US3905063A - Condition responsive door holder-closer - Google Patents

Condition responsive door holder-closer Download PDF

Info

Publication number
US3905063A
US3905063A US368827A US36882773A US3905063A US 3905063 A US3905063 A US 3905063A US 368827 A US368827 A US 368827A US 36882773 A US36882773 A US 36882773A US 3905063 A US3905063 A US 3905063A
Authority
US
United States
Prior art keywords
housing
door
closer
detector
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US368827A
Inventor
Gordon L Coulter
Duane D Pearsall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rixson Firemark Inc
Original Assignee
Rixson Firemark Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rixson Firemark Inc filed Critical Rixson Firemark Inc
Priority to US368827A priority Critical patent/US3905063A/en
Priority to CA193,664A priority patent/CA991662A/en
Application granted granted Critical
Publication of US3905063A publication Critical patent/US3905063A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F3/00Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices
    • E05F3/22Additional arrangements for closers, e.g. for holding the wing in opened or other position
    • E05F3/221Mechanical power-locks, e.g. for holding the wing open or for free-moving zones
    • E05F3/222Mechanical power-locks, e.g. for holding the wing open or for free-moving zones electrically operated
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • A62C2/12Hinged dampers
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F1/00Closers or openers for wings, not otherwise provided for in this subclass
    • E05F1/002Closers or openers for wings, not otherwise provided for in this subclass controlled by automatically acting means
    • E05F1/006Closers or openers for wings, not otherwise provided for in this subclass controlled by automatically acting means by emergency conditions, e.g. fire
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/72Power-operated mechanisms for wings with automatic actuation responsive to emergency conditions, e.g. fire
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F3/00Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices
    • E05F3/22Additional arrangements for closers, e.g. for holding the wing in opened or other position
    • E05F2003/228Arrangements where the end of the closer arm is sliding in a track
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/40Motors; Magnets; Springs; Weights; Accessories therefore
    • E05Y2201/46Magnets
    • E05Y2201/462Electromagnets
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/40Motors; Magnets; Springs; Weights; Accessories therefore
    • E05Y2201/47Springs; Spring tensioners
    • E05Y2201/474Compression springs
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/45Control modes
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • E05Y2800/25Emergency conditions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/13Application of doors, windows, wings or fittings thereof for buildings or parts thereof characterised by the type of wing
    • E05Y2900/132Doors

