US3922867A - Friction rock stabilizers - Google Patents

Friction rock stabilizers Download PDF

Info

Publication number
US3922867A
US3922867A US520310A US52031074A US3922867A US 3922867 A US3922867 A US 3922867A US 520310 A US520310 A US 520310A US 52031074 A US52031074 A US 52031074A US 3922867 A US3922867 A US 3922867A
Authority
US
United States
Prior art keywords
bore
stabilizer
slot
friction
stabilizer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US520310A
Inventor
James J Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US520310A priority Critical patent/US3922867A/en
Application granted granted Critical
Publication of US3922867A publication Critical patent/US3922867A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B13/00Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/004Bolts held in the borehole by friction all along their length, without additional fixing means

Definitions

  • the present invention relates to the anchoring of a structure such as a roof or side wall of a mine shaft or other underground opening, and more specifically to the provision of new and improved friction rock stabilizers and stabilizing methods particularly adapted for such anchoring.
  • An object of the present invention is to provide new and improved friction rock stabilizers which are highly efficient in operation while relatively simple and economical in construction.
  • Another object of the invention is to provide new and improved stabilizing methods particularly adapted to provide highly efficient anchoring through the employment of a stabilizer which is relatively simple and economical in construction.
  • a friction rock stabilizer may comprise a generally annular body from end-to-end having a slot through its thickness, the body including edge portions extending along opposite sides of such slot and the width of the slot being sufficiently great to space apart such edge portions a distance permitting substantial circumferential compression of the body for insertion thereof in a bore of diameter smaller than the outer diameter of the body in uncompressed condition, the anchor being free of structure precluding such substantial circumferential compression of the body, and the body being of material permitting its said substantial circumferential compression for insertion in such a bore and, after such insertion, causing the body outer periphery to frictionally engage the surrounding wall of the bore for anchoring a roof.
  • a structure such as a roof or side wall of a mine shaft or other underground tunnel may be anchored by a method which may comprise the steps of forming a bore in the structure to be anchored, providing a circumferentially compressible stabilizer having an outer periphery of a diameter larger than that of the formed bore, and inserting 'the stabilizer into the bore whereby the stabilizer is circumferentially compressed and the outer periphery of the circumferentially compressed stabilizer frictionally engages the wall of the bore.
  • FIG. 1 is an elevational side view of one stabilizer constructed in accordance with the present invention
  • FIG. 2 is a top or plan view of the stabilizer illustrated in FIG. 1;
  • FIG. 3 is an elevational side view showing the stabilizer of FIG. 1 in operative position in a bore formed in the roof of a mine shaft or other underground opening;
  • FIG. 4 is a sectional view of the stabilizer as shown in FIG. 3, taken on Line 4-4 of FIG. 3 looking in the direction of the arrows;
  • FIG. 5 is a fragmentary, clevational sectional view of a second stabilizer constructed in accordance with the invention showing such in a bore in the roof of a mine shaft or other underground opening.
  • FIGS. 1 and 2 illustrate a friction rock stabilizer, designated generally as 10, which, although relatively simple and economical in construction, is highly efficient in anchoring a structure such as a roof or side wall of a mine shaft or other underground opening.
  • the stabilizer 10 consists of an elongated, generally annular, open-ended body 12 having a single, longitudinally extending, straight-slot 14 formed through its radial thickness T from end-to-end, or throughout the length, of the body 12.
  • the body 12 is imperforate, cylindrical and of constant outer diameter from end-to-end, the ratio of the length of the body 12 to the outer diameter thereof being at least a minimum of about 16 to l and preferably of about 32 to l or 48 to 1 although such longer stabilizers could be formed of interconnected sections each of 16 to 1 ratio or greater.
  • the opposite longitudinal sides of the slot 14 are defined by opposed longitudinally extending edge portions 16 of the body 12; and the circumferential dimension or width W of the slot 14, with the body 12 in uncompressed condition, is sufficiently great to space apart the edge portions 16 a circumferential distance permitting substantial circumferential compression of the body 12 for insertion thereof in a bore of diameter substantially smaller than the outer diameter of the body 12.
  • the outer circumferential dimension of the body 12, not including the width W of the slot 14, is greater than about 2 inches; and the width W of the slot 14 is no greater than a maximum of about 25 percent of the overall outer circumferential dimension of the stabilizer 10-- that is, no greater than about 25 percent of the complete annulus formed by the body 12 and slot 14.
  • the body 12 is constructed of steel, thus permitting its substantial circumferential compression for insertion in such a substantially smaller diameter bore and, after such insertion, causing the body outer circumference to frictionally engage the surrounding wall of the bore for anchoring a structure such as the roof of a mine shaft.
  • the anchor 10 is entirely free of structure precluding such substantial circumferential compression of the body 12, the interior 18 of the body 12 being open or empty.
