US3873879A - In-line electron gun - Google Patents

In-line electron gun Download PDF

Info

Publication number
US3873879A
US3873879A US345665A US34566573A US3873879A US 3873879 A US3873879 A US 3873879A US 345665 A US345665 A US 345665A US 34566573 A US34566573 A US 34566573A US 3873879 A US3873879 A US 3873879A
Authority
US
United States
Prior art keywords
beams
screen
deflection
plane
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US345665A
Inventor
Richard Henry Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Licensing Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US345665A priority Critical patent/US3873879A/en
Application granted granted Critical
Publication of US3873879A publication Critical patent/US3873879A/en
Assigned to RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP. OF DE reassignment RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: RCA CORPORATION, A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/51Arrangements for controlling convergence of a plurality of beams by means of electric field only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/58Electron beam control inside the vessel
    • H01J2229/581Electron beam control inside the vessel by magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/58Electron beam control inside the vessel
    • H01J2229/583Electron beam control inside the vessel at the source
    • H01J2229/5835Electron beam control inside the vessel at the source cooperating with the electron gun

Definitions

  • ABSTRACT The three co-planar beams of an in-line gun are converged near the screen of a cathode ray tube by means of two plate-like grids transverse to the beam paths and having corresponding apertures for the three beams.
  • the three beam apertures of the first grid are aligned with the three beam paths.
  • the two outer beam apertures of the second grid are offset outwardly relative to the beam paths to produce the desired convergence.
  • the three sets of apertures also provide separate focusing fields for the three beams.
  • the second plate-like grid is formed with a barrel shape, concave toward the first grid, to minimize elliptical distortion of beam spots on the screen due to crowding of the adjacent focusing fields.
  • Each of the two outer beams is partially shielded from the magnetic flux of the deflecting yoke by means of a magnetic ring surrounding the beam path in the deflection zone, to equalize the size of the rasters scanned on the screen by the middle and outer beams.
  • Other magnetic pieces are positioned on opposite sides of the path of the middle beam, to enhance one deflection field while reducing the transverse deflection field for that beam.
  • the present invention relates to an improved in-line electron gun for a cathode ray tube, particularly a shadow mask type color picture tube.
  • the new gun is primarily intended for use in a color tube having a line type color phosphor screen, with or without light ab- :sorbing guard bands between the color phosphor lines, and a mask having elongated apertures or slits.
  • the gun could be used in the well known dot-type color tube having a screen of substantially circular color phosphor dots and a mask with substantially circular apertures.
  • An in-line electron gun is one designed to generate or initiate at least two. and preferably three, electron beams in a common plane, for example. by at least two cathodes. and direct those beams along convergent paths in that plane to a point or small area of convergence near the tube screen.
  • the gun may be designed to initially aim the beams. from the cathodes. towards convergence at the screen, as shown in FIG. 4 of Moodey US. Pat. No. 2,957,106, wherein the beam apertures in the gun electrodes are aligned along convergent paths.
  • the Moodey patent referred to above also includes an embodiment, shown in FIG. 2 and described in lines 4 to 23 of column 5, wherein an in-line gun for two coplanar beams comprises two spaced cathodes, a control grid plate and an accelerating grid plate each having two apertures aligned respectively with the two cathodes ⁇ as in FIG. 2) to initiate two parallel co-planar beam paths. and two spaced-apart beam focusing and accelerating electrodes of cylindrical form.
  • the focusing electrode nearest to the first accelerating grid plate is described as having two beam apertures that are offset toward the axis of the gun from the corresponding apertures of the adjacent accelerating grid plate, to provide an asymmetric electrostatic field in the path of each beam for deflecting the beam from its initial path into a second beam path directed toward the tube axis.
  • Netherlands U.S. Pat. application No. 6902025 published Aug. 1 l. 1970 teaches that astigmatic aberration resulting in elliptical distortion of the focused screen spots of the two off-axis beams from an in-line gun, caused by the eccentricity of the in-line beams in a common focusing field between two hollow cylindrical focusing electrodes, can be partially corrected by forming the adjacent edges ofthe cylindrical electrodes with a sinusoidal contour including four sine waves.
  • a similar problem is solved in a different manner in applicants in-line gun.
  • Another problem that exists in a cathode ray tube having an in-line gun is a coma distortion wherein the sizes of the rasters scanned on the screen by a conventional external magnetic deflection yoke are different, because of the eccentricity of the two outer beams with respect to the center of the yoke.
  • Messineo et al. U.S. Pat. No. 3,164,737 teaches that a similar coma distortion caused by using different beam velocities can be corrected by use of a magnetic shield around the path of one or more beams in a delta type gun.
  • Barkow U.S. Pat. No. 3,196,305 teaches the use of magnetic enhancers adjacent to the path of one or more beams in a delta gun, for the same purpose.
  • Krackhardt et al. U.S. Pat. No. 3,534,208 teaches the use of a magnetic shield around the middle one of three in-line beams for coma correction.
  • At least two electron beams are generated along co-planar paths toward the screen of a cathode ray tube, e.g.. a shadow mask type color picture tube, and the beams are converged near the screen by asymmetric electric fields established in the paths of two beams by two plate-like grids positioned between the beam generating means and the screen and having corresponding apertures suitably related to the beam paths.
  • the apertures in the first grid are aligned with the beam paths.
  • Two apertures in the second grid are offset outwardly with respect to the beam paths to produce the desired asymmetric fields.
  • the two outer apertures are offset, and the middle apertures of the two grids are aligned with each other.
  • the pairs of corresponding apertures also provide separate focusing fields for the beams.
  • at least a portion of the second grid may be substantially cylindrically curved in a direction transverse to the common plane of the beams, and concave to the first grid.
