US4189640A - Quadrupole mass spectrometer - Google Patents

Quadrupole mass spectrometer Download PDF

Info

Publication number
US4189640A
US4189640A US05/964,059 US96405978A US4189640A US 4189640 A US4189640 A US 4189640A US 96405978 A US96405978 A US 96405978A US 4189640 A US4189640 A US 4189640A
Authority
US
United States
Prior art keywords
axis
particles
mass spectrometer
poles
quadrupole mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/964,059
Inventor
Peter H. Dawson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Council of Canada
Original Assignee
Canadian Patents and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canadian Patents and Development Ltd filed Critical Canadian Patents and Development Ltd
Priority to US05/964,059 priority Critical patent/US4189640A/en
Priority to CA336,702A priority patent/CA1115429A/en
Application granted granted Critical
Publication of US4189640A publication Critical patent/US4189640A/en
Assigned to NATIONAL RESEARCH COUNCIL OF CANADA reassignment NATIONAL RESEARCH COUNCIL OF CANADA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CANADIAN PATENTS AND DEVELOPMENT LIMITED/SOCIETE CANADIENNE DES BREVETS ET D'EXPLOITATION LIMITEE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/44Separation by mass spectrography

Definitions

  • This invention is directed to a quadrupole mass spectrometer and in particular to a quadrupole mass spectrometer having accelerating and decelerating grids at its output.
  • Mass spectrometers are in widespread use for gas analysis, particularly in combination with gas chromatographs for analysis of complex mixtures in the fields of organic chemistry, biochemical and biomedical analysis.
  • Existing mass spectrometers particularly of the quadrupole mass spectrometer type have been dominant in relation to the above problems for the past few years because of some inherent advantages in design, particularly in relation to automated systems.
  • a quadrupole mass spectrometer having four rod shaped poles positioned symmetrically about a charged particle injection axis whereby charged particles are injected into one end and exit the other end, the opposite pairs of poles being interconnected for connection across an rf voltage source.
  • the spectrometer further including first and second grids in spaced sequence at the output end of the quadrupoles, the first grid being connected to a first dc voltage source to accelerate the charged particles traversing the quadrupoles exit fringing field and the second grid being connected to a second dc voltage to decelerate the charged particles traversing the first grid.
  • the spectrometer further includes a mass of material located at the output end of the quadrupoles on the charge particle axis, preferably attached to one of the grids, for stopping particles travelling along the axis.
  • FIG. 1 illustrates the quadrupole mass spectrometer in accordance with this invention
  • FIG. 2 shows measurements of relative sensitivity versus resolution at half peak height for xenon ions of mass 134 amu
  • FIG. 3 shows a mass spectrum of the xenon isotopes obtained with a device in accordance with the present invention.
  • the quadrupole mass spectrometer includes four poles 1, 2, 3 and 4, poles 1, 2 and 3 which are visible in FIG. 1, while pole 4 is behind pole 2. These poles, as in conventional devices, are positioned symmetrically about the charged particle injection axis 5. Opposite pairs of poles, 1 with 3, and 2 with 4, are interconnected and connected to an rf voltage source 6 to energize the spectrometer. The particles or ions to be analysed are injected along the axis 5 from some predetermined source 7.
  • the shield 8 has a predetermined sized aperture 9 which is usually circular about the axis 5.
  • the diameter of the aperture 9 in shield 8 may best be approximately equal to the diameter of the maximum circle incribed between the four poles 1, 2, 3 and 4.
  • a central stop element 10, also preferrably circular is positioned on the axis 5 at the output of the spectrometer.
  • the stop element 10 assures that the heaviest ions travelling mainly along the axis 5 are absorbed, and reduces background signals.
  • the diameter of the stop element 10 may be approximately equal to the diameter of the aperture 9, and the stop element 10 is preferrably positioned at approximately three diameters from the shield 8.
  • the spectrometer further includes at least a pair of grids 11 and 12 through which the remaining ions from the spectrometer will flow.
  • the first grid 11 is connected to a negative voltage so as to accelerate the ions so as to minimize the time the ions spend in the exit fringing field of the quadrupole and to accelerate unwanted heavy ions towards the central stop 10.
  • the second grid 12 may be connected to a positive voltage, or to ground, in order to decelerate the remaining ions before they are directed to a utilization device 13 which might be a detector such as an electron multiplier or which might be a second or tandem quadrupole spectrometer.
  • stop element 10 may be attached at either grid 11 or 12.
  • the grids are preferrably fabricated from a very high transparency mesh in order to minimize obstruction to the passage of the ion beam.
  • cylindrical lenses might also be used as a type of grid.
  • the ion mass is scanned by varying the magnitude of the rf voltage from source 6.
  • the voltages on the grids 11 and 12 may be fixed at -1000 volts and +25 volts respectively.
  • the measured ions which are marginally stable in the quadrupole field are distinguished because of their distributions of positions and angles at the ion exit rather than because of their axial energies as in the devices of Brinkmann and Holme et al, described above.
  • FIG. 2 shows measurements of relative sensitivity versus resolution at half peak height for xenon ions of mass 134 amu with a quadrupole of length 15 cm and diameter 0.62 cm operating at a radiofrequency of 3.3 MHz.
  • the resolution is varied by changing the axial ion energy.
  • the limit to the observed resolution ( ⁇ 1500) is more than five times greater than the maximum resolution attainable with the same device operating in the normal manner of the quadrupole mass filter.
  • FIG. 3 is the mass spectrum of the xenon isotopes obtained by apparatus in accordance with the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

