US3923449A - Multistage oven with progressive circulation - Google Patents

Multistage oven with progressive circulation Download PDF

Info

Publication number
US3923449A
US3923449A US453839A US45383974A US3923449A US 3923449 A US3923449 A US 3923449A US 453839 A US453839 A US 453839A US 45383974 A US45383974 A US 45383974A US 3923449 A US3923449 A US 3923449A
Authority
US
United States
Prior art keywords
heating
fluid
heating zone
zone
zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US453839A
Inventor
James Donald Brock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Industries Inc
Original Assignee
Astec Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Industries Inc filed Critical Astec Industries Inc
Priority to US453839A priority Critical patent/US3923449A/en
Priority to US05/593,102 priority patent/US4005979A/en
Application granted granted Critical
Publication of US3923449A publication Critical patent/US3923449A/en
Assigned to FIRST AMERICAN NATIONAL BANK OF NASHVILLE reassignment FIRST AMERICAN NATIONAL BANK OF NASHVILLE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASTEC INDUSTRIES, INC., A TN CORP
Assigned to ASTEC INDUSTRIES, INC., 4101 JEROME AVE., CHATTANOOGA, TN 37407 A CORP. OF TN reassignment ASTEC INDUSTRIES, INC., 4101 JEROME AVE., CHATTANOOGA, TN 37407 A CORP. OF TN RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: FIRST AMERICAN NATIONAL BANK OF NASHVILLE, FIRST AMERICAN CENTER, NASHVILLE, TN 37237
Assigned to FIRST NATIONAL BANK OF CHICAGO reassignment FIRST NATIONAL BANK OF CHICAGO SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). EFFECTIVE DATE: 4-27-89 Assignors: ASTEC INDUSTRIES INC.
Assigned to FIRST NATIONAL BANK OF CHICAGO, THE reassignment FIRST NATIONAL BANK OF CHICAGO, THE AMENDMENT TO A PREVIOUSLY RECORDED SECURITY AGREEMENT DATED APRIL 27, 1989; SEE RECORD FOR DETAILS. Assignors: ASTEC INDUSTRIES, INC.
Anticipated expiration legal-status Critical
Assigned to ASTEC INDUSTRIES, INC., FIRST NATIONAL BANK OF CHICAGO, N.A., THE reassignment ASTEC INDUSTRIES, INC. TERMINATION & RELEASE OF SECURITY INTEREST IN PATENTS Assignors: NATIONSBANK OF GEORGIA, N.A. (F/K/A CITIZENS AND SOUTHERN TRUST COMPANY, N.A.)
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A multiple stage oven for heating a product such as carpet or the like, which serially moves through each stage to be heated. Each stage of the oven includes a fuel burner for heating air within the stage, and a fan for recirculating the heated air in the stage for impingement onto a carpet product moving through the stage. A portion of the heated air within each stage is drawn from that stage and supplied to a serially preceding stage. The volume of air withdrawn from the last stage in the serial arrangement, and also the volume of make-up air admitted to the first stage thereof, does not exceed the sum of the fuel combustion products within the zones and any moisture or other substance evaporated or evolved from the carpet in each of the heating zones.