  • Each of the two outer beam paths of a three beam gun may be partially shielded from the magnetic flux of the deflection yoke by means of a magnetic ring surrounding each beam in the deflection zone of the tube, to minimize differences in the size of the rasters scanned on the screen by the middle and outer beams. Further correction for coma distortion may be made by positioning magnetic pieces on opposite sides of the middle beam path for enhancing one field and reducing the field transverse thereto.
  • FIG. 1 is a plan view, partly in axial section, of a shadow mask color picture tube in which the present invention is incorporated;
  • FIG. 2 is a front end view of the tube of FIG. I showing the rectangular shape
  • FIG. 3 is an axial section view of the electron gun shown in dotted lines in FIG. I, taken along the line 3-3 of that figure;
  • FIG. 4 is an axial section view of the electron gun taken along the line 44 of FIG. 3;
  • FIG. 5 is a rear end view of the electron gun of FIG. 4, taken in the direction of the arrows 5-5 thereof;
  • FIG. 6 is a transverse view. partly in section. taken along the line 6-6 of FIG. 4;
  • FIG. 7 is a front end view ofthe electron gun of FIGS. 1 and 4;
  • FIG. 8 is a similar end view with the final clement (shield cup) remmed.
  • FIGS. 9 and 10 are schematic views showing the focusing and converging electric fields associated with two pairs of beam apertures in FIG. 4.
  • FIG. 1 is a plan view of a l7 ⁇ '-9() rectangular color picture tube. for example. having a glass envelope I made up of a rectangular (FIG. 2) faceplate panel or cap 3 and a tubular neck 5 connected by a rectangular funnel 7.
  • the panel 3 comprises a viewing faceplate 9 and a peripheral flange or side wall 11 which is sealed to the funnel 7.
  • a mosaic three-color phosphor screen 13 is carried by the inner surface of the faceplate 9.
  • the screen is preferably a line screen with the phosphor lines extending substantially parallel to the minor axis Y-Y of the tube (normal to the plane of FIG. 1).
  • a multi-apertured color selection electrode or shadow mask 15 is removably means. in predetermined spaced relation to the screen 13.
  • An improved in-line electron gun 19. shown schematically by dotted lines in FIG. I. is centrally mounted within the neck 5 to generate and direct three electron beams along co-planar convergent paths through the mask 15 to the screen 13.
  • the tube of FIG. 1 is designed to be used with an external magnetic deflection yoke. such as the yoke 21 schematically shown. surrounding the neck 5 and funnel 7. in the neighborhood of their unction. for subjecting the three beams 20 to vertical and horizontal magnetic flux. to scan the beams horizontally and vertically in a rectangular raster over the screen 13.
  • the initial plane of deflection (at zero deflection) is shown by the line P-P in FIG. 1 at about the middle ofthe yoke 21. Because of fringe fields. the zone of deflection of the tube extends axially. from the yoke 21. into the region of the gun 19. For simplicity. the actual curvature of the deflected beam paths 20 in the deflection zone is not shown in FIG. I.
  • the inline gun 19 of the present invention is designed to generate and direct three equally-spaced co planar beams along initially-parallel paths to a convergence plane (-C. and then along convergent paths through the deflection plane to the screen 13.
  • a convergence plane (-C. and then along convergent paths through the deflection plane to the screen 13.
  • the gun is preferably designed with samll spacings between the beam paths at the convergence plane CC to produce a still smaller spacing. usually called the S value. between the outer beam paths and the central axis A-A of the tube. in the deflection plane PP.
  • the convergence angle of the outer beams with the central axis is are tan e/c+11, where c is the axial distance between the convergence plane CC and the deflection plane PP. d is the distance between the deflection plane and the screen 13, and c is the spacing between the outer beam paths and the central axis AA in the convergence plane CC.
  • FIG. 1 The approximate dimensions in FIG. 1 are c 2.7 inches. (1' 9.8 inches. 0.200 inch (200 mils). and hence. the convergence angle is 55 minutes and .s' 157 mils.
  • the details of the improved gun 19 are shown in FIGS. 3 through 8.
  • the gun comprises two glass support rods 23 on which the various electrodes are mounted. These electrodes include three equallyspaced co-planar cathodes 25, one for each beam. a control grid electrode 27. a screen grid electrode 29.11 first accelerating and focusing electrode 31. a second accelerating and focusing electrode 33. and a shield cup 35. spaced along the glass rods 23 in the order named.
  • Each cathode 25 comprises a cathode sleeve 37. closed at the forward end by a cap 39 having an end coating 41 of electron emissive material and a cathode support tube 43.
  • the tubes 43 are supported on the rods 23 by four straps 45 and 47 (FIG. 6).
  • Each cathode 25 is indirectly heated by a heater coil 49 positioned within the sleeve 37 and having legs 51 welded to heater straps 53 and 55 mounted by studs 57 on the rods 23 (FIG. 5).
  • the control and screen grid electrodes 27 and 29 are two closely-spaced (about 9 mils) flat plates having three pairs of small (about 25 mils) aligned apertures 59 centered with the cathode coatings 41 to initiate three equally-spaced coplanar beam paths 20 extending toward the screen 13.
  • the initial paths 20a and 20h are substantially parallel and about 200 mils apart. with the middle path 20a coincident with the central axis AA.
  • Electrode 31 comprises first and second cup-shaped members 61 and 63. respectively. joined together at their open ends.
  • the first cup-shaped member 61 has three medium-sized (about mils) apertures 75 close to grid electrode 29 and aligned respectively with the three beam paths 20. as shown in FIG. 4.
  • the second cup-shaped member 63 has three large (about lot) mils) apertures 65 also aligned with the three beam paths.
  • Electrode 33 is also cup-shaped and comprises a base plate portion 60 positioned close (about 60 mils) to electrode 31 and aside wall or flange 71 extending forward toward the tube screen.
  • the base portion 69 is formed with three apertures 73. which are preferably slightly larger (about 172 mils) than the adjacent apertures 67 of electrode 31.
  • the middle aperture 73a is aligned with the adjacent middle aperture 67a (and middle beam path 20a) to provide a substantially symmetrical beam focusing electric field between apertures 6711 and 73a when electrodes 31 and 33 are energized at different voltages.
  • the two outer apertures 7311 are slightly offset outwardly with respect to the corresponding outer apertures 67b. to provide an asymmetrical electric field between each pair of outer apertures when electrodes 31 and 33 are energized. to individually focus each outer beam 20h near the screen. and also to deflect each beam. toward the middle beam. to a common point of convergence with the middle beam near the screen.
