US3900587A - Imaging process employing treated carrier particles - Google Patents

Imaging process employing treated carrier particles Download PDF

Info

Publication number
US3900587A
US3900587A US431279A US43127974A US3900587A US 3900587 A US3900587 A US 3900587A US 431279 A US431279 A US 431279A US 43127974 A US43127974 A US 43127974A US 3900587 A US3900587 A US 3900587A
Authority
US
United States
Prior art keywords
dye
carrier particles
particles
carrier
electrostatic latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US431279A
Inventor
Myron James Lenhard
Joseph Mammino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US431279A priority Critical patent/US3900587A/en
Application granted granted Critical
Publication of US3900587A publication Critical patent/US3900587A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1138Non-macromolecular organic components of coatings

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

A carrier for electrostatographic developers comprising carrier particles comprising metals, metal alloys, metal compounds and mixtures thereof treated with a strongly adhering adsorbable organic dye. This carrier is used with toner particles to develop electrostatic latent images.

Description

United States Patent [1 1 Lenhard et al.
[451 Aug. 19, 1975 IMAGING PROCESS EMPLOYING TREATED CARRIER PARTICLES [73] Assignee: Xerox Corporation, Stamford,
Conn.
22 Filed: Jan. 7, 1974 21 Appl. No.: 431,279
Related U.S. Application Data [62] Division of Ser. No, 218,014, Jan. 14, 1972.
[52] U.S. CI 427/19; 96/1 R; 252/621; 96/1 SD [51] Int. Cl G03g 13/08 [58] Field of Search 117/17.5, 100 B, 100 M, 117/100 S, 27; 96/1 R, 1 SD; 252/621; 355/3, 4, 17
[56] References Cited UNITED STATES PATENTS 2,624,652 1/1953 Carlson 117/17.5
8/1965 Sachsel et a1 1 17/100 S 3,454,347 7/1969 Leimbacher 3,609,532 9/1971 Kirk et al 252/6252 3,743,682 7/1973 Crooks ll7/l7.5
OTHER PUBLICATIONS Russian Patent Abstracts, V01. 1, No. 1, Textiles Dying, No. 144460, Applying Colored Designs to Textiles by Kunova.
Surface Chemistry by Osipow, Reinhold Publishing Co., (1962), Pp- 540-555.
Primary ExaminerMichael Sofocleous 5 7 ABSTRACT A carrier for electrostatographic developers comprising carrier particles comprising metals, metal alloys, metal compounds and mixtures thereof treated with a strongly adhering adsorbable organic dye. This carrier is used with toner particles to develop electrostatic latent images.
5 Claims, No Drawings IMAGING PROCESS EMPLOYING TREATED CARRIER PARTICLES This application is a divisional application of copending application Ser. No. 218,014, filed Jan. 14, 1972.
BACKGROUND OF THE INVENTION This invention relates in general to imaging systems and, more particularly, to improved developing materials, their manufacture and use.
The formation and development of images on the surface of photoconductive materials by electrostatic means is well known. The basic electrostatographic imaging process, as taught by C. F. Carlson in U.S. Pat. No. 2,297,691, involves placing a uniform electrostatic charge on a photoconductive insulating layer, exposing the layer to a light and shadow image to dissipate the charge on the areas of the layer exposed to the light and developing the resulting electrostatic latent image by depositing on the image a finely divided electroscopic material referred to in the art as toner. The toner will normally be attracted to those areas of the layer which retain a charge, thereby forming a toner image corresponding to the electrostatic latent image. This powder image may then be transferred to a support surface such as paper. The transferred image may subsequently be permanently affixed to the support surface as by heat. Instead of latent image formation by uniformly charging the photoconductive layer and then exposing the layer to a light and shadow image, one may form the latent image by directly charging the layer in image configuration. The powder image may be fixed to the photoconductive layer if elimination of the powder image transfer step is desired. Other suitable fixing means such as solvent or overcoating treatment may be substituted for the foregoing heat fixing step.
Many methods are known for applying the electroscopic particles to the electrostatic latent image to be developed. One development method, as disclosed by E. N. Wise in U.S. Pat. No. 2,618,552 is known as cascade development. In this method, a developer material comprising relatively large carrier particles having finely divided toner particles electrostatically clinging to the surface of the carrier particles is conveyed to and rolled or cascaded across the electrostatic latent image bearing surface. The composition of the toner particles is so chosen as to have a triboelectric polarity opposite that of carrier particles. As the mixture cascades or rolls across the image bearing surface, the toner parti cles are electrostatically deposited and secured to the charged portion of the latent image and are not deposited on the uncharged or background portions of the image. Most of the toner particles accidentally deposited in the background are removed by the rolling carrier, due apparently, to the greater electrostatic attraction between the toner and the carrier than between the toner and the discharged background. The carrier particles and unused toner particles are then recycled. This technique is extremely good for the development of line copy images. The cascade development process is the most widely used commercial xerographic development technique. A general purpose office copying machine incorporating this technique is described in U.S. Pat. No.. 3,099,943.
Another technique for developing electrostatic images is the magnetic brush process as disclosed, for example, in U.S. Pat. No. 2,874,063. In this method, a
developer material containing toner and magnetic carrier particles is carried by a magnet. The magnetic field of the magnet causes alignment of the magnetic carriers in a brushlike configuration. This magnetic brush" is engaged with an electrostatic image bearing surface and the toner particles are drawn from the brush to the electrostatic image by electrostatic attraction.