  • the outer diameter of the body 12 of the stabilizer 10 for any given size bore is pre-determined to be substantially larger than the diameter of the bore, but such that the edge portions 16 of the body 12 will be abutting, or spaced apart by only a relatively small gap, with the stabilizer 10 installed in the bore.
  • the ratio of the radial thickness T of the body 12 to the body outer diameter is no greater than a maximum of about 1 to 5 and no less than a minimum of about 1 to 50, thereby permitting plastic deformation of the body 12 during its insertion in the bore; and. although the body 12 has been shown as being of constant outer diameter from end-to-end, the outer diameter of the body forward or leading end could be of lesser outer diameter than the remainder of the body 12 to facilitate said insertion.
  • FIGS. 3 and 4 illustrate the stabilizer 10 of FIGS. 1 and 2 in installed condition in a pro-drilled bore 20 in a roof 22 to be anchored thereby.
  • the body 12 of the stabilizer 10 is deformed plastically (that is, deformed in the plastic range) to a condition whereby A being the difference between the outer diameter of the body 12 before insertion and the outer diameter of the body 12 after insertion,
  • the outer circumference of the body 12 of the installed stabilizer frictionally engages the surrounding wall of the bore throughout the length of the body 12; and the stabilizer 10 anchors by this frictional engagement of the outer circumference of the body 12 with the wall of the bore 20.
  • the body outer circumference may, of course, be epoxy coated, roughened or otherwise constructed to enhance its frictional engagement with the bore wall; and, as illustrated, the body 12 of the stabilizer 10 is of a length to extend substantially the entire length of the bore 20.
  • the pull-out force of the installed stabilizer 10 is somewhat greater than the installation or push-in force applied to the stabilizer, thereby enabling such pull-out force to be predetermined by knowledge of the applied pushin force.
  • FIG. 5 wherein parts similar to those shown in FIGS.
  • FIG. 5 fragmentarially illustrates a friction rock stabilizer 10a which is different from the stabilizer 10 only in that it further includes means for tensioning the body 12a after its insertion into the bore 20a. More particularly, as shown in FIG. 5, the body 12a of the stabilizer 10a is inserted into the bore 20a such that a minor portion 24 (for example, a few inches) of the length of the body 12a is external to the bore 20a.
  • the stabilizer 10a includes a plate 26 having a central opening 28 receiving the body 12a, the plate 26 being mounted along the lower surface of the roof 22a; and the stabilizer 10 further includes a wedge pin 30 inserted through aligned openings 32, 34 in the body 12a immediately beneath the plate 26 to tension the body 12a after its insertion into the bore 20a.
  • either of the stabilizers 10, 10a could be provided with a wedge, per se of any suitable configuration, which is inserted into the innermost or leading end of its body 12, 12a after the body 12, 12a has been installed in its bore 20, 20a in the beforedescribed manner.
  • a wedge per se of any suitable configuration, which is inserted into the innermost or leading end of its body 12, 12a after the body 12, 12a has been installed in its bore 20, 20a in the beforedescribed manner.
  • Neither of the stabilizers 10, 10a requires such a wedge; and both of the stabilizers 10, 10a will provide highly efficient and safe anchoring without a wedge.
  • a wedge is employed with either of the stabilizers 10 or 10a, it must be disposed during the insertion of the stabilizer body 12 or 12a into its bore 20 or 20a to preclude it from interference with the beforedescribed substantial circumferential compression of the body 12 or 120 occurring during such insertion.
  • the methods of the invention may, generally considered, comprise the steps of forming a bore 20 in the structure to be anchored, providing a circumferentially compressible stabilizer 10 having an outer circumference of a diameter larger than that of the formed bore 20, and inserting the stabilizer 10 into the bore 20 whereby the body of the stabilizer 10 is circumferentially compressed during such insertion, thereby at least substantially closing the slot 14, and the outer circumference of the circumferentially compressed body 12 frictionally engages the wall of the bore 20 for anchoring the structure.
  • a friction stabilizer for insertion in a bore in a structure such as a roof or side wall of a mine shaft or other underground opening for anchoring the structure said stabilizer comprising a generally annular body from end-to-end having a slot through its thickness, said body including edge portions extending along opposite sides of said slot and relatively arranged to permit substantial circumferential compression of said body, said body being of outer diameter predetermined to be substantially larger than the diameter of the bore in which it is to be inserted such that insertion of said body in such bore causes substantial circumferential compression of said body, said body being dimensioned to be plastically deformed during its insertion in such bore, the stabilizer being free of structure precluding said substantial compression and plastic deformation of said body during its said insertion, said body being of material permitting its said substantial compression and plastic deformation during its said insertion and, after such insertion, causing the body outer periphery to frictionally engage the surrounding wall of the bore for frictionally anchoring the structure, the ratio of the length of said body to the outer diameter thereof being at least about
  • a friction stabilizer according to claim 1 wherein the circumferential width of said slot is at a maximum about 25 percent of the outer circumferential dimension of said body.
  • a friction stabilizer according to claim 1 further comprising means for tensioning said body after its insertion in a bore.
  • a friction stabilizer according to claim 1 further comprising wedge means movable internally of an end of said body.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Dowels (AREA)