  • the offset of each beam aperture 73 may be about 6 mils.
  • FIGS. 9 and 10 show the approximate configuration of the electric fields associated with the middle and outer apertures.
  • FIGS. 9 and 10 show the equipotential lines 74 rather than the lines of force.
  • the left half 75 on the left side of the central midplane
  • the right half 77 ts diverging. Since the electrons are being accelerated, they spend more time in the converging field than in the diverging field, and hence, the beam experiences a net converging or focusing force in each of FIGS. 9 and I0. Since the middle beam 20a passes centrally through a symmetrical field in FIG. 9. it continues in the same direction without deflection. In FIG. 10.
  • the outer beam 20h traverses the left half 75 of the field centrally. but enters the right half 77 off-axis. Since this is the diverging part of the field, and the electrons are subjected to field forces perpendicular to the cquipotential lines or surfaces 74, the beam 20b is deflected toward the central axis (downward in FIG. 10) as it traverses the right half 77, in addition to being focused.
  • the angle of deflection, or convergence, of the beam b can be determined by the choice of the offset of the apertures 73 h and the voltages applied to the two electrodes 31 and 33. For the example given, with an offset of 6 mils. electrode 33 would be connected to the ultor or screen voltage. about K.V..
  • each focus lens that is, the distance between the first cross-over of the beams near the screen grid 29 and the lens. is about 0.500 inch; and the image distance from the lens to the screen is about 12.5. inches.
  • the focusing apertures 67 and 73 are made as large as possible. to minimize spherical aberration. and as close together as possible. to obtain a desirable small s acin between beam aths.
  • the fringe P E P portions of adiaccnt fields interact to produce some .tsligltttlllc distortion of the focusing fields. which produces some ellipticity of the normally-circular focused beam spots on the screen.
  • this distortion is greater for the middle beam than for the two outer beams. because both sides of the middle beam field are affected.
  • the wall 69 In order to compensate for this effect. and minimize the elliptical distortion of the beam spots, the wall 69.
  • the wall 69 may be made barrebshaped.
  • the barrel shape may have a stave radius of 8 inches (FIG. 4) and a hoop radius of 2.28 inches (FIG 3), with the curvature 79 terminating at the outer edges of the outer apertures 73/).
  • the shield cup comprises a base portion 81. attached to the open end of the flange 71 ofelectrode 33. and a tubular wall 83 surrounding the three beam paths 20.
  • the base portion 81 is formed with a large middle beam aperture 85 (about I72 mils) and two smaller outer beam apertures 87 (about 100 mils) aligned. respectively. with the three initial beam paths 20a and 20b.
  • the electron gun is provided with two shield rings 89 of high magnetic permeability, e.g., an alloy of 52 percent nickel and 48 percent iron, known as 52 metal, are attached to the base 81, with each ring concentrically surrounding one of the outer apertures 87, as shown in FIGS. 4 and 7.
  • shield rings 89 of high magnetic permeability e.g., an alloy of 52 percent nickel and 48 percent iron, known as 52 metal
  • the shield rings 89 may have an outer diameter of 150 mils, an inner diameter of I00 mils, and a thickness of 10 mils.
  • a further correction for this coma distortion is tnade by mounting two small discs 91 of magnetic material. e.g., that referred to above. on each side of the middle beam path 20a. These discs 91 enhance the magnetic flux on the middle beam transverse to the plane of the three beams and decrease the flux in that plane. in the manner described in the Barkow patent referred to above.
  • the discs 91 may be rings having an outer diameter of mils, an inner diameter of 30 mils. and a thickness of 10 mils.
  • Each of the electrodes 27, 29, 31 and 33 are mounted on the two glass rods 23 by edge portions embedded in the glass.
  • the two rods 23 extend forwardly beyond the mounting portion of electrode 33, as shown in FIG. 3.
  • the shield cup 35 is formed with inwardly-extending recess portions 95 into which the rod ends 93 extend.
  • the electron gun 19 is mounted in the neck 5 at one end by the leads (not shown) from the various electrodes to the stem terminals 97, and at the other end by conventional metal bulb spacers (not shown) which also connect the final electrode 33 to the usttal conducting coating on the inner wall of the funnel 7.
  • a color picture tube including an evacuated envelope comprising a faceplate and a neck connected by a funnel. a mosaic color phosphor screen on the inner surface of said faceplate. a multiapertured color selection electrode spaced from said screen, an in-line electron gun mounted in said neck for generating and tli recting three electron beams along coplanar paths through said electrode to said screen. and a deflection zone, located in the vicinity of the junction between said neck and said funnel, wherein said beams are subjected to vertical and horizontal magnetic deflection fields during operation of said tube for scanning said beams horizontally and vertically over said screen; said electron gun comprising:
  • said electron gun further comprises a pair of magnetic elements positioned in said deflection zone on opposite sides of the middle beam path and in a plane transverse to the common plane of said paths for enhancing the magnetic deflection field in said middle beam path transverse to said common plane and for reducing the magnetic deflection field in said middle beam path along said common plane. thereby increasing the dimension of the raster scanned by the middle beam in said common plane while reducing the dimension of said raster in said transverse plane.
  • a color picture tube including an evacuated err velope comprising a faceplate and a neck connected by a funnel, a mosaic color phosphor screen on the inner surface of said faceplate. a multi-apertured color selection electrode spaced from said screen. an in-line electron gun mounted in said neck for generating and directing three electron beams along co-planar paths through said electrode to said screen. and a deflection zone. located in the vicinity of the junction between said neck and said funnel.
  • said beams are subjected to vertical and horizontal magnetic deflection fields during operation of said tube for scanning said beams horizontally and vertically over said screen, and wherein the eccentrity of the outer ones of said beams in the deflection fields causes the sizes of the rasters scanned by the outer beams to tend to be larger than the size of the raster scanned by a middle beam.
  • said electron gun comprising;