While ordinarily capable of producing good quality images, conventional developing materials suffer serious deficiencies in certain areas. The developing materials must flow freely to facilitate accurate metering and even distribution during the development and developer recycling phases of the electrostatographic process. Some developer material though possessing desirable properties such as proper triboelectric characteristics, are unsuitable because they tend to cake, bridge and agglomerate during handling and storage. Adherence of carrier particles to reusable electrostatographic imaging surfaces causes the formation of undesirable scratches on the imaging surfaces during image transfer and surface cleaning steps. The coatings of most carrier particles deteriorate rapidly when employed in continuous processes which require the recycling of carrier particles by bucket or screw conveyors partially submerged in the developer supply. Deterioration occurs when portions of or the entire coating separates from the carrier core. The separation may be in the form of chips, flakes or entire layers and is primarily caused by fragile, poorly adhering coating materials which fail upon impact and abrasive contact with machine parts and other carrier particles. Carriers having coatings which tend to chip and otherwise separate from the carrier core must be frequently replaced thereby increasing expense and consuming time. Print deletion and poor print quality occur when carriers having damaged coatings are not replaced. Fines and grit formed from carrier disintegration tend to drift and form unwanted deposits on critical machine parts. Many carrier coatings having high compressive and tensile strength either do not adhere well to the carrier core or do not possess the desired triboelectric characteristics. The triboelectric and flow characteristics of many carriers are adversely affected when relative humidity is high. For example, the triboelectric values of some carrier coatings fluctuate with changes in relative humidity and are not desirable for employment in electrostatographic systems, particularly in automatic-machines which require carriers having stable and predictable triboelectric values. Thus, there is a continuing need for a better system for developing electrostatic latent images.
SUMMARY OF THE INVENTION It is, therefore, an object of this invention to provide developing materials which overcome the above noted deficiencies.
It is another object of this invention to provide developing materials which flow freely.
It is a further object of this invention to provide carrier coating materials which tenaciously adhere to carrier cores.
It is still a further object of this invention to provide carrier coatings which are resistant to chipping, flaking and the like.
It is another object of this invention to provide developers having physical and chemical properties superior to those of known developer materials.
@dyes such as Sirius Supra Green FFGL The above objects and others are accomplished, generally speaking, by providing dye treated metallic carrier particles having improved properties. In general, the carrier treating materials of this invention are organic dyes which are adsorbable on the outer surface of metallic carrier particles. The adsorbed organic dye adheres to the carrier surface through a mechanism which is not clearly understood. The adsorbed organic dye may consist of monolayers, multilayers, concentrations of dye material in tiny capillaries of the adsorbent carrier surface or a combination of these forms. The dye may be physically and/or chemically adsorbent to the surface of the metal carriers.
Any suitable dye which is adsorbable on a metal surface may be employed. Typical adsorbable dyes include: azo dyes such as Oil Red (CI. 258), Luxol Fast Blue AR, Solvent Blue 37 (CI. 13390), Sudan Red BV ,(C.I. .1125), and Sudan Orange RA New (CI. 12055);
azoic dyes such as Napthol As-LT (C.l. 37540) and Fast Black LB Base (CI. 37205); acridine dyes such as Flaveosine (CI. 46060) and Acridine Orange R (CI. 46055); azine dyes such as Safranine T (CI. 50240) and Rhoduline Violet (CI. 50215); ketone amine dyes such as Helindon Yellow (C.I. 5600) and Helindon Brown .CR (CI. 56045); methine dyes such as Astro Violet FF extra C.l. 48080) and Astro Violet FN extra (CI. 48075); nitro dyes such as Picric Acid (CI. 10305) and Brilliant Yellow (CI. 10317); nitroso dyes such as Dioxine L (C.I. 10015) and Gambine R (CI.
10010); oxazine dyes such as Ultracyanine (CI. 51130) and Meta Celestine Blue (C.l. 51170); quinoline dyes such as Supra Light Yellow GGL (CI. 47020) and Quinoline Yellow (C.l. 47005); thiazine dyes such as lndochromogen S (CI. 52050) and Methylene Blue A (CI. 52015); thiazole dyes such as Primuline (C.l. 49000) and Thioflavin (CI. 49005); triarylmethane dyes such as Wool Fast Violet FB (CI. 44500) and v Wool Fast Blue FGL (CI. 44505); dioxazine dyes such as Sirius Supra Blue FFB (CI. 51305) and Sirius Light Blue FFGL (C.I. 51320); xanthene dyes such as Fanal Red 6BM (CI. 45175) and Spirit Fast Violet K (C.I.
, 45185); sulfur dyes such as Sulphur Brown 42 (CI. 53030) and Sulphur Brown 35 (CI. 53035); anthraquinone dyes such as Alizarin Orange G (CI. 58250) and dinitroanthrachrysone disulfonic acid (CI. 58510); in-
digoid dyes such as Soluble Vat Blue 2B (CI. 73066) and Indigo Yellow 3G (CI. 73100); phthalocyanine (CI. 74320) and Solvent Blue 24 (CI. 74380), and mixtures thereof. Preferably, the carrier particles are treated with a solution of the adsorbable dye because greater control over uniform treatment of the carrier particles is achieved. Satisfactory results are achieved with solu- I tions containing from about 0.5 to about 25 parts by weight of dissolved adsorbable dye. Surprisingly, no free dye material is observed with carrier particles treated with solutions containing a dye concentration as high as 25 parts by weight dye. Generally, the quantity of dye adsorbed on the carrier surfaces decreases per unit time as the concentration of dissolved dye decreases. Various additives may be added to the dye solution to promote adsorption of the dye onto the carrier surface. For example, surface active agents such as toluene, methyl ethyl ketone and methanol; surface tension reducing agents such as ethoxylated nonyl phenols, for example, Triton X-l00, available from Rohm & Haas Company, neutral detergents such as Sulframin DR, available from Ultra Chemical Works, and dioxtyl sodium sulfosuccinate, for example, Aerosol OT, available from American Cyanamid Company, as well as core oxidation inhibitors such as amonium thiocyanate and cerric sulfate may be employed in the dye solution. The rate of adsorption of the dye is often improved by imparting vibratory energy to the dye solution. Satisfactory results are achieved with vibratory frequencies of from about 1700 to about 2,100 cycles per minute. After the carrier particles are treated with the dye solution, the solvent and excess dye may