Definitions

  • ABSTRACT A surface-mounted door holder-closer responsive to 'the particulate products of combustion passing through multiple passageways formed in a holdercloser housing cover, a holder-closer assembly frame,
  • the particle detector module is insertable into the holder-closer frame with the frame and dark chamber walls not only defining the passageways, but also isolating the chamber from spurious light entering the chamber which would render a false alarm or false emergency door release.
  • the frame also houses the principal components of the holder-closer, namely, a closer spring, a dashpot, a latching lever assembly, and an electromagnet responsive to modulated output current flow from the dark chamber to effect alarm or emergency release of the latching lever to close an otherwise open door.
  • the integrated detector-holder-closer is advantageously and simply mounted on the lintel or header of a door frame.
  • the most common type of quick response detector employed has been a photocell (refraction type) detector or an ionization detector mounted on the ceiling of a corridor, approximately five feet from a fire resistant door to effect a barrier which will prevent passage of the products of combustion from one section of a building to another.
  • a photocell refraction type detector
  • an ionization detector mounted on the ceiling of a corridor, approximately five feet from a fire resistant door to effect a barrier which will prevent passage of the products of combustion from one section of a building to another.
  • adetector located on the ceiling causes the release of all controlled doors to close the corridors.
  • personnel evacuation of a building is possible since the doors will-open in the direction of egress from the building.
  • door closing is effected because the detection of ceiling smoke'will occur well before the exitways cell particle detector module in the holder-closer housing.
  • the housing is preferably located above the door A on the lintel or header of the door frame. Any products of combustion pass through multiple passageways located within the holder-closer housing to actuate the detector.
  • each door will now remain open until the smoke level builds downwardly from the ceiling to the height of the door leaving the doors open for persons to move in either direction until such time as smoke or products of combustion begin to block the actual exitway.
  • the location of the detector near the center of the door or, in the case of a double door closure, near the center of the corridor, is simply the best location to detect smoke or products of combustion.
  • This detector location is effectively attained by this invention because the end of the closer-holder housing containing the detector is generally so located.
  • the detector is not actuated until the exitway is subject to'smoke passage; thus, facilitating evacuation the las t possible safe moment.
  • the present invention has the economic advantage that regardless of the height of the corridor ceiling relative to the height of the door, one detector is all that is required to properly monitor the door.
  • the interconnection of separated detectors and controlled holder-closers is eliminated.
  • FIG. 1 is a view showing the surface application of the condition responsive door holder-closer of this invention to a single door;
  • FIG. 2 is a view showing the application of one door holder-closer of this invention to control a pair of corridor doors;
  • FIG. 3 is an exploded view showing certain principal components of the door holder-closer, namely, the photocell particle detector module, the holder-closer assembly, and the cover;
  • FIG. 4 is an exploded fragmentary view showing the top-bottom access openings for the products of combustion in the cover, the photocell particle detector module, and the holdercloser frame;
  • FIG. 5 is a section view taken along line 55 of FIG. 4 showing the relative alignment of the front-topbottom openings of the cover, frame and module which provide fluid flow access to the photocell dark chamber;
  • FIG 6 is a top view with certain components being broken away to show the top and bottom circularly disposed access openings
  • FIG. 7 is a partial front view of that portion of the cover having the combustion products access openings
  • FIG. 8 is a perspective view of the particle detector with a portion of the chamber wall being broken away to expose the internal disposition of the components within the chamber;
  • FIG. 9 is a bottom fragmentary view of the portion of the door holder-closer containing the photocell particle detector module with certain components being broken away to expose elements of the module chamber and also to show the relative disposition of the module relative the closer spring;
  • FIG. 10 is a top fragmentary view of the door holdercloser assembly, showing in full or in section the principal components of the holder-closer, namely, the closer spring, dashpot, electromagnet and the latching lever assembly;
  • FIG. 11 is a front view of the structure of FIG. 10 with the dashpot partially in section (see lines 1lll of FIG. 10) to show the details of the dashpot and the dashpot rollers;
  • FIG. 12 is a fragmentary view of the door holdercloser showing the latching lever assembly being manually overridden from a hold-open position and with the electromagnet energized;
  • FIG. 13 is a fragmentary view of the door holdercloser showing the latching lever assembly being released in response to the deenergization of the electromagnet;
  • FIG. 14 is a rear view showing the latching lever assembly coupled to the holder-closer dashpot by a fulcrum pin; 9
  • FIG. 15 is a section view of the latching lever assembly taken along line 15l5 of FIG. 14;
  • FIG. 16 is a schematic circuit, with the principal components of the door holder-closer being diagrammatically shown, which shows the failsafe connection of the photocell particle detector module to its associated circuitry;
  • FIG. 17 is a view showing the surface application of a second embodiment of the condition responsive door holder-closer of this invention to a door;
  • FIG. 18 is a view similar to that of FIG. 9 showing, however, a second form of photocell particle detector
  • FIG. 19 is a section view taken along line l919 of FIG. 18;
  • FIG. 20 is a detailed view showing the two source light paths taken in the photocell particle detector of FIGS. 18 and 19;
  • FIG. 21 is a schematic circuit showing the connection of the particle detector of the second embodiment to the schematic circuitry of FIG. 16.
  • condition responsive electromechanical door holder-closer l of this invention is shown typically applied to a flush door 2 which is supported by a plurality of butt hinges 3 (only one of which is shown) upon a conventional metal door frame 4.
  • door holder-closer 1 includes a track 5 within which a slide block (not shown) reciprocates.
  • the left end of standard arm 6 is coupled to the slide block.
  • the right end of arm 6 is coupled to the projecting end of a rotating drive spindle (114 of FIG. 11) which is an integral part of the holder-closer dashpot.
  • the door holder-closer housing includes a cover 7 which contains the principal components of this invention, namely, a photocell particle detector module, a coil spring, a link chain, a dashpot and an electromagnetic lever assembly.
  • cover 7 and its contained components are fixedly positioned on the header trim 8 of door frame 4, and track 5 is fixedly positioned immediately below cover 7 adjacent the upper edge of-flush door 2 as is shown in FIG. 1.
  • cover 7 has a planar bottom wall 9, a planar front wall 10 with curved ends, and a planar top wall 11.
  • Bottom wall 9 is formed with a plurality of circularly disposed openings 12
  • front wall 10 is formed with two rows of rectangular openings 13
  • top wall 11 (FIG. 6) is formed with a plurality of circularly disposed openings 14.
  • openings 12, 13 and 14 located in cover 7 are so aligned with other openings to provide fluid flow access for the products of combustion to a photocell particle detector which is part of the detector m'odule located within the housing.
  • FIG. 2 shows the application of one condition responsive door holder-closer l of this invention to control a pair of corridor doors 2 and 2'. Each door 2, 2' is controlled by a closer 1, 1', respectively.
  • holder-closer 1 which includes a cover 7 formed with a plurality of openings such as shown with respect to cover 7 of FIG. 1.
  • Holder-closer l' which controls door 2' is contained within a cover 7 which has no openings that correspond to openings 12, 13 and 14 of cover 7.
  • holder-closer 1 is constructed in a manner identical to that of condition responsive holder-closer l with the exception that no particle detector module is included within the closer I.
  • the electrical circuitry of closers 1 and 1 are interconnected so that if holdercloser I detects products of combustion, both closers are activated simultaneously so as to close doors 2, 2' in response to such detection. It has been found that it is unnecessary in the application of a pair of doors which close off a hall or corridor to employ individual detectors within each of closers 1 and 1 inasmuch as the single detector is capable of adequate response to close off both doors.
  • FIG. 3 is an exploded view showing the two principal components of the door holder-closer 1, namely, the particle detector module 15 and the door holder-closer assembly 16.
  • Module 15 is insertable within assembly 16 by module movement in the direction of the arrow, and the combined module holder-closer assembly is enclosed by cover 7 by relative movement of combined components 15 and 16 in the direction of the arrows toward cover 7.
  • Door holder-closer assembly 16 includes a metallic frame 17 which is generally U-shaped in cross section, having an elongated irregular bottom 18, a connecting back 19, and an elongated irregular top 20. As is shown in FIGS. 3, 4, 5 and 6, frame bottom 18 and frame top 20 are formed with circular openings 21 and 22, respectively.
  • the plurality of cover bottom openings 12 are aligned with frame opening 21 as is shown in FIGS. 3, 4 and 5, so that opening 21 provides bottom access for openings 12 into the interior of frame 17.
  • the plurality of cover top openings 14 are aligned with frame opening 22 so that top access may be had into the interior of frame 17 (FIGS. 5 and 6).
  • cover openings 13 permit direct fluid flow access into frame 17 (see FIGS. 3, 5 and 7).
  • particle detector module 15 is an integral electrical unit having a body portion 150 from which a finger portion 15b projects.
  • frame 17 is formed with a chamber which will receive module 15.
  • Module 15 comprises a supporting frame having two metallic sides 23 and 24 (FIGS. 3, 5 and 9) joined by a metallic bottom 25.
  • Metallic sides 23 and 24 are fixed in the paral' lel disposition by means of metallic spacer posts 26 and 27 (FIG. 9).
  • Circuit board 29 Electrical components and interconnecting wiring generally denominated by numeral 28 are mounted upon circuit board 29. These components constitute part of the particle detector amplifier hereinafter described. Circuit board 29 is electrically isolated from module bottom by insulating sheet 30.
  • a photocell particle detector 31 comprises generally a housing having a light source 33 disposed outside the housing, and a photocell detector element 34 also disposed outside the housing.
  • Detector 31 is particularly adapted for use as the detector unit of a smoke alarm and for this purpose the housing comprises a peripheral wall or main body portion 35 and a pair of end caps 37 and 38 defining an intemal chamber 36.
  • the end caps extend beyond the periphery of wall 35 and have inwardly turned flanges 39 and 40 which are spaced outwardly from the wall.
  • Each end of wall 35 is provided with a series of outwardly inclined spacing lugs 41, which are adapted to engage frictionally the inner surface of the flanges to retain the caps in assembly.
  • the flanges 39 and 40 in conjunction with the spacing lugs 41, form a peripheral passageway having sets of apertures 49 opening the chamber 36 at each end of the wall to permit smoke to enter the chamber from the surrounding atmosphere.
  • Circular screen segments 50 and 51 cover each of the apertures to prevent particulate matter of a non-combustion variety from entering the chamber.
  • a focusing tube 42 extends through housing wall 35, and a light trap tube 43 is disposed in the housing wall on the opposite side in alignment with the focusing tube 42. These elements direct and control the light beam from source 33.
  • a lens 44 of the converging type is disposed within focusing tube 32, with a focal length such that light from the source 33 is focused in a converging beam onto the bottom of the light trap tube 43, so that the beam from the light has a minimum size at the bottom of said trap, and substantially none of the light from the source falls on any other portion of the inte rior surface of the housing.
  • a detector tube 45 extends through the housing wall between the light trap tube and the focusing tube, and is disposed generally perpendicular to the axes thereof.
  • a photocell detector element 34 is disposed in the detector tube, and to restrict the field of view of the detector, a lens 46 of the converging type is disposed in the detector tube between the detector element and the chamber.
  • Lens 46 has a focal length such that the image of the detector element is focused onto a minimum area on the opposite surface of the housing wall.
  • the cone of focus of the detector element is directed across the cone of focus of the light beam, so that the detector element views only the medial portion of the light beam and the field of view of the cell at the opposite wall portion is confined to the medial portion of the wall.
  • the photocell does not view the peripheral apertures at the top and bottom of the wall. Hence substantially no light reaches the detector element except light appearing in the focus cone of the lens 46.
  • the end 47 of the detector tube on the side adjacent the light tube extends forwardly to the cone of focus of the light beam to provide a shield against stray light from the inside surface of the focus tube.
  • the end of the detector tube from this foremost point is inclined rearwardly at an angle such that the inside surface of the detector tube cannot view the inside surface of the focus tube.
  • a detector circuit hereafter described may be connected to the detector element and adjusted under normal conditions of no smoke so that a predetermined further decrease in cell resistance will actuate an external alarm connected to the detector circuit.
  • smoke enters the housing and appears in the light beam light from the smoke particles in the portion of the light beam viewed by the detector is reflected or diffused onto the detector cell, thereby lowering the re sistance of the cell and actuating the alarm circuit.
  • particle detector 31 is supported within module by a plurality of support brackets 53.
  • the detector is also tightly sandwiched between module sides 23 and 24 by a pair of spaced insulating discs 54 and 55 (FIG. 5).
  • Module wall 23 is formed with a plurality of circularly disposed openings 56 (FIG. 4) to permit fluid flow access to the adjacent chamber apertures 49.
  • module wall 24 is formed with a plurality of circularly disposed openings 57 (FIG. 5) to permit access to the adjacent chamber apertures 49. Accordingly, fluid flow access into interior chamber 36 is provided by the following three passageways:
  • fluid flow i.e. the passing of the particulate products of combustion through the foregoing passageways affects the electrical resistivity or other characteristics of photocell 34 so that appropriate amplifier circuitry can detect such products.