The quadrupole mass spectrometer has four conventional rod-shaped poles symmetrically located about the ion injection axis. Opposite pairs of rods are interconnected and connected to an rf voltage source. A shield having a circular aperture is located at the output end of the rods to assure the stoppage of low mass particles. In addition, a stopping element also preferably circular is located on the axis at the output to assure the stoppage of heavy particles. A pair of grids incorporating the stopping element, are sequentially located at the output, normal to the axis, the first is connected to a dc voltage source to accelerate the remaining particles through the fringing field of the quadrupole and the second is connected to a dc voltage source to subsequently decelerate the particles.

Description

BACKGROUND OF THE INVENTION
This invention is directed to a quadrupole mass spectrometer and in particular to a quadrupole mass spectrometer having accelerating and decelerating grids at its output.
Mass spectrometers are in widespread use for gas analysis, particularly in combination with gas chromatographs for analysis of complex mixtures in the fields of organic chemistry, biochemical and biomedical analysis. Existing mass spectrometers particularly of the quadrupole mass spectrometer type have been dominant in relation to the above problems for the past few years because of some inherent advantages in design, particularly in relation to automated systems.
Present limitations to performance (sensitivity and resolution) of quadrupole mass spectrometers are set by the high mechanical precision required in the four-rod structure and by a limit to resolution due to the number of rf cycles the ions must spend in passing through the device. This depends on the ion energy but the latter cannot be lowered beyond a certain limit owing to deleterious effects of the dc fringing fields at the entrance, especially for high mass ions. Cost limitations are set by the complex precision circuitry required, especially for the exact control (<1 part in 105) of the rf/dc voltage ratio. A modification in the operating method for the mass filter was reported by U. Brinkmann in the International Journal of Mass Spectrometry Ion Physics 9 (1972) 161 and has been under investigation as reported by A. E. Holme et al in the publication International Journal of Mass Spectrometry and Ion Physics, 26(1978) pp 191-204. These devices operate with only an rf applied to the rod so that the electronic circuitry is much simpler. The mass separation depends upon the fact that ions whose trajectories are marginally stable with the particular applied rf voltage emerge with excess kinetic energies. This is probably partly due to an interplay between ion trajectories in the device and fringing fields at the ion exit. The length limitations to resolution no longer apply. The device geometry (mechanical tolerances) will be much less critical. The acceptance of ions should be much larger and fringing fields less important. Though promising results have been reported, there are two critical disadvantages. There can be a background signal due to higher mass ions or even high velocity ions which pass directly through the device near the central axis and are measured, and the system cannot include an electron multiplier detector with its important advantage of higher signal output levels and faster useful scan rates.
SUMMARY OF THE INVENTION
It is therefore an object of this invention to provide a quadrupole mass spectrometer capable of accepting ions from a large range of initial displacements and/or angles of emission.
It is a further object of this invention to provide a quadrupole mass spectrometer in which performance is less critically dependent on the perfection of the quadrupole geometry.
It is another object of this invention to provide a quadrupole mass spectrometer which operates efficiently at high masses.
These and other objects are achieved in a quadrupole mass spectrometer having four rod shaped poles positioned symmetrically about a charged particle injection axis whereby charged particles are injected into one end and exit the other end, the opposite pairs of poles being interconnected for connection across an rf voltage source. The spectrometer further including first and second grids in spaced sequence at the output end of the quadrupoles, the first grid being connected to a first dc voltage source to accelerate the charged particles traversing the quadrupoles exit fringing field and the second grid being connected to a second dc voltage to decelerate the charged particles traversing the first grid. The spectrometer further includes a mass of material located at the output end of the quadrupoles on the charge particle axis, preferably attached to one of the grids, for stopping particles travelling along the axis.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
FIG. 1 illustrates the quadrupole mass spectrometer in accordance with this invention;
FIG. 2 shows measurements of relative sensitivity versus resolution at half peak height for xenon ions of mass 134 amu; and