Description

[451 Dec.2, 1975 MULTISTAGE OVEN WITH PROGRESSIVE CIRCULATION [75] lnventor: James Donald Brock, Chattanooga,
Tenn.
[73] Assignee: Astec Industries, Inc., Chattanooga,
Tenn.
22 Filed: Mar. 22, 1974 21 Appl. No.: 453,839
[52] US. Cl. 432/59; 432/128; 432/152;
34/223; 34/212; 34/155 [51] Int. Cl. F27b 9/28 [58] Field of Search 34/18, 23, 35, 41, 86,
[56] References Cited UNITED STATES PATENTS 1,798,718 3/1931 Brown... 34/213 1,860,887 5/1932 Buysse 34/227 2,107,275 2/1938 Anderson et al. 34/223 2,441,500 5/1948 Miess t 432/8 2,743,529 5/1956 Hayes 34/35 2,799,096 7/1957 Scott 34/31 36H 39H 67 7 G5 2,838,420 6/1958 Valente 34/23 3,581,679 6/1971 Jansen 432/152 3,623,235 11/1970 Smith, Jr 34/86 Primary Examiner lohn J. Camby Assistant ExaminerHenry C. Yuen Attorney, Agent, or Firm.lones, Thomas & Askew [57] ABSTRACT A multiple stage oven for heating a product such as carpet or the like, which serially moves through each stage to be heated. Each stage of the oven includes a fuel burner for heating air within the stage, and a fan for recirculating the heated air in the stage for impingement onto a carpet product moving through the stage. A portion of the heated air within each stage is drawn from that stage and supplied to a serially preceding stage. The volume of air withdrawn from the last stage in the serial arrangement, and also the volume of make-up air admitted to the first stage thereof, does not exceed the sum of the fuel combustion products within the zones and any moisture or other substance evaporated or evolved from the carpet in each of the heating zones.
9 Claims, 3 Drawing Figures US. Patent Dec. 2, 1975 3,923,449
- .0 t a4 ze nlL H l4 L 6696 630 g -CD1 M \2 m HEATING HEATING HEATING HEATING HEATING CHAMBER CHAMBER CHAMBER Z CHAMBER CHAMBER NO.I NO. 2 NO. 3 NO. 4 NO. 5
2a a5 a7 a 28/ PRIOR ART F I G j 36 37 58 3 II II M l2 3 I2 66 so 7 38H 36/H 39H 37H 5 56 H 67 7| 65 5s 55 3* 69 F I G 2 f g 37 I {*2 LLLLLLL/. {l/
I l f 43 [12/214 "j jl49 i a 4. f/M/ is FIG MULTISTAGE OVEN WITH PROGRESSIVE CIRCULATION This invention relates in general to heating apparatus and in particular to a multiple stage oven for applying heat to a product such as carpet.
The commercial manufacture of carpet typically requires one or more drying or curing operations in which heat is applied to a carpet product. The carpet product is typically heated to remove moisture from a wet carpet product received from a preceding step in the manufacturing process, and/or to cure a material such as foamed backing applied to the carpet product. Typical ovens used for curing or drying consist of a number of individual heating zones through which the carpet is serially moved by a conveyor known as a tenter frame. Each heating zone typically includes a chamber where air is heated with a fuel burner, and air recirculation apparatus which moves the heated air for impingement onto the carpet product. Ovens used for curing a foamed backing material applied to a carpet product may be arranged to impinge heated air onto alternate sides of the carpet, in successive heating zones, since the heated air cannot flow through the foam-backed carpet.
Each of the separate heating zones in carpet drying or curing ovens of the prior art is typically heated by a separate direct-fired burner which operates on a cleanburning fuel such as natural gas or propane. The air within each heating zone is typically heated to a temperature within the range of 300F. to 450F., depending on the carpet product and the backing material being cured, and these operating temperatures cannot readily or economically be provided by indirect heating. Each heating zone of the prior art carpet ovens has a separate exhaust fan to withdraw air, including combustion products and water evaporated from the carpet product, from the individual zone, and also has an inlet damper allowing ambient make-up air to enter the heating chamber of the zone. Each heating zone in known prior art carpet drying and curing ovens is completely independent of adjacent zones.
A typical prior art oven used for curing carpets consists of five individual heating zones, and typically from 3,000 to 6,000 cubic feet per minute (cfm) air is exhausted from each heating zone. This exhausted air must be vented outside of the building containing the oven, because of the moisture and the combustion products contained in the exhausted air, with a resulting total loss of the heat contained in the air exhausted from each of the individual heating zones. Moreover, it is apparent that the volume of air exhausted to atmosphere from each heating zone must be matched by an equal volume of make-up air supplied to the individual heating zones, and this make-up air is typically withdrawn directly from the heated ambient air within the building wherein the oven is situated. Carpet curing ovens, as a consequence, have a relatively low operating efficiency, with a typical operating efficiency being in the order of 33% of the fuel consumed by the oven burners. This low operating efficiency fails to account for the additional fuel required to heat the outdoor-air which must be supplied to the building to replace the make-up air drawn into the heating zones of the oven.
It has been proposed to improve the operating efficiency of carpet curing ovens by adding heat reclaimers to at least some of the individual heating zones, so that the heat in the air exhausted from each zone can be transferred by known techniques to preheat the makeup air being inducted into a heating zone of the oven. It has been found in actual practice that the operating efficiency of a five-zone carpet curing oven was increased from about 33% to about 38% by equipping three of the zones with heat reclaimers. The heat reclaiming apparatus is expensive to purchase and install, and the heat reclaimers are efficient only if cleaned and maintained daily.
The low operating efficiency of prior-art carpet ovens is expensive in the best of circumstances. Rising costs of natural gas and propane fuels, along with the scarcity of such fuels in many locations, places an even greater burden on the carpet manufacturer, and ultimately on the carpet purchaser.
Accordingly, it is an object of the present invention to provide an improved oven for heating a carpet product.
It is another object of the present invention to provide a carpet heating oven of improved operating efficiency.
It is yet another object of the present invention to provide a carpet heating oven which reduces the loss of heat in exhausted air.
Other objects and advantages of the present invention will become more readily apparent from the disclosed embodiment of the invention as set forth in the following description, including the drawing in which:
FIG. 1 shows a schematic plan view of a prior art carpet oven;
FIG. 2 shows a schematic plan view ofa carpet curing oven according to the disclosed embodiment of the present invention; and
FIG. 3 is a section view taken along line 3-3 of FIG. 2.
Stated in general terms, the oven of the present invention provides a number of heating zones through which a carpet product or other workpiece is serially moved to be heated, with the result that moisture is removed from the carpet product in the several heating zones. A limited volume of heated fluid, preferably substantially corresponding to the volume of moisture removed from the carpet in the heating zone plus the volume of combustion products produced by burning fuel in the heating zone, is withdrawn from one of the heating zones and is supplied to a second one of the heating zones. Heated fluid corresponding in volume to the fluid supplied from the first heating zone plus the vol ume of combustion products and moisture removed from the carpet product in the second heating zone is withdrawn from the second heating zone and is supplied to a third heating zone. [Heated fluid is similarly withdrawn from each remaining heating zone, other than a final one of such zones, and is transferred to another heating zone to provide a serial progression of fluid flow between heating zones. Heated fluid is exhausted to atmosphere only from a final one of the heating zones, and no more than the first one of the heating zones may need to receive make-up air supplied from outside the oven.
The present invention is better understood with reference to FIGS. 2 and 3, wherein is depicted an illustrative embodiment of a carpet curing oven according to the present invention. As an aid in understanding the illustrative oven shown in FIGS. 2 and 3, there is shown in FIG. 1 a conventional prior art oven 10 which contains five separate heating zones and which is used, for