Abstract

Friction rock stabilizers such as for example roof anchors, comprising a generally annular body which from end-to-end has a slot through its thickness and is circumferentially compressible for installation into a bore of diameter substantially smaller than the normal outer diameter of the body whereby, after such installation, the resilience of the body causes the body outer periphery to anchor by frictional engagement with the surrounding wall of the bore. Also, an anchoring method employing a stabilizer of this type.

Description

United States Patent 1191 1111 3,922,867
Scott 1 Dec. 2, 1975 1 1 FRICTION ROCK STABILIZERS 3,157,417 11/1964 Ruskin 85/84 11x 3,187,620 6 196 h 85 4 [76] Inventor: James J. Scott, Lecoma Star Rte., 3 349 567 x ai j 2 1; Rolla, 65401 3,630,261 12/1971 Gley 85/8.3 x 1221 Filed? 4, 1974 FORElGN PATENTS OR APPLICATIONS [21] Appl. No.: 520,310 1,443,392 /1966 France 61/45 B 825,003 12/1959 United Kingdom..... Related APPhcatm" Data 1,028,664 5/1966 United Kingdom 85/84 [63] Continuation-impart of Scr. No. 430,695, Jan. 4,
1974, which is a continuation-in-part of Ser. No. Primar E D y xammer ennls L. Taylor 1973 abandoned Attorney, Agent, or FirmRobert R. Paquin [52] US. Cl. 61/45 B; 61/63 [51 I Int. CL' E21D 21/00; E21D /00 ABSTRACT [58] Field of Search 61/45 63; 85/84 Friction rock stabilizers such as for example roof an- 85/32/1 chors, comprising a generally annular body which from end-to-end has a slot through its thickness and is [561 References cued circumferentially compressible for installation into a UNITED STATES PATENTS bore of diameter substantially smaller than the normal 2,006,813 7/1935 Norwood /84 x Outer diameter Of the y Whfleby, after Such instal- 2,240,425 4/1941 Sternbergh 35/84 X lation, the resilience of the body causes the body outer 2,246,888 6/1941 Messenger 85/84 periphery to anchor by frictional engagement with the 2, 30,543 1/1947 er an..... 85/84 X surrounding wall of the bore. Also, an anchoring 2,448,351 8/1948 Brush 1 85/84 method employing a Stabilizer f i type 2,648,247 8/1953 Schmuziger 85/8.3 2,754,716 7/1956 Bourns 85/8.3 7 Claims, 5 Drawing Figures US. Patent Dec. 2, 1975 FIG. 3
FRICTION ROCK STABILIZERS This is a Continuation-in-Part of my US. Pat. Application Ser. No. 430,695 filed Jan. 4, 1974 which is a Continuation-in-Part of my US. Pat. Application Ser. No. 330,954 filed Feb. 9, 1973, now abandoned.
The present invention relates to the anchoring of a structure such as a roof or side wall of a mine shaft or other underground opening, and more specifically to the provision of new and improved friction rock stabilizers and stabilizing methods particularly adapted for such anchoring.
An object of the present invention is to provide new and improved friction rock stabilizers which are highly efficient in operation while relatively simple and economical in construction.
Another object of the invention is to provide new and improved stabilizing methods particularly adapted to provide highly efficient anchoring through the employment of a stabilizer which is relatively simple and economical in construction.
Other objects and advantages of the invention will be apparent from the following description taken in connection with the accompanying drawings wherein, as will be understood, the preferred forms of the invention have been given by way of illustration only.
In accordance with the invention, a friction rock stabilizer may comprise a generally annular body from end-to-end having a slot through its thickness, the body including edge portions extending along opposite sides of such slot and the width of the slot being sufficiently great to space apart such edge portions a distance permitting substantial circumferential compression of the body for insertion thereof in a bore of diameter smaller than the outer diameter of the body in uncompressed condition, the anchor being free of structure precluding such substantial circumferential compression of the body, and the body being of material permitting its said substantial circumferential compression for insertion in such a bore and, after such insertion, causing the body outer periphery to frictionally engage the surrounding wall of the bore for anchoring a roof.
Also, in accordance with the invention, a structure such as a roof or side wall of a mine shaft or other underground tunnel may be anchored by a method which may comprise the steps of forming a bore in the structure to be anchored, providing a circumferentially compressible stabilizer having an outer periphery of a diameter larger than that of the formed bore, and inserting 'the stabilizer into the bore whereby the stabilizer is circumferentially compressed and the outer periphery of the circumferentially compressed stabilizer frictionally engages the wall of the bore.
Referring to the drawings:
FIG. 1 is an elevational side view of one stabilizer constructed in accordance with the present invention;
FIG. 2 is a top or plan view of the stabilizer illustrated in FIG. 1;