  • Latching lever assembly 83 is described in US. Pat. No. 3,729,771, issued May 1, 1973 to Burke .1. Crane et al for Latching Lever Assembly for Door Holder- Closer.
  • Spring assembly 79 includes compression coil spring 84 which envelops a spring rod 85.
  • the left end of spring rod 85 is threaded (FIGS. 9 and 10) so that the adjacent end of spring 84 is held by spring retainer 86.
  • Retainer 86 is adjustably mounted relative threaded rod 85 by washer 87 and spring tension adjusting nut 88.
  • spring 84 is supported on spring support plate 89 which has a retaining circular flange 90. Flange 90 receives the adjacent contacting spring 84 turn. Accordingly, spring 84 is positioned relative to rod 85 by spring retainer 86 and spring support plate 89 so that adjustment of nut 88 can vary the static compression force generated by spring 84.
  • the right end of spring rod (FIGS. 10 and 11) is coupled to link chain 80 by connecting pin 93.
  • the right end of link chain 80 is coupled to dashpot 81 by connecting pin 94.
  • FIG. 10 a simplified horizontal section view of the dashpot is shown and in FIG. 11 a simplified vertical section view taken along lines 1111 of FIG. 10 is shown.
  • dashpot 81 comprises a fixed stator 95 which is housed within cavity 96 defined by generally cylindrical rotor 97.
  • Stator 95 is formed with a pair of stator vanes 98 and 99. The stator and its vanes remain fixed atall times relative support frame 17.
  • Stator 95 is formed with a mounting flange 100 (FIG. 11) which is fixed to frame top 20 by a plurality of screws 101.
  • Rotor 97 supports a pair of integral vanes 102 and 103 (FIG. 10) which rotate with the rotor. As is shown in FIG. 1 1, rotor 97 comprises a cylindrical section 104 to which annular flanges 105 and 106 are fixedly attached. The rotation of rotor 97 produces a corresponding rotation of annular flanges 105 and 106.
  • Connecting pin 94 extends between flanges 105 and 106 to anchor chain 80 responsively to rotor 97.
  • roller pins 107 and 108 extend between the flanges so that rollers 109 and 110 may rotate relative their associated pins and between the flanges. Rollers 109, 110 also move responsively with rotor 97 and flanges 105, 106.
  • the interior dashpot cavity 96 defined between rotor 97 and stator 95 contains a viscoelastic plastic solid.
  • This material may preferably be either a natural or synthetic unvulcanized rubber or an elastomeric-like material known as bouncing putty.
  • This damping medium is contained with cavity 96 by means of O-ring seal 111; damping adjusting screw 112 is manually movable within its threaded bore to exert a varying pressure upon the damping medium through port 113 (FIG. 11).
  • Rotor spindle stem 114 receives the lower end of rotor cylindrical section 104 so that elements 104, 114 rotate in unison.
  • Rotor elements 104, 114, including flanges 105 and 106 are rotatably fixed relative frame 17 by bearing plates 115 and 116.
  • Stepped pin 117 serves as an alignment bearing for rotor 97 relative stator 95.
  • electromagnet 82 and lever assembly 83 are closely associated with dashpot 81.
  • electromagnet 82 is supported on frame 17 by electromagnet support plate 117.
  • lever assembly 83 The principal elements of lever assembly 83 are lever 120, lever fulcrum shaft 121, lever assembly biasing spring 122, armature-lever coupling spring 123, armature plate 124, screw-washer-nut 125, and spring alignment cylinder 126.
  • Lever 120 is formed with a latch detent 127 whose main function is to engage rollers 109 and 110 to effect hold open.
  • the lever is also formed with a yoke having legs 128 and 129 from which lugs 131 and 132 project to receive coupling spring 123.
  • Coupling spring 123 (FIG. 14) is a helical wound torsion spring formed into two divided and joined sections 133 and 134 having a central spring connector loop 135 (FIG. and two end connector loops 136 and 137 (FIG. 14).
  • Spring 123 is shown in its tensioned position; that is, end connector loops 136 and 137 have been relatively rotated under spring tension so that loops 136 and 137 are adjacent central connector loop 135 as is shown in FIG. 15.
  • This disposition of connector loops 135, 136 and 137 places spring sections 133 and 134 in torsional tension. Accordingly, when loop 135 is rigidly fixed to armature 124 by bolt and nut 125 (FIG. 15) and end connector loop 136 is fixed to lug 131 and end connector loop 137 is fixed to lug 132 (FIG. 14), coupling spring 123 develops a strong torsional force which tends to force armature plate 124 against lever 120 as is shown in FIGS. 10, 13 and 15. However, it should be noted that as shown in FIG. 13, the resiliency of spring 123 enables armature plate 124 to be separated from lever 120 in response to oppositely directed forces as will be hereafter outlined.
  • lever assembly 83 assumes the position shown in FIG. 10.
  • lever 120 is pivoted relative dashpot 81 by fulcrum pin 121.
  • Fulcrum pin 121 also receives biasing spring 122 so that a force is exerted by this spring which normally urges the lever assembly to the position shown in FIG. 10; that is, a position in which armature 124 rests against electromagnet 82.
  • roller 109 (or roller 110 depending upon the amount of angular holdopen desired) is held in engagement against latching surface 127a of. latching detent 127.
  • lever 120 is lowered so that it assumes the relative position with respect to armature 124 shown in FIG. 10.
  • Door 2 is thus held open by the engagement of either roller 109, 110 and latching surface 127a.
  • lever latching assembly 83 produces a characteristic release noise which is undesirable.
  • an emergency or alarm release rarely occurs; accordingly, such noise can be tolerated.
  • Manual override is a commonplace occurrence, and in this instance latching lever release noises can attain an intolerable frequency unless eliminated by appropriate latching lever designs.
  • the schematic circuit of FIG. 16 shows an electrical circuit effecting the interconnection of electromagnet 82 to particle detector 31 to effect hold-open and closing of door 2 in a failsafe manner of operation. Additionally, theschematic circuitry incorporates a condition responsive detector and amplifier unit within module 15 which is failsafe in operation. In particular, if all of the components of the module 15 are properly operating, door 2 will remain in hold-open effected by the latching of either roller 109 or 110 against latching detent 127 in response to the manual closing of control switch 151.
  • module 15 If, however, module 15 is not properly operating or, alternatively, this unit senses a condition such as flame or smoke, door 2 will be released from a latched hold-open position effected either by roller 109 or 110 and closed in response to the closing force exerted by coil spring 84.
  • electromagnet 82 causes magnetic armature 124 to resiliently hold lever 120 downwardly (FIG. 10) and into locking engagement with either roller 109 or roller 1 10 against latching detent 127 (if door is manually opened).
  • lever 120 holds rotor 97 with sufficient force to overcome the otherwise closing force exerted by coil spring 84.
  • the electromagnet 82 is energized, door 2 will be held in an open position.
  • the manual override closing force causes disposition of the lever assembly 83 components as shown in FIG. 12 during the point of operation at which roller 109, for example, is in camming engagement with latching detent 127.
  • electromagnet 82 is deenergized, thereby enabling the camming action of roller 109 or 110, as the case may be (see FIG. 13), to elevate lever 120 as well as armature 124 as is shown in this Figure.
  • the electromagnet of holder-closer l is merely interconnected with the circuitry for holder-closer 1 so that both electromagnets (corresponding to electromagnet 82) are energized or deenergized simultaneously.
  • Reset pushbutton switch 62 is connected to amplifier A of module 15 so that the circuitry can be again placed in a detecting readiness condition after the closer has released in response to a fire or alarm condition. Switch 62 is accessible for manual operation from the front of cover 7 (FIGS. 7 and 9).
  • Pilot light 63 is also connected to amplifier A of module 15. When the circuitry is in a properly operating supervisory condition, the pilot light will periodically emit light. When a fire, etc. is detected, the pilot light will remain on. A deenergized pilot light indicates an electrical malfunction. In a preferred circuit arrangement the circuitry locks into an alarm condition (pilot light 63 on) and remains in an alarm condition until the unit is reset by manual operation of switch 62.
  • FIGS. 17 through 21 show a second embodiment of the invention which in general is characterized by the use of a second form of photocell particle detector 64.
  • Particle detector 31, employed in the first embodiment is characterized by a detector element 34 which is operated by light diffusion or reflection in response to the entry of products of combustion into internal chamber 36.
  • the particle detector 64 of the second embodiment is characterized by light absorption or attenuation of light traveling from a light source to a photocell detecting element.
  • the front of cover 7 is formed with two elongated slots 65, the bottom is formed with a single elongated slot 66, and the top is formed with an identical elongated slot 67.
  • the particular form and disposition of slots 65, 66 and 67 enable efficient passage of the particulate products of combustion into the interior of the door holder-closer 1. More particularly, these products must pass into elongated detector tube 68 so that light emanating from source 33 (FIGS. 18, 20 and 21) may be absorbed or attenuated in its path of travel to photocell 69.
  • Detector tube 68 is formed by a plurality of spaced support plates 70 which extend from the front to the rear of tube 68.
  • support plate 70 carry blackened wire screen 71 whose interstices permit the passage of smoke into the interior chamber of detector tube 68.
  • Each of the plates is formed with a central hole 72. Accordingly, light emanating from source lamp 33 travels through light conduit elbow 73 (FIG. 20) in a path of travel in which the light is reflected from mirror surface 74 through-lens 75 through the plurality of axially aligned holes 72 to impinge upon photocell 69.
  • Second light conduit elbow 76 Light traveling in this conduit elbow is reflected by mirror 76 and follows a path through lens 77 into closed standard tube 78 to thus impinge upon photocell 160.
  • the interior chamber formed by standard tube 78 is hermetically sealed and, accordingly, any products of combustion cannot enter this tube and, therefore, no light absorption occurs within this tube during smoke entry into the inner confines of closer 1.
  • photocells 69 and are connected in a bridge circuit with variable resistors 161 and 162.
  • Output terminals 152 and 153 of the bridge circuit correspond to like numbered terminals shown in the schematic circuit of FIG. 16.
  • terminals 60 and 61 connected to lamp 33 correspond to the like numbered terminals also shown in FIG. 16.
  • the only circuit change is the substitution of the particle detector 64 for particle detector 31.
  • circuit operation is obtained which is substantially identical to that previously described with respect to FIG. 16.
  • Variable resistors 161 and 162 are normally adjusted so that with ambient condition no signal appears at the output of amplifier A.
  • a condition responsive electromechanical closure holder-closer for use with a closure adapted for relative movement with respect to a closure frame, comprising a housing containing the closure holder-closer and adapted to be surface mounted adjacent and above the closure, a spring located within the housing for exerting a closing force on the closure, a damper located within the housing and coupled to the spring for controlling the spring exerted closing force applied to the closure, an electromagnetic arresting means located within the housing with when energized arrests the spring-damper subcombination from closing an otherwise open closure relative the frame and which when deenergized enables the spring-damper subcombination to close the closure relative the frame, an arm assembly adapted to couple the closure to the closure holdercloser to provide closure control responsive to the energized or deenergized condition of the electromagnetic latch, a photoelectric condition-responsive detector contained within the housing and connected to the electromagnetic arresting means to control the energized or deenergized condition thereof, and means including passageways formed in said housing by which said internally housed detector is subjected to a fluid
  • a condition responsive door holder-closer comprising a housing, a closer spring and a dashpot disposed within the housing, a drive spindle projecting through the housing and coupled to the spring-dashpot subcombination to be responsive to the damped forces exerted by the subcombination, means within the housing for arresting the spindle at a door holdopen position, means including one or more openings in said housing for defining passageways within said housing to facilitate fluid flow within the housing including the particulate products of combustion, a photocell detec tor for the particulate products of combustion located within the housing, and means interconnecting the detector to the spindle arresting means to release the spindle in response to the flow of the particulate products of combustion through said housing passageway means.
  • a condition responsive door holder-closer contained within a housing comprising a photocell condi tion detector located within the housing and responsive to fluid flow carrying the particulate products of combustion, means including one or more openings in said housing defining a fluid flow passageway within said housing to said condition responsive detector, a closerholder spring-dashpot combination including electrically operated means for arresting the spring-dashpot combination to a door hold-open position with the spring, dashpot and electrically operated means being disposed within the housing, and means interconnecting the condition responsive detector to the electrically operated arresting means whereby the passage of the particulate products of combustion through an opening into the passageway releases an arrested spring-dashpot combination.
  • a door opening is defined by a frame having a header portion at the top of the frame, and in which the housing is supported at the top of the frame with the one or more housing openings being generally located toward the mid-portion of the header and the door coupling means being located generally at an end portion of the header.
  • a condition responsive door holder contained within a housing and adapted to be mounted immediately over a door opening, the holder including electrically operated means within the housing for effecting a door hold-open condition
  • the improvement comprising a particulate products of combustion photocell detector located within the housing and responsive to particulate products of combustion and in which detector an electrical current characteristic is altered in response to detection of such particulate products of combustion, means including one or more openings in said housing defining a fluid flow passageway within said housing to said detector, and means interconnecting the detector to the electrically operated means whereby the passage of the particulate products of combustion through the passageway actuates the door holder from a hold-open condition whereby the door is no longer positively held open by the door holder.

