     2690       2.08         6.46     4.55    1.49               
     2.47      943       2.47         5.63     5.15    1.68               
     2.23      159       3.15         5.59     6.31    2.01               
8 150                                                                     
     2.51     2135       3.41         7.25     6.03    1.91               
     2.19      188       4.20         6.09     7.28    2.22               
     2.08      68        4.41         5.81     7.63    2.32               
__________________________________________________________________________
 *Refining energy includes blending and PFI energy                        
 **Cooking temperature: 190° C.                                    
 ***These values will increase by 5-6% if refining is on an industrial    
 refiner.                                                                 
Table 4 is a further example showing that at similar freeness the improved explosion pulp develops similar properties at lower energy as compared with a chemi-mechanical pulp (CMP).
              TABLE 4                                                     
______________________________________                                    
ULTRA HIGH YIELD PROCESSES - (SOFTWOOD)                                   
                    IM-              IM-                                  
                    PROVED           PROVED                               
                    EXPLO-           EXPLO-                               
METHOD      CMP     SION       CMP   SION                                 
______________________________________                                    
CHEMICAL (%)                                                              
            13.5    8          13.5  8                                    
(Na.sub.2 SO.sub.3)                                                       
TEMPERATURE 160     190        160   190                                  
(%)                                                                       
TIME (MIN)  110     41         110   41                                   
YIELD (%)   87      91.3       87    91.3                                 
CSF (ml)    178     164        482   407                                  
SPECIFIC    8.9     4.0        6.7   3.9                                  
ENERGY of                                                                 
DEFIBRATOR                                                                
(Mj/kg)                                                                   
BURST       4.1     4.8        2.7   4.0                                  
(kPA · M.sup. 2 /g)                                              
TEAR        10.6    9.4        12.9  10.5                                 
(mN · m.sup.2 /g)                                                
RUPTURE (km)                                                              
            6.9     7.3        4.7   5.9                                  
BRIGHTNESS (%)                                                            
            54.6    48.0 (54)***                                          
                               54.6  48.9 (54)***                         
OPACITY (%) 88.2    91.8       87.4  92.1                                 
______________________________________                                    
 *75% Spruce; 20% fir; 5% hardwood                                        
 **Blender Defibration                                                    
 ***After defibration in the Sunds Defibrator                             
Bleaching
The process of this invention is particularly suitable for bleaching with hydrogen peroxide. The formula of chemicals used for bleaching may also include sodium hydroxide, a substance such as magnesium sulphite and a complexing agent such as sodium diethylene triaminepentacetate (DTPA). The improvement in brightness achieved at different concentrations is shown below in Table 5. It appears that up to about 4% hydrogen peroxide achieves progressive substantial improvements in brightness following which further additions are of questionable cost effectiveness.
              TABLE 5                                                     
______________________________________                                    
THE EFFECT OF THE CONCENTRATION OF H.sub.2 O.sub.2                        
ON GAIN OF BRIGHTNESS (ASPEN)*                                            
______________________________________                                    
DTPA (%)      0.1    0.1    0.1   0.1  0.1  0.1                           
MgSO.sub.4 (%)                                                            
              0.05   0.05   0.5   0.5  0.5  0.5                           
NaOH (%)      4.0    4.0    4.0   4.0  4.0  4.0                           
Na.sub.2 SiO.sub.3 (%)                                                    
              0.5    0.5    0.5   0.5  0.5  0.5                           
H.sub.2 O.sub.2 (%)                                                       
              1      2      3     4    6    10                            
TEMPERATURE (°C.)                                                  
              70     70     70    70   70   70                            
TIME (min)    120    120    120   120  120  120                           
CONSISTENCY (%)                                                           
              20     20     20    20   20   20                            
GAIN OF       16.0   22.7   24.9  26.2 27.1 28.5                          
BRIGHTNESS (%)                                                            
OPACITY (%)   --     --     --    77.6 --   --                            
______________________________________                                    
 *INITIAL BRIGHTNESS: 50.3%; (4% Na.sub.2 SO.sub.3 ; 4 min, 190° C.
                                                                          