example, for curing the latex backing material 11 which has been freshly applied to the carpet product 12.- The carpet product 12 is carried by a tenter frame (not shown in FIG. 1) for support and movement through the oven in a manner known to those skilled in the art. The carpet product 12 enters the inlet end 13 of the dryer, moves progressively through five separate heating zones, and exits the oven at the output end 14, from which the carpet product is conveyed to the next work station.
Since air or other heated fluid cannot flow through the latex-backed carpet product 12, an oven which is effective for curing such carpet product must direct heated fluid onto both sides of the carpet product passing through the dryer. Each of the five heating zones in the depicted conventional drying oven is provided with a number of conduits which receive heated fluid from one of multiple heating chambers; the conduits extend across the path of carpet travel to direct heated fluid onto a particular side of the carpet product moving through the oven. The reference numeral 18 in FIG. 1 designates exemplary conduits connected to receive heated fluid from heating chamber 1 and directing the heated fluid against the carpet product 12 in zone 1 of the dryer. The conduits exemplified at 19 and containing the numeral 2 are connected to direct heated fluid from heating chamber 2 onto the carpet product in a second heating zone, while the conduits exemplified at 20, 21, and 22 are similarly associated with corresponding heating zones 3, 4, and 5, and are connected to receive heated fluid from corresponding heating chambers 3, 4, and 5. Heated fluid is directed against the downwardly-facing tufted side of the carpet product 12 in the heating zones 1, 3, and 5, while heated fluid is directed against the upwardly-facing latex backing material 11 in the heating zones 2 and 4. It is apparent from FIG. 1, however, that the total linear extent of heating zones 2 and 4 is substantially identical to the total linear extent of heating zones 1, 3, and 5, measured in the direction of travel of the carpet product through the oven 10.
Each of the heating chambers contains a fuel burner, appropriate fluid flow directing passageways connecting the'heating chamber with the corresponding conduits that direct heated fluid against the carpet, and a recirculation fan for recirculating heated fluid in a closed path including the heating chamber, the corresponding conduits, and a portion of the carpet product and the carpet ducts. An appropriate fuel such as natural gas or propane is supplied in a line 28 to the burners of each heating chamber. Further details of each heating chamber are set forth below with respect to the disclosed apparatus shown in FIGS. 2 and 3.
Separate exhaust fans 23, 24, 25, 26, 27 are respectively connected to each of the heating zones 1 through 5. Each of the exhaust fans withdraws from the corresponding heating zone a mixture of heated fluid, including steam or water vapor evaporated from the carpet product and the combustion products of the fuel burner. Each of the five heating chambers has a suitable inlet opening to admit make-up air which is typically withdrawn from the atmosphere of the building in which the oven 10 is situated.
In a typical carpet curing oven of the prior art, as depicted in FIG. 1, from 3,000 to 6,000 cubic feet per minute (cfm) of heated fluid is exhausted from each of the heating zones by the corresponding exhaust fans,
and the heat in the exhausted fluid is simply wasted. The exhausted fluid cannot simply be discharged within a building and must be vented to the outside atmosphere, as previously mentioned, and so additional energy is expended as needed to heat air introduced into the building to replace the make-up air required by the oven.
Turning now to FIGS. 2 and 3, there is shown an oven indicated generally at 35 and used for heating a carpet product for curing or drying purposes. The improved oven 35 is also divided into five separate heating zones, with two such zones 36 and 37 being on the upper side of the oven and with the remaining three zones 38, 39, and 40 being on the lower side thereof. Corresponding shading lines are used in FIG. 2 to denote the heating zones and associated heating chambers 36H, 37H, 38H, 39H, and 40H. Although the choice of five separate heating zones for the improved oven 35 is by way of example only, and is not limiting to the present invention, it will become apparent that the disclosed embodiment of the improved oven utilizes components such as conduits, fuel burners, and recirculating fans which are substantially similar to the corresponding components of the prior-art oven, so that an existing prior-art oven 10 can be modified or converted to an improved oven 35 through the application of the following teachings.
A typical cross-section view of the improved oven 35 is shown in FIG. 3, where the carpet product 12 is supported by the tenter frame 41a and 41b for movement in a direction out of the Figure. The carpet as shown in FIG. 3 is moving through heating zones 37 and 40. One of the transverse conduits of the heating zone 40 is shown at 42, and the conduit 42 is connected to receive a forced flow of heated fluid from the recirculating fan 43 located in heating chamber 401-! situated below the heating zone 40. The heating chamber 40H also includes a fuel burner 44 connected to a. suitable source of clean-burning fuel, such as natural gas or propane. The proper amount of air required for combustion of the fuel in the burner 44 is typically premixed with the fuel, externally of the oven, in a manner known to those skilled in the art. The heating chamber 40H is provided with a fluid inlet opening 48 having an appropriate damper valve 49 to adjust air flow in the opening. A fluid discharge opening 50 is provided at a suitable location in the heating chamber 40H.
Observing the fluid flow arrows depicted in FIG. 3 for the heating chamber 40H and the heating zone 40, it si seen that air heated by the burner 44 is forced by the recirculating fan 43 into the several conduits (one of which is shown at 42) associated with the heating zone 40. The heated air flows from the conduits, including the conduit 42, onto impingement with the lower side of the carpet product 12 passing through the oven, after which the suction effect of the recirculating fan 43 draws a portion of the impinging fluid (as well as any moisture which evaporated from the carpet product) away from the carpet product back to the burner 44 to be heated and recirculated. The remaining portion of the fluid is withdrawn into the fluid discharge opening 50, as discussed below. Heated fluid from the recirculating fan associated with the heating chamber 37H, meanwhile, is forced through the plenum 51 and the conduit 52 to impinge against the upper side of the carpet product 12 in the heating zone 37. It will be understood that a transverse cross-section view of each of the other four heating chambers of the improved oven apparatus 35 would show an arrangement of components substantially similar to that of FIG. 3.
The interrelationship of fluid flowing in a serial manner between the several heating'zones of the improved oven apparatus 35 is shown in FIG. 2. A first exhaust fan 55 has an inlet duct 56 connected to the fluid discharge opening 50 of the heating zone 40. Fluid is withdrawn from the heating zone 40 by the first exhaust fan 55, and is supplied through the duct 57 to a fluid inlet opening in the heating chamber 37H, which supplies heated fluid to the heating zone 39.,The duct 57 is connected to the heating chamber 37H at a fluid inlet opening similar to the opening 48 in the heating chamber 40H, shown in FIG. 3.
Heated fluid in the heating zone 37, including the fluid supplied from the preceding heating zone 40, is withdrawn from a discharge opening (similar to the opening 50 in the zone 40) by way of a duct 58, a second exhaust fan 59, and a duct 60 connected to a fluid inlet opening in the heating chamber 39H. Fluid is exhausted in a similarmanner from the heating zone 39 by the duct 64, the third exhaust fan 65, and supplied to the heating chamber 36H by the duct 66.
Fluid is withdrawn from the heating zone 36 by the fourth exhaust fan 67 and is passed through a heat reclaimer 68 before being supplied through the duct 71 to a fluid inlet opening of the heating chamber 38H. Fluid in the heating zone 38 is withdrawn by the fifth exhaust fan 69 and is moved through the heat reclaimer 68 and subsequently supplied to the duct 70 to be dumped into the atmosphere. The heat reclaimer 68 is connected and operated to withdraw heat energy from the fluid exhausted from the heating zone 38, and to supply the withdrawn heat energy to the fluid flowing from the fourth exhaust fan 67 into oven 1. The use of a heat reclaimer as shown herein is optional, however, and is not an essential element of the progressive circulation system disclosed herein. The construction and operation of heat reclaimers are known to those skilled in the art.