Abstract

A surface-mounted door holder-closer responsive to the particulate products of combustion passing through multiple passageways formed in a holder-closer housing cover, a holdercloser assembly frame, and a dark chamber which is an integral part of a photocell particle detector module. The particle detector module is insertable into the holder-closer frame with the frame and dark chamber walls not only defining the passageways, but also isolating the chamber from spurious light entering the chamber which would render a false alarm or false emergency door release. The frame also houses the principal components of the holder-closer, namely, a closer spring, a dashpot, a latching lever assembly, and an electromagnet responsive to modulated output current flow from the dark chamber to effect alarm or emergency release of the latching lever to close an otherwise open door. The integrated detector-holdercloser is advantageously and simply mounted on the lintel or header of a door frame.

Description

" United States Patent [1 1 Coulter et a1.
1*Sept. 16, 1975 [73] Assignee: Rixson-Firemark, lnc., Franklin Park, Ill.
[ Notice: The portion of the term of this patent subsequent to Dec. 11, 1990, has been disclaimed.
[22] Filed: June 11, 1973 21 App]. No.: 368,827
Related US. Application Data [63] Continuation-impart of Ser. No. 216,202, Jan. 7,
1972, Pat. No. 3,777,423.
[52] US. Cl. 16/485; 340/237 S; 49/31 [51] Int. C1. EOSF 15/20 [58] Field of Search 16/485; 49/1, 2, 31, 279; 340/220, 222, 237 S [56] References Cited UNITED STATES PATENTS 1,256,740 2/1918 Steiger 340/237 S 2,244,507 6/1941 Thomas 340/237 S 2,520,340 8/1950 Robinson 340/237 S 2,591,511 4/1952 Clarke 340/237 S 3,255,441 6/1966 Goodwin et a1. 340/220 3,648,326 3/1972 Gaysowski 16/485 3,729,771 5/1973 Crane et a1. l6/48.5 3,777,423 12/1973 Coulter et a1 16/485 Primary Examiner-Roy D. Frazier Assistant Examiner-Peter A. Aschenbrenner [57] ABSTRACT A surface-mounted door holder-closer responsive to 'the particulate products of combustion passing through multiple passageways formed in a holdercloser housing cover, a holder-closer assembly frame,
and a dark chamber which is an integral part of a photocell particle detector module. The particle detector module is insertable into the holder-closer frame with the frame and dark chamber walls not only defining the passageways, but also isolating the chamber from spurious light entering the chamber which would render a false alarm or false emergency door release. The frame also houses the principal components of the holder-closer, namely, a closer spring, a dashpot, a latching lever assembly, and an electromagnet responsive to modulated output current flow from the dark chamber to effect alarm or emergency release of the latching lever to close an otherwise open door. The integrated detector-holder-closer is advantageously and simply mounted on the lintel or header of a door frame.
15 Claims, 21 Drawing Figures PATENTEU SEP 1 5|975 3, 905 O53 seam 1 OF g5 PATENTEBSEP I 61975 SHEET H []F 6 PATENTEU I 5|975 3. 905 O63 saw 5 o 0 I2 [09 I270 I37 FiGJZ I09 6 I20 l26\ 58 4 m gm 4 WW 0 (D Q Ill I24 35 97 H 95 nn.
RELATED: APPLICATION through the doors become smoke laden. Accordingly, the doors must be manually reopened toip ermit evacuation of those persons who may have delayed their exit.
Examples of prior art patents relating "to 'condition This application is a continuation-impart of appli- 5 detectors and also detector responsive doors are as folcants copcnding application Ser. No. 216,202, filed lOwS:
US PATENT FILED INVENTOR TITLE 1,392,002 6-21-19 Engle Thermo Control for Fire Doors 2,665,129 1-5-54 Durbin et a1 Thermoelectric Door Operating Mechanism 3,009,138 1 l-l4-6l Lindsay Radioactive Burglar Alarm System 3,039,764 6-19-62 Heinsman et al Electric Door Operator 3,069,997 12-25-62 Julian Apparatus for Preventing Exfiltration of Smoke-Laden Air from Smokehouse Enclosures 3,207,273 9-21-65 Jurin Closure Release Device 3,382,762 5-14-68 Vasel et a1 Smoke Detecting Device 3,430,220 2-25-69 Deuth Fire Detector 3,445,669 5-20-69 Jordan et a1 Radiation Sensitive Carbon Monoxide Detector 3,447,152 5-27-69 Jensen Fire and Smoke Alarm Device I 3,495,353 2-17-170 Forsberg Door Operating Mechanism 3,496,381 2-17-70 Wisnia Proximity Control Guard Plate 3,497,995 3-3-70 Forsberg Height Sensitive Proximity Door Operator System 3,500,368 3-10-70 Nagoa Abe Automatic Ionic Fire Alarm System 3,534,499 10-20-70 Chafi'ee Door Opening Apparatus Jan. 7, 1972, now U.S. Pat. No. 3,777,423 for Condi- SUMMARY OF THE INVENTION Responswe Door nolder'clgser' The invention herein described incorporates a photo- BACKGROUND or THE INVENTION The prior art is prolific in door holder-closer structures responsive to the products of combustion to effect an alarm or emergency release of open doors. Where such doors are released by detectors, several approaches have been employed, generally ranging from door release'by a complex central fire alarm system characterized by detectors spaced throughout a structure under surveillance to a simple form of a fusible element mounted on the arm of a door closer.
The most common type of quick response detector employed has been a photocell (refraction type) detector or an ionization detector mounted on the ceiling of a corridor, approximately five feet from a fire resistant door to effect a barrier which will prevent passage of the products of combustion from one section of a building to another. As a general rule, if the top of the door,
- or lintel, extends below the corridor ceiling over eigh- In the event products of combustion are generated, adetector located on the ceiling causes the release of all controlled doors to close the corridors. At this stage, personnel evacuation of a building is possible since the doors will-open in the direction of egress from the building. However, in many casespremature and unsafe door closing :is effected because the detection of ceiling smoke'will occur well before the exitways cell particle detector module in the holder-closer housing. The housing is preferably located above the door A on the lintel or header of the door frame. Any products of combustion pass through multiple passageways located within the holder-closer housing to actuate the detector. Location of the detector at this point and within the holder-closer housing effects a major safety advantage. Instead of each controlled door closing at the first evidence of smoke at the ceiling (and the ceiling may be from seven to fourteen feet high), each door will now remain open until the smoke level builds downwardly from the ceiling to the height of the door leaving the doors open for persons to move in either direction until such time as smoke or products of combustion begin to block the actual exitway.
It is impossible to predict the logic of most persons under a fire or panic condition. Faced with closed doors, many persons will panic even though the doors will manually open with a normal force. Moreover, early door closing is highly disadvantageous for those buildings within which non-ambulatory patients are housed.
The location of the detector near the center of the door or, in the case of a double door closure, near the center of the corridor, is simply the best location to detect smoke or products of combustion. This detector location is effectively attained by this invention because the end of the closer-holder housing containing the detector is generally so located. There is a natural flow of air or draft through a closure opening. This flow will carry the products of combustion through this opening and also effectively through the detector fluid flow passageways formed into the surface mounted holder-closer of this invention. The detector, however, is not actuated until the exitway is subject to'smoke passage; thus, facilitating evacuation the las t possible safe moment. i
Additionally, the present invention has the economic advantage that regardless of the height of the corridor ceiling relative to the height of the door, one detector is all that is required to properly monitor the door. The interconnection of separated detectors and controlled holder-closers is eliminated.
DETAILED DESCRIPTION OF THE DRAWINGS In order that all of the structural features for attaining the objects of this invention may be readily understood, reference is herein made to the drawings, wherein:
FIG. 1 is a view showing the surface application of the condition responsive door holder-closer of this invention to a single door;
FIG. 2 is a view showing the application of one door holder-closer of this invention to control a pair of corridor doors;
FIG. 3 is an exploded view showing certain principal components of the door holder-closer, namely, the photocell particle detector module, the holder-closer assembly, and the cover;
FIG. 4 is an exploded fragmentary view showing the top-bottom access openings for the products of combustion in the cover, the photocell particle detector module, and the holdercloser frame;
FIG. 5 is a section view taken along line 55 of FIG. 4 showing the relative alignment of the front-topbottom openings of the cover, frame and module which provide fluid flow access to the photocell dark chamber;
FIG 6 is a top view with certain components being broken away to show the top and bottom circularly disposed access openings;
FIG. 7 is a partial front view of that portion of the cover having the combustion products access openings;
FIG. 8 is a perspective view of the particle detector with a portion of the chamber wall being broken away to expose the internal disposition of the components within the chamber;
FIG. 9 is a bottom fragmentary view of the portion of the door holder-closer containing the photocell particle detector module with certain components being broken away to expose elements of the module chamber and also to show the relative disposition of the module relative the closer spring;
FIG. 10 is a top fragmentary view of the door holdercloser assembly, showing in full or in section the principal components of the holder-closer, namely, the closer spring, dashpot, electromagnet and the latching lever assembly;
FIG. 11 is a front view of the structure of FIG. 10 with the dashpot partially in section (see lines 1lll of FIG. 10) to show the details of the dashpot and the dashpot rollers;
FIG. 12 is a fragmentary view of the door holdercloser showing the latching lever assembly being manually overridden from a hold-open position and with the electromagnet energized;
FIG. 13 is a fragmentary view of the door holdercloser showing the latching lever assembly being released in response to the deenergization of the electromagnet;
FIG. 14 is a rear view showing the latching lever assembly coupled to the holder-closer dashpot by a fulcrum pin; 9
FIG. 15 is a section view of the latching lever assembly taken along line 15l5 of FIG. 14;
FIG. 16 is a schematic circuit, with the principal components of the door holder-closer being diagrammatically shown, which shows the failsafe connection of the photocell particle detector module to its associated circuitry;
FIG. 17 is a view showing the surface application of a second embodiment of the condition responsive door holder-closer of this invention to a door;
FIG. 18 is a view similar to that of FIG. 9 showing, however, a second form of photocell particle detector;
FIG. 19 is a section view taken along line l919 of FIG. 18;
FIG. 20 is a detailed view showing the two source light paths taken in the photocell particle detector of FIGS. 18 and 19; and
FIG. 21 is a schematic circuit showing the connection of the particle detector of the second embodiment to the schematic circuitry of FIG. 16.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIG. 1, the condition responsive electromechanical door holder-closer l of this invention is shown typically applied to a flush door 2 which is supported by a plurality of butt hinges 3 (only one of which is shown) upon a conventional metal door frame 4.
In general, door holder-closer 1 includes a track 5 within which a slide block (not shown) reciprocates. The left end of standard arm 6 is coupled to the slide block. The right end of arm 6 is coupled to the projecting end of a rotating drive spindle (114 of FIG. 11) which is an integral part of the holder-closer dashpot.
The door holder-closer housing includes a cover 7 which contains the principal components of this invention, namely, a photocell particle detector module, a coil spring, a link chain, a dashpot and an electromagnetic lever assembly.
In the usual preferred installation of door holdercloser 1, cover 7 and its contained components are fixedly positioned on the header trim 8 of door frame 4, and track 5 is fixedly positioned immediately below cover 7 adjacent the upper edge of-flush door 2 as is shown in FIG. 1.
As is shown in FIGS. 1, 3, 4 and 5, cover 7 has a planar bottom wall 9, a planar front wall 10 with curved ends, and a planar top wall 11.
Bottom wall 9 is formed with a plurality of circularly disposed openings 12, front wall 10 is formed with two rows of rectangular openings 13, and top wall 11 (FIG. 6) is formed with a plurality of circularly disposed openings 14. As is hereafter outlined in detail, openings 12, 13 and 14 located in cover 7 are so aligned with other openings to provide fluid flow access for the products of combustion to a photocell particle detector which is part of the detector m'odule located within the housing.
FIG. 2 shows the application of one condition responsive door holder-closer l of this invention to control a pair of corridor doors 2 and 2'. Each door 2, 2' is controlled by a closer 1, 1', respectively.
It should be noted, however, that only door 2 is controlled by a holder-closer 1 which includes a cover 7 formed with a plurality of openings such as shown with respect to cover 7 of FIG. 1. Holder-closer l' which controls door 2' is contained within a cover 7 which has no openings that correspond to openings 12, 13 and 14 of cover 7. In general, holder-closer 1 is constructed in a manner identical to that of condition responsive holder-closer l with the exception that no particle detector module is included within the closer I. As willbe hereinafter outlined, the electrical circuitry of closers 1 and 1 are interconnected so that if holdercloser I detects products of combustion, both closers are activated simultaneously so as to close doors 2, 2' in response to such detection. It has been found that it is unnecessary in the application of a pair of doors which close off a hall or corridor to employ individual detectors within each of closers 1 and 1 inasmuch as the single detector is capable of adequate response to close off both doors.
FIG. 3 is an exploded view showing the two principal components of the door holder-closer 1, namely, the particle detector module 15 and the door holder-closer assembly 16. Module 15 is insertable within assembly 16 by module movement in the direction of the arrow, and the combined module holder-closer assembly is enclosed by cover 7 by relative movement of combined components 15 and 16 in the direction of the arrows toward cover 7.
Door holder-closer assembly 16 includes a metallic frame 17 which is generally U-shaped in cross section, having an elongated irregular bottom 18, a connecting back 19, and an elongated irregular top 20. As is shown in FIGS. 3, 4, 5 and 6, frame bottom 18 and frame top 20 are formed with circular openings 21 and 22, respectively. The plurality of cover bottom openings 12 are aligned with frame opening 21 as is shown in FIGS. 3, 4 and 5, so that opening 21 provides bottom access for openings 12 into the interior of frame 17. Similarly, the plurality of cover top openings 14 are aligned with frame opening 22 so that top access may be had into the interior of frame 17 (FIGS. 5 and 6).
