US4112168A - High stiffness speaker cone - Google Patents

High stiffness speaker cone Download PDF

Info

Publication number
US4112168A
US4112168A US05/780,619 US78061977A US4112168A US 4112168 A US4112168 A US 4112168A US 78061977 A US78061977 A US 78061977A US 4112168 A US4112168 A US 4112168A
Authority
US
United States
Prior art keywords
fibers
layer
gastight
sheet
diaphram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/780,619
Inventor
Hugo Willy Schafft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to US05/780,619 priority Critical patent/US4112168A/en
Application granted granted Critical
Publication of US4112168A publication Critical patent/US4112168A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/122Non-planar diaphragms or cones comprising a plurality of sections or layers
    • H04R7/125Non-planar diaphragms or cones comprising a plurality of sections or layers comprising a plurality of superposed layers in contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/021Diaphragms comprising cellulose-like materials, e.g. wood, paper, linen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24826Spot bonds connect components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric
    • Y10T442/692Containing at least two chemically different strand or fiber materials

Definitions

  • This invention relates generally to members having a high stiffness such as used in electro-acoustical transducers.
  • this invention relates to an improved lightweight, high stiffness speaker diaphram member and a method for fabricating such a member.
  • Loudspeaker diaphrams are well-known in the prior art and are used to match the relatively low acoustic impedance of air to the relatively high mechanical impedance of a loudspeaker drive system.
  • the driver for a loudspeaker generally can deliver a force of large magnitude but delivers a relatively small displacement.
  • a loudspeaker diaphram having a large area provides the means by which a large volume of air can be moved by a driver having a relatively small displacment.
  • the specific stiffness modulus S of a material is a measure of resistance to deflection of a unit weight of material.
  • the specific stiffness modulus of a material is defined as the ratio of the modulus of elasticity Q, Young's modulus, to the density ⁇ of the material.
  • loudspeakers using presently available diaphram materials do not lend themselves to miniaturization by reduction of the cone diameter. This is because reduction of the cone diameter results in loss of efficiency and poorer low frequency response. It is desirable and theoretically possible to reduce the height of a speaker cone in order to reduce the overall volume of a loudspeaker without losing efficiency and low frequency response. In order to most effectively reduce cone height and still obtain the same efficiency and low frequency response as current loudspeakers, it is necessary to use speaker cone materials having improved properties such as contemplated by the instant invention.
  • Speaker diaphrams may be made from solid metals, such as beryllium, which has a very high specific stiffness S but which is also very expensive and toxic. Other metals have relatively high densities ⁇ and, consequently, have relatively low specific stiffness moduluses S.
  • Paper is commonly used as a speaker diaphram material.
  • the cellulose fibers of paper are inexpensive, have a relatively high specific stiffness modulus S, have a high tensile strength, bond to each other without binders, may be formed to certain configuration, and may be formed to be relatively gastight.
  • One of the disadvantages of paper as a cone material is its sensitivity to humidity and to heat, causing cones made of such material to eventually deteriorate. Impregnation or coating with a plastic humidity-resistant material adds undesirable weight.
  • Paper speaker cones are presently made by two processes, a felting process and and seamed construction process.
  • the felting process involves applying a controlled vacuum to a perforated suction mold of the desired cone shape which is immersed in a solution of cellulose fibers. A layer of randomly oriented fibers is deposited on the mold. The felted shape is then pressed, dried, and trimmed.
  • the seamed construction process involves forming a cone with a sheet of paper and gluing the overlapping edges together. The performance of a cone having a seam is somewhat inferior to that of a seamless type and the shape of such a speaker is limited to either straight or large radius cross sections.
  • Another object of the invention is to provide an improved gastight loudspeaker diaphram using a high stiffness fibrous material of porous structure in conjunction with a gastight sealing means.
  • a still further object of the invention is to provide an improved method for fabricating an improved lightweight, stiff acoustic member which may be fabricated to any desired shape.
  • an improved lightweight, stiff acoustic material for use as a speaker diaphram which includes a porous layer of high stiffness fibers, said fibers being randomly oriented, spaced-apart, and crossing over at given points to form a porous layer having a predetermined thickness profile.
  • Means for gastight sealing the layer of porous fibers along a first surface, means for bonding together the fibers at the given crossover points, and means for bonding the gastight sealing means to a surface of the layer of fibers are provided.
  • the method for making a lightweight, stiff acoustic material for use as a loudspeaker diaphram involves applying a dilute solution of an unactivated binder material and a solvent to a layer of randomly oriented, spaced-apart high stiffness fibers, the fibers having given crossover points.
  • the solvent is removed in order to form a thin film of binder material on the fibers.
  • the layer of fibers and a gastight overlying sheet are formed into a predetermined configuration and the binder is activated to flow and form rigid bonds between the fibers at the crossover points and between the fibers and the overlying gastight sheet.
  • FIG. 1 is a perspective view of a loudspeaker diaphram according to the invention.
  • FIG. 2 is a cross-sectional view of a portion of a speaker diaphram.
  • FIG. 3 is an enlarged fragmentary view of the structure of a member according to the invention.
  • FIG. 4 is a partial cross-sectional view illustrating the placement of a fibrous sheet and a gastight sheet in a forming mold.
  • FIG. 5 is a partial cross-sectional view illustrating a diaphram according to the invention being pneumatically formed against the mold.
  • the speaker diaphram 10 of this embodiment is a cone having a predetermined diameter d and a predetermined height. It is sometimes desirable that the height be as large as possible in order to provide the cone with maximum stiffness when the speaker is operating at low frequencies in the piston mode as explained below. On the other hand it is desirable to have the height as small as possible, to provide a low profile for the speaker assembly utilizing such a diaphram as well as when operating at higher frequencies in the flexural mode as explained below. For purposes of obtaining a stiff cone, it is desirable that the diameter d of the cone be as small as possible.
  • the diameter d of the diaphram 10 be as large as possible so that a large volume of air may be displaced with a small displacement of the cone.
  • a small displacement is desirable because it reduces the linear displacement required to be traversed by the electromechanical driver (not shown) used to drive a speaker cone; such drivers do not effectively operate with large displacements.