FIG. 3 is an elevational side view showing the stabilizer of FIG. 1 in operative position in a bore formed in the roof of a mine shaft or other underground opening;
FIG. 4 is a sectional view of the stabilizer as shown in FIG. 3, taken on Line 4-4 of FIG. 3 looking in the direction of the arrows; and
FIG. 5 is a fragmentary, clevational sectional view of a second stabilizer constructed in accordance with the invention showing such in a bore in the roof of a mine shaft or other underground opening.
Referring more particularly to the drawings wherein similar reference characters designate corresponding parts throughout the several views, FIGS. 1 and 2 illustrate a friction rock stabilizer, designated generally as 10, which, although relatively simple and economical in construction, is highly efficient in anchoring a structure such as a roof or side wall of a mine shaft or other underground opening. As shown in such Figs, the stabilizer 10 consists of an elongated, generally annular, open-ended body 12 having a single, longitudinally extending, straight-slot 14 formed through its radial thickness T from end-to-end, or throughout the length, of the body 12. The body 12 is imperforate, cylindrical and of constant outer diameter from end-to-end, the ratio of the length of the body 12 to the outer diameter thereof being at least a minimum of about 16 to l and preferably of about 32 to l or 48 to 1 although such longer stabilizers could be formed of interconnected sections each of 16 to 1 ratio or greater. The opposite longitudinal sides of the slot 14 are defined by opposed longitudinally extending edge portions 16 of the body 12; and the circumferential dimension or width W of the slot 14, with the body 12 in uncompressed condition, is sufficiently great to space apart the edge portions 16 a circumferential distance permitting substantial circumferential compression of the body 12 for insertion thereof in a bore of diameter substantially smaller than the outer diameter of the body 12. The outer circumferential dimension of the body 12, not including the width W of the slot 14, is greater than about 2 inches; and the width W of the slot 14 is no greater than a maximum of about 25 percent of the overall outer circumferential dimension of the stabilizer 10-- that is, no greater than about 25 percent of the complete annulus formed by the body 12 and slot 14.
The body 12 is constructed of steel, thus permitting its substantial circumferential compression for insertion in such a substantially smaller diameter bore and, after such insertion, causing the body outer circumference to frictionally engage the surrounding wall of the bore for anchoring a structure such as the roof of a mine shaft. Also, as will be noted, the anchor 10 is entirely free of structure precluding such substantial circumferential compression of the body 12, the interior 18 of the body 12 being open or empty. The outer diameter of the body 12 of the stabilizer 10 for any given size bore is pre-determined to be substantially larger than the diameter of the bore, but such that the edge portions 16 of the body 12 will be abutting, or spaced apart by only a relatively small gap, with the stabilizer 10 installed in the bore. The ratio of the radial thickness T of the body 12 to the body outer diameter is no greater than a maximum of about 1 to 5 and no less than a minimum of about 1 to 50, thereby permitting plastic deformation of the body 12 during its insertion in the bore; and. although the body 12 has been shown as being of constant outer diameter from end-to-end, the outer diameter of the body forward or leading end could be of lesser outer diameter than the remainder of the body 12 to facilitate said insertion.
FIGS. 3 and 4 illustrate the stabilizer 10 of FIGS. 1 and 2 in installed condition in a pro-drilled bore 20 in a roof 22 to be anchored thereby. During such insertion, the body 12 of the stabilizer 10 is deformed plastically (that is, deformed in the plastic range) to a condition whereby A being the difference between the outer diameter of the body 12 before insertion and the outer diameter of the body 12 after insertion,
D being the outer diameter of the body 12 before insertion,
t being the radial thickness of the body 12,
E being Youngs Modulus, and
o'y being the yield stress of the material. As shown,
the outer circumference of the body 12 of the installed stabilizer frictionally engages the surrounding wall of the bore throughout the length of the body 12; and the stabilizer 10 anchors by this frictional engagement of the outer circumference of the body 12 with the wall of the bore 20. The body outer circumference may, of course, be epoxy coated, roughened or otherwise constructed to enhance its frictional engagement with the bore wall; and, as illustrated, the body 12 of the stabilizer 10 is of a length to extend substantially the entire length of the bore 20. The pull-out force of the installed stabilizer 10 is somewhat greater than the installation or push-in force applied to the stabilizer, thereby enabling such pull-out force to be predetermined by knowledge of the applied pushin force.