Table 6 provides a further illustration of the effect of bleaching the products of the improved explosion process with hydrogen peroxide.
              TABLE 6                                                     
______________________________________                                    
CONDITIONS OF BLEACHING                                                   
THE IMPROVED EXPLOSION                                                    
PULPS WITH PEROXIDE                                                       
______________________________________                                    
PULP 8% Na.sub.2 SO.sub.3                                                 
            BLACK     SPRUCE        ASPEN                                 
            SPRUCE    FIR                                                 
190° C.; 4 min                                                     
DTPA        0.5       0.5       0.5   0.5                                 
MgSO.sub.4 (%)                                                            
            0.05      0.05      0.05  0.05                                
Na.sub.2 SiO.sub.3 (%)                                                    
            1.0       1.00      0.5   0.5                                 
NaOH (%)    2.0       2.0       4.0   4.0                                 
H.sub.2 O.sub.2 (%)                                                       
            4.0       4.0       4.0   4.0                                 
TEMPERATURE 80        80        85    80                                  
(°C.)                                                              
TIME (MIN)  150       150       150   150                                 
CONSISTENCY 20        20        25    20                                  
(%)                                                                       
BRIGHTNESS                                                                
INITIAL     46.5 (52.5)*                                                  
                      49.3 (55.3)*                                        
                                52.4  70 (68)*                            
FINAL       72.9 (78.9)                                                   
                      75.9 (81.9)                                         
                                79.5  87 (85)                             
BRIGHTNESS  26.4      26.6      27.1  17 (17)                             
GAIN (%)                                                                  
______________________________________                                    
 *(after defibration in the Sunds Defibrator)                             
Various other factors involving bleaching conditions have been investigated. It was found that under conditions similar to those of Table 6 increasing the concentration of sodium silicate improved the increase of brightness up to about 3% sodium silicate, following which it dropped off. The gain of brightness increased with sodium hydroxide concentration up to peak at about 4% NaOH. Increase of consistency progressively improved the gain of brightness within the range investigated, which was up to 30%. Increasing the time improved the gain of brightness within the range investigated which was up to 4 hours.
Table 7 gives additional results showing the effect of bleaching with 4% hydrogen peroxide applied to the product of the improved explosion process as compared with CTMP pulp.
                                  TABLE 7                                 
__________________________________________________________________________
THE EFFECT OF THE CONCENTRATION OF HYDROGEN PEROXIDE                      
ON THE INDEX OF BLEACHING AND OPACITY                                     
                    IMPROVED                                              
     CTMP - ASPEN*       EXPLOSION - ASPEN                                
     BRIGHTNESS                                                           
              OPACITY    BRIGHTNESS                                       
% H.sub.2 O.sub.2                                                         
     (%)      (%)   % H.sub.2 O.sub.2                                     
                         (%)         OPACITY                              
__________________________________________________________________________
0    60.9     91.4  0    69          89                                   
4    77       75    4    87          74.5                                 
__________________________________________________________________________
 *See TAPPI 69 (9) September 1986 pp. 130-133 B. V. Kokta and C. Deneault.
The preferred bleaching conditions for the improved explosion pulp are 3-5% hydrogen peroxide, 3-5% sodium hydroxide; 0.5 to 3% sodium silicate; 0 to 0.1% magnesium sulphate, time 1 hour to 4 hours, temperature 50° C. to 90° C., consistency 10 to 35%. DTPA 0 to 0.5%. These conditions should give a good compromise between cost and effectiveness. The most important chemical additives are the hydrogen peroxide and the sodium hydroxide.
In order the protect brightness stability and prevent reversion, the pulp should be washed, preferably with a solution of sodium metabisulphite (for example a 2% solution) or a solution of water saturated with sulphur dioxide. These solutions will provide sulphur dioxide which will react with and neutralize the excess of hydrogen peroxide.
In conclusion, it may be expected that the improved explosion process will provide a product having a yield in the range 90 to 94% and an energy of defibration of 3 to 4.9 MJ/kg in one stage refining or 4 to 6.5 MJ/kg in two stage refining. In the case of softwoods, the brightness without bleaching will be in the range 55-60% and after bleaching with 4% hydrogen peroxide will have a brightness in the range 80-82%. Hardwood will have a brightness without bleaching in the range 60-70% and after bleaching with 4% hydrogen peroxide will have a brightness of 85-87%. The physical properties of softwood are comparable or superior to those produced by the CMP or CTMP processes. The properties of the hardwood are up to 50% superior to the products produced by the CMP or CTMP processes. It is reasonable to expect that, by applying the principles disclosed herein further optimization will result in even better results.