  • a speaker cone material having a higher specific stiffness modulus S allows a speaker having a given performance to be constructed with a reduced height or an increased diameter d in comparison with prior art paper cone speakers as explained in the previous discussion of the prior art.
  • a speaker diaphram having a low density ⁇ would obviously be more efficient diaphram.
  • the frequency range over which all parts of a speaker diaphram move in phase with each other, but not necessarily at the same amplitude is called the piston range of the diaphram.
  • the diameter d together with the height, curvature, and material of the diaphram determine the upper cut-off frequency of the piston range.
  • acoustic energy is transmitted according to a travelling wave mode.
  • the speaker diaphram acts as a distributed mass-compliance delay line for the flexural wave that is induced by the driver driving the apex of the speaker diaphram cone.
  • the cone energy is transmitted to the surrounding media.
  • Maximum acoustic energy is transmitted to the surrounding media when the flexural wave propagation velocity through the speaker diaphram coincides with the propagation velocity of air.
  • Diaphrams in speakers that are intended to be operated over a wide frequency range often have a curvilinear shape so that the speaker diaphram is deep near the apex of the diaphram and shallower towards the periphery of such a diaphram. While a straight or curvilinear cone of uniform cross section may be fabricated according to the present invention, predetermined curvilinear or straight shapes of thicker cross section near the high stress apex area of a cone with thinner peripheral sections may be fabricated according to the present invention as required.
  • the drive level at which a speaker diaphram operates in the piston mode should be as high as possible.
  • a speaker diaphram material having the highest specific modulus S would be most desirable.
  • a speaker diaphram material be thick enough so that when driven at high power levels, the diaphram would not exhibit an elastic instability resulting in buckling or subharmonic breakup.
  • An optimum diaphram material to prevent the above instability problem would be a low density ⁇ material having a high specific modulus S and also a relatively thick cross-sectional area such a contemplated by the instant invention. The importance of the thickness t of the material is discussed below.
  • the diaphram may break up into a first overtone vibration mode having a zero displacement nodal circle formed at a distance from the periphery of the speaker diaphram cone.
  • the area outside the nodal circle will move in a phase opposite to that of the area inside the nodal circle. Air will be moved from one of these areas to the other and the energy transmitted to the surrounding media will be minimum, which condition is measured as a deep dip in the speaker frequency response curve.
  • Higher order overtone modes occur at higher operating frequencies. It is therefore desirable that the piston range of a speaker diaphram be extended as high as possible.
  • the frequency at which the first order overtone mode occurs depends on the flexural wave propagation velocity C, where
  • K being the radius of gyration of the material, where K is proportional to t the thickness of the speaker diaphram material.
  • the flexural wave propagation velocity C provides an indicator for optimizing the performance of a speaker in accordance with the above discussion.
  • the radius of gyration being proportional to the thickness of the speaker diaphram results in the flexural wave propagation velocity C being directly proportional to the thickness t. Therefore, an optimized speaker diaphram will have a thickness t as large as possible so that when a speaker is operating in either the piston mode or the flexural mode, optimum strength and the highest flexural velocity may be obtained.
  • FIG. 1 A specific embodiment of a speaker cone according to the invention is shown in FIG. 1 with FIG. 2 showing an enlarged section of the cone.
  • a porous layer 11 of high stiffness fibers is sandwiched between front and rear thin plastic sheets 12 and 13, respectively.
  • Any suitable plastic sheet material such as that available under the tradename Mylar from the Du Pont Company may be utilized, which material provides a gastight seal in very thin, stretchable sheets.
  • the layer of fibers may be formed for example from a predetermined mixture of crystalline graphite fibers and organic aramide fibers, the organic aramid fibers being produced by the Dupont Company under the tradename Kevlar.
  • Other low density materials having a high specific modulus S of a metallic, organic, mineral, or synthetic nature may also be used.
  • Crystalline graphite fibers are made by a thermoconversion process and have a modulus of elasticity, Young's modulus, between 30 and 75 million pounds per square inch, a tensile strength of approximately 300,000 pounds per square inch, and a density of 1.95.
  • Kevlar is an organic aramid fiber and has a modulus of elasticity of 20 million pounds per square inch, a tensile strength of 400,000 pounds per square inch, and a density of 1.45.
  • FIG. 3 shows in enlarged form the character of the bonding of the fibers at the crossover points in accordance with the instant invention.
  • Typical fibers 14 crossover each other as shown at a typical crossover point 15.
  • a bonding agent 16 such as an epoxy resin or other high specific modulus cements, is shown concentrated around a crossover point, forming fillets (typically shown at 17). The particular method used to bond the fibers together using a minimum of bonding agent will be described below.
  • the porous nature of the fiber layer 11 is also evident from FIG. 3. A porous layer having a thick cross-section is thereby formed.
  • the fibrous layer 11 is also bonded to the plastic sheets 12, 13 by the same bonding means 16 which bonds the fibers together.
  • the rear plastic sheet 13 provided on the rear surface of the loud speaker diaphram 10 is not required to conform to the inventive concept disclosed herein because the front plastic sheet 12 provides the essential gastight sealing means for the diaphram 10.
  • a thin metal foil may be used as a plastic sheet.
  • a mold 20 is shown having a cavity 21 contained therein.
  • a surface 22 of the mold 20 is shaped to permit a particular speaker cone shape to be formed.
  • a porous layer 23 of randomly oriented, spaced apart fibers as described above is dipped into a dilute epoxy solution. Excess epoxy solution is allowed to drip off and the layer is exposed to air until most of the solvent has evaporated and a thin layer of epoxy forms on the surface of the fibers.
  • the fibrous layer 23 is then placed over the cavity 21 in the mold 20, said mold being heated to a temperature of approximately 200° C.
  • a stretchable plastic sheet 24 is placed over the layer 23 and a cover 25 is clamped air tight against the mold 20.
  • the cover 25 has a port 26 connected to a source of high pressure air (not shown).
  • the mold 20 has a small opening 27 positioned at the apex of the cavity 21 and providing an exit for the air exhausted from the mold.
  • air pressure of up to 250 pounds per square inch is applied from the air source through the port 26 against the upper surface 30 of the plastic sheet 24.
  • the air pressure stretches the plastic film 12 and forces the fibrous layer 23 against the surface 22 of the mold 20, the plastic sheet 24 provides a gastight seal for the high pressure air contained within the cavity 21.
  • the heated epoxy becomes less viscous and is drawn by capillary action toward the fiber crossover points, where the epoxy is cured for a predetermined time and forms a permanent bond between the fibers.
  • the plastic sheet 24 is similarly bonded to the fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