It can be seen that the several separate heating zones of the improved oven apparatus 35 are connected in a serial fluid flow circuit. The fluid exhausted from the fifth zone 40 is the sole supply of make-up fluid for the fourth zone 37, the fluid exhausted from the fourth zone is the sole source of make-up fluid for the third zone 39, and so on. Only the exhaust from the first zone 38 is withdrawn from the oven and discharged to atmosphere, and some of the heat remaining in the first-zone exhaust can be reclaimed and returned to a heating zone of the oven. Make-up air from outside the oven 35 is introduced only into the fifth zone, i.e., the final zone in the serial arrangement. The fluid discharged to atmosphere from the oven is preferably withdrawn from the heating zone which first receives the moving carpet product 12, especially where the carpet product contains moisture to be removed by the oven, since the carpet product generally will lose more moisture in such first zone than in any one of the subsequent heating zones.
The improved oven apparatus 35 according to the present invention is most efficiently operated with a minimum volume of fluid withdrawn from each of the heating zones of the oven. The minimum volume of exhaust fluid which should be withdrawn from a particular heating zone is determined by the volume of water being removed from the carpet product by evaporation in the heating zone plus the volume of combustion products generated by the heating chamber associated with the heating zone, when the oven 35 is operating at maximum capacity, plus any volume of fluid received from a preceding heating zone. The minimum volume of fluid which should be exhausted from the final heating zone in the serial fluid flow arrangement (zone 38, in the disclosed embodiment of the invention) is the sum of the volumes of moisture removed from the carpet product in each heating zone plus the sum of the combustion products from each heating zone. Of course, morethan the minimum volume of fluid can be withdrawn from the oven, if desired, although a corresponding additional heat loss will be incurred lt will also be understood that a volume of external make-up air must be admitted to the initial zone of the oven (zone 40, in the disclosed embodiment) if more than the minimum volume of fluid. is withdrawn from the oven.
In an actual application of the present invention to a five-zone oven used for curing latex backing previously applied to a carpet product, the overall average volume of fluid exhausted from the oven. was reduced from 20,000 cfm, before application of the present invention, to 4,000 cfm when the oven was modified to conform with the present invention. When used for curing a latex backing containing 30% water on a carpet product moving through the oven at 25 feet per minute, the energy loss resulting from heat in air exhausted from the oven was reduced from an estimated 4,280,000 BTU per hour to approximately 750,000 BTU per hour. A corresponding substantial reduction in the required consumption of natural gas, the fuel used to fire the burners of the particular oven, was also observed. An additional energy reduction resulted from reducing the volume of make-up air withdrawn from the heated air within the building housing the oven. It is estimated that the specific actual embodiment of improved oven reduced the building heat load by about 1,500,000 BTU per hour, assuming outside air at 0 F.
Although the illustrative embodiment of the present invention depicted in FIGS. 2 and 3 establishes serial flow between heating zones through the use of ducts and fans located externally of the.various heating zones and heating chambers, the depicted external arrangement of components is only illustrative and the present invention is not limited to the use of such ducts and other external components to establish serial flow of fluid from a final heating zone back to an initial heating zone. The serial fluid flow required for the practice of the present invention can alternatively be provided through appropriate fluid flow passages and fluid pressure differentials created entirely within the oven apparatus.
It will also be understood that the foregoing relates only to a preferred embodiment of the present invention, and that numerous alterations and modifications may be made therein without departing from the spirit and the scope of the invention as set forth in the following claims.
What is claimed is:
1. Apparatus for progressively heating a moving web of material while the material is moving along a predetermined path, comprising:
closure means enclosing the web along at least part of said predetermined path, said closure means deof material which is moving along a predetermined path and which may contain moisture, comprising:
fining at least a first heating zone and a second heating zone within;
said first and second heating zones being serially disposed within said closure means so that a web being moved along said predetermined path initially passes through said first heating zone and subsequently passes through said second heating zone;
first fluid heating means associated with said first heating zone and operative to apply heated fluid directly to the web passing through said first heating zone;
second fluid heating means associated with said second heating zone and operative to apply heated fluid directly to the web passing through said second heating zone;
exhaust means directly communicating with said first heating zone to withdraw fluid only from said first heating zone and to discharge said withdrawn fluid from said heating apparatus;
means supplying said first heating zone with substantial make-up fluid only from said second heating zone; and
means associated with said first zone to substantially prevent the entry of make-up fluid into said first zone from any source other than said second heating zone.
2. Apparatus as in claim 1, wherein each of said heat- 3. Apparatus as in claim 1, wherein said make-up fluid supply means comprises a fluid flow conduit connecting said first and second heating zones.
4. Apparatus as in claim 3, further comprising means operatively associated with said fluid flow conduit to move fluid from said second heating zone through said conduit to said first heating zone.
5. Apparatus for progressively applying heat to a web ual means for directing a stream of heated fluid onto at least one side of the web passing through the respective zone;
exhaust means directly communicating with the first one of said heating zones through which the web initially passes and operative to withdraw fluid therefrom and to discharge said withdrawn fluid from said heating apparatus;
fluid flow communication means directly connecting each of said heating zones, except for the final one of the heating zones along which the web passes, with a serially subsequent heating zone and allowing said first heating zone and each such connected heating zones to receive substantial make-up fluid only from such serially subsequent heating zone; and
means associated with each at said heating zones, ex-
cept for said final heating zones, to substantially prevent make-up fluid from entering such heating zones from any source other than said fluid flow communication means.
6. Apparatus as in claim 5, wherein said final heating zone includes means operative to admit make-up fluid to said final heating zone from a source external to said apparatus.
7. .Apparatus as in claim 5, wherein each of said means for directing a stream of heated fluid comprises a fuel combustion means connected to receive and burn a fuel-air mixture to provide heated fluid, and means operative to direct said heated fluid onto the web passing through the respective heating zone.
8. Apparatus as in claim 7, wherein said exhaust means is operative to withdraw from said first heating zone a volume of fluid at least equal to the total amount of combustion products of all said fuel combustion means plus the volume of moisture evaporated from the web passing through said heating zones.
9. Apparatus as in claim 1, wherein:
said make-up fluid means comprises a fluid flow path having an inlet directly communicating with said second heating zone and an outlet directly communicating with said first zone; and further comprising means operative to maintain fluid flow through said flo'w path from said second heating zone to said first heating zone.