be removed by any suitable technique such as by exposure to infrared heat lamps, oven drying, drying in ambient air, forced air drying and the like. The amount of dye adsorbed by a carrier depends upon numerous factors such as the magnesium combination of materials employed, the length of contact time, the temperature of the solution, the presence of additives (e.g., surface active agents) the use of agitation, and other conditions. The carrier need not be treated to the extent that maximum dye adsorption is achieved. However, it is desirable to remove all unadsorbed dye from the treated carrier mixture. Removal of excess unadsorbed dye, if any, may be effected by any suitable process such as by washing with a solvent, air separation, or screening. Removal of unadsorbed dye is preferred to avoid undesirable contamination of reusable photoreceptor surfaces and variation in print quality as the unadsorbed dye material is depleted from a reusable developer. Sufficient dye is adsorbed on the carrier surface of this invention when a carrier core is merely immersed in a solution of dye having a concentration of about /2 percent by weight, based on the weight of the solvent, at F. until completely wetted and thereafter removed and dried. Complete wetting occurs when the observed color change of the carrier surface stabilizes. Carrier surfaces comprising aluminum, nickel, zinc, iron and alloys thereof treated with azoic, azine, ketone, phthalocyanine dyes or mixtures thereof are preferred because of the marked effect on the triboelectric value of the carrier per given quantity of dye. Optimum results are achieved with porous carrier surfaces treated with adsorbed dyes because of the improved adherence and greater life of the adsorbed dye.
Any suitable carrier particle containing a metal, metal compound, metal alloy or mixture of metals which will adsorb organic dyes may be employed. Typical metals include: aluminum, cobalt, copper, iron, lead, magnesium, nickel, tin, zinc, gold, silver, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium, zirconium and mixtures and alloys thereof. Many metallic compounds will also absorb dyes. Typical metallic compounds include metal oxides such as aluminum oxide, oxidized steel, nickel oxide, and zirconium oxide;
The carriers of this invention may be treated with an adsorbable dye by any suitable means. Generally, the carriers are treated with an adsorbable dye dissolved in a solvent. The carrier may be treated with the dye solution by spraying, dipping, or any other suitable technique. An ultimate treated carrier particle diameter between about 1 and about 1,000 microns performs satisfactorily. For a magnetic brush development process, the treated carrier particles should have a diameter be tween about 1 to about 250 microns. In addition, carrier particles for use in magnetic'brush development systems should be attractable by a magnet. For cascade development processes, the treated carrier particles should have a diameter between about 30 microns and about 1,000 microns. Further, carrier particles for cascade development should possess sufficient density and inertia to avoid adherence to electrostatic images during development. Adherence of carrier beads to a reusable electrostatographic imaging surface is undesirable cleaning steps, particularly when cleaning is accomplished by a web cleaner such as the web disclosed by W. P. Graff, Jr. et al. in US. Pat. No. 3,186,838.
The carrier particles may have a smooth, porous or rough surface and may have a spherical, regular, or irregular configuration. For cascade development processes, the carrier particles are preferably selected to have a spherical shape for maximum control over copy quality including control over image density, image definition, and reduction of background deposits.
Any suitable pigmented or dyed electroscopic toner material may be employed with the treated carriers of this invention. Typical toner materials include: gum, copal, gum sandarac, rosin, cumaroneindene resin, asphaltum, gilsonite, phenolformaldehyde resins, rosin modified phenolformaldehyde resins, methacrylate res ins, polystyrene resins, polypropylene resins, epoxy resins, polyethylene resins and mixtures thereof. The particular toner material to be employed obviously depends upon the separation of the toner from treated carrier beads in the triboelectric series. Among the patents describing the electroscopic toner compositions are US. Pat. Nos. 2,659,670 to Copley; 2,753,308 to Landrigan; 3,079,342 to lnsalaco; Re 25,136 to Carlson; and 2,788,288 to Rheinfrank et al. These toners generally have an average particle diameter between about 1 and about 30 microns.
Any treated carrier particle may be employed in combination with any suitable toner particle by selecting an adsorbable dye material which will permit the carrier particles to acquire a charge having an opposite polarity to that of the toner particles when brought in close contact with the toner particles so that the toner particles adhere to and surround the carrier particles. When a positive reproduction of an electrostatic image is desired, the adsorbable dye is selected so that the toner particles acquire a charge having a polarity opposite to that of the electrostatic latent image. Alternatively, if a reversal reproduction of the electrostatic image is desired, the adsorbable organic dye is selected so that the toner particles acquire a charge having the same polarity as that of the electrostatic image. Thus, the adsorbable dye for the carrier particles is selected in accordance with its triboelectric properties in respect to the electroscopic toner so that whenm'ixed or brought into mutual contact, either the adsorbable dye the toner than the carrier particles. Generally speaking,-
satisfactory results are obtained when about 1 part by weight of toner is used with about 10 to about 200 parts by weight of treated carrier.
Surprisingly, the adsorbed dyes of this invention adhere extremely well to carrier particle surfaces without the aid of a resin binder. Thus, the problems encountered with resinous carrier coatings such as carrier particle agglomeration during and subsequent to coating,
' coating deterioration through chipping and flaking, and