Claims (23)

I claim:
1. A process for making paper making pulp comprising the step of:
(1) thoroughly impregnating wood fragments having fibers suitable for paper making in the substantial absence of air with an alkaline aqueous liquor including at least one agent acting to provide hydrophilic groups and as an antioxidant to impregnate enough of said agent throughout the wood fragments to protect the wood fragments from acidic hydrolysis and oxidative degradation during subsequent cooking;
(2) steam cooking the impregnated chips in direct contact with saturated steam in the substantial absence of air at superatmospheric pressure and a temperature within the range of about 170° C. to 210° C.;
(3) subjecting the wood fragments to explosive decompression to give wood fragments that are softened and partially defibrated;
(4) without undue delay that would result in brightness loss, refining the softened and defibrated chips to provide pulp.
2. A process as in which the temperature of steam cooking is in the range 180° C. to 195° C.
3. A process as in claim 1, in which the aqueous liquor used for impregnating is at a pH of at least 7.5 and the final pH following steam cooking is at least 6.
4. A process as in claim 1, in which the wood fragments are chips.
5. A process as in claim 1, in which the wood fragments are shredded chips.
6. A process as in claim 1, in which the aqueous liquor used for impregnating includes a swelling agent.
7. A process as in claim 1, in which the aqueous liquor used for impregnating includes a swelling agent selected from the group consisting of sodium hydroxide, potassium hydroxide and ammonium hydroxide in an amount of 1 to 3% of the aqueous liquor.
8. A process as in claim 1, in which the hydrophilic and antioxidant agent is sodium sulphite.
9. A process as in claim 1, in which the hydrophilic and antioxidant agent is selected from the group consisting of sodium sulphite, potassium sulphite and magnesium sulphite in an amount of 1-10% absorbed by the wood fragments.
10. A process as in claim 1, in which the aqueous liquor comprises a complexing agent selected from the group consisting of ethylene diamine tetra-acetic acid, sodium diethylene triaminepentacetate and sodium tripolyphosphate.
11. A process as in claim 1, in which the time of cooking is in the range 30 seconds to 6 minutes.
12. A process as in claim 1, in which the time of cooking is in the range 1 to 4 minutes.
13. A process as in claim 1, in which the temperature of cooking is in the range 180° C. to 195° C. and the time of cooking is in the range 1 to 4 minutes.
14. A process as in claim 1, in which the resultant pulp is bleached with hydrogen peroxide.
15. A process as in claim 1, in which the resultant pulp is hardwood having a brightness of at least 60 without bleaching.
16. A process as in claim 1, in which the resultant pulp is softwood having a brightness of at least 55 without bleaching.
17. A process as in claim 1, in which the resultant pulp is hardwood bleached with less than 5% hydrogen peroxide to a brightness of at least 85.
18. A process as in claim 1, in which the resultant pulp is softwood bleached with less than 5% hydrogen peroxide to a brightness of at least 80.
19. A process as in claim 1, in which the resultant pulp is bleached using 3-5% hydrogen peroxide and 3-5% sodium hydroxide.
20. A process as in claim 1, in which the resultant pulp is bleached using 3-5% hydrogen peroxide, 3-5% sodium hydroxide, 0.5 to 3% sodium silicate, 0 to 0.1% magnesium sulphate, 0 to 1% diethylene triamine pentacetate at a temperature of 50° C. to 90° C., time 1 hour to 4 hours and a consistency of 10 to 35%.
21. A process as in claim 1, in which the resultant pulp is bleached using 3-5% hydrogen peroxide and 3-5% sodium hydroxide, and in which the pulp is washed with a washing solution which will neutralize excess hydrogen peroxide to obtain a final pH of about 5.5.
22. A process as in claim 1, in which the resultant pulp is bleached using 3-5% hydrogen peroxide and 3-5% sodium hydroxide, and in which the pulp is washed with a washing solution which will neutralize excess hydrogen peroxide to obtain a final pH of about 5.5, and in which such washing solution comprises sulphur dioxide.
23. A process as in claim 1, in which the hydrophilic and antioxidant agent is sodium sulphite in the amount of about 4-8%.
US07/079,928 1987-03-24 1987-07-31 Process for preparing pulp for paper making Expired - Lifetime US4798651A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000532871A CA1230208A (en) 1987-03-24 1987-03-24 Process for preparing pulp for paper making
CA523871 1987-03-24