Claims (9)

1. Apparatus for progressively heating a moving web of material while the material is moving along a predetermined path, comprising: closure means enclosing the web along at least part of said predetermined path, said closure means defining at least a first heating zone and a second heating zone within; said first and second heating zones being serially disposed within said closure means so that a web being moved along said predetermined path initially passes through said first heating zone and subsequently passes through said second heating zone; first fluid heating means associated with said first heating zone and operative to apply heated fluid directly to the web passing through said first heating zone; second fluid heating means associated with said second heating zone and operative to apply heated fluid directly to the web passing through said second heating zone; exhaust means directly communicating with said first heating zone to withdraw fluid only from said first heating zone and to discharge said withdrawn fluid from said heating apparatus; means supplying said first heating zone with substantial make-up fluid only from said second heating zone; and means associated with said first zone to substantially prevent the entry of make-up fluid into said first zone from any source other than said second heating zone.
2. Apparatus as in claim 1, wherein each of said heating zones includes a fluid circulating means operative to recirculate a flow of heated fluid in said heating zone onto the web passing through the said heating zone.
3. Apparatus as in claim 1, wherein said make-up fluid supply means comprises a fluid flow conduit connecting said first and second heating zones.
4. Apparatus as in claim 3, further comprising means operatively associated with said fluid flow conduit to move fluid from said second heating zone through said conduit to said first heating zone.
5. ApparatUs for progressively applying heat to a web of material which is moving along a predetermined path and which may contain moisture, comprising: closure means enclosing at least a portion of said predetermined path, said closure means defining a plurality of separate web heating zones serially disposed along the enclosed portion of said path; at least some of said heating zones including individual means for directing a stream of heated fluid onto at least one side of the web passing through the respective zone; exhaust means directly communicating with the first one of said heating zones through which the web initially passes and operative to withdraw fluid therefrom and to discharge said withdrawn fluid from said heating apparatus; fluid flow communication means directly connecting each of said heating zones, except for the final one of the heating zones along which the web passes, with a serially subsequent heating zone and allowing said first heating zone and each such connected heating zones to receive substantial make-up fluid only from such serially subsequent heating zone; and means associated with each at said heating zones, except for said final heating zones, to substantially prevent make-up fluid from entering such heating zones from any source other than said fluid flow communication means.
6. Apparatus as in claim 5, wherein said final heating zone includes means operative to admit make-up fluid to said final heating zone from a source external to said apparatus.
7. Apparatus as in claim 5, wherein each of said means for directing a stream of heated fluid comprises a fuel combustion means connected to receive and burn a fuel-air mixture to provide heated fluid, and means operative to direct said heated fluid onto the web passing through the respective heating zone.
8. Apparatus as in claim 7, wherein said exhaust means is operative to withdraw from said first heating zone a volume of fluid at least equal to the total amount of combustion products of all said fuel combustion means plus the volume of moisture evaporated from the web passing through said heating zones.
9. Apparatus as in claim 1, wherein: said make-up fluid means comprises a fluid flow path having an inlet directly communicating with said second heating zone and an outlet directly communicating with said first zone; and further comprising means operative to maintain fluid flow through said flow path from said second heating zone to said first heating zone.
US453839A 1974-03-22 1974-03-22 Multistage oven with progressive circulation Expired - Lifetime US3923449A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US453839A US3923449A (en) 1974-03-22 1974-03-22 Multistage oven with progressive circulation
US05/593,102 US4005979A (en) 1974-03-22 1975-07-03 Multistage progressive drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US453839A US3923449A (en) 1974-03-22 1974-03-22 Multistage oven with progressive circulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/593,102 Division US4005979A (en) 1974-03-22 1975-07-03 Multistage progressive drying method