An improved lightweight, stiff member for use as a speaker diaphram is formed from a porous layer of high stiffness fibers. The fibers are randomly oriented, spaced-apart, and crossover each other at given points to form a porous layer with a given thickness. The fibers are bonded to each other at the given crossover points. A gastight film is also bonded to the layer of fibers thereby providing a gastight member having high flexural stiffness.
A method for making a lightweight, stiff member by the application of a dilute solution of an epoxy resin and a solvent to a porous layer of randomly oriented, spaced-apart, high stiffness fibers. The solvent is removed, leaving a thin layer of epoxy resin on the fibers. The porous layer of fibers and a gastight overlying sheet are pneumatically formed into a predetermined configuration. The epoxy resin binder is then heated and cured under heat and pressure, thereby flowing to and forming rigid bonds between the fibers at the crossover points and securing the gastight sheet to the fibers.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to members having a high stiffness such as used in electro-acoustical transducers. In particular, this invention relates to an improved lightweight, high stiffness speaker diaphram member and a method for fabricating such a member.
2. Description of the Prior Art
Loudspeaker diaphrams are well-known in the prior art and are used to match the relatively low acoustic impedance of air to the relatively high mechanical impedance of a loudspeaker drive system. The driver for a loudspeaker generally can deliver a force of large magnitude but delivers a relatively small displacement. A loudspeaker diaphram having a large area provides the means by which a large volume of air can be moved by a driver having a relatively small displacment.
It is desirable to use material as strong and as light as possible for a speaker diaphram so that minimal mechanical energy is used to accelerate the diaphram mass, providing good transient response and preventing buckling of the diaphram under heavy loading.
The specific stiffness modulus S of a material is a measure of resistance to deflection of a unit weight of material. The specific stiffness modulus of a material is defined as the ratio of the modulus of elasticity Q, Young's modulus, to the density ρ of the material.
S = ρ/Q                                                (1)
loudspeakers using presently available diaphram materials do not lend themselves to miniaturization by reduction of the cone diameter. This is because reduction of the cone diameter results in loss of efficiency and poorer low frequency response. It is desirable and theoretically possible to reduce the height of a speaker cone in order to reduce the overall volume of a loudspeaker without losing efficiency and low frequency response. In order to most effectively reduce cone height and still obtain the same efficiency and low frequency response as current loudspeakers, it is necessary to use speaker cone materials having improved properties such as contemplated by the instant invention.
Speaker diaphrams may be made from solid metals, such as beryllium, which has a very high specific stiffness S but which is also very expensive and toxic. Other metals have relatively high densities ρ and, consequently, have relatively low specific stiffness moduluses S.
Paper is commonly used as a speaker diaphram material. The cellulose fibers of paper are inexpensive, have a relatively high specific stiffness modulus S, have a high tensile strength, bond to each other without binders, may be formed to certain configuration, and may be formed to be relatively gastight. One of the disadvantages of paper as a cone material is its sensitivity to humidity and to heat, causing cones made of such material to eventually deteriorate. Impregnation or coating with a plastic humidity-resistant material adds undesirable weight.
Paper speaker cones are presently made by two processes, a felting process and and seamed construction process. The felting process involves applying a controlled vacuum to a perforated suction mold of the desired cone shape which is immersed in a solution of cellulose fibers. A layer of randomly oriented fibers is deposited on the mold. The felted shape is then pressed, dried, and trimmed. The seamed construction process involves forming a cone with a sheet of paper and gluing the overlapping edges together. The performance of a cone having a seam is somewhat inferior to that of a seamless type and the shape of such a speaker is limited to either straight or large radius cross sections.
SUMMARY OF THE INVENTION
It is, therefore, an object of this invention to provide an improved lightweight, stiff acoustic member and a method for fabricating the same.
It is another object of the invention to provide an improved loudspeaker diaphram material having a high specific stiffness modulus and a high flexural wave propagation velocity.
Another object of the invention is to provide an improved gastight loudspeaker diaphram using a high stiffness fibrous material of porous structure in conjunction with a gastight sealing means.
It is another object of the invention to provide an improved loudspeaker cone having reduced height without sacrificing radiating efficiency or power handling capabilities.
It is another object of the invention to provide an improved lightweight, stiff acoustic diaphram material which resists heat and high humidity.
A still further object of the invention is to provide an improved method for fabricating an improved lightweight, stiff acoustic member which may be fabricated to any desired shape.
In practicing this invention an improved lightweight, stiff acoustic material for use as a speaker diaphram is provided which includes a porous layer of high stiffness fibers, said fibers being randomly oriented, spaced-apart, and crossing over at given points to form a porous layer having a predetermined thickness profile. Means for gastight sealing the layer of porous fibers along a first surface, means for bonding together the fibers at the given crossover points, and means for bonding the gastight sealing means to a surface of the layer of fibers are provided.