Publications (1)

Publication Number Publication Date
US4798651A true US4798651A (en) 1989-01-17

Family

ID=4135272

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/079,928 Expired - Lifetime US4798651A (en) 1987-03-24 1987-07-31 Process for preparing pulp for paper making

Country Status (9)

Country Link
US (1) US4798651A (en)
EP (1) EP0284585A3 (en)
BR (1) BR8801294A (en)
CA (1) CA1230208A (en)
ES (1) ES2005527A4 (en)
FI (1) FI881261A (en)
NZ (1) NZ223929A (en)
PT (1) PT87062B (en)
RU (1) RU1834938C (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087324A (en) * 1990-10-31 1992-02-11 James River Corporation Of Virginia Paper towels having bulky inner layer
US5262004A (en) * 1992-05-29 1993-11-16 Hydro-Quebec Method of extracting chemical preservatives from treated wood
FR2743579A1 (en) * 1996-01-17 1997-07-18 E Mc2 Dev PROCESS FOR PRODUCING PAPER PULP FROM LIGNOCELLULOSIC PLANTS AND PAPER PULP OBTAINED
US5755926A (en) * 1992-02-24 1998-05-26 Kimberly-Clark Worldwide, Inc. Integrated pulping process of waste paper yielding tissue-grade paper fibers
US6372085B1 (en) 1998-12-18 2002-04-16 Kimberly-Clark Worldwide, Inc. Recovery of fibers from a fiber processing waste sludge
US6413362B1 (en) 1999-11-24 2002-07-02 Kimberly-Clark Worldwide, Inc. Method of steam treating low yield papermaking fibers to produce a permanent curl
US6506282B2 (en) 1998-12-30 2003-01-14 Kimberly-Clark Worldwide, Inc. Steam explosion treatment with addition of chemicals
US20040016525A1 (en) * 2002-02-22 2004-01-29 Gervais Gibson W. Process of treating lignocellulosic material to produce bio-ethanol
US20040118529A1 (en) * 2002-12-24 2004-06-24 Yasuyuki Kamijo Processes for preparing mechanical pulps having high brightness
US20040240897A1 (en) * 2003-05-30 2004-12-02 Samsung Electronics Co. Ltd Liquid toner screening device
US20050039868A1 (en) * 2003-08-18 2005-02-24 Kimberly-Clark Worldwide, Inc. Recycling of latex-containing broke
US20050279467A1 (en) * 2004-06-22 2005-12-22 Fort James Corporation Process for high temperature peroxide bleaching of pulp with cool discharge
US20100024807A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for treating a cellulosic feedstock
US20100024809A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US20100024808A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for treating a cellulosic feedstock
US20100024806A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US20100028089A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US20100186735A1 (en) * 2009-01-23 2010-07-29 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US20100186736A1 (en) * 2009-01-23 2010-07-29 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US20110011391A1 (en) * 2009-07-17 2011-01-20 Sunopta Bioprocess Inc. Method and apparatus for the heat treatment of a cellulosic feedstock upstream of hydrolysis
US8545633B2 (en) 2009-08-24 2013-10-01 Abengoa Bioenergy New Technologies, Inc. Method for producing ethanol and co-products from cellulosic biomass
US8915644B2 (en) 2008-07-24 2014-12-23 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for conveying a cellulosic feedstock
US9127325B2 (en) 2008-07-24 2015-09-08 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for treating a cellulosic feedstock