Publications (1)

Publication Number Publication Date
US3923449A true US3923449A (en) 1975-12-02

Family

ID=23802274

Family Applications (1)

Application Number Title Priority Date Filing Date
US453839A Expired - Lifetime US3923449A (en) 1974-03-22 1974-03-22 Multistage oven with progressive circulation

Country Status (1)

Country Link
US (1) US3923449A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274954A (en) * 1975-12-19 1977-06-23 Toyota Motor Corp Heating-drying furnace for powder coating
US4140467A (en) * 1975-06-09 1979-02-20 Kenneth Ellison Convection oven and method of drying solvents
DE2840284A1 (en) * 1977-10-07 1979-04-12 Welko Ind Spa DEVICE FOR THE THERMAL CONTROL OF ROLLER FURNACE FOR THE FIRING OF CERAMIC MATERIALS, ORD.
US4198764A (en) * 1975-06-09 1980-04-22 Kenneth Ellison Radiant heating apparatus for curing coated strip material
US4206553A (en) * 1975-06-09 1980-06-10 Kenneth Ellison Method of curing strip coating
FR2458773A1 (en) * 1979-06-08 1981-01-02 Midland Ross Corp GAS HEATING OVEN
FR2465175A1 (en) * 1979-09-13 1981-03-20 Stumm Eric Nozzle drier for coated or printed web - supplies heated fresh air to final drying section connected to preliminary ones
US4270283A (en) * 1979-01-10 1981-06-02 Ellis James F Air recycling apparatus for drying a textile web
US4291472A (en) * 1978-09-08 1981-09-29 Brogdex Company Drying apparatus for aqueous coated articles and method
EP0047063A2 (en) * 1980-08-07 1982-03-10 Midland-Ross Corporation A multi-zone oven with cool air modulation
FR2516224A1 (en) * 1981-11-12 1983-05-13 Babcock Textilmasch METHOD AND DEVICE FOR THERMALLY PROCESSING MOVING BANDS
US4448578A (en) * 1982-04-30 1984-05-15 Acrometal Products, Inc. Curing oven for enameled wire and control system therefor
US4588378A (en) * 1983-11-18 1986-05-13 Chugai Ro Co., Ltd. Continuous heat treating furnace for metallic strip
US4591336A (en) * 1984-04-19 1986-05-27 Moco Thermal Industries Oven for curing resin-coated wires
EP0326227A1 (en) * 1988-01-29 1989-08-02 Stork Contiweb B.V. A drier for a web of material
US5440101A (en) * 1993-04-19 1995-08-08 Research, Incorporated Continuous oven with a plurality of heating zones
US5544570A (en) * 1993-05-05 1996-08-13 Franz Haas Waffelmaschinen Industriegesellschaft M.B.H. Continuous oven for making baked ware
US6102693A (en) * 1998-07-27 2000-08-15 Kanto Yakin Kogyo K.K. Preheating method in a continuous furnace
US20040261285A1 (en) * 2001-11-22 2004-12-30 Kenichi Harada Drying machine system utilizing gas turbine, and method of use
US8074370B1 (en) * 2007-11-08 2011-12-13 Thomas Monahan Horizontal centrifugal device for moisture removal from a rug
US20130291600A1 (en) * 2003-06-24 2013-11-07 Uniglass Engineering Oy Method and apparatus for heating glass