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

The three co-planar beams of an in-line gun are converged near the screen of a cathode ray tube by means of two plate-like grids transverse to the beam paths and having corresponding apertures for the three beams. The three beam apertures of the first grid are aligned with the three beam paths. The two outer beam apertures of the second grid are offset outwardly relative to the beam paths to produce the desired convergence. The three sets of apertures also provide separate focusing fields for the three beams. The second plate-like grid is formed with a barrel shape, concave toward the first grid, to minimize elliptical distortion of beam spots on the screen due to crowding of the adjacent focusing fields. Each of the two outer beams is partially shielded from the magnetic flux of the deflecting yoke by means of a magnetic ring surrounding the beam path in the deflection zone, to equalize the size of the rasters scanned on the screen by the middle and outer beams. Other magnetic pieces are positioned on opposite sides of the path of the middle beam, to enhance one deflection field while reducing the transverse deflection field for that beam.

Description

llnited States Patent 11 1 Hughes Mar. 25, 1975 lN-LlNE ELECTRON GUN Richard Henry Hughes, Lancaster, Pa.
[73] Assignee: RCA Corporation, New York, NY.
122] Filed: Mar. 28, 1973 211 Appl. No.: 345,665
Related US. Application Data '62] Division of Ser. No, 217,758, Jan. 14, 1972, Pat. No.
1 inventor:
152 11.5. c1. 315/13 c, 315/13 (:0. 313/70 c, 313/92 B 51 1111.01. H0lj 29/50 58] Field of Search... 315/13 C, 13 CG; 313/70 C, 313/85, 86, 92 B; 250/213 1.95 .153 11/1969 Germany Primary Examiner-Benjamin R. Padgett Assistant Examiner-P. A. Nelson Attorney, Agent, or F1'rmGlenn H. Bruestle; Dennis H. lrlbeck 5 7] ABSTRACT The three co-planar beams of an in-line gun are converged near the screen of a cathode ray tube by means of two plate-like grids transverse to the beam paths and having corresponding apertures for the three beams. The three beam apertures of the first grid are aligned with the three beam paths. The two outer beam apertures of the second grid are offset outwardly relative to the beam paths to produce the desired convergence. The three sets of apertures also provide separate focusing fields for the three beams. The second plate-like grid is formed with a barrel shape, concave toward the first grid, to minimize elliptical distortion of beam spots on the screen due to crowding of the adjacent focusing fields. Each of the two outer beams is partially shielded from the magnetic flux of the deflecting yoke by means ofa magnetic ring surrounding the beam path in the deflection zone, to equalize the size of the rasters scanned on the screen by the middle and outer beams. Other magnetic pieces are positioned on opposite sides of the path of the middle beam, to enhance one deflection field while reducing the transverse deflection field for that beam.
4 Claims, 10 Drawing Figures IN-LINE ELECTRON GUN This is a division of application Ser. No. 217,758, filed 1/14/72. now U.S. Pat. No. 3,772,554.
BACKGROUND OF THE INVENTION The present invention relates to an improved in-line electron gun for a cathode ray tube, particularly a shadow mask type color picture tube. The new gun is primarily intended for use in a color tube having a line type color phosphor screen, with or without light ab- :sorbing guard bands between the color phosphor lines, and a mask having elongated apertures or slits. However, the gun could be used in the well known dot-type color tube having a screen of substantially circular color phosphor dots and a mask with substantially circular apertures.
An in-line electron gun is one designed to generate or initiate at least two. and preferably three, electron beams in a common plane, for example. by at least two cathodes. and direct those beams along convergent paths in that plane to a point or small area of convergence near the tube screen. Various ways have been proposed for causing the beams to converge near the screen. For example, the gun may be designed to initially aim the beams. from the cathodes. towards convergence at the screen, as shown in FIG. 4 of Moodey US. Pat. No. 2,957,106, wherein the beam apertures in the gun electrodes are aligned along convergent paths.
in order to avoid wide spacings between the cathodes, which are undesirable in a small neck tube designed for high deflection angles, it is preferable to initiate the beams along substantially parallel (or even divergent) paths and provide some means, either internally or externally of the tube. for converging the beams near the screen. Magnet poles and/or electrostatic deflecting plates for converging in-line beams are disclosed in Francken U.S. Pat. No. 2,849,647, Gundert et al. U.S. Pat. No. 2,859,378 and Benway U.S. Pat No. 2,887,598.
The Moodey patent referred to above also includes an embodiment, shown in FIG. 2 and described in lines 4 to 23 of column 5, wherein an in-line gun for two coplanar beams comprises two spaced cathodes, a control grid plate and an accelerating grid plate each having two apertures aligned respectively with the two cathodes {as in FIG. 2) to initiate two parallel co-planar beam paths. and two spaced-apart beam focusing and accelerating electrodes of cylindrical form. The focusing electrode nearest to the first accelerating grid plate is described as having two beam apertures that are offset toward the axis of the gun from the corresponding apertures of the adjacent accelerating grid plate, to provide an asymmetric electrostatic field in the path of each beam for deflecting the beam from its initial path into a second beam path directed toward the tube axis.
Netherlands U.S. Pat. application No. 6902025, published Aug. 1 l. 1970 teaches that astigmatic aberration resulting in elliptical distortion of the focused screen spots of the two off-axis beams from an in-line gun, caused by the eccentricity of the in-line beams in a common focusing field between two hollow cylindrical focusing electrodes, can be partially corrected by forming the adjacent edges ofthe cylindrical electrodes with a sinusoidal contour including four sine waves. A similar problem is solved in a different manner in applicants in-line gun.
Another problem that exists in a cathode ray tube having an in-line gun is a coma distortion wherein the sizes of the rasters scanned on the screen by a conventional external magnetic deflection yoke are different, because of the eccentricity of the two outer beams with respect to the center of the yoke. Messineo et al. U.S. Pat. No. 3,164,737 teaches that a similar coma distortion caused by using different beam velocities can be corrected by use of a magnetic shield around the path of one or more beams in a delta type gun. Barkow U.S. Pat. No. 3,196,305 teaches the use of magnetic enhancers adjacent to the path of one or more beams in a delta gun, for the same purpose. Krackhardt et al. U.S. Pat. No. 3,534,208 teaches the use of a magnetic shield around the middle one of three in-line beams for coma correction.
SUMMARY OF THE INVENTION In accordance with one aspect of the invention, at least two electron beams are generated along co-planar paths toward the screen of a cathode ray tube, e.g.. a shadow mask type color picture tube, and the beams are converged near the screen by asymmetric electric fields established in the paths of two beams by two plate-like grids positioned between the beam generating means and the screen and having corresponding apertures suitably related to the beam paths. The apertures in the first grid (nearest the cathodes) are aligned with the beam paths. Two apertures in the second grid (nearest the screen) are offset outwardly with respect to the beam paths to produce the desired asymmetric fields. In the case of three in-line beams, the two outer apertures are offset, and the middle apertures of the two grids are aligned with each other. The pairs of corresponding apertures also provide separate focusing fields for the beams. In order to minimize elliptical distortion of one or more of the focused beam spots on the screen due to crowding of adjacent beam focusing fields, at least a portion of the second grid may be substantially cylindrically curved in a direction transverse to the common plane of the beams, and concave to the first grid. Each of the two outer beam paths of a three beam gun may be partially shielded from the magnetic flux of the deflection yoke by means of a magnetic ring surrounding each beam in the deflection zone of the tube, to minimize differences in the size of the rasters scanned on the screen by the middle and outer beams. Further correction for coma distortion may be made by positioning magnetic pieces on opposite sides of the middle beam path for enhancing one field and reducing the field transverse thereto.