FIG. 5, wherein parts similar to those shown in FIGS.
1 through 4 are designated by the corresponding reference numerals followed by the suffix a, fragmentarially illustrates a friction rock stabilizer 10a which is different from the stabilizer 10 only in that it further includes means for tensioning the body 12a after its insertion into the bore 20a. More particularly, as shown in FIG. 5, the body 12a of the stabilizer 10a is inserted into the bore 20a such that a minor portion 24 (for example, a few inches) of the length of the body 12a is external to the bore 20a. The stabilizer 10a includes a plate 26 having a central opening 28 receiving the body 12a, the plate 26 being mounted along the lower surface of the roof 22a; and the stabilizer 10 further includes a wedge pin 30 inserted through aligned openings 32, 34 in the body 12a immediately beneath the plate 26 to tension the body 12a after its insertion into the bore 20a.
If desired, either of the stabilizers 10, 10a could be provided with a wedge, per se of any suitable configuration, which is inserted into the innermost or leading end of its body 12, 12a after the body 12, 12a has been installed in its bore 20, 20a in the beforedescribed manner. Neither of the stabilizers 10, 10a, however, requires such a wedge; and both of the stabilizers 10, 10a will provide highly efficient and safe anchoring without a wedge. Moreover, in the event that a wedge is employed with either of the stabilizers 10 or 10a, it must be disposed during the insertion of the stabilizer body 12 or 12a into its bore 20 or 20a to preclude it from interference with the beforedescribed substantial circumferential compression of the body 12 or 120 occurring during such insertion.
The methods of the invention may, generally considered, comprise the steps of forming a bore 20 in the structure to be anchored, providing a circumferentially compressible stabilizer 10 having an outer circumference of a diameter larger than that of the formed bore 20, and inserting the stabilizer 10 into the bore 20 whereby the body of the stabilizer 10 is circumferentially compressed during such insertion, thereby at least substantially closing the slot 14, and the outer circumference of the circumferentially compressed body 12 frictionally engages the wall of the bore 20 for anchoring the structure.
From the preceding description, it will be seen that the invention provides new and improved stabilizers and methods, for attaining all of the aforestated objects and advantages. It will be understood, however, that although only two embodiments of the invention have been illustrated and hereinbefore described, the invention is not limited merely to these two embodiments, but rather contemplates other embodiments and variations within the scope of the following claims.
I claim:
1. A friction stabilizer for insertion in a bore in a structure such as a roof or side wall of a mine shaft or other underground opening for anchoring the structure, said stabilizer comprising a generally annular body from end-to-end having a slot through its thickness, said body including edge portions extending along opposite sides of said slot and relatively arranged to permit substantial circumferential compression of said body, said body being of outer diameter predetermined to be substantially larger than the diameter of the bore in which it is to be inserted such that insertion of said body in such bore causes substantial circumferential compression of said body, said body being dimensioned to be plastically deformed during its insertion in such bore, the stabilizer being free of structure precluding said substantial compression and plastic deformation of said body during its said insertion, said body being of material permitting its said substantial compression and plastic deformation during its said insertion and, after such insertion, causing the body outer periphery to frictionally engage the surrounding wall of the bore for frictionally anchoring the structure, the ratio of the length of said body to the outer diameter thereof being at least about 16 to l, the ratio of the radial thickness of said body to the outer diameter thereof being at a maximum about 1 to 5 and at a minimum about 1 to 50, and the outer circumferential dimension of said body being at least two inches.
2. A friction stabilizer according to claim 1, wherein the circumferential width of said slot is at a maximum about 25 percent of the outer circumferential dimension of said body.
3. A friction stabilizer according to claim 1, wherein the outer periphery of said body is at least substantially imperforate.
4. A friction stabilizer according to claim 1, wherein said slot is straight from end-to-end of said body.
5. A friction stabilizer according to claim 1, wherein the interior of said body is open.
6. A friction stabilizer according to claim 1, further comprising means for tensioning said body after its insertion in a bore. I
7. A friction stabilizer according to claim 1, further comprising wedge means movable internally of an end of said body.