The method for making a lightweight, stiff acoustic material for use as a loudspeaker diaphram involves applying a dilute solution of an unactivated binder material and a solvent to a layer of randomly oriented, spaced-apart high stiffness fibers, the fibers having given crossover points. The solvent is removed in order to form a thin film of binder material on the fibers. The layer of fibers and a gastight overlying sheet are formed into a predetermined configuration and the binder is activated to flow and form rigid bonds between the fibers at the crossover points and between the fibers and the overlying gastight sheet.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the invention, reference is made to the drawings in which:
FIG. 1 is a perspective view of a loudspeaker diaphram according to the invention.
FIG. 2 is a cross-sectional view of a portion of a speaker diaphram.
FIG. 3 is an enlarged fragmentary view of the structure of a member according to the invention.
FIG. 4 is a partial cross-sectional view illustrating the placement of a fibrous sheet and a gastight sheet in a forming mold.
FIG. 5 is a partial cross-sectional view illustrating a diaphram according to the invention being pneumatically formed against the mold.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to the drawings, FIG. 1 and FIG. 2, the speaker diaphram 10 of this embodiment is a cone having a predetermined diameter d and a predetermined height. It is sometimes desirable that the height be as large as possible in order to provide the cone with maximum stiffness when the speaker is operating at low frequencies in the piston mode as explained below. On the other hand it is desirable to have the height as small as possible, to provide a low profile for the speaker assembly utilizing such a diaphram as well as when operating at higher frequencies in the flexural mode as explained below. For purposes of obtaining a stiff cone, it is desirable that the diameter d of the cone be as small as possible. On the other hand, it is desirable that the diameter d of the diaphram 10 be as large as possible so that a large volume of air may be displaced with a small displacement of the cone. A small displacement is desirable because it reduces the linear displacement required to be traversed by the electromechanical driver (not shown) used to drive a speaker cone; such drivers do not effectively operate with large displacements. A speaker cone material having a higher specific stiffness modulus S allows a speaker having a given performance to be constructed with a reduced height or an increased diameter d in comparison with prior art paper cone speakers as explained in the previous discussion of the prior art.
Since work is required to accelerate the mass of a speaker diaphram, a speaker diaphram having a low density ρ would obviously be more efficient diaphram. However, if the strength of the material, as represented by Young's modulus Q, is not sufficiently large, the power handling capability of the diaphram would be seriously impaired. The frequency range over which all parts of a speaker diaphram move in phase with each other, but not necessarily at the same amplitude, is called the piston range of the diaphram. The diameter d together with the height, curvature, and material of the diaphram determine the upper cut-off frequency of the piston range. Increasing the height of a speaker diaphram increases its stiffness without increasing its mass. A deep cone having high stiffness is most advantageously used in low frequency piston mode operation.
In contrast, higher frequency speakers more advantageously use very shallow diaphrams for two reasons. The first reason is that at frequencies above the piston range of a diaphram, acoustic energy is transmitted according to a travelling wave mode. In this mode, the speaker diaphram acts as a distributed mass-compliance delay line for the flexural wave that is induced by the driver driving the apex of the speaker diaphram cone. As the flexural wave travels from the apex toward the periphery, the cone energy is transmitted to the surrounding media. Maximum acoustic energy is transmitted to the surrounding media when the flexural wave propagation velocity through the speaker diaphram coincides with the propagation velocity of air. This requires that the cone be quite shallow, that is, of relatively low height. The second reason for requiring the use of very shallow speaker diaphrams at higher frequencies is that better quality speaker systems require a uniform high frequency dispersion pattern. This requirement can be approached by making the propagation velocity through the speaker diaphram somewhat less than the propagation velocity of air, requiring a shallow speaker diaphram.
Diaphrams in speakers that are intended to be operated over a wide frequency range often have a curvilinear shape so that the speaker diaphram is deep near the apex of the diaphram and shallower towards the periphery of such a diaphram. While a straight or curvilinear cone of uniform cross section may be fabricated according to the present invention, predetermined curvilinear or straight shapes of thicker cross section near the high stress apex area of a cone with thinner peripheral sections may be fabricated according to the present invention as required.
For optimum performance, the drive level at which a speaker diaphram operates in the piston mode should be as high as possible. A speaker diaphram material having the highest specific modulus S would be most desirable. However, it is also necessary that a speaker diaphram material be thick enough so that when driven at high power levels, the diaphram would not exhibit an elastic instability resulting in buckling or subharmonic breakup. An optimum diaphram material to prevent the above instability problem would be a low density ρ material having a high specific modulus S and also a relatively thick cross-sectional area such a contemplated by the instant invention. The importance of the thickness t of the material is discussed below.