In view of the fact that frame 17 has no front covering adjacent frame openings 21 and 22, cover openings 13 permit direct fluid flow access into frame 17 (see FIGS. 3, 5 and 7).
As is shown in FIGS. 3 and 4, particle detector module 15 is an integral electrical unit having a body portion 150 from which a finger portion 15b projects. As is shown in FIGS. 3 and 9, frame 17 is formed with a chamber which will receive module 15. Module 15 comprises a supporting frame having two metallic sides 23 and 24 (FIGS. 3, 5 and 9) joined by a metallic bottom 25. Metallic sides 23 and 24 are fixed in the paral' lel disposition by means of metallic spacer posts 26 and 27 (FIG. 9).
Electrical components and interconnecting wiring generally denominated by numeral 28 are mounted upon circuit board 29. These components constitute part of the particle detector amplifier hereinafter described. Circuit board 29 is electrically isolated from module bottom by insulating sheet 30.
Referring to FIGS. 5, 8, 9 and 16, a photocell particle detector 31 comprises generally a housing having a light source 33 disposed outside the housing, and a photocell detector element 34 also disposed outside the housing.
Detector 31 is particularly adapted for use as the detector unit of a smoke alarm and for this purpose the housing comprises a peripheral wall or main body portion 35 and a pair of end caps 37 and 38 defining an intemal chamber 36. The end caps extend beyond the periphery of wall 35 and have inwardly turned flanges 39 and 40 which are spaced outwardly from the wall. Each end of wall 35 is provided with a series of outwardly inclined spacing lugs 41, which are adapted to engage frictionally the inner surface of the flanges to retain the caps in assembly. The flanges 39 and 40, in conjunction with the spacing lugs 41, form a peripheral passageway having sets of apertures 49 opening the chamber 36 at each end of the wall to permit smoke to enter the chamber from the surrounding atmosphere. Circular screen segments 50 and 51 cover each of the apertures to prevent particulate matter of a non-combustion variety from entering the chamber.
A focusing tube 42 extends through housing wall 35, and a light trap tube 43 is disposed in the housing wall on the opposite side in alignment with the focusing tube 42. These elements direct and control the light beam from source 33. A lens 44 of the converging type is disposed within focusing tube 32, with a focal length such that light from the source 33 is focused in a converging beam onto the bottom of the light trap tube 43, so that the beam from the light has a minimum size at the bottom of said trap, and substantially none of the light from the source falls on any other portion of the inte rior surface of the housing.
A detector tube 45 extends through the housing wall between the light trap tube and the focusing tube, and is disposed generally perpendicular to the axes thereof. A photocell detector element 34 is disposed in the detector tube, and to restrict the field of view of the detector, a lens 46 of the converging type is disposed in the detector tube between the detector element and the chamber. Lens 46 has a focal length such that the image of the detector element is focused onto a minimum area on the opposite surface of the housing wall. The cone of focus of the detector element is directed across the cone of focus of the light beam, so that the detector element views only the medial portion of the light beam and the field of view of the cell at the opposite wall portion is confined to the medial portion of the wall. The photocell does not view the peripheral apertures at the top and bottom of the wall. Hence substantially no light reaches the detector element except light appearing in the focus cone of the lens 46. To further insure that a minimum amount of the internal stray light reaches the detector element, the end 47 of the detector tube on the side adjacent the light tube extends forwardly to the cone of focus of the light beam to provide a shield against stray light from the inside surface of the focus tube. The end of the detector tube from this foremost point is inclined rearwardly at an angle such that the inside surface of the detector tube cannot view the inside surface of the focus tube. To prevent stray reflected light from the inside of the light trap tube from reaching the detector lens 46, the side of the end of the detector tube adjacent the light trap bodiment a detector circuit hereafter described may be connected to the detector element and adjusted under normal conditions of no smoke so that a predetermined further decrease in cell resistance will actuate an external alarm connected to the detector circuit. When smoke enters the housing and appears in the light beam, light from the smoke particles in the portion of the light beam viewed by the detector is reflected or diffused onto the detector cell, thereby lowering the re sistance of the cell and actuating the alarm circuit.
US. Pat. No. 3,382,762 issued May 14, 1968 describes further details of the photocell particle detector.
As is shown in FIGS. and 9, particle detector 31 is supported within module by a plurality of support brackets 53. The detector is also tightly sandwiched between module sides 23 and 24 by a pair of spaced insulating discs 54 and 55 (FIG. 5). Module wall 23 is formed with a plurality of circularly disposed openings 56 (FIG. 4) to permit fluid flow access to the adjacent chamber apertures 49. Similarly, module wall 24 is formed with a plurality of circularly disposed openings 57 (FIG. 5) to permit access to the adjacent chamber apertures 49. Accordingly, fluid flow access into interior chamber 36 is provided by the following three passageways:
1. front passageway through cover openings 13 to the adjacent chamber apertures 49 (FIGS. 3, 5, 7 and 2. bottom passageway through cover openings 12, frame opening 21, circularly disposed module wall openings 56 to the adjacent chamber apertures 49 (FIGS. 3, 4 and 5); and
3. top passageway through cover openings 14, frame opening 22, circularly disposed module wall openings 57 to the adjacent chamber apertures 49 (FIGS. 5 and 6).
As is hereinafter outlined with reference to the schematic-diagrammatic representation of FIG. 16, fluid flow, i.e. the passing of the particulate products of combustion through the foregoing passageways affects the electrical resistivity or other characteristics of photocell 34 so that appropriate amplifier circuitry can detect such products.
The principal components of door holder-closer 1 which cooperate with particle detector module 15 will now be described. Referring to FIGS. 10 and 11, support frame 17, which is enclosed within cover 7, houses the following principal components; namely, spring coil assembly 79, link chain 80, dashpot 81, electromagnet 82 and latching lever assembly 83.
Latching lever assembly 83 is described in US. Pat. No. 3,729,771, issued May 1, 1973 to Burke .1. Crane et al for Latching Lever Assembly for Door Holder- Closer.
Spring assembly 79 includes compression coil spring 84 which envelops a spring rod 85. The left end of spring rod 85 is threaded (FIGS. 9 and 10) so that the adjacent end of spring 84 is held by spring retainer 86. Retainer 86 is adjustably mounted relative threaded rod 85 by washer 87 and spring tension adjusting nut 88.
The right end of spring 84 is supported on spring support plate 89 which has a retaining circular flange 90. Flange 90 receives the adjacent contacting spring 84 turn. Accordingly, spring 84 is positioned relative to rod 85 by spring retainer 86 and spring support plate 89 so that adjustment of nut 88 can vary the static compression force generated by spring 84.
Lateral movements of spring 84 relative to frame 17 are limited by front spring guide 91 and rear spring guide 92.
The right end of spring rod (FIGS. 10 and 11) is coupled to link chain 80 by connecting pin 93. The right end of link chain 80 is coupled to dashpot 81 by connecting pin 94.
The details of the dashpot, particularly with reference to FIGS. 10 and 1 1, will now be described. In FIG. 10, a simplified horizontal section view of the dashpot is shown and in FIG. 11 a simplified vertical section view taken along lines 1111 of FIG. 10 is shown.
In its principal aspects, dashpot 81 comprises a fixed stator 95 which is housed within cavity 96 defined by generally cylindrical rotor 97. Stator 95 is formed with a pair of stator vanes 98 and 99. The stator and its vanes remain fixed atall times relative support frame 17. Stator 95 is formed with a mounting flange 100 (FIG. 11) which is fixed to frame top 20 by a plurality of screws 101.
Rotor 97 supports a pair of integral vanes 102 and 103 (FIG. 10) which rotate with the rotor. As is shown in FIG. 1 1, rotor 97 comprises a cylindrical section 104 to which annular flanges 105 and 106 are fixedly attached. The rotation of rotor 97 produces a corresponding rotation of annular flanges 105 and 106.
Connecting pin 94 extends between flanges 105 and 106 to anchor chain 80 responsively to rotor 97. Likewise, roller pins 107 and 108 extend between the flanges so that rollers 109 and 110 may rotate relative their associated pins and between the flanges. Rollers 109, 110 also move responsively with rotor 97 and flanges 105, 106.
The interior dashpot cavity 96 defined between rotor 97 and stator 95 contains a viscoelastic plastic solid. This material may preferably be either a natural or synthetic unvulcanized rubber or an elastomeric-like material known as bouncing putty. This damping medium is contained with cavity 96 by means of O-ring seal 111; damping adjusting screw 112 is manually movable within its threaded bore to exert a varying pressure upon the damping medium through port 113 (FIG. 11). Rotor spindle stem 114 receives the lower end of rotor cylindrical section 104 so that elements 104, 114 rotate in unison. Consequently, the attachment of standard arm 6 to spindle stern 114 produces related movement between arm 6 and the dashpot rotor elements. Rotor elements 104, 114, including flanges 105 and 106 are rotatably fixed relative frame 17 by bearing plates 115 and 116.
Stepped pin 117 serves as an alignment bearing for rotor 97 relative stator 95.
As is shown in FIG. 10, electromagnet 82 and lever assembly 83 are closely associated with dashpot 81. In particular, electromagnet 82 is supported on frame 17 by electromagnet support plate 117.
Referring now principally to FIGS. 10, 11, 13, 14 and 15, the latching lever assembly 83 will now be described. The principal elements of lever assembly 83 are lever 120, lever fulcrum shaft 121, lever assembly biasing spring 122, armature-lever coupling spring 123, armature plate 124, screw-washer-nut 125, and spring alignment cylinder 126.
Lever 120 is formed with a latch detent 127 whose main function is to engage rollers 109 and 110 to effect hold open. The lever is also formed with a yoke having legs 128 and 129 from which lugs 131 and 132 project to receive coupling spring 123.
Coupling spring 123 (FIG. 14) is a helical wound torsion spring formed into two divided and joined sections 133 and 134 having a central spring connector loop 135 (FIG. and two end connector loops 136 and 137 (FIG. 14). v
Spring 123 is shown in its tensioned position; that is, end connector loops 136 and 137 have been relatively rotated under spring tension so that loops 136 and 137 are adjacent central connector loop 135 as is shown in FIG. 15. This disposition of connector loops 135, 136 and 137 places spring sections 133 and 134 in torsional tension. Accordingly, when loop 135 is rigidly fixed to armature 124 by bolt and nut 125 (FIG. 15) and end connector loop 136 is fixed to lug 131 and end connector loop 137 is fixed to lug 132 (FIG. 14), coupling spring 123 develops a strong torsional force which tends to force armature plate 124 against lever 120 as is shown in FIGS. 10, 13 and 15. However, it should be noted that as shown in FIG. 13, the resiliency of spring 123 enables armature plate 124 to be separated from lever 120 in response to oppositely directed forces as will be hereafter outlined.
When door 2 is closed, as is shown in FIG. 1, and regardless of the energized or deenergized condition of electromagnet 82, lever assembly 83 assumes the position shown in FIG. 10. As is shown in this Figure and I also FIG. 14, lever 120 is pivoted relative dashpot 81 by fulcrum pin 121. Fulcrum pin 121 also receives biasing spring 122 so that a force is exerted by this spring which normally urges the lever assembly to the position shown in FIG. 10; that is, a position in which armature 124 rests against electromagnet 82.
When electromagnet 82 is energized, armature 124 is magnetically attracted to the core of the electromagnet. However, as door 2 is opened, rotor 97 (FIGS. 12 and 13) is rotated counterclockwise moving therewith chain 80 and thus compressing closer spring 84. The counterclockwise motion of the rotor also causes rollers 110 and 109, in that sequence, to pass under latching detent 127, thus elevating lever 120 as is shown in FIG. 12. Armature 124, however, is magnetically fixed against electromagnet 82 in response to the energization of this electromagnet.
As the rotor 97 is rotated counterclockwise a further slight angle from that shown in FIG'. 12, roller 109 (or roller 110 depending upon the amount of angular holdopen desired) is held in engagement against latching surface 127a of. latching detent 127. With this occurrence, lever 120 is lowered so that it assumes the relative position with respect to armature 124 shown in FIG. 10. Door 2 is thus held open by the engagement of either roller 109, 110 and latching surface 127a.
In the event it is decided to manually override the hold-open latch of door holder-closer 1, the clockwise movement of rotor 97'causes rollers 109, 110 to elevate or cam away lever 120 so that the closer spring 84 can rotate rotor 97, thereby causing standard arm 6 to move within track 5 to close door 2.
It is important to note that during this condition of manual override, armature 124 is retained against electromagnet 82 as is shown in FIG. 12. In other words, during manual override, armature 124 always maintains contact with electromagnet 82. The resiliency of coupling spring 123 enables lever 120 to move upwardly without a corresponding movement in armature 124.
In the event door 2 is held open in response to the engagement of either roller 109, with respect to latching surface 127a, and electromagnet 82 is deenergized due to the opening of a manual operate switch or the detection of an undesired condition by particle detector 31, lever assembly 83 is released as is shown in FIG. 13 and rollers 109, 110 cam latching detent 127 upwardly. In view of the fact that electromagnet 82 is deenergized, a holding force is not applied to armature 124 and the armature maintains its contact position with respect to lever as a result of the torsional forces applied to armature 124 and lever 120 by coupling spring 123.
In all situations in which electromagnet 82 is deenergized, lever latching assembly 83 produces a characteristic release noise which is undesirable. However, in the usual installation of a holder-closer of the type described, an emergency or alarm release rarely occurs; accordingly, such noise can be tolerated. Manual override, however, is a commonplace occurrence, and in this instance latching lever release noises can attain an intolerable frequency unless eliminated by appropriate latching lever designs.