Claims (7)

1. A friction stabilizer for insertion in a bore in a structure such as a roof or side wall of a mine shaft or other underground opening for anchoring the structure, said stabilizer comprising a generally annular body from end-to-end having a slot through its thickness, said body including edge portions extending along opposite sides of said slot and relatively arranged to permit substantial circumferential compression of said body, said body being of outer diameter predetermined to be substantially larger than the diameter of the bore in which it is to be inserted such that insertion of said body in such bore causes substantial circumferential compression of said body, said body being dimensioned to be plastically deformed during its insertion in such bore, the stabilizer being free of structure precluding said substantial compression and plastic deformation of said body during its said insertion, said body being of material permitting its said substantial compression and plastic deformation during its said insertion and, after such insertion, causing the body outer periphery to frictionally engage the surrounding wall of the bore for frictionally anchoring the structure, the ratio of the length of said body to the outer diameter thereof being at least about 16 to 1, the ratio of the radial thickness of said body to the outer diameter thereof being at a maximum about 1 to 5 and at a minimum about 1 to 50, and the outer circumferential dimension of said body being at least two inches.
2. A friction stabilizer according to claim 1, wherein the circumferential width of said slot is at a maximum about 25 percent of the outer circumferential dimension of said body.
3. A friction stabilizer according to claim 1, wherein the outer periphery of said body is at least substantially imperforate.
4. A friction stabilizer according to claim 1, wherein said slot is straight from end-to-end of said body.
5. A friction stabilizer according to claim 1, wherein the interior of said body is open.
6. A friction stabilizer according to claim 1, further comprising means for tensioning said body after its insertion in a bore.
7. A friction stabilizer according to claim 1, further comprising wedge means movable internally of an end of said body.
US520310A 1974-01-04 1974-11-04 Friction rock stabilizers Expired - Lifetime US3922867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US520310A US3922867A (en) 1974-01-04 1974-11-04 Friction rock stabilizers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43069574A 1974-01-04 1974-01-04
US520310A US3922867A (en) 1974-01-04 1974-11-04 Friction rock stabilizers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/857,048 Reissue USRE30256E (en) 1973-02-09 1977-12-02 Friction rock stabilizers

Publications (1)

Publication Number Publication Date
US3922867A true US3922867A (en) 1975-12-02

Family

ID=27028705

Family Applications (1)

Application Number Title Priority Date Filing Date
US520310A Expired - Lifetime US3922867A (en) 1974-01-04 1974-11-04 Friction rock stabilizers

Country Status (1)

Country Link
US (1) US3922867A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012913A (en) * 1975-10-03 1977-03-22 Scott James J Friction rock stabilizers
US4126004A (en) * 1977-08-04 1978-11-21 Ingersoll-Rand Company Friction rock stabilizer
EP0016742A1 (en) * 1979-03-09 1980-10-01 Atlas Copco Aktiebolag Method of rock bolting and tube-formed expansion bolt
US4284379A (en) * 1979-07-25 1981-08-18 Ingersoll-Rand Company Earth structure stabilizer
WO1981002605A1 (en) * 1980-03-07 1981-09-17 A Ciavatta Oblate friction rock stabilizer and installation lubricating cement utilized therewith
FR2479322A1 (en) * 1980-03-28 1981-10-02 Thom Richard
US4316677A (en) * 1980-03-07 1982-02-23 Armand Ciavatta Tubular shank device
US4327806A (en) * 1979-10-15 1982-05-04 Ingersoll-Rand Company Offset driver accessory
JPS57158433A (en) * 1981-03-26 1982-09-30 Ingersoll Rand Co Stabilizing apparatus for soil structure
US4382719A (en) * 1981-03-27 1983-05-10 Scott James J Methods of reinforcing and stabilizing an earth structure, and a stabilizer set therefor
US4502818A (en) * 1980-03-28 1985-03-05 Elders G W Roof support pin
US4530409A (en) * 1979-10-15 1985-07-23 Ingersoll-Rand Company Offset driver accessory
EP0207030A1 (en) * 1985-06-17 1986-12-30 Atlas Copco Aktiebolag Method of stabilizing a rock structure
US4636115A (en) * 1980-11-10 1987-01-13 The Curators Of The University Of Missouri Expansion bolt and mine roof reinforcement therewith
US4889191A (en) * 1988-10-12 1989-12-26 Fausett Sr C Lovon Gooseneck assembly for rock drill and method for inserting friction rock stabilizer
US4954017A (en) * 1980-11-10 1990-09-04 The Curators Of The University Of Missouri Expansion bolt and mine roof reinforcement
AU662559B2 (en) * 1991-08-30 1995-09-07 Ingersoll-Rand Company Friction rock anchor
US5649790A (en) * 1995-06-22 1997-07-22 Mergen; Douglas Matthew Friction rock stabilizer and method for insertion
US20090084218A1 (en) * 2007-09-27 2009-04-02 Bodtker Joen C Tilt steering column assembly for a vehicle
RU170365U1 (en) * 2016-06-07 2017-04-24 ООО "ОКС-Трейд" Friction tubular anchor
US10060809B1 (en) 2016-10-27 2018-08-28 Larry C. Hoffman Friction stabilizer pull tester and method
RU2674038C1 (en) * 2017-06-27 2018-12-04 Антон Анатольевич Зубков Friction rock stabiliser
RU199660U1 (en) * 2019-12-25 2020-09-14 Общество с ограниченной ответственностью "КАНЕКС ШАХТОСТРОЙ" TUBULAR ANCHOR FASTENER
RU199845U1 (en) * 2019-09-19 2020-09-22 Александр Сергеевич Сойкин FRICTION TUBE ANCHOR
RU204848U1 (en) * 2021-01-11 2021-06-15 Акционерная Компания "АЛРОСА" (публичное акционерное общество) (АК "АЛРОСА" (ПАО)) TUBULAR ANCHOR
RU216633U1 (en) * 2022-12-27 2023-02-16 Сергей Юрьевич Быков TUBE FRICTION ANCHOR