At some higher operating frequency beyond the piston range, the diaphram may break up into a first overtone vibration mode having a zero displacement nodal circle formed at a distance from the periphery of the speaker diaphram cone. In this mode of operation, the area outside the nodal circle will move in a phase opposite to that of the area inside the nodal circle. Air will be moved from one of these areas to the other and the energy transmitted to the surrounding media will be minimum, which condition is measured as a deep dip in the speaker frequency response curve. Higher order overtone modes occur at higher operating frequencies. It is therefore desirable that the piston range of a speaker diaphram be extended as high as possible.
The frequency at which the first order overtone mode occurs depends on the flexural wave propagation velocity C, where
C = √ QK.sup.2 /ρ                               (2)
with K being the radius of gyration of the material, where K is proportional to t the thickness of the speaker diaphram material.
The flexural wave propagation velocity C provides an indicator for optimizing the performance of a speaker in accordance with the above discussion. The radius of gyration being proportional to the thickness of the speaker diaphram results in the flexural wave propagation velocity C being directly proportional to the thickness t. Therefore, an optimized speaker diaphram will have a thickness t as large as possible so that when a speaker is operating in either the piston mode or the flexural mode, optimum strength and the highest flexural velocity may be obtained.
A specific embodiment of a speaker cone according to the invention is shown in FIG. 1 with FIG. 2 showing an enlarged section of the cone. A porous layer 11 of high stiffness fibers is sandwiched between front and rear thin plastic sheets 12 and 13, respectively. Any suitable plastic sheet material such as that available under the tradename Mylar from the Du Pont Company may be utilized, which material provides a gastight seal in very thin, stretchable sheets. The layer of fibers may be formed for example from a predetermined mixture of crystalline graphite fibers and organic aramide fibers, the organic aramid fibers being produced by the Dupont Company under the tradename Kevlar. Other low density materials having a high specific modulus S of a metallic, organic, mineral, or synthetic nature may also be used. Crystalline graphite fibers are made by a thermoconversion process and have a modulus of elasticity, Young's modulus, between 30 and 75 million pounds per square inch, a tensile strength of approximately 300,000 pounds per square inch, and a density of 1.95. Kevlar is an organic aramid fiber and has a modulus of elasticity of 20 million pounds per square inch, a tensile strength of 400,000 pounds per square inch, and a density of 1.45.
FIG. 3 shows in enlarged form the character of the bonding of the fibers at the crossover points in accordance with the instant invention. Typical fibers 14 crossover each other as shown at a typical crossover point 15. A bonding agent 16, such as an epoxy resin or other high specific modulus cements, is shown concentrated around a crossover point, forming fillets (typically shown at 17). The particular method used to bond the fibers together using a minimum of bonding agent will be described below. The porous nature of the fiber layer 11 is also evident from FIG. 3. A porous layer having a thick cross-section is thereby formed.
The fibrous layer 11 is also bonded to the plastic sheets 12, 13 by the same bonding means 16 which bonds the fibers together. The rear plastic sheet 13 provided on the rear surface of the loud speaker diaphram 10 is not required to conform to the inventive concept disclosed herein because the front plastic sheet 12 provides the essential gastight sealing means for the diaphram 10. A thin metal foil may be used as a plastic sheet.
Referring to FIG. 4 and FIG. 5, a mold 20 is shown having a cavity 21 contained therein. A surface 22 of the mold 20 is shaped to permit a particular speaker cone shape to be formed.
In practicing the method of this invention, a porous layer 23 of randomly oriented, spaced apart fibers as described above is dipped into a dilute epoxy solution. Excess epoxy solution is allowed to drip off and the layer is exposed to air until most of the solvent has evaporated and a thin layer of epoxy forms on the surface of the fibers. The fibrous layer 23 is then placed over the cavity 21 in the mold 20, said mold being heated to a temperature of approximately 200° C. A stretchable plastic sheet 24 is placed over the layer 23 and a cover 25 is clamped air tight against the mold 20. The cover 25 has a port 26 connected to a source of high pressure air (not shown). The mold 20 has a small opening 27 positioned at the apex of the cavity 21 and providing an exit for the air exhausted from the mold. After the plastic sheet 24 and the layer 23 come up to mold temperature, air pressure of up to 250 pounds per square inch is applied from the air source through the port 26 against the upper surface 30 of the plastic sheet 24. As shown in FIG. 5, the air pressure stretches the plastic film 12 and forces the fibrous layer 23 against the surface 22 of the mold 20, the plastic sheet 24 provides a gastight seal for the high pressure air contained within the cavity 21. The heated epoxy becomes less viscous and is drawn by capillary action toward the fiber crossover points, where the epoxy is cured for a predetermined time and forms a permanent bond between the fibers. The plastic sheet 24 is similarly bonded to the fibers.
While a particular embodiment of a member and a method of the invention have been shown and described, it should be understood that the invention is not limited thereto since many modifications may be made. It is therefore contemplated to cover by the present application any and all such modifications that fall within the true spirit and scope of the basic underlying principles disclosed and claimed herein.