The schematic circuit of FIG. 16 shows an electrical circuit effecting the interconnection of electromagnet 82 to particle detector 31 to effect hold-open and closing of door 2 in a failsafe manner of operation. Additionally, theschematic circuitry incorporates a condition responsive detector and amplifier unit within module 15 which is failsafe in operation. In particular, if all of the components of the module 15 are properly operating, door 2 will remain in hold-open effected by the latching of either roller 109 or 110 against latching detent 127 in response to the manual closing of control switch 151. If, however, module 15 is not properly operating or, alternatively, this unit senses a condition such as flame or smoke, door 2 will be released from a latched hold-open position effected either by roller 109 or 110 and closed in response to the closing force exerted by coil spring 84.
The detailed operation of the circuitry of FIG. 16 is as follows. Assuming module 15 is in proper operating condition and that the particle detector 31 input applied to terminals 152 and 153 indicates an absence of a flame or smoke condition, door 2 will be held in the open position in response to the manual closing of switch 151; that is, the closing of switch 151 applies line voltage from terminals 154 and 155 to amplifier A of module 15. The application of line voltage to amplifier A energizes amplifier'output relay 156, thereby closing normally open contact 156a.
The closing of contact 156a applies line voltage to the coil of power relay 157. With this occurrence, normally open contact 157a is closed, thereby applying line voltage to fullwave bridge rectifier 158 to energize electromagnet 82 with a pulsating-direct-current voltage. (The physical position of a module containing bridge 158 is shown in FIGS. 10-13).
The energization of electromagnet 82 causes magnetic armature 124 to resiliently hold lever 120 downwardly (FIG. 10) and into locking engagement with either roller 109 or roller 1 10 against latching detent 127 (if door is manually opened).
Accordingly, lever 120 holds rotor 97 with sufficient force to overcome the otherwise closing force exerted by coil spring 84. Thus, so long as the electromagnet 82 is energized, door 2 will be held in an open position.
In the event, however, (a) a slight manual closing force is applied to door 2, (b) switch 151 is opened, module malfunctions, or (d) an undesired condition such as smoke or flame is detected by detector 31, lever detent 127 will be pivoted from engagement with roller 109 or 110, as the case may be, and spring 84 will close the door to the position shown in FIG. 1.
In the situation of case (a) above, the manual override closing force causes disposition of the lever assembly 83 components as shown in FIG. 12 during the point of operation at which roller 109, for example, is in camming engagement with latching detent 127.
In situations (b), (c) and (d) above, electromagnet 82 is deenergized, thereby enabling the camming action of roller 109 or 110, as the case may be (see FIG. 13), to elevate lever 120 as well as armature 124 as is shown in this Figure.
In a multiple door installation, such as the corridor application shown in FIG. 2 in which only holder-closer 1 need incorporate a detector module 15, the electromagnet of holder-closer l is merely interconnected with the circuitry for holder-closer 1 so that both electromagnets (corresponding to electromagnet 82) are energized or deenergized simultaneously.
Reset pushbutton switch 62 is connected to amplifier A of module 15 so that the circuitry can be again placed in a detecting readiness condition after the closer has released in response to a fire or alarm condition. Switch 62 is accessible for manual operation from the front of cover 7 (FIGS. 7 and 9).
Pilot light 63 is also connected to amplifier A of module 15. When the circuitry is in a properly operating supervisory condition, the pilot light will periodically emit light. When a fire, etc. is detected, the pilot light will remain on. A deenergized pilot light indicates an electrical malfunction. In a preferred circuit arrangement the circuitry locks into an alarm condition (pilot light 63 on) and remains in an alarm condition until the unit is reset by manual operation of switch 62.
FIGS. 17 through 21 show a second embodiment of the invention which in general is characterized by the use of a second form of photocell particle detector 64. Particle detector 31, employed in the first embodiment, is characterized by a detector element 34 which is operated by light diffusion or reflection in response to the entry of products of combustion into internal chamber 36. The particle detector 64 of the second embodiment is characterized by light absorption or attenuation of light traveling from a light source to a photocell detecting element.
Referring to FIGS. 17 and 19, the front of cover 7 is formed with two elongated slots 65, the bottom is formed with a single elongated slot 66, and the top is formed with an identical elongated slot 67. The particular form and disposition of slots 65, 66 and 67 enable efficient passage of the particulate products of combustion into the interior of the door holder-closer 1. More particularly, these products must pass into elongated detector tube 68 so that light emanating from source 33 (FIGS. 18, 20 and 21) may be absorbed or attenuated in its path of travel to photocell 69. Detector tube 68 is formed by a plurality of spaced support plates 70 which extend from the front to the rear of tube 68. The peripheral edges of support plate 70 carry blackened wire screen 71 whose interstices permit the passage of smoke into the interior chamber of detector tube 68. Each of the plates is formed with a central hole 72. Accordingly, light emanating from source lamp 33 travels through light conduit elbow 73 (FIG. 20) in a path of travel in which the light is reflected from mirror surface 74 through-lens 75 through the plurality of axially aligned holes 72 to impinge upon photocell 69.
Light from source 33 also travels through a second path which includes second light conduit elbow 76. Light traveling in this conduit elbow is reflected by mirror 76 and follows a path through lens 77 into closed standard tube 78 to thus impinge upon photocell 160. The interior chamber formed by standard tube 78 is hermetically sealed and, accordingly, any products of combustion cannot enter this tube and, therefore, no light absorption occurs within this tube during smoke entry into the inner confines of closer 1.
Referring now to FIG. 21, photocells 69 and are connected in a bridge circuit with variable resistors 161 and 162. Output terminals 152 and 153 of the bridge circuit correspond to like numbered terminals shown in the schematic circuit of FIG. 16. Likewise, terminals 60 and 61 connected to lamp 33 correspond to the like numbered terminals also shown in FIG. 16. The only circuit change is the substitution of the particle detector 64 for particle detector 31. By making appropriate connections to terminals 60 and 61, 152 and 153, circuit operation is obtained which is substantially identical to that previously described with respect to FIG. 16. Variable resistors 161 and 162 are normally adjusted so that with ambient condition no signal appears at the output of amplifier A. However, in the event smoke enters detector tube 68 through wire screen 71, the bridge becomes unbalanced and a signal change appears at terminals 152 and 153. This signal change is applied to amplifier circuit A in accordance with the operation previously described with reference to FIG. 16, thus causing door holder-closer 1 to close door 2.
It should be understood that the above described embodiments are merely illustrative and that changes can be made without departing from the scope of the invention.
What is claimed is:
1. A condition responsive electromechanical closure holder-closer for use with a closure adapted for relative movement with respect to a closure frame, comprising a housing containing the closure holder-closer and adapted to be surface mounted adjacent and above the closure, a spring located within the housing for exerting a closing force on the closure, a damper located within the housing and coupled to the spring for controlling the spring exerted closing force applied to the closure, an electromagnetic arresting means located within the housing with when energized arrests the spring-damper subcombination from closing an otherwise open closure relative the frame and which when deenergized enables the spring-damper subcombination to close the closure relative the frame, an arm assembly adapted to couple the closure to the closure holdercloser to provide closure control responsive to the energized or deenergized condition of the electromagnetic latch, a photoelectric condition-responsive detector contained within the housing and connected to the electromagnetic arresting means to control the energized or deenergized condition thereof, and means including passageways formed in said housing by which said internally housed detector is subjected to a fluid flow characteristic of the presence of said condition to deenergize an otherwise energized electromagnetic arresting means to thereby enable the holder-closer to release and close an otherwise open closure.
2. A condition responsive door holder-closer comprising a housing, a closer spring and a dashpot disposed within the housing, a drive spindle projecting through the housing and coupled to the spring-dashpot subcombination to be responsive to the damped forces exerted by the subcombination, means within the housing for arresting the spindle at a door holdopen position, means including one or more openings in said housing for defining passageways within said housing to facilitate fluid flow within the housing including the particulate products of combustion, a photocell detec tor for the particulate products of combustion located within the housing, and means interconnecting the detector to the spindle arresting means to release the spindle in response to the flow of the particulate products of combustion through said housing passageway means.
3. The combination of claim 2 in which the housing is generally horizontally disposed on a door frame immediately over the door, and an arm couples the spindle to the door so that the door and spindle are responsive motionwise to one another.
4. The combination of claim 3 in which the door is pivoted for movement relative the frame, the spindle being located adjacent the pivot axis for the door and generally at one end of the housing, and the passageway defining means being generally located at the opposite end of the housing remote from the pivot axis.
5. The combination of claim 4 in which the door holder-closer housing is elongated and generally horizontally disposed on the surface of the frame.
6. The combination of claim 5 in which the passageway defined through the housing is generally vertical.
7. The combination of claim 6 in which the passage way ddefined through the housing is both vertical and horizontal attained by openings located on the top, front, and bottom of the housing.
8. A condition responsive door holder-closer contained within a housing, comprising a photocell condi tion detector located within the housing and responsive to fluid flow carrying the particulate products of combustion, means including one or more openings in said housing defining a fluid flow passageway within said housing to said condition responsive detector, a closerholder spring-dashpot combination including electrically operated means for arresting the spring-dashpot combination to a door hold-open position with the spring, dashpot and electrically operated means being disposed within the housing, and means interconnecting the condition responsive detector to the electrically operated arresting means whereby the passage of the particulate products of combustion through an opening into the passageway releases an arrested spring-dashpot combination.
9. The combination of claim 8 in which the one or more openings is located generally at one end of the housing, and means located generally at the other end of the housing and projecting therethrough for coupling to a door to effect hold-open and also door release.
10. The combination of claim 9 in which a door opening is defined by a frame having a header portion at the top of the frame, and in which the housing is supported at the top of the frame with the one or more housing openings being generally located toward the mid-portion of the header and the door coupling means being located generally at an end portion of the header.
11. The combination of claim 8 in which a plurality of housing openings defines a complete fluid flow passageway into and out of the housing.
12. The combination of claim 10 in which a plurality of housing openings defines a complete fluid flow passageway into and out of the housing.
13. A condition responsive door holder-closer to control a door pivotally mounted relative an opening defined by a frame having a header portion at the top of the frame, comprising a housing supported above the door on or near the header portion, a closer spring and a dashpot disposed within the housing, a drive spindle projecting through the housing and coupled to the spring-dashpot combination to be responsively rotatable by the damped forces exerted by the combination, the spindle being located adjacent the pivot axis of the door and generally near an end of the housing mounted adjacent an end of the header portion, an arm coupling the projected end of the spindle to the door to also responsively rotate the spindle by forces exerted on the door, a photocell detector for the particulate products of combustion located generally at the opposite end of the housing toward the midportion of the door opening, electrically operated means located within the housing for arresting the spring-dashpot combination to a door holdopen position, and means interconnecting the condition responsive detector to the electrically operated arresting means whereby the passage of products of combustion through the door opening releases an arrested springdashpot combination to close an open door.
14. The combination of claim 13 in which the housing is elongated and is disposed generally horizontally on its elongated axis.
15. In a condition responsive door holder contained within a housing and adapted to be mounted immediately over a door opening, the holder including electrically operated means within the housing for effecting a door hold-open condition, the improvement comprising a particulate products of combustion photocell detector located within the housing and responsive to particulate products of combustion and in which detector an electrical current characteristic is altered in response to detection of such particulate products of combustion, means including one or more openings in said housing defining a fluid flow passageway within said housing to said detector, and means interconnecting the detector to the electrically operated means whereby the passage of the particulate products of combustion through the passageway actuates the door holder from a hold-open condition whereby the door is no longer positively held open by the door holder.