BRIEF DESCRIPTION OF THE DRAWINGS I FIG. 1 is a plan view, partly in axial section, of a shadow mask color picture tube in which the present invention is incorporated;
FIG. 2 is a front end view of the tube of FIG. I showing the rectangular shape;
FIG. 3 is an axial section view of the electron gun shown in dotted lines in FIG. I, taken along the line 3-3 of that figure;
FIG. 4 is an axial section view of the electron gun taken along the line 44 of FIG. 3;
FIG. 5 is a rear end view of the electron gun of FIG. 4, taken in the direction of the arrows 5-5 thereof;
FIG. 6 is a transverse view. partly in section. taken along the line 6-6 of FIG. 4;
FIG. 7 is a front end view ofthe electron gun of FIGS. 1 and 4;
FIG. 8 is a similar end view with the final clement (shield cup) remmed; and
FIGS. 9 and 10 are schematic views showing the focusing and converging electric fields associated with two pairs of beam apertures in FIG. 4.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 is a plan view of a l7\'-9() rectangular color picture tube. for example. having a glass envelope I made up of a rectangular (FIG. 2) faceplate panel or cap 3 and a tubular neck 5 connected by a rectangular funnel 7. The panel 3 comprises a viewing faceplate 9 and a peripheral flange or side wall 11 which is sealed to the funnel 7. A mosaic three-color phosphor screen 13 is carried by the inner surface of the faceplate 9. The screen is preferably a line screen with the phosphor lines extending substantially parallel to the minor axis Y-Y of the tube (normal to the plane of FIG. 1). A multi-apertured color selection electrode or shadow mask 15 is removably means. in predetermined spaced relation to the screen 13. An improved in-line electron gun 19. shown schematically by dotted lines in FIG. I. is centrally mounted within the neck 5 to generate and direct three electron beams along co-planar convergent paths through the mask 15 to the screen 13.
The tube of FIG. 1 is designed to be used with an external magnetic deflection yoke. such as the yoke 21 schematically shown. surrounding the neck 5 and funnel 7. in the neighborhood of their unction. for subjecting the three beams 20 to vertical and horizontal magnetic flux. to scan the beams horizontally and vertically in a rectangular raster over the screen 13. The initial plane of deflection (at zero deflection) is shown by the line P-P in FIG. 1 at about the middle ofthe yoke 21. Because of fringe fields. the zone of deflection of the tube extends axially. from the yoke 21. into the region of the gun 19. For simplicity. the actual curvature of the deflected beam paths 20 in the deflection zone is not shown in FIG. I.
The inline gun 19 of the present invention is designed to generate and direct three equally-spaced co planar beams along initially-parallel paths to a convergence plane (-C. and then along convergent paths through the deflection plane to the screen 13. In order to use the tube with a line-focus yoke 21 specially designed to maintain the three in-line beams substantially converged at the screen without the application of the usual dynamic convergence forces. which causes degrouping misregister of the beam spots with the phosphor elements of the screen. the gun is preferably designed with samll spacings between the beam paths at the convergence plane CC to produce a still smaller spacing. usually called the S value. between the outer beam paths and the central axis A-A of the tube. in the deflection plane PP. The convergence angle of the outer beams with the central axis is are tan e/c+11, where c is the axial distance between the convergence plane CC and the deflection plane PP. d is the distance between the deflection plane and the screen 13, and c is the spacing between the outer beam paths and the central axis AA in the convergence plane CC.
mounted. by conventional The approximate dimensions in FIG. 1 are c 2.7 inches. (1' 9.8 inches. 0.200 inch (200 mils). and hence. the convergence angle is 55 minutes and .s' 157 mils.
The details of the improved gun 19 are shown in FIGS. 3 through 8. The gun comprises two glass support rods 23 on which the various electrodes are mounted. These electrodes include three equallyspaced co-planar cathodes 25, one for each beam. a control grid electrode 27. a screen grid electrode 29.11 first accelerating and focusing electrode 31. a second accelerating and focusing electrode 33. and a shield cup 35. spaced along the glass rods 23 in the order named.
Each cathode 25 comprises a cathode sleeve 37. closed at the forward end by a cap 39 having an end coating 41 of electron emissive material and a cathode support tube 43. The tubes 43 are supported on the rods 23 by four straps 45 and 47 (FIG. 6). Each cathode 25 is indirectly heated by a heater coil 49 positioned within the sleeve 37 and having legs 51 welded to heater straps 53 and 55 mounted by studs 57 on the rods 23 (FIG. 5). The control and screen grid electrodes 27 and 29 are two closely-spaced (about 9 mils) flat plates having three pairs of small (about 25 mils) aligned apertures 59 centered with the cathode coatings 41 to initiate three equally-spaced coplanar beam paths 20 extending toward the screen 13. Preferably. the initial paths 20a and 20h are substantially parallel and about 200 mils apart. with the middle path 20a coincident with the central axis AA.
Electrode 31 comprises first and second cup-shaped members 61 and 63. respectively. joined together at their open ends. The first cup-shaped member 61 has three medium-sized (about mils) apertures 75 close to grid electrode 29 and aligned respectively with the three beam paths 20. as shown in FIG. 4. The second cup-shaped member 63 has three large (about lot) mils) apertures 65 also aligned with the three beam paths. Electrode 33 is also cup-shaped and comprises a base plate portion 60 positioned close (about 60 mils) to electrode 31 and aside wall or flange 71 extending forward toward the tube screen. The base portion 69 is formed with three apertures 73. which are preferably slightly larger (about 172 mils) than the adjacent apertures 67 of electrode 31. The middle aperture 73a is aligned with the adjacent middle aperture 67a (and middle beam path 20a) to provide a substantially symmetrical beam focusing electric field between apertures 6711 and 73a when electrodes 31 and 33 are energized at different voltages. The two outer apertures 7311 are slightly offset outwardly with respect to the corresponding outer apertures 67b. to provide an asymmetrical electric field between each pair of outer apertures when electrodes 31 and 33 are energized. to individually focus each outer beam 20h near the screen. and also to deflect each beam. toward the middle beam. to a common point of convergence with the middle beam near the screen. In the example shown. the offset of each beam aperture 73!) may be about 6 mils.
The approximate configuration of the electric fields associated with the middle and outer apertures are shown in FIGS. 9 and 10, respectively. which show the equipotential lines 74 rather than the lines of force. Assuming an accelerating field. as shown by the signs. the left half 75 (on the left side of the central midplane) of each field is converging and the right half 77 ts diverging. Since the electrons are being accelerated, they spend more time in the converging field than in the diverging field, and hence, the beam experiences a net converging or focusing force in each of FIGS. 9 and I0. Since the middle beam 20a passes centrally through a symmetrical field in FIG. 9. it continues in the same direction without deflection. In FIG. 10. the outer beam 20h traverses the left half 75 of the field centrally. but enters the right half 77 off-axis. Since this is the diverging part of the field, and the electrons are subjected to field forces perpendicular to the cquipotential lines or surfaces 74, the beam 20b is deflected toward the central axis (downward in FIG. 10) as it traverses the right half 77, in addition to being focused. The angle of deflection, or convergence, of the beam b can be determined by the choice of the offset of the apertures 73 h and the voltages applied to the two electrodes 31 and 33. For the example given, with an offset of 6 mils. electrode 33 would be connected to the ultor or screen voltage. about K.V.. and electrode 31 would be operated at about 17 to 20 percent of the ultor voltage. adjusted for best focus. The object distance of each focus lens. that is, the distance between the first cross-over of the beams near the screen grid 29 and the lens. is about 0.500 inch; and the image distance from the lens to the screen is about 12.5. inches.