Claims (14)

I claim:
1. An improved lightweight, stiff member comprising:
a porous layer of high stiffness fibers, said fibers being randomly oriented, spaced-apart, and crossing over at given points to form a porous layer having a predetermined thickness profile, said layer of fibers having a first major surface;
means for gastight sealing the layer of fibers along the first surface of the layer; and
means for bonding together the fibers at the given crossover points and for bonding the gastight sealing means to the first major surface of the layer of fibers.
2. The member of claim 1 wherein the synthetic fibers are crystalline graphite fibers.
3. The member of claim 1 wherein the synthetic fibers are organic aramid fibers.
4. The member of claim 1 wherein the synthetic fibers are a mixture of graphite and organic aramid fibers.
5. The member of claim 1 wherein the gastight sealing means is a thin plastic sheet overlying the layer of fibers.
6. The member of claim 1 wherein the gastight sealing means is a thin metal foil overlying the layer of fibers.
7. The member of claim 1 wherein the bonding means is a high specific modulus cement.
8. The member of claim 1 wherein the bonding means is an epoxy resin.
9. The member of claim 1 wherein the member is formed with a predetermined configuration to function as a diaphram for an electro-acoustic transducer.
10. A method for making a lightweight, stiff acoustic member comprising the steps of:
applying a dilute solution of a predetermined amount of an unactivated binder and a solvent to a porous layer of randomly oriented, spaced-apart, high stiffness fibers, said fibers having given crossover points;
removing the solvent to form a thin layer of unactivated binder on the fibers;
forming the layer of fibers and a gastight overlying sheet into a predetermined configuration; and
activating the binder to flow and bond the fibers at the crossover points and to bond the overlying gastight sheet to the fibers.
11. The method of claim 10 wherein the applying of a dilute solution comprises dipping the layer of fibers into the dilute solution and allowing excess solution to drip off.
12. The method of claim 10 wherein the forming of the layer of fibers and the gastight overlying sheet into a predetermined configuration further comprises:
pneumatically forcing the layer of fibers and the gastight overlying sheet into a mold.
13. A method for making a lightweight, stiff acoustic member comprising the steps of:
applying a dilute solution of a predetermined amount of an epoxy resin and a solvent to a porous layer of randomly oriented, spaced-apart, high stiffness synthetic fibers, said fibers having given crossover points;
removing the solvent in order to form a thin layer of the epoxy resin on the fibers;
pneumatically forming the layer of fibers and an overlying gastight sheet into a predetermined configuration in a heated mold; and
curing the epoxy resin to form rigid bonds between the fibers at the crossover points and between the fibers and the sheet.
14. The method of claim 13 wherein the pneumatic forming of the layer of fibers and the sheet and the curing of the epoxy further include heating the mold to two hundred degrees centigrade and applying a pressure of two hundred pounds per square inch to the layer of fibers and the sheet.
US05/780,619 1977-03-23 1977-03-23 High stiffness speaker cone Expired - Lifetime US4112168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/780,619 US4112168A (en) 1977-03-23 1977-03-23 High stiffness speaker cone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/780,619 US4112168A (en) 1977-03-23 1977-03-23 High stiffness speaker cone