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2006813A (en) * 1934-06-06 1935-07-02 Nor Bolt Holding Corp Self-locking drive expansion fastener
US2240425A (en) * 1939-07-31 1941-04-29 Sternbergh James Hervey Fastener
US2246888A (en) * 1941-03-31 1941-06-24 Messenger Archibald Randal Rivet
US2430543A (en) * 1943-06-28 1947-11-11 Tinnerman Products Inc Fastening device
US2448351A (en) * 1946-01-23 1948-08-31 Abbott P Brush Tapped fastener
US2648247A (en) * 1949-11-23 1953-08-11 Schmuziger Oscar Elastic sleeve
US2754716A (en) * 1955-05-31 1956-07-17 Marlan E Bourns Fastening pin having plurality of resilient fingers
US3157417A (en) * 1962-03-26 1964-11-17 Ruskin Dev & Mfg Corp Expansion pins
US3187620A (en) * 1962-03-16 1965-06-08 Fischer Artur Expansion anchor with rotationpreventing teeth
US3349567A (en) * 1964-06-03 1967-10-31 John E Munn Mine roof support and method of providing same
US3630261A (en) * 1968-02-27 1971-12-28 Rex Chainbelt Inc Frictional antirotation device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2006813A (en) * 1934-06-06 1935-07-02 Nor Bolt Holding Corp Self-locking drive expansion fastener
US2240425A (en) * 1939-07-31 1941-04-29 Sternbergh James Hervey Fastener
US2246888A (en) * 1941-03-31 1941-06-24 Messenger Archibald Randal Rivet
US2430543A (en) * 1943-06-28 1947-11-11 Tinnerman Products Inc Fastening device
US2448351A (en) * 1946-01-23 1948-08-31 Abbott P Brush Tapped fastener
US2648247A (en) * 1949-11-23 1953-08-11 Schmuziger Oscar Elastic sleeve
US2754716A (en) * 1955-05-31 1956-07-17 Marlan E Bourns Fastening pin having plurality of resilient fingers
US3187620A (en) * 1962-03-16 1965-06-08 Fischer Artur Expansion anchor with rotationpreventing teeth
US3157417A (en) * 1962-03-26 1964-11-17 Ruskin Dev & Mfg Corp Expansion pins
US3349567A (en) * 1964-06-03 1967-10-31 John E Munn Mine roof support and method of providing same
US3630261A (en) * 1968-02-27 1971-12-28 Rex Chainbelt Inc Frictional antirotation device