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487793B1 (en) * 1990-11-26 1995-08-30 Bohuslav Vaclav Kokta Explosion process for preparing pulp for paper making
US5122228A (en) * 1990-12-10 1992-06-16 Stake Technology Limited Method of treatment of waste paper with steam
CA2037275A1 (en) * 1991-02-28 1992-08-29 Bohuslav V. Kokta Steam explosion pulping process for papermaking
US5853534A (en) * 1992-12-30 1998-12-29 Sunds Defibrator Industries Ab Method of producing pulp with high yield using a two-stage refining system operating at different temperatures
WO2000019004A1 (en) * 1998-09-25 2000-04-06 Stake Technology Ltd. Semi alkaline steam explosion treatment of fibrous material for the production of cellulose pulp
FI126694B (en) * 2005-12-02 2017-04-13 Metsä Board Oyj Chemical-mechanical pulp and process for producing chemical-mechanical pulp
US7771565B2 (en) 2006-02-21 2010-08-10 Packaging Corporation Of America Method of pre-treating woodchips prior to mechanical pulping
ITCZ20060006A1 (en) * 2006-03-06 2007-09-07 Univ Calabria CHEMICAL-PHYSICAL PROCESS FOR THE PRODUCTION OF PLANT FIBERS
KR20110123184A (en) 2010-05-06 2011-11-14 바히아 스페셜티 셀룰로스 에스에이 Method and system for high alpha dissolving pulp production

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA556962A (en) * 1958-05-06 R. Sheldon Fred Maintenance of brightness in bleached wood pulp
CA919468A (en) * 1970-06-08 1973-01-23 Kimberly-Clark Corporation Lignocellulosic pulping process and products
CA1070646A (en) * 1977-01-24 1980-01-29 Douglas B. Brown Method and apparatus for conveying particulate material
CA1070537A (en) * 1977-01-24 1980-01-29 Stake Technology Ltd. Method fo feeding fibrous material into a pressurized vessel
CA1096374A (en) * 1977-07-11 1981-02-24 Edward A. Delong Method of rendering lignin separable from cellulose and hemicellulose in lignocellulosic material and the product so produced
CA1096559A (en) * 1978-05-04 1981-03-03 Jonas A. I. Lindahl Process for pretreating particulate lignocellulosic material
CA1119033A (en) * 1980-04-24 1982-03-02 Douglas B. Brown Apparatus and method for discharge of pressure cooked particulate or fibrous material
CA1138708A (en) * 1980-03-27 1983-01-04 Douglas B. Brown Press for expressing liquid from a mass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1212505A (en) * 1984-07-17 1986-10-14 Rudy Vit Method, process and apparatus for converting wood, wood residue and or biomass into pulp
SE455314B (en) * 1985-09-03 1988-07-04 Punya B Chaudhuri PREPARATION OF CELLULOSAMASA INCLUDING CHEMICAL PREPARATION AND DEFIBRATION BY EXPANSION

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA556962A (en) * 1958-05-06 R. Sheldon Fred Maintenance of brightness in bleached wood pulp
CA919468A (en) * 1970-06-08 1973-01-23 Kimberly-Clark Corporation Lignocellulosic pulping process and products
CA1070646A (en) * 1977-01-24 1980-01-29 Douglas B. Brown Method and apparatus for conveying particulate material
CA1070537A (en) * 1977-01-24 1980-01-29 Stake Technology Ltd. Method fo feeding fibrous material into a pressurized vessel
CA1096374A (en) * 1977-07-11 1981-02-24 Edward A. Delong Method of rendering lignin separable from cellulose and hemicellulose in lignocellulosic material and the product so produced
CA1096559A (en) * 1978-05-04 1981-03-03 Jonas A. I. Lindahl Process for pretreating particulate lignocellulosic material
CA1138708A (en) * 1980-03-27 1983-01-04 Douglas B. Brown Press for expressing liquid from a mass
CA1119033A (en) * 1980-04-24 1982-03-02 Douglas B. Brown Apparatus and method for discharge of pressure cooked particulate or fibrous material

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Asplund Svenk Pappersted (1953) 56, 550. *
Explosion Pulping of Annual and Fast Growing Plants, Mamers, Menz et al Appita Nov. 1979, p. 201. *
Higgins et al Appita 32(3) 187 200 (Nov. 1978). *
Higgins et al Appita 32(3) 187-200 (Nov. 1978).
New Pulping Process Solves Paper Recycling Problems Canadian Pulp and Paper Industry, vol. 32, No. 19,:79 (Nov. 1979). *
Possibilities for Reduction of Energy Requirements during Chip Refining Puri and Higgins, Appita vol. 37, No. 6, p. 496, May 1984. *
The Siropulper a New Concept in Wastepaper Recovery, Mamers. Appita, vol. 32, No. 2, Sep. 1978. *
The Siropulper-a New Concept in Wastepaper Recovery, Mamers. Appita, vol. 32, No. 2, Sep. 1978.