The above-described outward offset of the beam apertures to produce beam convergence is contrary to the teaching of FIG. 3 of the Moodey patent described .abo\e. and hence. is not suggested by the Moodey patent.
The focusing apertures 67 and 73 are made as large as possible. to minimize spherical aberration. and as close together as possible. to obtain a desirable small s acin between beam aths. As a result. the fringe P E P portions of adiaccnt fields interact to produce some .tsligltttlllc distortion of the focusing fields. which produces some ellipticity of the normally-circular focused beam spots on the screen. In a thrce-beam in-line gun. this distortion is greater for the middle beam than for the two outer beams. because both sides of the middle beam field are affected. In order to compensate for this effect. and minimize the elliptical distortion of the beam spots, the wall 69. or at least the surface thereof facing the electrode 31, is curved substantially cylindrically. concave to electrode 31. in the direction normal or transverse to the plane of the three beams. as shown at 79 in FIG. 3. Preferably. this curvature is greater for the middle beam path than for the outer beam paths. hence. the wall 69 may be made barrebshaped. In the example given. the barrel shape may have a stave radius of 8 inches (FIG. 4) and a hoop radius of 2.28 inches (FIG 3), with the curvature 79 terminating at the outer edges of the outer apertures 73/).
The shield cup comprises a base portion 81. attached to the open end of the flange 71 ofelectrode 33. and a tubular wall 83 surrounding the three beam paths 20. The base portion 81 is formed with a large middle beam aperture 85 (about I72 mils) and two smaller outer beam apertures 87 (about 100 mils) aligned. respectively. with the three initial beam paths 20a and 20b.
.In order to compensate for the coma distortion wherein the sizes of the rasters scanned on the screen by the external magnetic deflection yoke are different for the middle and outer beams of the three-beam gun, due to the eccentricity of the outer beams in the yoke field, the electron gun is provided with two shield rings 89 of high magnetic permeability, e.g., an alloy of 52 percent nickel and 48 percent iron, known as 52 metal, are attached to the base 81, with each ring concentrically surrounding one of the outer apertures 87, as shown in FIGS. 4 and 7. These magnetic shields 89 bypass a small portion of the fringe deflection fields in the path of the outer beams, thereby making a slight reduction in the rasters scanned by the outer beams on the screen. The shield rings 89 may have an outer diameter of 150 mils, an inner diameter of I00 mils, and a thickness of 10 mils.
A further correction for this coma distortion is tnade by mounting two small discs 91 of magnetic material. e.g., that referred to above. on each side of the middle beam path 20a. These discs 91 enhance the magnetic flux on the middle beam transverse to the plane of the three beams and decrease the flux in that plane. in the manner described in the Barkow patent referred to above. The discs 91 may be rings having an outer diameter of mils, an inner diameter of 30 mils. and a thickness of 10 mils.
Each of the electrodes 27, 29, 31 and 33 are mounted on the two glass rods 23 by edge portions embedded in the glass. The two rods 23 extend forwardly beyond the mounting portion of electrode 33, as shown in FIG. 3. In order to shield the exposed ends 93 of the glass rods 23 from the electron beams. the shield cup 35 is formed with inwardly-extending recess portions 95 into which the rod ends 93 extend. The electron gun 19 is mounted in the neck 5 at one end by the leads (not shown) from the various electrodes to the stem terminals 97, and at the other end by conventional metal bulb spacers (not shown) which also connect the final electrode 33 to the usttal conducting coating on the inner wall of the funnel 7.
I claim:
1. In a color picture tube including an evacuated envelope comprising a faceplate and a neck connected by a funnel. a mosaic color phosphor screen on the inner surface of said faceplate. a multiapertured color selection electrode spaced from said screen, an in-line electron gun mounted in said neck for generating and tli recting three electron beams along coplanar paths through said electrode to said screen. and a deflection zone, located in the vicinity of the junction between said neck and said funnel, wherein said beams are subjected to vertical and horizontal magnetic deflection fields during operation of said tube for scanning said beams horizontally and vertically over said screen; said electron gun comprising:
a. means for generating and directing three electron beams along three co-planar paths towards said screen;
b. means interposed between said first-named means and said deflection zone for focusing each beam near said screen and for converging the three beams near said screen; and
c. a shielding member of magnetic material surrounding each of the outer ones only of said beam paths in siad deflection zone, for partially shielding only the two outer beams from said magnetic deflecting fields, thereby reducing the size of the rasters scanned by the outer beams without reducing the size of the raster scanned by the middle beam.
2. The structure of claim 1, wherein said electron gun further comprises a pair of magnetic elements positioned in said deflection zone on opposite sides of the middle beam path and in a plane transverse to the common plane of said paths for enhancing the magnetic deflection field in said middle beam path transverse to said common plane and for reducing the magnetic deflection field in said middle beam path along said common plane. thereby increasing the dimension of the raster scanned by the middle beam in said common plane while reducing the dimension of said raster in said transverse plane.
3. In a color picture tube including an evacuated err velope comprising a faceplate and a neck connected by a funnel, a mosaic color phosphor screen on the inner surface of said faceplate. a multi-apertured color selection electrode spaced from said screen. an in-line electron gun mounted in said neck for generating and directing three electron beams along co-planar paths through said electrode to said screen. and a deflection zone. located in the vicinity of the junction between said neck and said funnel. wherein said beams are subjected to vertical and horizontal magnetic deflection fields during operation of said tube for scanning said beams horizontally and vertically over said screen, and wherein the eccentrity of the outer ones of said beams in the deflection fields causes the sizes of the rasters scanned by the outer beams to tend to be larger than the size of the raster scanned by a middle beam. said electron gun comprising;
a means for generating and directing three electron beams along three co-planar paths towards said screen;
b. means interposed between said first-named means and said deflection zone for focusing each beam near said screen and for converging the three beams near said screen; and
c two shield rings of high magnetic permeability material located at the fringe of the deflection zone each ring concentrically surrounding one of the outer beams. whereby small portions of the fringe deflection field are bypassed around the outer beams thereby reducing the size of the rasters scanned by the outer beams without reducing the size of the raster scanned by the middle beam.
4. The tube as defined in claim 3, including two small discs of magnetic material located at the fringe of the deflection zone on opposite sides of the middle beam transverse to the plane ofthe three beams. whereby the magnetic flux on the middle beam transverse to the plane ofthe three beams is enhanced and the flux in the plane of the three beams is decreased thereby increas ing the middle beam dimension in the plane ofthe three beams while reducing the middle beam dimension in the plane of the three beams,