FIG. 3 shows a mass spectrum of the xenon isotopes obtained with a device in accordance with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The quadrupole mass spectrometer includes four poles 1, 2, 3 and 4, poles 1, 2 and 3 which are visible in FIG. 1, while pole 4 is behind pole 2. These poles, as in conventional devices, are positioned symmetrically about the charged particle injection axis 5. Opposite pairs of poles, 1 with 3, and 2 with 4, are interconnected and connected to an rf voltage source 6 to energize the spectrometer. The particles or ions to be analysed are injected along the axis 5 from some predetermined source 7.
Eluding the influence of the rf field, the heavy ions move substantially along the axis 5 while the low mass ions are lost or ejected through the sides of the spectrometer. The remaining ions leave the spectrometer travelling at some angle and distance from the axis 5 without colliding with the poles 1, 2, 3 or 4, or an output shield 8. The shield 8 has a predetermined sized aperture 9 which is usually circular about the axis 5. The diameter of the aperture 9 in shield 8 may best be approximately equal to the diameter of the maximum circle incribed between the four poles 1, 2, 3 and 4.
In accordance with the present invention, a central stop element 10, also preferrably circular is positioned on the axis 5 at the output of the spectrometer. The stop element 10 assures that the heaviest ions travelling mainly along the axis 5 are absorbed, and reduces background signals. The diameter of the stop element 10 may be approximately equal to the diameter of the aperture 9, and the stop element 10 is preferrably positioned at approximately three diameters from the shield 8.
The spectrometer further includes at least a pair of grids 11 and 12 through which the remaining ions from the spectrometer will flow. The first grid 11 is connected to a negative voltage so as to accelerate the ions so as to minimize the time the ions spend in the exit fringing field of the quadrupole and to accelerate unwanted heavy ions towards the central stop 10. The second grid 12 may be connected to a positive voltage, or to ground, in order to decelerate the remaining ions before they are directed to a utilization device 13 which might be a detector such as an electron multiplier or which might be a second or tandem quadrupole spectrometer.
For simplicity of construction, stop element 10 may be attached at either grid 11 or 12. The grids are preferrably fabricated from a very high transparency mesh in order to minimize obstruction to the passage of the ion beam. However, it is evident to those skilled in the art that cylindrical lenses might also be used as a type of grid. p The ion mass is scanned by varying the magnitude of the rf voltage from source 6. The voltages on the grids 11 and 12 may be fixed at -1000 volts and +25 volts respectively. The measured ions which are marginally stable in the quadrupole field are distinguished because of their distributions of positions and angles at the ion exit rather than because of their axial energies as in the devices of Brinkmann and Holme et al, described above.
FIG. 2 shows measurements of relative sensitivity versus resolution at half peak height for xenon ions of mass 134 amu with a quadrupole of length 15 cm and diameter 0.62 cm operating at a radiofrequency of 3.3 MHz. The resolution is varied by changing the axial ion energy. The limit to the observed resolution (˜1500) is more than five times greater than the maximum resolution attainable with the same device operating in the normal manner of the quadrupole mass filter.
FIG. 3 is the mass spectrum of the xenon isotopes obtained by apparatus in accordance with the present invention.

Claims (5)

I claim:
1. A quadrupole mass spectrometer for charged particles comprising:
four rod-shaped poles positioned symmetrically in parallel about an axis along which charged particles are injected from one end of the poles, opposite pairs of the poles being interconnected and adapted for connection to an rf voltage source; and
first and second grid means located sequentially at the other end of said poles along the axis, the first grid means being adapted to receive a dc potential for accelerating particles leaving the poles and the second grid means being adapted to receive a dc potential for decelerating the particles passing through the first grid.
2. A quadrupole mass spectrometer as claimed in claim 1 wherein each of the first and second grid means consists of a high transparency mesh for connection to a dc voltage source.
3. A quadrupole mass spectrometer as claimed in claim 1 which further includes a mass of material located on the axis at the other end of the poles to stop particles travelling along the axis.
4. A quadrupole mass spectrometer as claimed in claim 2 which further includes a mass of material attached to the first grid means on the axis for stopping particles travelling along the axis.
5. A quadrupole mass spectrometer as claimed in claim 4 which further includes a shield having a circular aperture located symmetrically about the axis between the other end of the rods and the first grid.
US05/964,059 1978-11-27 1978-11-27 Quadrupole mass spectrometer Expired - Lifetime US4189640A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US05/964,059 US4189640A (en) 1978-11-27 1978-11-27 Quadrupole mass spectrometer
CA336,702A CA1115429A (en) 1978-11-27 1979-09-17 Quadrupole mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/964,059 US4189640A (en) 1978-11-27 1978-11-27 Quadrupole mass spectrometer