print deletion due to loose carrier coating particles are eliminated with the carriers of this invention. In addition, carriers treated with adsorbed organic dyes possess greater resistance to fluctuations in triboelectric properties for greater periods of time.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following examples furtherdefine, describe and compare exemplary methods of preparing the development system components of the present invention and of utilizing them in a development process. Parts and percentages are by weight unless otherwise indicated. The examples, other than the control examples, are also intended to illustrate the various preferred embodiments of the present invention.
EXAMPLE I About 1000 grams of iron filings having an average particle size of about microns is dispersed in a dye solution consisting of about 1 gram of Oil Red dye (available from E. I. duPont de Nemours & Company, Incorporated) dissolved in about 300 milliliters of acetone. After the resulting slurry is stirred for about 5 minutes, the excess dye solution is removed by decantation. The treated iron filings are then loosely scattered in a shallow pan and dried in an oven heated to about l40F. About 97 grams of the dried iron particles are mixed with about 3 grams of toner particles comprising a carbon black pigmented blend of polystyrene and polybutylmethacrylate having a particle size of about 14 microns to form a magnetic brush developer. The resulting magnetic developer is then formed into a magnetic brush as described in US. Pat. No. 2,874,063 and employed to develop a positively charged electrostatic latent image on a selenium photoreceptor surface. The deposited toner image is electro statically transferred to a paper sheet. The transferred image is dense, very sharp and very little background discoloration is observed.
EXAMPLE I] The process described in Example I is repeated with about 1 gram of Luxol Fast Blue AR dye (available from E. I. duPont de Nemours & Company, Incorporated) substituted for the Oil Red dye. The toner particles deposit in the discharged areas of the positively charged electrostatic latent image bearing selenium photoreceptor surface to form a dense, sharp, reversal image.
EXAMPLE III EXAMPLE IV The developer described in Example III is formed into a magnetic brush as described in US. Pat. No. 2,874,063 and employed to develop a negatively charged electrostatic latent image bearing zinc oxide binder plate surface. The toner particles deposit in the charged areas to form clearly defined direct images devoid of visible background toner deposits.
EXAMPLE V The process described in Example IV is repeated with the developer employed in Example I. The toner particles deposit in the discharged areas to form dense reversal toner images.
EXAMPLE VI The process described in Example IV is repeated 7 with untreated iron filings substituted for the dye treated iron filings. The resulting toner image is characterized by poorly defined low density direct and reversal images. Thus, the results described in Examples IV, V and VI clearly demonstrate the rapid conversion of normally unsuitable or marginal carrier material to excellent carriers by treating the carrier materials with an adsorbable organic dye.
EXAMPLE VII About 450 grams of zirconium oxide particles having an average particle size of about 600 microns is dispersed in a dye solution consisting of Safranine T dissolved in about 400 milliliters of methyl ethyl ketone. After the resulting slurry is stirred for about minutes, the excess dye solution is removed by decantation and the treated particles are dried. About 150 grams of the dried treated carrier particles are mixed with about 1 gram of carbon black pigmented styrenebutylmethacrylate copolymer toner particles having a particle size of about 10-15 microns to form a developer composition. The developer composition is employed in a Xerox Model D electrostatic copying machine to develop a reversal charged electrostatic latent image on a selenium photoreceptor surface. The deposited toner image is sharp and clear with very little background discoloration.
EXAMPLE VIII About 450 grams of nickel particles having an average particle size of about 450 microns is dispersed in a dye solution consisting of Monastrol Green GNS dis solved in about 450 milliliters of toluene. After the re sulting slurry is stirred for about 5 minutes, the excess dye solution is removed by decantation and the treated particles are dried. About 100 grams of the dried treated carrier particles are mixed with about 1 gram of carbon black pigmented styrene-butyl methacrylate copolymer toner particles having a particle size of about l6 microns to form a developer composition. The developer composition is employed in a Xerox Model D electrostatic copying machine to develop a positively charged electrostatic latent image on a selenium photoreceptor surface. The deposited toner image is dense, sharp and clear with no visible discoloration due to background toner deposits.
EXAMPLE IX About 450 grams of aluminum shot particles having an average particle size of about 250 microns is dispersed in a dye solution consisting of Monastrol Blue RFS dissolved in about 400 milliliters of toluene. After the resulting slurry is stirred for about 5 minutes, the excess dye solution is removed by decantation and the treated particles are dried. About 200 grams of the dried treated carrier particles are mixed with about 1 gram of carbon black pigmented styrenebutylmethacrylate copolymer toner particles having a particle size of about 15 microns to form a developer composition. The developer composition is employed in a Xerox Model D electrostatic copying machine to develop a positively charged electrostatic latent image on a selenium photoreceptor surface. The deposited toner image is sharp, clear and dense with very little discoloration due to background toner deposits.
EXAMPLE X About 450 grams of aluminum-zinc shot particles having an average particle size of about 250 microns is dispersed in a dye solution consisting of Monastrol Blue BXS dissolved in about 450 milliliters of toluene. After the resulting slurry is stirred for about 5 minutes, the excess dye solution is removed by decantation and the treated particles are dried. About 150 grams of the dried treated carrier particles are mixed with about 1 gram of toner particles described in Example IX to form a developer composition. The developer composition is employed in a flat plate type electrostatic copying machine to develop a positively charged electrostatic latent image on a selenium photoreceptor surface. The deposited toner image is clear, sharp and dense with a very slight coloration of background areas.