Claims (4)

1. In a color picture tube including an evacuated envelope comprising a faceplate and a neck connected by a funnel, a mosaic color phosphor screen on the inner surface of said faceplate, a multiapertured color selection electrode spaced from said screen, an in-line electron gun mounted in said neck for generating and directing three electron beams along co-planar paths through said electrode to said screen, and a deflection zone, located in the vicinity of the junction between said neck and said funnel, wherein said beams are subjected to vertical and horizontal magnetic deflection fields during operation of said tube for scanning said beams horizontally and vertically over said screen; said electron gun comprising: a. means for generating and directing three electron beams along three co-planar paths towards said screen; b. means interposed between said first-named means and said deflection zone for focusing each beam near said screen and for converging the three beams near said screen; and c. a shielding member of magnetic material surrounding each of the outer ones only of said beam paths in siad deflection zone, for partially shielding only the two outer beams from said magnetic deflecting fields, thereby reducing the size of the rasters scanned by the outer beams without reducing the size of the raster scanned by the middle beam.
2. The structure of claim 1, wherein said electron gun further comprises a pair of magnetic elements positioned in said deflection zone on opposite sides of the middle beam path and in a plane transverse to the common plane of said paths for enhancing the magnetic deflection field in said middle beam path transverse to said common plane and for reducing the magnetic deflection field in said middle beam path along said common plane, thereby increasing the dimension of the raster scanned by the middle beam in said common plane while reducing the dimension of said raster in said transverse plane.
3. In a color picture tube including an evacuated envelope comprising a faceplate and a neck connected by a funnel, a mosaic color phosphor screen on the inner surface of said faceplate, a multi-apertured color selection electrode spaced from said screen, an in-line electron gun mounted in said neck for generating and directing three electron beams along co-planar paths through said electrode to said screen, and a deflection zone, located in the vicinity of the junction between said neck and said funnel, wherein said beams are subjected to vertical and horizontal magnetic deflection fields during operation of said tube for scanning said beams horizontally and vertically over said screen, and wherein the eccentrity of the outer ones of said beams in the deflection fields causes the sizes of the rasters scanned by the outer beams to tend to be larger than the size of the raster scanned by a middle beam, said electron gun comprising; a. means for generAting and directing three electron beams along three co-planar paths towards said screen; b. means interposed between said first-named means and said deflection zone for focusing each beam near said screen and for converging the three beams near said screen; and c. two shield rings of high magnetic permeability material located at the fringe of the deflection zone, each ring concentrically surrounding one of the outer beams, whereby small portions of the fringe deflection field are bypassed around the outer beams thereby reducing the size of the rasters scanned by the outer beams without reducing the size of the raster scanned by the middle beam.
4. The tube as defined in claim 3, including two small discs of magnetic material located at the fringe of the deflection zone on opposite sides of the middle beam transverse to the plane of the three beams, whereby the magnetic flux on the middle beam transverse to the plane of the three beams is enhanced and the flux in the plane of the three beams is decreased thereby increasing the middle beam dimension in the plane of the three beams while reducing the middle beam dimension in the plane of the three beams.
US345665A 1972-01-14 1973-03-28 In-line electron gun Expired - Lifetime US3873879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US345665A US3873879A (en) 1972-01-14 1973-03-28 In-line electron gun

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21775872A 1972-01-14 1972-01-14
US345665A US3873879A (en) 1972-01-14 1973-03-28 In-line electron gun

Publications (1)

Publication Number Publication Date
US3873879A true US3873879A (en) 1975-03-25

Family

ID=26912229

Family Applications (1)

Application Number Title Priority Date Filing Date
US345665A Expired - Lifetime US3873879A (en) 1972-01-14 1973-03-28 In-line electron gun

Country Status (1)