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1798718A (en) * 1926-07-09 1931-03-31 John P Brown Method and apparatus for drying materials
US1860887A (en) * 1930-08-19 1932-05-31 Charles E Buysse Furnace
US2107275A (en) * 1936-07-28 1938-02-08 Du Pont Drying equipment
US2441500A (en) * 1944-03-30 1948-05-11 Miess Fred Electrically heating continuously traveling metal strip
US2743529A (en) * 1954-07-06 1956-05-01 Oxy Catalyst Inc Drying oven and operation thereof
US2799096A (en) * 1955-07-13 1957-07-16 Proctor & Schwartz Inc Onion drying apparatus and method
US2838420A (en) * 1956-08-23 1958-06-10 Kimberly Clark Co Method for drying impregnated porous webs
US3581679A (en) * 1968-12-02 1971-06-01 Winkler Kg F Oven apparatus
US3623235A (en) * 1970-10-07 1971-11-30 Smitherm Industries Drying apparatus for veneers and other materials of sheet and web form

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1798718A (en) * 1926-07-09 1931-03-31 John P Brown Method and apparatus for drying materials
US1860887A (en) * 1930-08-19 1932-05-31 Charles E Buysse Furnace
US2107275A (en) * 1936-07-28 1938-02-08 Du Pont Drying equipment
US2441500A (en) * 1944-03-30 1948-05-11 Miess Fred Electrically heating continuously traveling metal strip
US2743529A (en) * 1954-07-06 1956-05-01 Oxy Catalyst Inc Drying oven and operation thereof
US2799096A (en) * 1955-07-13 1957-07-16 Proctor & Schwartz Inc Onion drying apparatus and method
US2838420A (en) * 1956-08-23 1958-06-10 Kimberly Clark Co Method for drying impregnated porous webs
US3581679A (en) * 1968-12-02 1971-06-01 Winkler Kg F Oven apparatus
US3623235A (en) * 1970-10-07 1971-11-30 Smitherm Industries Drying apparatus for veneers and other materials of sheet and web form

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140467A (en) * 1975-06-09 1979-02-20 Kenneth Ellison Convection oven and method of drying solvents
US4198764A (en) * 1975-06-09 1980-04-22 Kenneth Ellison Radiant heating apparatus for curing coated strip material
US4206553A (en) * 1975-06-09 1980-06-10 Kenneth Ellison Method of curing strip coating
JPS5274954A (en) * 1975-12-19 1977-06-23 Toyota Motor Corp Heating-drying furnace for powder coating
DE2840284A1 (en) * 1977-10-07 1979-04-12 Welko Ind Spa DEVICE FOR THE THERMAL CONTROL OF ROLLER FURNACE FOR THE FIRING OF CERAMIC MATERIALS, ORD.
US4249895A (en) * 1977-10-07 1981-02-10 Welko Industriale S.P.A. Kiln
US4291472A (en) * 1978-09-08 1981-09-29 Brogdex Company Drying apparatus for aqueous coated articles and method
US4270283A (en) * 1979-01-10 1981-06-02 Ellis James F Air recycling apparatus for drying a textile web
FR2458773A1 (en) * 1979-06-08 1981-01-02 Midland Ross Corp GAS HEATING OVEN
US4299036A (en) * 1979-06-08 1981-11-10 Midland-Ross Corporation Oven with a mechanism for cascading heated gas successively through separate isolated chambers of the oven
FR2465175A1 (en) * 1979-09-13 1981-03-20 Stumm Eric Nozzle drier for coated or printed web - supplies heated fresh air to final drying section connected to preliminary ones
EP0047063A3 (en) * 1980-08-07 1982-03-31 Midland-Ross Corporation A multi-zone oven with cool air modulation
EP0047063A2 (en) * 1980-08-07 1982-03-10 Midland-Ross Corporation A multi-zone oven with cool air modulation
FR2516224A1 (en) * 1981-11-12 1983-05-13 Babcock Textilmasch METHOD AND DEVICE FOR THERMALLY PROCESSING MOVING BANDS
US4448578A (en) * 1982-04-30 1984-05-15 Acrometal Products, Inc. Curing oven for enameled wire and control system therefor
US4588378A (en) * 1983-11-18 1986-05-13 Chugai Ro Co., Ltd. Continuous heat treating furnace for metallic strip
US4591336A (en) * 1984-04-19 1986-05-27 Moco Thermal Industries Oven for curing resin-coated wires
US4929173A (en) * 1988-01-29 1990-05-29 Stork Contiweb B.V. Heating appliance with combustion air preheat
EP0326227A1 (en) * 1988-01-29 1989-08-02 Stork Contiweb B.V. A drier for a web of material
US4944673A (en) * 1988-01-29 1990-07-31 Stork Contiweb B.V. Drier for a web of material
US5440101A (en) * 1993-04-19 1995-08-08 Research, Incorporated Continuous oven with a plurality of heating zones
US5544570A (en) * 1993-05-05 1996-08-13 Franz Haas Waffelmaschinen Industriegesellschaft M.B.H. Continuous oven for making baked ware
US6102693A (en) * 1998-07-27 2000-08-15 Kanto Yakin Kogyo K.K. Preheating method in a continuous furnace
US20040261285A1 (en) * 2001-11-22 2004-12-30 Kenichi Harada Drying machine system utilizing gas turbine, and method of use
US20130291600A1 (en) * 2003-06-24 2013-11-07 Uniglass Engineering Oy Method and apparatus for heating glass
US8650911B2 (en) * 2003-06-24 2014-02-18 Uniglass Engineering Oy Method and apparatus for heating glass
US8074370B1 (en) * 2007-11-08 2011-12-13 Thomas Monahan Horizontal centrifugal device for moisture removal from a rug