EXAMPLE XI About 300 grams of iron shot particles having an average particle size of about 100 microns is dispersed in a dye solution consisting of Monastrol Blue GS dissolved in about 450 milliliters of toluene. After the resulting slurry is stirred for about 5 minutes, the excess dye solution is removed by decantation and the treated particles are dried. About grams of the dried treated carrier particles are mixed with about 1 gram of toner particles described in Example IX to form a developer composition. The developer composition is employed in a flat plate type electrostatic copying machine to develop a positively charged electrostatic latent image on a selenium photoreceptor surface. The deposited toner image is sharp, clear and dense with a slight coloration of the background areas.
EXAMPLE xn A control sample containing about one part colored toner particles having an average particle size of about 10 to about 20 microns and about 99 parts coated carrier particles available in the Xerox 813 Developer sold by the Xerox Corporation is cascaded across a reusable electrostatic image bearing selenium surface. The resulting developed toner image is electrostatically transferred to a sheet of paper whereon it is fused by heat. After the copying process is repeated 2,000 times, the developer mix is examined for the presence of carrier coating chips and flakes. Numerous carrier coating chips and flakes are found in the developer mix.
EXAMPLE XIII The process of Example XII is repeated with the carrier described in Example IX substituted for the Xerox 813 carrier. An examination of the developer mix after test termination reveals substantially no loose dye material abraded from the carrier surfaces.
EXAMPLE XIV The process of Example XII is repeated with the carrier described in Example X substituted for the Xerox 813 carrier. An examination of the developer mix after test termination reveals substantially no loose dye material abraded from the carrier surfaces.
EXAMPLE XV The process of Example XII is repeated with the carrier described in Example XI substituted for the Xerox 813 carrier. An examination of the developer mix after test termination reveals substantially no loose dye material abraded from the carrier surfaces.
EXAMPLE XVI The process of Example XII is repeated with the carrier described in Example VIII substituted for the Xerox 813 carrier. An examination of the developer mix after test termination reveals substantially no loose dye material abraded from the carrier surfaces.
EXAMPLE XVII The process of Example XII is repeated with the carrier described in Example VII substituted for the Xerox 813 carrier. An examination of the developer mix after test termination reveals substantially no loose dye material abraded from the carrier surfaces.
EXAMPLE XVIII The process of Example XII is repeated with the carrier described in Example II substituted for the Xerox 813 carrier. An examination of the developer mix after test termination reveals substantially no loose dye material from the carrier surfaces.
Although specific materials and conditions are set forth in the above exemplary processes in making and using the treated carriers of this invention, these are merely intended as illustrations of the present invention. Various other toners, organic dyes, carriers, additives, substitutes and processes such as those listed above may be substituted for those in the Examples with similar results.
Other modifications of the present invention will occur to those skilled in the art upon a reading of the present disclosure. These are intended to be included within the scope of this invention.
What is claimed is:
1. An electrostatographic imaging process comprising the steps of forming an electrostatic latent image on an imaging surface and developing said electrostatic latent image by contacting said electrostatic latent image with an electrostatographic developer mixture comprising finely divided toner particles electrostatically clinging to the surface of larger, dye-treated carrier particles, said carrier particles comprising solid metallic particles selected from the group consisting of metals, metal alloys, metal compounds, and mixtures thereof coated with an adsorbed layer of an organic dye wherein said dye-treated carrier particles are characterized as being resistant to fluctuations in triboelectric properties, whereby at least a portion of said finely divided toner particles are attracted to and held on said imaging surface in conformance to said electrostatic latent image.
2. An electrostatographic imaging process comprising the steps of forming an electrostatic latent image on an imaging surface and developing said electrostatic latent image by contacting said electrostatic latent image with an electrostatographic developer mixture comprising finely divided toner particles electrostatically clinging to the surface of dye-treated carrier particles, said dye-treated carrier particles comprising metallic carrier particles coated with an adsorbed layer of an organic dye and wherein said dye-treated carrier particles are characterized as being resistant to fluctuations in triboelectric properties, said carrier particles having an average particle diameter from between about 1 micron and about 1,000 microns and having been selected from the group consisting of metals, metal alloys, metal compounds, and mixtures thereof, said dye having been selected in accordance with its triboelectric properties with respect to said toner particles so that when said toner particles are mixed or brought into contact with said treated carrier particles either said treated carrier particles or said toner particles are charged positively if said toner particles are below said treated carrier particles in a triboelectric series and negatively if said toner particles are above said treated carrier particles in said triboelectric series, whereby at least a portion of said finely divided toner particles are attracted to and held on said imaging surface in conformance to said electrostatic latent image.
3. An electrostatographic imaging process according to claim 2 wherein said metallic carrier particles are selected from aluminum, cobalt, copper, iron, lead, magnesium, nickel, tin, zinc, gold, silver, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium, zirconium, metal oxides, refractory nitrides, carbides, and mixtures thereof.
4. An electrostatographic imaging process according to claim 2 wherein said organic dye is selected from the group consisting of azo dyes, azoic dyes, azine dyes ketone dyes, phthalocyanine dyes, and mixtures thereof.
5. An electrostatographic imaging process according to claim 2 wherein said organic dye comprises Oil Red dye and said metallic carrier particles comprise iron filmgs.