Publications (1)

Publication Number Publication Date
US4189640A true US4189640A (en) 1980-02-19

Family

ID=25508076

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/964,059 Expired - Lifetime US4189640A (en) 1978-11-27 1978-11-27 Quadrupole mass spectrometer

Country Status (2)

Country Link
US (1) US4189640A (en)
CA (1) CA1115429A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300044A (en) * 1980-05-07 1981-11-10 Iribarne Julio V Method and apparatus for the analysis of chemical compounds in aqueous solution by mass spectroscopy of evaporating ions
US4303865A (en) * 1978-08-25 1981-12-01 Commonwealth Scientific & Industrial Research Organization Cold cathode ion source
US4535235A (en) * 1983-05-06 1985-08-13 Finnigan Corporation Apparatus and method for injection of ions into an ion cyclotron resonance cell
US4721854A (en) * 1985-12-11 1988-01-26 Canadian Patents & Development Ltd. Quadrupole mass spectrometer
US5089703A (en) * 1991-05-16 1992-02-18 Finnigan Corporation Method and apparatus for mass analysis in a multipole mass spectrometer
WO1999023686A1 (en) * 1997-10-31 1999-05-14 Mds Inc. A method of operating a mass spectrometer including a low level resolving dc input to improve signal to noise ratio
US6194717B1 (en) 1999-01-28 2001-02-27 Mds Inc. Quadrupole mass analyzer and method of operation in RF only mode to reduce background signal
US6545271B1 (en) 2000-09-06 2003-04-08 Agilent Technologies, Inc. Mask plate with lobed aperture
US20060219933A1 (en) * 2005-03-15 2006-10-05 Mingda Wang Multipole ion mass filter having rotating electric field
US20090294654A1 (en) * 2008-05-30 2009-12-03 Urs Steiner Detection of positive and negative ions
GB2488895A (en) * 2011-03-07 2012-09-12 Micromass Ltd Dynamic resolution correction of quadrupole mass analyser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617736A (en) * 1968-06-19 1971-11-02 Hewlett Packard Co Quadrupole mass filter with electrode structure for fringing-field compensation
US3710103A (en) * 1971-12-03 1973-01-09 Varian Associates Planar retarding grid electron spectrometer
US3784814A (en) * 1970-03-14 1974-01-08 Nippon Electric Varian Ltd Quadrupole mass spectrometer having resolution variation capability
US4146787A (en) * 1977-02-17 1979-03-27 Extranuclear Laboratories, Inc. Methods and apparatus for energy analysis and energy filtering of secondary ions and electrons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617736A (en) * 1968-06-19 1971-11-02 Hewlett Packard Co Quadrupole mass filter with electrode structure for fringing-field compensation
US3784814A (en) * 1970-03-14 1974-01-08 Nippon Electric Varian Ltd Quadrupole mass spectrometer having resolution variation capability
US3710103A (en) * 1971-12-03 1973-01-09 Varian Associates Planar retarding grid electron spectrometer
US4146787A (en) * 1977-02-17 1979-03-27 Extranuclear Laboratories, Inc. Methods and apparatus for energy analysis and energy filtering of secondary ions and electrons