Similar Documents

Publication Publication Date Title
US3923449A (en) Multistage oven with progressive circulation
US4137645A (en) Laundry dryer
US4005979A (en) Multistage progressive drying method
US3377056A (en) Drying apparatus
US3474544A (en) Veneer dryer with plural treating zones
KR101381195B1 (en) Continuous farm product dryer using heat pump system
WO2003067156A2 (en) Desiccant dehumidification system
US4137648A (en) Driers for textile materials
KR101525880B1 (en) Controler of heat pump system for drying agricultural products
US2384990A (en) Drier
UA126003C2 (en) Sheet drying method and arrangement
US4242806A (en) Stacked air dryer with air recirculation
CA2081929C (en) Circulating air dryer
JP2525652B2 (en) Paint drying oven
US5396716A (en) Jet tube dryer with independently controllable modules
CN100422681C (en) Processing of organic material
KR101237340B1 (en) Drying system for high water content material using air compressor and drying method using the same
KR100475663B1 (en) Hot air flow system of tenter
US3362087A (en) Dryers for carpets and the like
US2763477A (en) Drying machine
US3743474A (en) Carpet drying method
US1885418A (en) Process of heat application and equipment therefor
US20110030426A1 (en) Garment tunnel finisher with atomized spray and hot air mix
US2128697A (en) Drying apparatus
CN216694247U (en) Drying machine integrated with hot air unit

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRST AMERICAN NATIONAL BANK OF NASHVILLE, FIRST A

Free format text: SECURITY INTEREST;ASSIGNOR:ASTEC INDUSTRIES, INC., A TN CORP;REEL/FRAME:004754/0015

Effective date: 19861229

AS Assignment

Owner name: ASTEC INDUSTRIES, INC., 4101 JEROME AVE., CHATTANO

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST AMERICAN NATIONAL BANK OF NASHVILLE, FIRST AMERICAN CENTER, NASHVILLE, TN 37237;REEL/FRAME:004950/0370

Effective date: 19880606

AS Assignment

Owner name: FIRST NATIONAL BANK OF CHICAGO

Free format text: SECURITY INTEREST;ASSIGNOR:ASTEC INDUSTRIES INC.;REEL/FRAME:005356/0658

Effective date: 19900516

AS Assignment

Owner name: FIRST NATIONAL BANK OF CHICAGO, THE, ILLINOIS

Free format text: AMENDMENT TO A PREVIOUSLY RECORDED SECURITY AGREEMENT DATED APRIL 27, 1989;;ASSIGNOR:ASTEC INDUSTRIES, INC.;REEL/FRAME:006113/0045

Effective date: 19910301

AS Assignment

Owner name: ASTEC INDUSTRIES, INC., TENNESSEE

Free format text: TERMINATION & RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NATIONSBANK OF GEORGIA, N.A. (F/K/A CITIZENS AND SOUTHERN TRUST COMPANY, N.A.);REEL/FRAME:007603/0227

Effective date: 19940720

Owner name: FIRST NATIONAL BANK OF CHICAGO, N.A., THE, ILLINOI

Free format text: TERMINATION & RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NATIONSBANK OF GEORGIA, N.A. (F/K/A CITIZENS AND SOUTHERN TRUST COMPANY, N.A.);REEL/FRAME:007603/0227

Effective date: 19940720