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087324A (en) * 1990-10-31 1992-02-11 James River Corporation Of Virginia Paper towels having bulky inner layer
US5755926A (en) * 1992-02-24 1998-05-26 Kimberly-Clark Worldwide, Inc. Integrated pulping process of waste paper yielding tissue-grade paper fibers
US5262004A (en) * 1992-05-29 1993-11-16 Hydro-Quebec Method of extracting chemical preservatives from treated wood
FR2743579A1 (en) * 1996-01-17 1997-07-18 E Mc2 Dev PROCESS FOR PRODUCING PAPER PULP FROM LIGNOCELLULOSIC PLANTS AND PAPER PULP OBTAINED
WO1997026401A1 (en) * 1996-01-17 1997-07-24 E.Mc2 Developpement Process for producing pulp from lignocellulosic plants, and pulp obtained
CN1077630C (en) * 1996-01-17 2002-01-09 E·Mc2发展公司 Process for producing pulp from lignocellulosic plants, and pulp obtained
US6372085B1 (en) 1998-12-18 2002-04-16 Kimberly-Clark Worldwide, Inc. Recovery of fibers from a fiber processing waste sludge
US6506282B2 (en) 1998-12-30 2003-01-14 Kimberly-Clark Worldwide, Inc. Steam explosion treatment with addition of chemicals
US6413362B1 (en) 1999-11-24 2002-07-02 Kimberly-Clark Worldwide, Inc. Method of steam treating low yield papermaking fibers to produce a permanent curl
US20040016525A1 (en) * 2002-02-22 2004-01-29 Gervais Gibson W. Process of treating lignocellulosic material to produce bio-ethanol
US7189306B2 (en) 2002-02-22 2007-03-13 Gervais Gibson W Process of treating lignocellulosic material to produce bio-ethanol
US20040118529A1 (en) * 2002-12-24 2004-06-24 Yasuyuki Kamijo Processes for preparing mechanical pulps having high brightness
US7384502B2 (en) * 2002-12-24 2008-06-10 Nippon Paper Industries Co., Ltd. Process for impregnating, refining, and bleaching wood chips having low bleachability to prepare mechanical pulps having high brightness
US20040240897A1 (en) * 2003-05-30 2004-12-02 Samsung Electronics Co. Ltd Liquid toner screening device
US20050039868A1 (en) * 2003-08-18 2005-02-24 Kimberly-Clark Worldwide, Inc. Recycling of latex-containing broke
US7364642B2 (en) 2003-08-18 2008-04-29 Kimberly-Clark Worldwide, Inc. Recycling of latex-containing broke
US20050279467A1 (en) * 2004-06-22 2005-12-22 Fort James Corporation Process for high temperature peroxide bleaching of pulp with cool discharge
US7297225B2 (en) 2004-06-22 2007-11-20 Georgia-Pacific Consumer Products Lp Process for high temperature peroxide bleaching of pulp with cool discharge
US20100024807A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for treating a cellulosic feedstock
US8911557B2 (en) 2008-07-24 2014-12-16 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for conveying a cellulosic feedstock
US20100024808A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for treating a cellulosic feedstock
US20100024806A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US20100028089A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US20100024809A1 (en) * 2008-07-24 2010-02-04 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US9127325B2 (en) 2008-07-24 2015-09-08 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for treating a cellulosic feedstock
US9010522B2 (en) 2008-07-24 2015-04-21 Abengoa Bioenergy New Technologies, Llc Method and apparatus for conveying a cellulosic feedstock
US8449680B2 (en) 2008-07-24 2013-05-28 Mascoma Canada Inc. Method and apparatus for treating a cellulosic feedstock
US8915644B2 (en) 2008-07-24 2014-12-23 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for conveying a cellulosic feedstock
US8778084B2 (en) 2008-07-24 2014-07-15 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for treating a cellulosic feedstock
US8900370B2 (en) 2008-07-24 2014-12-02 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for conveying a cellulosic feedstock
US20100186735A1 (en) * 2009-01-23 2010-07-29 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US9004742B2 (en) 2009-01-23 2015-04-14 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for conveying a cellulosic feedstock
US9033133B2 (en) 2009-01-23 2015-05-19 Abengoa Bioenergy New Technologies, Llc. Method and apparatus for conveying a cellulosic feedstock
US20100186736A1 (en) * 2009-01-23 2010-07-29 Sunopta Bioprocess Inc. Method and apparatus for conveying a cellulosic feedstock
US20110011391A1 (en) * 2009-07-17 2011-01-20 Sunopta Bioprocess Inc. Method and apparatus for the heat treatment of a cellulosic feedstock upstream of hydrolysis
US8545633B2 (en) 2009-08-24 2013-10-01 Abengoa Bioenergy New Technologies, Inc. Method for producing ethanol and co-products from cellulosic biomass
US9335043B2 (en) 2009-08-24 2016-05-10 Abengoa Bioenergy New Technologies, Inc. Method for producing ethanol and co-products from cellulosic biomass