Claims (5)

1. AN ELECTROSTATOGRAPHIC IMAGING PROCESS COMPRISING THE STEPS OF FORMING AN ELECTROSTATIC LATENT IMAGE ON AN IMAGING SURFACE AND DEVELOPING SAID ELECTROSTATIC LATENT IMAGE BY CONTACTING SAID ELECTROSTATIC LATENT IMAGE WITH AN ELECTROSTATOGRAPHIC DEVELOPER MIXTURE COMPRISING FINELY DIVIDED TONER PARTICLES ELECTROSTATICALLY CLINGING TO THE SURFACE OF LARGER, DYE-TREATED CARRIER PARTICLES, SAID CARRIER PARTICLES COMPRISING SOLID METALLIC PARTICLES SELECTED FROM THE GROUP CONSISTING OF METALS, METAL ALLOYS, METAL COMPOUNDS, AND MIXTURES THEREOF COATED WITH AN ADSORBED LAYER OF AN ORGANIC DYE WHEREIN SAID DYE-TREATED CARRIER PARTICLES ARE CHARACTERIZED AS BEING RESISTANT TO FLUCTUATIONS IN TRIBOELECTRIC PROPERTIES, WHEREBY AT LEAST A PORTION OF SAID FINELY DIVIDED TONER PARTICLES ARE ATTRACTED TO AND HELD ON SAID IMAGING SUFACE IN CONFORMANCE TO SAID ELECTROSTATIC LATENT IMAGE.
2. An electrostatographic imaging process comprising the steps of forming an electrostatic latent image on an imaging surface and developing said electrostatic latent image by contacting said electrostatic latent image with an electrostatographic developer mixture comprising finely divided toner particles electrostatically clinging to the surface of dye-treated carrier particles, said dye-treated carrier particles comprising metallic carrier particles coated with an adsorbed layer of an organic dye and wherein said dye-treated carrier particles are characterized as being resistant to fluctuations in triboelectric properties, said carrier particles having an average particle diameter from between about 1 micron and about 1,000 microns and having been selected from the group consisting of metals, metal alloys, metal compounds, and mixtures thereof, said dye having been selected in accordance with its triboelectric properties with respect to said toner particles so that when said toner particles are mixed or brought into contact with said treated carrier particles either said treated carrier particles or said toner particles are charged positively if said toner particles are below said treated carrier particles in a triboelectric series and negatively if said toner particles are above said treated carrier particles in said triboelectric series, whereby at least a portion of said finely divided toner particles are attracted to and held on said imaging surface in conformance to said electrostatic latent image.
3. An electrostatographic imaging process according to claim 2 wherein said metallic carrier particles are selected from aluminum, cobalt, copper, iron, lead, magnesium, nickel, tin, zinc, gold, silver, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium, zirconium, metal oxides, refractory nitrides, carbides, and mixtures thereof.
4. An electrostatographic imaging process according to claim 2 wherein said organic dye is selected from the group consisting of azo dyes, azoic dyes, azine dyes ketone dyes, phthalocyanine dyes, and mixtures thereof.
5. An electrostatographic imaging process according to claim 2 wherein said organic dye comprises Oil Red dye and said metallic carrier particles comprise iron filings.
US431279A 1972-01-14 1974-01-07 Imaging process employing treated carrier particles Expired - Lifetime US3900587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US431279A US3900587A (en) 1972-01-14 1974-01-07 Imaging process employing treated carrier particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21801472A 1972-01-14 1972-01-14
US431279A US3900587A (en) 1972-01-14 1974-01-07 Imaging process employing treated carrier particles