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303865A (en) * 1978-08-25 1981-12-01 Commonwealth Scientific & Industrial Research Organization Cold cathode ion source
US4300044A (en) * 1980-05-07 1981-11-10 Iribarne Julio V Method and apparatus for the analysis of chemical compounds in aqueous solution by mass spectroscopy of evaporating ions
US4535235A (en) * 1983-05-06 1985-08-13 Finnigan Corporation Apparatus and method for injection of ions into an ion cyclotron resonance cell
US4721854A (en) * 1985-12-11 1988-01-26 Canadian Patents & Development Ltd. Quadrupole mass spectrometer
US5089703A (en) * 1991-05-16 1992-02-18 Finnigan Corporation Method and apparatus for mass analysis in a multipole mass spectrometer
WO1999023686A1 (en) * 1997-10-31 1999-05-14 Mds Inc. A method of operating a mass spectrometer including a low level resolving dc input to improve signal to noise ratio
US5998787A (en) * 1997-10-31 1999-12-07 Mds Inc. Method of operating a mass spectrometer including a low level resolving DC input to improve signal to noise ratio
US6194717B1 (en) 1999-01-28 2001-02-27 Mds Inc. Quadrupole mass analyzer and method of operation in RF only mode to reduce background signal
US6545271B1 (en) 2000-09-06 2003-04-08 Agilent Technologies, Inc. Mask plate with lobed aperture
US6717138B2 (en) 2000-09-06 2004-04-06 Agilent, Technologies, Inc. Mask plate with lobed aperture
US20060219933A1 (en) * 2005-03-15 2006-10-05 Mingda Wang Multipole ion mass filter having rotating electric field
US7183545B2 (en) 2005-03-15 2007-02-27 Agilent Technologies, Inc. Multipole ion mass filter having rotating electric field
US20090294654A1 (en) * 2008-05-30 2009-12-03 Urs Steiner Detection of positive and negative ions
US7855361B2 (en) 2008-05-30 2010-12-21 Varian, Inc. Detection of positive and negative ions
GB2488895A (en) * 2011-03-07 2012-09-12 Micromass Ltd Dynamic resolution correction of quadrupole mass analyser
US20140117219A1 (en) * 2011-03-07 2014-05-01 Micromass Uk Limited Dynamic Resolution Correction of Quadrupole Mass Analyser
US9324543B2 (en) * 2011-03-07 2016-04-26 Micromass Uk Limited Dynamic resolution correction of quadrupole mass analyser
US20160240359A1 (en) * 2011-03-07 2016-08-18 Micromass Uk Limited Dynamic Resolution Correction of Quadrupole Mass Analyser
US9805920B2 (en) * 2011-03-07 2017-10-31 Micromass Uk Limited Dynamic resolution correction of quadrupole mass analyser

Also Published As

Publication number Publication date
CA1115429A (en) 1981-12-29

Similar Documents

Publication Publication Date Title
US4650999A (en) Method of mass analyzing a sample over a wide mass range by use of a quadrupole ion trap
US5107109A (en) Method of increasing the dynamic range and sensitivity of a quadrupole ion trap mass spectrometer
Brown et al. Improved time‐of‐flight ion charge state diagnostic
US4973841A (en) Precision ultra-sensitive trace detector for carbon-14 when it is at concentration close to that present in recent organic materials
US4959543A (en) Method and apparatus for acceleration and detection of ions in an ion cyclotron resonance cell
DE102008024297B4 (en) Fragmentation of ions in Kingdon ion traps
US3953732A (en) Dynamic mass spectrometer
US4189640A (en) Quadrupole mass spectrometer
GB1326279A (en) Mass spectrometers
DE2627085A1 (en) ION SCREENING SPECTROMETER ANALYZERS, PREFERABLY ARRANGED IN TANDEM
US7148472B2 (en) Aerosol mass spectrometer for operation in a high-duty mode and method of mass-spectrometry
DE102011109927B4 (en) Introduction of ions in Kingdon ion traps
DE19635645C2 (en) Method for the high-resolution spectral recording of analyte ions in a linear time-of-flight mass spectrometer
JP3392345B2 (en) Time-of-flight mass spectrometer
Okumura et al. A simple multi-turn time of flight mass spectrometer ‘MULTUM II’
Purser A high throughput 14C accelerator mass spectrometer
CA2477278C (en) Cycloidal mass spectrometer
US3922543A (en) Ion cyclotron resonance spectrometer and method
US5118936A (en) Accuracy of AMS isotopic ratio measurements
US5120956A (en) Acceleration apparatus which reduced backgrounds of accelerator mass spectrometry measurements of 14 C and other radionuclides
US3555271A (en) Radio frequency mass analyzer of the nonuniform electric field type
Tykesson et al. A klystron bunching system for a 6 MV Van de Graaff accelerator
US3010017A (en) Mass spectrometer
US2798162A (en) Mass spectrometer
US6791079B2 (en) Mass spectrometer based on the use of quadrupole lenses with angular gradient of the electrostatic field

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL RESEARCH COUNCIL OF CANADA, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CANADIAN PATENTS AND DEVELOPMENT LIMITED/SOCIETE CANADIENNE DES BREVETS ET D EXPLOITATION LIMITEE;REEL/FRAME:006062/0253

Effective date: 19920102