Claims (15)

1. A condition responsive electromechanical closure holdercloser for use with a closure adapted for relative movement with respect to a closure frame, comprising a housing containing the closure holder-closer and adapted to be surface mounted adjacent and above the closure, a spring located within the housing for exerting a closing force on the closure, a damper located within the housing and coupled to the spring for controlling the spring exerted closing force applied to the closure, an electromagnetic arresting means located within the housing with when energized arrests the spring-damper subcombination from closing an otherwise open closure relative the frame and which when deenergized enables the spring-damper subcombination to close the closure relative the frame, an arm assembly adapted to couple the closure to the closure holdercloser to provide closure control responsive to the energized or deenergized condition of the electromagnetic latch, a photoelectric condition-responsive detector contained within the housing and connected to the electromagnetic arresting means to control the energized or deenergized condition thereof, and means including passageways formed in said housing by which said internally housed detector is subjected to a fluid flow characteristic of the presence of said condition to deenergize an otherwise energized electromagnetic arresting means to thereby enable the holdercloser to release and close an otherwise open closure.
2. A condition responsive door holder-closer comprising a housing, a closer spring and a dashpot disposed within the housing, a drive spindle projecting through the housing and coupled to the spring-dashpot subcombination to be responsive to the damped forces exerted by the subcombination, means within the housing for arresting the spindle at a door holdopen position, means including one or more openings in said housing for defining passageways within said housing to facilitate fluid flow within the housing including the particulate products of combustion, a photocell detector for the particulate products of combustion located within the housing, and means interconnecting the detector to the spindle arresting means to release the spindle in response to the flow of the particulate products of combustion through said housing passageway means.
3. The combination of claim 2 in which the housing is generally horizontally disposed on a door frame immediately over the door, and an arm couples the spindle to the door so that the door and spindle are responsive motionwise to one another.
4. The combination of claim 3 in which the door is pivoted for movement relative the frame, the spindle being located adjacent the pivot axis for the door and generally at one end of the housing, and the passageway defining means being generally located at the opposite end of the housing remote from the pivot axis.
5. The combination of claim 4 in which the door holder-closer housing is elongated and generally horizontally disposed on the surface of the frame.
6. The combination of claim 5 in which the passageway defined through the housing is generally vertical.
7. The combination of claim 6 in which the passageway ddefined through the housing is both vertical and horizontal attained by openings located on the top, front, and bottom of the housing.
8. A condition responsive door holder-closer contained within a housing, comprising a photocell condition detector located within the housing and responsive to fluid flow carrying the particulate products of combustion, means including one or more openings in said housing defining a fluid flow passageway within said housing to said condition responsive detector, a closer-holder spring-dashpot combination including electrically operated means for arresting the spring-dashpot combination to a door hold-opEn position with the spring, dashpot and electrically operated means being disposed within the housing, and means interconnecting the condition responsive detector to the electrically operated arresting means whereby the passage of the particulate products of combustion through an opening into the passageway releases an arrested spring-dashpot combination.
9. The combination of claim 8 in which the one or more openings is located generally at one end of the housing, and means located generally at the other end of the housing and projecting therethrough for coupling to a door to effect hold-open and also door release.
10. The combination of claim 9 in which a door opening is defined by a frame having a header portion at the top of the frame, and in which the housing is supported at the top of the frame with the one or more housing openings being generally located toward the mid-portion of the header and the door coupling means being located generally at an end portion of the header.
11. The combination of claim 8 in which a plurality of housing openings defines a complete fluid flow passageway into and out of the housing.
12. The combination of claim 10 in which a plurality of housing openings defines a complete fluid flow passageway into and out of the housing.
13. A condition responsive door holder-closer to control a door pivotally mounted relative an opening defined by a frame having a header portion at the top of the frame, comprising a housing supported above the door on or near the header portion, a closer spring and a dashpot disposed within the housing, a drive spindle projecting through the housing and coupled to the spring-dashpot combination to be responsively rotatable by the damped forces exerted by the combination, the spindle being located adjacent the pivot axis of the door and generally near an end of the housing mounted adjacent an end of the header portion, an arm coupling the projected end of the spindle to the door to also responsively rotate the spindle by forces exerted on the door, a photocell detector for the particulate products of combustion located generally at the opposite end of the housing toward the midportion of the door opening, electrically operated means located within the housing for arresting the spring-dashpot combination to a door hold-open position, and means interconnecting the condition responsive detector to the electrically operated arresting means whereby the passage of products of combustion through the door opening releases an arrested springdashpot combination to close an open door.
14. The combination of claim 13 in which the housing is elongated and is disposed generally horizontally on its elongated axis.
15. In a condition responsive door holder contained within a housing and adapted to be mounted immediately over a door opening, the holder including electrically operated means within the housing for effecting a door hold-open condition, the improvement comprising a particulate products of combustion photocell detector located within the housing and responsive to particulate products of combustion and in which detector an electrical current characteristic is altered in response to detection of such particulate products of combustion, means including one or more openings in said housing defining a fluid flow passageway within said housing to said detector, and means interconnecting the detector to the electrically operated means whereby the passage of the particulate products of combustion through the passageway actuates the door holder from a hold-open condition whereby the door is no longer positively held open by the door holder.
US368827A 1972-01-07 1973-06-11 Condition responsive door holder-closer Expired - Lifetime US3905063A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US368827A US3905063A (en) 1972-01-07 1973-06-11 Condition responsive door holder-closer
CA193,664A CA991662A (en) 1973-06-11 1974-02-27 Condition responsive door holder-closer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21620272A 1972-01-07 1972-01-07
US368827A US3905063A (en) 1972-01-07 1973-06-11 Condition responsive door holder-closer