Also Published As

Publication number Publication date
ES2005527A4 (en) 1989-03-16
RU1834938C (en) 1993-08-15
CA1230208A (en) 1987-12-15
PT87062B (en) 1995-03-01
EP0284585A3 (en) 1991-04-17
BR8801294A (en) 1988-10-25
FI881261A0 (en) 1988-03-16
FI881261A (en) 1988-09-25
EP0284585A2 (en) 1988-09-28
PT87062A (en) 1989-03-30
NZ223929A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
US4798651A (en) Process for preparing pulp for paper making
US4486267A (en) Chemithermomechanical pulping process employing separate alkali and sulfite treatments
US4431479A (en) Process for improving and retaining pulp properties
US5002635A (en) Method for producing pulp using pre-treatment with stabilizers and refining
US5338405A (en) Production of fiber pulp by impregnating the lignocellulosic material with an aqueous alcoholic SO2 solution prior to defibration
US4502918A (en) Two-stage chemical treatment of mechanical wood pulp with sodium sulfite
EP0501059B1 (en) Steam explosion pulping process for papermaking
EP2406425B1 (en) Method and chemical composition to improve efficiency of mechanical pulp
EP0487793B1 (en) Explosion process for preparing pulp for paper making
CA2065939A1 (en) Steam explosion pulping process for annual plants papermaking
US5007985A (en) Method of reducing the energy consumption at the refining of cellulose containing material
US3829357A (en) Oxidative manufacture of pulp with chlorine dioxide
CA1287705C (en) Process for preparing pulp for paper making
CA2063547A1 (en) Steam explosion pulping process for papermaking
CA1173604A (en) Production of chemimechanical pulp
CA2721612C (en) Processes for preparing mechanical pulps having high brightness
US6752904B2 (en) Process for removal of lignin from lignocellulosic material
US3981765A (en) Treatment of wood chips with an alkali metal borohydride solution followed by mechanical defibration
CA1320067C (en) Method of making mechanical and chemi-mechanical papermaking pulp
US3795574A (en) Impregnation of wood with a formaldehyde free alkaline solution of sodium hydroxide at a ph between 12.4 and 13
JP2003027385A (en) Method for producing mechanical pulp
EP0096460B1 (en) Process for improving and retaining pulp properties
CA1309562C (en) Chemimechanical pulping process employing sodium carbonate and sodium sulphite
KR100260833B1 (en) Method of manufacturing high yield mechanical pulp
CA2026102A1 (en) Non-sulfur process for preparing pulp for paper making

Legal Events

Date Code Title Description
AS Assignment

Owner name: STAKE TECHNOLOGY LTD., 208 WYECROFT ROAD, OAKVILLE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KOKTA, BOHUSLAV;REEL/FRAME:004748/0619

Effective date: 19870703

Owner name: STAKE TECHNOLOGY LTD., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOKTA, BOHUSLAV;REEL/FRAME:004748/0619

Effective date: 19870703

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 12

REMI Maintenance fee reminder mailed
AS Assignment

Owner name: SUNOPTA INC., ONTARIO

Free format text: CHANGE OF NAME;ASSIGNOR:STAKE TECHNOLOGY LTD.;REEL/FRAME:015562/0851

Effective date: 20031031