Publications (1)

Publication Number Publication Date
US3900587A true US3900587A (en) 1975-08-19

Family

ID=26912491

Family Applications (1)

Application Number Title Priority Date Filing Date
US431279A Expired - Lifetime US3900587A (en) 1972-01-14 1974-01-07 Imaging process employing treated carrier particles

Country Status (1)

Country Link
US (1) US3900587A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2640192A1 (en) * 1975-09-29 1977-04-07 Xerox Corp ELECTROPHOTOGRAPHIC COLOR RECORDING PROCESS AND SUPPORT FOR CARRYING OUT THE PROCESS
FR2330040A1 (en) * 1975-10-28 1977-05-27 Xerox Corp ELECTROSTATOGRAPHIC DEVELOPER OR THE TONER AND THE CARRIER HAVE SENSITIVELY THE SAME COMPOSITION
US4057426A (en) * 1975-09-29 1977-11-08 Xerox Corporation Magenta toner with a coated carrier
US4058397A (en) * 1975-09-29 1977-11-15 Xerox Corporation Yellow developer employing a coated carrier
US4073965A (en) * 1975-09-29 1978-02-14 Xerox Corporation Yellow developer employing a coated carrier and imaging process using same
US4113641A (en) * 1977-10-07 1978-09-12 Pitney-Bowes, Inc. Carrier particles having the surface thereof treated with perfluoro sulfonic acid and method of making the same
US4147834A (en) * 1975-07-11 1979-04-03 International Business Machines Corporation Fluorinated polymer coated carrier particles
US4171274A (en) * 1977-07-07 1979-10-16 Xerox Corporation Alteration of tesselated magnetic particles by fracture
US4230787A (en) * 1976-08-10 1980-10-28 Konishiroku Photo Industry Co., Ltd. Magnetic toner for developing latent electrostatic images and a process for the preparation thereof
US4252881A (en) * 1978-12-11 1981-02-24 Xerox Corporation Developer mixture
US5422216A (en) * 1994-03-01 1995-06-06 Steward Developer composition and method of preparing the same
US5506083A (en) * 1995-01-27 1996-04-09 Xerox Corporation Conductive developer compositions with wax and compatibilizer
US5510220A (en) * 1995-01-27 1996-04-23 Xerox Corporation Conductive developer compositions with surface additives
US5516614A (en) * 1995-01-27 1996-05-14 Xerox Corporation Insulative magnetic brush developer compositions
US5798198A (en) * 1993-04-09 1998-08-25 Powdertech Corporation Non-stoichiometric lithium ferrite carrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624652A (en) * 1944-10-11 1953-01-06 Chester F Carlson Graphic recording
US3202533A (en) * 1962-07-24 1965-08-24 Ibm Method of encapsulating liquids
US3454347A (en) * 1964-05-12 1969-07-08 Heberlein & Co Ag Fabric dyeing by transferring by heating or solubilizing a dye from an electrostatically deposited,heat or solvent fused water soluble dielectric carrier
US3609532A (en) * 1969-07-25 1971-09-28 Magnaflux Corp Method of detecting inhomogeneities by the use of mixtures of fluorescent and visible dye-colored magnetic particles
US3743682A (en) * 1970-02-02 1973-07-03 Ibm An electrophotographic developer composition containing boron nitride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624652A (en) * 1944-10-11 1953-01-06 Chester F Carlson Graphic recording
US3202533A (en) * 1962-07-24 1965-08-24 Ibm Method of encapsulating liquids
US3454347A (en) * 1964-05-12 1969-07-08 Heberlein & Co Ag Fabric dyeing by transferring by heating or solubilizing a dye from an electrostatically deposited,heat or solvent fused water soluble dielectric carrier
US3609532A (en) * 1969-07-25 1971-09-28 Magnaflux Corp Method of detecting inhomogeneities by the use of mixtures of fluorescent and visible dye-colored magnetic particles
US3743682A (en) * 1970-02-02 1973-07-03 Ibm An electrophotographic developer composition containing boron nitride