Publications (1)

Publication Number Publication Date
US3905063A true US3905063A (en) 1975-09-16

Family

ID=26910775

Family Applications (1)

Application Number Title Priority Date Filing Date
US368827A Expired - Lifetime US3905063A (en) 1972-01-07 1973-06-11 Condition responsive door holder-closer

Country Status (1)

Country Link
US (1) US3905063A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964125A (en) * 1975-06-12 1976-06-22 Henry William Tansley Electromagnetic door holding device
US4040143A (en) * 1976-08-06 1977-08-09 Schlage Lock Company Releasable door hold-open device
US4319234A (en) * 1980-07-29 1982-03-09 Rice Royal K Smoke detector with dual sensors
US4851819A (en) * 1987-03-27 1989-07-25 Hochiki Kabushiki Kaisha Photoelectric smoke detector with permanently fixed insect net
US5140173A (en) * 1990-10-25 1992-08-18 Motus, Inc. Microprocessor controlled door holder
US5652563A (en) * 1995-11-01 1997-07-29 Maus; Andrew B. Safety system for a horse stable
US6049287A (en) * 1998-03-02 2000-04-11 Yulkowski; Leon Door with integrated smoke detector and hold open
US6321099B1 (en) * 1994-06-23 2001-11-20 Nec Corporation Portable radio unit and antenna gain switching method thereof
USD804930S1 (en) * 2015-09-23 2017-12-12 Dormakaba Deutschland Gmbh Door closure with sliding rail
USD804931S1 (en) * 2015-09-23 2017-12-12 Dormakaba Deutschland Gmbh Door closure with sliding rail
USD804932S1 (en) * 2015-09-23 2017-12-12 Dormakaba Deutschland Gmbh Sliding rail of door closure
USD816461S1 (en) * 2015-09-23 2018-05-01 Dormakaba Deutschland Gmbh Door closure with sliding rail
USD818344S1 (en) * 2015-09-23 2018-05-22 Dormakaba Deutschland Gmbh Door closure with sliding rail
US10865595B2 (en) * 2018-12-17 2020-12-15 Schlage Lock Company Llc Door closer with hold-open and release
US11072965B2 (en) * 2016-12-07 2021-07-27 Assa Abloy Entrance Systems Ab Automatic door operator for a swing door assembly
US11072964B2 (en) * 2018-01-23 2021-07-27 Jeffrey Michael Teta Compact hinge actuating device
US11078712B2 (en) * 2015-08-06 2021-08-03 Suzhou Fuerda Technology Co., Ltd. Automatic fire door closing device and system
US11187022B1 (en) * 2001-07-13 2021-11-30 Steven M. Hoffberg Intelligent door restraint
US20220090422A1 (en) * 2020-09-21 2022-03-24 Abloy Oy Hold-open arrester arrangement having a hold-open function to hold a door open
US11519212B2 (en) 2021-02-24 2022-12-06 Schlage Lock Company Llc Modular add-on devices for door closers
US11549296B2 (en) * 2018-11-07 2023-01-10 J. D. Bucklin Temperature activated door spring

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1256740A (en) * 1916-04-22 1918-02-19 Eugen Steiger Fire-alarm.
US2244507A (en) * 1939-03-06 1941-06-03 Thomas Henry Smoke indicator device
US2520340A (en) * 1947-03-10 1950-08-29 Robinson Sirman Emergency alarm system
US2591511A (en) * 1948-10-28 1952-04-01 Trist & Co Ltd Ronald Voltage unbalance indicating system
US3255441A (en) * 1962-11-30 1966-06-07 Goodwin Smoke, flame, critical temperature and rate of temperature rise detector
US3648326A (en) * 1969-11-21 1972-03-14 Rixson Inc Electromechanical door holder-closer
US3729771A (en) * 1972-03-01 1973-05-01 Rixson Firemark Latching lever assembly for door holder-closer
US3777423A (en) * 1972-01-07 1973-12-11 Rixson Inc Condition responsive door holder-closer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1256740A (en) * 1916-04-22 1918-02-19 Eugen Steiger Fire-alarm.
US2244507A (en) * 1939-03-06 1941-06-03 Thomas Henry Smoke indicator device
US2520340A (en) * 1947-03-10 1950-08-29 Robinson Sirman Emergency alarm system
US2591511A (en) * 1948-10-28 1952-04-01 Trist & Co Ltd Ronald Voltage unbalance indicating system
US3255441A (en) * 1962-11-30 1966-06-07 Goodwin Smoke, flame, critical temperature and rate of temperature rise detector
US3648326A (en) * 1969-11-21 1972-03-14 Rixson Inc Electromechanical door holder-closer
US3777423A (en) * 1972-01-07 1973-12-11 Rixson Inc Condition responsive door holder-closer
US3729771A (en) * 1972-03-01 1973-05-01 Rixson Firemark Latching lever assembly for door holder-closer

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964125A (en) * 1975-06-12 1976-06-22 Henry William Tansley Electromagnetic door holding device
US4040143A (en) * 1976-08-06 1977-08-09 Schlage Lock Company Releasable door hold-open device
US4319234A (en) * 1980-07-29 1982-03-09 Rice Royal K Smoke detector with dual sensors
US4851819A (en) * 1987-03-27 1989-07-25 Hochiki Kabushiki Kaisha Photoelectric smoke detector with permanently fixed insect net
US5140173A (en) * 1990-10-25 1992-08-18 Motus, Inc. Microprocessor controlled door holder
US6321099B1 (en) * 1994-06-23 2001-11-20 Nec Corporation Portable radio unit and antenna gain switching method thereof
US5652563A (en) * 1995-11-01 1997-07-29 Maus; Andrew B. Safety system for a horse stable
US6049287A (en) * 1998-03-02 2000-04-11 Yulkowski; Leon Door with integrated smoke detector and hold open
US11187022B1 (en) * 2001-07-13 2021-11-30 Steven M. Hoffberg Intelligent door restraint
US11078712B2 (en) * 2015-08-06 2021-08-03 Suzhou Fuerda Technology Co., Ltd. Automatic fire door closing device and system
USD804932S1 (en) * 2015-09-23 2017-12-12 Dormakaba Deutschland Gmbh Sliding rail of door closure
USD816461S1 (en) * 2015-09-23 2018-05-01 Dormakaba Deutschland Gmbh Door closure with sliding rail
USD818344S1 (en) * 2015-09-23 2018-05-22 Dormakaba Deutschland Gmbh Door closure with sliding rail
USD804931S1 (en) * 2015-09-23 2017-12-12 Dormakaba Deutschland Gmbh Door closure with sliding rail
USD804930S1 (en) * 2015-09-23 2017-12-12 Dormakaba Deutschland Gmbh Door closure with sliding rail
US11072965B2 (en) * 2016-12-07 2021-07-27 Assa Abloy Entrance Systems Ab Automatic door operator for a swing door assembly
US11072964B2 (en) * 2018-01-23 2021-07-27 Jeffrey Michael Teta Compact hinge actuating device
US11549296B2 (en) * 2018-11-07 2023-01-10 J. D. Bucklin Temperature activated door spring
US10865595B2 (en) * 2018-12-17 2020-12-15 Schlage Lock Company Llc Door closer with hold-open and release
US20220090422A1 (en) * 2020-09-21 2022-03-24 Abloy Oy Hold-open arrester arrangement having a hold-open function to hold a door open
US11619087B2 (en) * 2020-09-21 2023-04-04 Abloy Oy Hold-open arrester arrangement having a hold-open function to hold a door open
US11519212B2 (en) 2021-02-24 2022-12-06 Schlage Lock Company Llc Modular add-on devices for door closers

Similar Documents

Publication Publication Date Title
US3905063A (en) Condition responsive door holder-closer
US3777423A (en) Condition responsive door holder-closer
US3908309A (en) Particulate products of combustion detector for closure frame
US4837560A (en) Smoke alarm controlled unlocking apparatus for window bars
US4763115A (en) Fire or smoke detection and alarm system
US3409885A (en) Smoke detection apparatus
US4438428A (en) Multiple function personal security alarm
US5082316A (en) Release mechanism and method with alarm circuit
US4304070A (en) Emergency air vent structure
US5576581A (en) Door control system and release mechanism
US3653021A (en) Universally adjustable and focusable alarm apparatus and electric circuitry therefor
US4354699A (en) Apparatus for delaying opening of doors
US5605185A (en) Fire door system
US4054008A (en) Automatic door opening arrangement
US11472672B2 (en) Elevator door safety system
US3665996A (en) Closure operator
US20020196155A1 (en) Alarm system and method
CA1150381A (en) Smoke detector
EP0099223A2 (en) Electromechanical release mechanism
US3968379A (en) Photocell smoke detector
US3051281A (en) Fire door
CA1053773A (en) Fire protection apparatus
US4754263A (en) Burglar alarm system
FR2724247A1 (en) FIRE DETECTION DEVICE IN A CLOSED ENCLOSURE
US3579216A (en) Particle detector