Publications (1)

Publication Number Publication Date
US4112168A true US4112168A (en) 1978-09-05

Family

ID=25120125

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/780,619 Expired - Lifetime US4112168A (en) 1977-03-23 1977-03-23 High stiffness speaker cone

Country Status (1)

Country Link
US (1) US4112168A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980001230A1 (en) * 1978-11-30 1980-06-12 Licentia Gmbh Membrane for electro acoustic transducer
US4308782A (en) * 1979-10-04 1982-01-05 Remo, Incorporated Laminated head of plastic sheet material and a synthetic fabric material having random fiber orientation
US4428996A (en) 1977-02-02 1984-01-31 Sanyo Electric Co. Ltd. Diaphragm for speaker
US4761817A (en) * 1986-01-27 1988-08-02 Harman International Industries, Incorporated Diaphragm structure for a transducer
EP0336448A2 (en) * 1988-04-08 1989-10-11 Matsushita Electric Industrial Co., Ltd. Electroacoustic diaphragm and method for making same
US5406038A (en) * 1994-01-31 1995-04-11 Motorola, Inc. Shielded speaker
EP0675667A2 (en) * 1994-03-31 1995-10-04 Matsushita Electric Industrial Co., Ltd. A loudspeaker and a method for producing the same
WO2001045460A2 (en) * 1999-12-16 2001-06-21 New Transducers Limited Structural materials used in the faceskins of sandwich panels
US6438242B1 (en) * 1999-09-07 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Acoustic transducer panel
US6585076B2 (en) 1999-09-23 2003-07-01 E. I. Du Pont De Nemours And Company Cardable fiber blend and a moldable fiber batt and the process for making a moldable fiber batt
US20060113144A1 (en) * 2003-04-16 2006-06-01 Focal-Jmlab (S.A.) Direct radiation pure beryllium acoustic transducer having a concave membrane , used for audio applications, especially for loudspeaker cabinets
WO2017021036A1 (en) * 2015-07-31 2017-02-09 Pss Belgium Nv Audio system
CN110845957A (en) * 2019-11-22 2020-02-28 上海大学 Aqueous aramid fiber coating liquid and preparation method thereof, lithium ion battery and diaphragm thereof
US20230023601A1 (en) * 2021-07-21 2023-01-26 Em-Tech Co., Ltd. Microspeaker Enclosure Including Block Formed of Porous Particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568144A (en) * 1945-12-05 1951-09-18 Union Asbestos & Rubber Co Felted material and method of making the same
US2974204A (en) * 1954-07-06 1961-03-07 Kane Corp Du Transducer
US3183996A (en) * 1959-09-04 1965-05-18 Forty Eight Insulations Inc Acoustical structural panel
US3617654A (en) * 1968-11-18 1971-11-02 Stephen L Heidrich Electroacoustic transducer
US3649435A (en) * 1970-05-18 1972-03-14 Gen Dynamics Corp High modulus graphite fiber reinforced hybrid laminates
US3930130A (en) * 1973-09-21 1975-12-30 Union Carbide Corp Carbon fiber strengthened speaker cone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568144A (en) * 1945-12-05 1951-09-18 Union Asbestos & Rubber Co Felted material and method of making the same
US2974204A (en) * 1954-07-06 1961-03-07 Kane Corp Du Transducer
US3183996A (en) * 1959-09-04 1965-05-18 Forty Eight Insulations Inc Acoustical structural panel
US3617654A (en) * 1968-11-18 1971-11-02 Stephen L Heidrich Electroacoustic transducer
US3649435A (en) * 1970-05-18 1972-03-14 Gen Dynamics Corp High modulus graphite fiber reinforced hybrid laminates
US3930130A (en) * 1973-09-21 1975-12-30 Union Carbide Corp Carbon fiber strengthened speaker cone