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012913A (en) * 1975-10-03 1977-03-22 Scott James J Friction rock stabilizers
US4126004A (en) * 1977-08-04 1978-11-21 Ingersoll-Rand Company Friction rock stabilizer
JPS5452835A (en) * 1977-08-04 1979-04-25 Ingersoll Rand Co Abrasion base rock stabilizing instrument
JPS5719280B2 (en) * 1977-08-04 1982-04-21
US4459067A (en) * 1979-03-09 1984-07-10 Atlas Copco Aktiebolag Method of rock bolting and tube-formed expansion bolt
EP0016742A1 (en) * 1979-03-09 1980-10-01 Atlas Copco Aktiebolag Method of rock bolting and tube-formed expansion bolt
US4634317A (en) * 1979-03-09 1987-01-06 Atlas Copco Aktiebolag Method of rock bolting and tube-formed expansion bolt
US4509889A (en) * 1979-03-09 1985-04-09 Atlas Copco Aktiebolag Method of rock bolting and tube-formed expansion bolt
US4284379A (en) * 1979-07-25 1981-08-18 Ingersoll-Rand Company Earth structure stabilizer
US4530409A (en) * 1979-10-15 1985-07-23 Ingersoll-Rand Company Offset driver accessory
US4327806A (en) * 1979-10-15 1982-05-04 Ingersoll-Rand Company Offset driver accessory
US4322183A (en) * 1980-03-07 1982-03-30 Armand Ciavatta Friction rock stabilizer and installation lubricating cement apparatus and method
US4316677A (en) * 1980-03-07 1982-02-23 Armand Ciavatta Tubular shank device
WO1981002605A1 (en) * 1980-03-07 1981-09-17 A Ciavatta Oblate friction rock stabilizer and installation lubricating cement utilized therewith
US4502818A (en) * 1980-03-28 1985-03-05 Elders G W Roof support pin
FR2479322A1 (en) * 1980-03-28 1981-10-02 Thom Richard
US4954017A (en) * 1980-11-10 1990-09-04 The Curators Of The University Of Missouri Expansion bolt and mine roof reinforcement
US4636115A (en) * 1980-11-10 1987-01-13 The Curators Of The University Of Missouri Expansion bolt and mine roof reinforcement therewith
JPS57158433A (en) * 1981-03-26 1982-09-30 Ingersoll Rand Co Stabilizing apparatus for soil structure
US4382719A (en) * 1981-03-27 1983-05-10 Scott James J Methods of reinforcing and stabilizing an earth structure, and a stabilizer set therefor
EP0207030A1 (en) * 1985-06-17 1986-12-30 Atlas Copco Aktiebolag Method of stabilizing a rock structure
US4696606A (en) * 1985-06-17 1987-09-29 Atlas Copco Aktiebolag Method of stabilizing a rock structure
US4889191A (en) * 1988-10-12 1989-12-26 Fausett Sr C Lovon Gooseneck assembly for rock drill and method for inserting friction rock stabilizer
AU662559B2 (en) * 1991-08-30 1995-09-07 Ingersoll-Rand Company Friction rock anchor
US5649790A (en) * 1995-06-22 1997-07-22 Mergen; Douglas Matthew Friction rock stabilizer and method for insertion
US20090084218A1 (en) * 2007-09-27 2009-04-02 Bodtker Joen C Tilt steering column assembly for a vehicle
US7836790B2 (en) * 2007-09-27 2010-11-23 Gm Global Technology Operations, Inc. Tilt steering column assembly for a vehicle
RU170365U1 (en) * 2016-06-07 2017-04-24 ООО "ОКС-Трейд" Friction tubular anchor
US10060809B1 (en) 2016-10-27 2018-08-28 Larry C. Hoffman Friction stabilizer pull tester and method
RU2674038C1 (en) * 2017-06-27 2018-12-04 Антон Анатольевич Зубков Friction rock stabiliser
RU199845U1 (en) * 2019-09-19 2020-09-22 Александр Сергеевич Сойкин FRICTION TUBE ANCHOR
RU199660U1 (en) * 2019-12-25 2020-09-14 Общество с ограниченной ответственностью "КАНЕКС ШАХТОСТРОЙ" TUBULAR ANCHOR FASTENER
RU204848U1 (en) * 2021-01-11 2021-06-15 Акционерная Компания "АЛРОСА" (публичное акционерное общество) (АК "АЛРОСА" (ПАО)) TUBULAR ANCHOR
RU216633U1 (en) * 2022-12-27 2023-02-16 Сергей Юрьевич Быков TUBE FRICTION ANCHOR
RU222423U1 (en) * 2022-12-27 2023-12-25 Сергей Юрьевич Быков TUBULAR FRICTION ANCHOR

Similar Documents

Publication Publication Date Title
US3922867A (en) Friction rock stabilizers
US4012913A (en) Friction rock stabilizers
US4656806A (en) Expansion anchor assembly
US5064311A (en) Mine roof support structure and method
CA2233510C (en) Expansion anchor and method therefor
US4475856A (en) Expansion screw with an expansion sleeve having an outer cylindrical surface and regions of greater and lesser wall thickness
US4613264A (en) Anchor bolt
US4560311A (en) Expansion dowel assembly
US4472088A (en) Mining roof bolt
US5297900A (en) Rock stabilizer
US3750526A (en) Expansion bolt with unitary wedge assembly
US4984938A (en) Coated washer for an anchor bolt system
US4100997A (en) Step construction employing insertable fastener having deformable projections
US4501520A (en) Expansion dowel assembly
US4312604A (en) Friction rock stabilizer set, and a method of fixing a friction rock stabilizer in an earth structure bore
US7367751B2 (en) Friction rock stabilizer with point anchor
US4634326A (en) Expansion anchor
US4648767A (en) Fastening element
US3815467A (en) Anchoring assembly
US5112160A (en) Rock anchor
US3296919A (en) Retaining device for rock bolts
US4289426A (en) Friction rock stabilizer and method of forming same, and a method of stabilizing an earth structure
US4702656A (en) Expansion bolt assembly
US3837257A (en) Anchoring device
USRE30256E (en) Friction rock stabilizers