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147834A (en) * 1975-07-11 1979-04-03 International Business Machines Corporation Fluorinated polymer coated carrier particles
DE2640192A1 (en) * 1975-09-29 1977-04-07 Xerox Corp ELECTROPHOTOGRAPHIC COLOR RECORDING PROCESS AND SUPPORT FOR CARRYING OUT THE PROCESS
US4057426A (en) * 1975-09-29 1977-11-08 Xerox Corporation Magenta toner with a coated carrier
US4058397A (en) * 1975-09-29 1977-11-15 Xerox Corporation Yellow developer employing a coated carrier
US4066563A (en) * 1975-09-29 1978-01-03 Xerox Corporation Copper-tetra-4-(octadecylsulfonomido) phthalocyanine electrophotographic carrier
US4073965A (en) * 1975-09-29 1978-02-14 Xerox Corporation Yellow developer employing a coated carrier and imaging process using same
FR2330040A1 (en) * 1975-10-28 1977-05-27 Xerox Corp ELECTROSTATOGRAPHIC DEVELOPER OR THE TONER AND THE CARRIER HAVE SENSITIVELY THE SAME COMPOSITION
US4230787A (en) * 1976-08-10 1980-10-28 Konishiroku Photo Industry Co., Ltd. Magnetic toner for developing latent electrostatic images and a process for the preparation thereof
US4171274A (en) * 1977-07-07 1979-10-16 Xerox Corporation Alteration of tesselated magnetic particles by fracture
US4113641A (en) * 1977-10-07 1978-09-12 Pitney-Bowes, Inc. Carrier particles having the surface thereof treated with perfluoro sulfonic acid and method of making the same
US4252881A (en) * 1978-12-11 1981-02-24 Xerox Corporation Developer mixture
US5798198A (en) * 1993-04-09 1998-08-25 Powdertech Corporation Non-stoichiometric lithium ferrite carrier
US5422216A (en) * 1994-03-01 1995-06-06 Steward Developer composition and method of preparing the same
US5506083A (en) * 1995-01-27 1996-04-09 Xerox Corporation Conductive developer compositions with wax and compatibilizer
US5510220A (en) * 1995-01-27 1996-04-23 Xerox Corporation Conductive developer compositions with surface additives
US5516614A (en) * 1995-01-27 1996-05-14 Xerox Corporation Insulative magnetic brush developer compositions

Similar Documents

Publication Publication Date Title
US4297427A (en) Polyblend coated carrier materials
US3900587A (en) Imaging process employing treated carrier particles
US4562136A (en) Two-component dry-type developer
US4209550A (en) Coating carrier materials by electrostatic process
US4040969A (en) High surface area carrier
JPS5913732B2 (en) Iron powder development carrier and its manufacturing method, developer and image forming method
JPS5913023B2 (en) High surface area carrier material
US3989648A (en) Dye coated carrier with toner
US4079166A (en) Aminolyzed carrier coatings
US4039463A (en) Electrostatographic developers comprising a carrier bead coated with a copolymer of N-vinylcarbazole and trialkoxyvinylsilane and/or triacetoxyvinylsilane
CA1055761A (en) Developer material
US4053310A (en) Durable carrier coating compositions comprising polysulfone
US4378420A (en) Process for charging toner compositions
EP0034423A1 (en) A method of making coated carrier particles for electrostatographic developer mixtures
US4043929A (en) Electrostatographic carrier composition
US4126458A (en) Inorganic fluoride reversal carrier coatings
US4126454A (en) Imaging process utilizing classified high surface area carrier materials
US4018601A (en) Electrostatographic magnetic brush imaging process employing carrier beads comprising high purity nickel
US4156607A (en) Carrier coated with acyl modified styrene copolymer, used in electrostatic imaging process
US4206065A (en) Electrostatographic developer compositions using terpolymer coated carrier
US4065305A (en) Xerographic developer
US4524120A (en) Process for charging toner compositions
JPS63250662A (en) Triboelectrostatic charge imparting member
CA1073726A (en) Developer composition containing styrene alkyl acrylate or methacrylate polymer with chemically altered aromatic groups
US4252881A (en) Developer mixture