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4428996A (en) 1977-02-02 1984-01-31 Sanyo Electric Co. Ltd. Diaphragm for speaker
WO1980001230A1 (en) * 1978-11-30 1980-06-12 Licentia Gmbh Membrane for electro acoustic transducer
US4308782A (en) * 1979-10-04 1982-01-05 Remo, Incorporated Laminated head of plastic sheet material and a synthetic fabric material having random fiber orientation
US4761817A (en) * 1986-01-27 1988-08-02 Harman International Industries, Incorporated Diaphragm structure for a transducer
EP0336448A2 (en) * 1988-04-08 1989-10-11 Matsushita Electric Industrial Co., Ltd. Electroacoustic diaphragm and method for making same
EP0336448A3 (en) * 1988-04-08 1991-01-16 Matsushita Electric Industrial Co., Ltd. Electroacoustic diaphragm and method for making same
US5043185A (en) * 1988-04-08 1991-08-27 Matsushita Electric Industrial Co., Ltd. Method for fabricating a graphite film for use as an electroacoustic diaphragm
US5406038A (en) * 1994-01-31 1995-04-11 Motorola, Inc. Shielded speaker
EP0675667A3 (en) * 1994-03-31 2003-02-19 Matsushita Electric Industrial Co., Ltd. A loudspeaker and a method for producing the same
EP0675667A2 (en) * 1994-03-31 1995-10-04 Matsushita Electric Industrial Co., Ltd. A loudspeaker and a method for producing the same
US6438242B1 (en) * 1999-09-07 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Acoustic transducer panel
US6585076B2 (en) 1999-09-23 2003-07-01 E. I. Du Pont De Nemours And Company Cardable fiber blend and a moldable fiber batt and the process for making a moldable fiber batt
US6586092B2 (en) 1999-09-23 2003-07-01 E. I. Du Pont De Nemours And Company Cardable fiber blend
US6585921B2 (en) 1999-09-23 2003-07-01 E. I. Du Pont De Nemours And Company Cardable fiber blend and a moldable fiber batt and the process for making a moldable fiber batt
WO2001045460A2 (en) * 1999-12-16 2001-06-21 New Transducers Limited Structural materials used in the faceskins of sandwich panels
WO2001045460A3 (en) * 1999-12-16 2002-03-21 New Transducers Ltd Structural materials used in the faceskins of sandwich panels
US20090200101A1 (en) * 2003-04-16 2009-08-13 Focal-Jmlab (S.A.) Acoustic transducer made of pure beryllium with directed radiation, with a concave-shaped diaphragm, for audio applications, in particular for acoustic enclosures
US20060113144A1 (en) * 2003-04-16 2006-06-01 Focal-Jmlab (S.A.) Direct radiation pure beryllium acoustic transducer having a concave membrane , used for audio applications, especially for loudspeaker cabinets
US7878297B2 (en) 2003-04-16 2011-02-01 Focal-Jmlab (S.A.) Acoustic transducer made of pure beryllium with directed radiation, with a concave-shaped diaphragm, for audio applications, in particular for acoustic enclosures
WO2017021036A1 (en) * 2015-07-31 2017-02-09 Pss Belgium Nv Audio system
US10492004B2 (en) 2015-07-31 2019-11-26 Pss Belgium Nv Audio system
EP3634010A1 (en) * 2015-07-31 2020-04-08 PSS Belgium NV Audio system
CN110845957A (en) * 2019-11-22 2020-02-28 上海大学 Aqueous aramid fiber coating liquid and preparation method thereof, lithium ion battery and diaphragm thereof
CN110845957B (en) * 2019-11-22 2022-03-15 上海大学 Aqueous aramid fiber coating liquid and preparation method thereof, lithium ion battery and diaphragm thereof
US20230023601A1 (en) * 2021-07-21 2023-01-26 Em-Tech Co., Ltd. Microspeaker Enclosure Including Block Formed of Porous Particles

Similar Documents

Publication Publication Date Title
US4112168A (en) High stiffness speaker cone
FI65695C (en) HOEGTALARMEMBRAN
US4975965A (en) Loudspeaker design
US6955241B2 (en) Speaker unit for low frequency reproduction
US2775309A (en) Sound translating devices
CZ310299A3 (en) Acoustic apparatus
US5259036A (en) Diaphragm for dynamic microphones and methods of manufacturing the same
US4709392A (en) Dome speaker with a diaphragm having at least one elongated cut-out portion
KR950011498B1 (en) Wide-band loudspeaker having a diaphragm area divided into sub-areas for various frequency ranges
US5256837A (en) Paper cone for cone type speaker
US6353277B1 (en) Acoustic transducer
CN109391887A (en) A kind of sounding device
CN1812661A (en) Acoustic frequency directional ultrasonic wave Loudspeaker
GB2257600A (en) Planar board diaphragm for electro-acoustic transducers
GB2211377A (en) Loudspeakers
US4373607A (en) Loudspeaker cone stiffeners
CN2738506Y (en) Loudspeaker vibrating diaphragm
US20070297638A1 (en) Boundary layer regulator for extended range acoustical transducers
CN101185372A (en) Electro-acoustic transducer
JPS60171900A (en) Speaker
JPS58131899A (en) Vibration part of loudspeaker reinforced fiexural rigidity
JP7332230B1 (en) speaker
JPS6324600B2 (en)
JPS62137000A (en) Dome type piezoelectric speaker
JPS5643899A (en) Electroacoustic converter using piezoelectric film honeycomb structure