Country Link
US (1) US3873879A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029988A (en) * 1976-06-24 1977-06-14 Gte Sylvania Incorporated CRT in-line electron gun assembly
FR2409595A1 (en) * 1977-11-17 1979-06-15 Rca Corp Magnetically deflected CRT electron gun - has magnetic and non-magnetic two=part first accelerating electrode for minimising non-uniform beam focussing
DE2907192A1 (en) * 1978-02-24 1979-08-30 Rca Corp COLOR TUBE WITH IMPROVED RAY GENERATION SYSTEM
DE2907300A1 (en) * 1978-02-27 1979-09-06 Philips Nv COLOR IMAGE PLAYBACK EARS
DE2917268A1 (en) * 1978-05-01 1979-11-08 Rca Corp COLOR TELEVISION TUBE WITH INLINE RADIATION GENERATION SYSTEM
DE2941983A1 (en) * 1978-10-17 1980-04-24 Tokyo Shibaura Electric Co ELECTRONIC RADIATOR
FR2469796A1 (en) * 1979-11-15 1981-05-22 Rca Corp COLOR IMAGE TUBE COMPRISING AN IMPROVED ELECTRONIC GUN
DE3107634A1 (en) * 1980-02-28 1982-01-21 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH LOW-ABERRATION RADIATION FOCUSING LENS
FR2493039A1 (en) * 1980-10-29 1982-04-30 Rca Corp IMPROVEMENTS TO THE ELECTRONIC GUNS OF COLOR IMAGE TUBES TO REDUCE SPHERICAL ABERRATION
US4370593A (en) * 1980-12-30 1983-01-25 Rca Corporation In-line electron gun and method for modifying the same
DE3225631A1 (en) * 1981-07-10 1983-02-03 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH AN INLINE ELECTRON BEAM SYSTEM WITH IMPROVED EXTENDED FOCUSING LENS
DE3225632A1 (en) * 1981-07-10 1983-02-03 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH IMPROVED INLINE BEAM SYSTEM WITH EXTENDED FOCUSING LENS
DE3225634A1 (en) * 1981-07-10 1983-02-03 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH AN INLINE ELECTRON BEAM SYSTEM WITH EXTENDED FOCUS LENS AND IMPROVED STIGMATOR
DE3224790A1 (en) * 1981-07-02 1983-03-10 RCA Corp., 10020 New York, N.Y. METHOD FOR PRODUCING A CATHODE RAY TUBE
US4388553A (en) * 1981-07-10 1983-06-14 Rca Corporation Color picture tube having an expanded focus lens type inline electron gun with an improved stigmator
DE3246458A1 (en) * 1981-12-16 1983-06-23 Hitachi, Ltd., Tokyo ELECTRONIC SPIN FOR COLOR PIPES
FR2521347A1 (en) * 1982-02-10 1983-08-12 Rca Corp IMPROVEMENTS IN COLOR IMAGE TUBES
DE3307183A1 (en) * 1982-03-02 1983-10-06 Rca Corp INLINE ELECTRONIC RADIATOR GENERATION SYSTEM WITH A REINFORCED, DRAWN ELECTRODE
US4410310A (en) * 1981-04-23 1983-10-18 Rca Corporation Degassing a CRT with modified RF heating of the mount assembly thereof
US4460845A (en) * 1981-12-01 1984-07-17 Rca Corporation Rigid cathode support structure for an in-line electron gun assembly
US4468588A (en) * 1982-02-10 1984-08-28 Rca Corporation Cathode support structure for an in-line electron gun assembly
US4486685A (en) * 1982-05-14 1984-12-04 Rca Corporation Electron gun assembly with bead strap having an angulated grasping member
US4513222A (en) * 1983-01-27 1985-04-23 Rca Corporation Color picture tube having reconvergence slots formed in a screen grid electrode of an inline electron gun
US4528476A (en) * 1983-10-24 1985-07-09 Rca Corporation Cathode-ray tube having electron gun with three focus lenses
US4556819A (en) * 1983-12-13 1985-12-03 Rca Corporation Color picture tube having inline electron gun with coma correction members
US4558253A (en) * 1983-04-18 1985-12-10 Rca Corporation Color picture tube having an inline electron gun with asymmetric focusing lens
DE3530932A1 (en) * 1984-08-31 1986-03-06 Rca Corp., Princeton, N.J. COLOR IMAGE TUBES WITH INLINE BEAM SYSTEM
US4583024A (en) * 1984-02-21 1986-04-15 Rca Corporation Color picture tube having an inline electron gun with built-in stigmator
US4590403A (en) * 1984-08-31 1986-05-20 Rca Corporation Color picture tube having an improved inline electron gun
US4614894A (en) * 1982-12-06 1986-09-30 Hitachi Ltd. Electron gun for color picture tube
FR2579823A1 (en) * 1985-03-29 1986-10-03 Videocolor Electron gun and television tube using such a gun
EP0198753A1 (en) * 1985-03-29 1986-10-22 Videocolor Electron gun for a cathode ray tube, in particular for colour television
US4620133A (en) * 1982-01-29 1986-10-28 Rca Corporation Color image display systems
US4634924A (en) * 1985-08-06 1987-01-06 Rca Corporation Electron gun having cylindrical focus lens
US4730144A (en) * 1986-08-27 1988-03-08 Rca Corporation Color picture tube having inline electron gun with coma correction members
US4772826A (en) * 1986-06-26 1988-09-20 Rca Licensing Corporation Color display system
US4871940A (en) * 1986-03-07 1989-10-03 Hitachi, Ltd. Color display tube with field controller
US4877993A (en) * 1987-03-20 1989-10-31 Hitachi, Ltd. Inline type color picture tube having coma distortion correcting mechanism
AT394085B (en) * 1990-07-30 1992-01-27 Austria Metall CORNER ANGLE FOR USE IN HOLLOW PROFILE BARS FOR FRAMES OF WINDOWS, DOORS, FACADE PARTS AND THE LIKE
FR2806526A1 (en) * 2000-03-14 2001-09-21 Samsung Sdi Co Ltd ELECTRON CANON AND COLORED CATHODE RAY TUBE PROVIDED WITH SAME
US6369512B1 (en) 1998-10-05 2002-04-09 Sarnoff Corporation Dual beam projection tube and electron lens therefor
US6384524B1 (en) 1998-11-20 2002-05-07 Samsung Sdi Co., Ltd. Inline electron gun with improved astigmatism for a cathode ray tube
US6559586B1 (en) 2000-02-08 2003-05-06 Sarnoff Corporation Color picture tube including an electron gun in a coated tube neck
CN106090632A (en) * 2016-06-20 2016-11-09 许昌虹榕节能电器设备有限公司 A kind of multiple bases fluorescent material fluorescent tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412687A (en) * 1942-04-08 1946-12-17 Emi Ltd Electron lens
US2887598A (en) * 1956-04-16 1959-05-19 Rca Corp Plural gun cathode ray tube
US3213311A (en) * 1962-04-13 1965-10-19 Westinghouse Electric Corp Electron discharge device
US3571643A (en) * 1967-09-20 1971-03-23 Sony Corp Plural beam electron gun for a color picture tube with different-sized control grid apertures
US3610991A (en) * 1969-02-08 1971-10-05 Piet Gerard Joseph Barten Cathode-ray tube provided with at least one electron gun for producing a number of individually prefocused electron beams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412687A (en) * 1942-04-08 1946-12-17 Emi Ltd Electron lens
US2887598A (en) * 1956-04-16 1959-05-19 Rca Corp Plural gun cathode ray tube
US3213311A (en) * 1962-04-13 1965-10-19 Westinghouse Electric Corp Electron discharge device
US3571643A (en) * 1967-09-20 1971-03-23 Sony Corp Plural beam electron gun for a color picture tube with different-sized control grid apertures
US3610991A (en) * 1969-02-08 1971-10-05 Piet Gerard Joseph Barten Cathode-ray tube provided with at least one electron gun for producing a number of individually prefocused electron beams

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029988A (en) * 1976-06-24 1977-06-14 Gte Sylvania Incorporated CRT in-line electron gun assembly
FR2409595A1 (en) * 1977-11-17 1979-06-15 Rca Corp Magnetically deflected CRT electron gun - has magnetic and non-magnetic two=part first accelerating electrode for minimising non-uniform beam focussing
DE2907192A1 (en) * 1978-02-24 1979-08-30 Rca Corp COLOR TUBE WITH IMPROVED RAY GENERATION SYSTEM
US4196370A (en) * 1978-02-24 1980-04-01 Rca Corporation CRT generating three inline beams and having shunts for weakening center beam horizontal magnetic deflection and strengthening vertical deflection
DE2907300A1 (en) * 1978-02-27 1979-09-06 Philips Nv COLOR IMAGE PLAYBACK EARS
DE2917268A1 (en) * 1978-05-01 1979-11-08 Rca Corp COLOR TELEVISION TUBE WITH INLINE RADIATION GENERATION SYSTEM
US4396862A (en) * 1978-05-01 1983-08-02 Rca Corporation Color picture tube with means for affecting magnetic deflection fields in electron gun area
DE2941983A1 (en) * 1978-10-17 1980-04-24 Tokyo Shibaura Electric Co ELECTRONIC RADIATOR
US4634923A (en) * 1979-11-15 1987-01-06 Rca Corporation Color picture tube having improved electron gun
FR2469796A1 (en) * 1979-11-15 1981-05-22 Rca Corp COLOR IMAGE TUBE COMPRISING AN IMPROVED ELECTRONIC GUN
DE3043048A1 (en) * 1979-11-15 1981-09-03 RCA Corp., 10020 New York, N.Y. INLINE COLOR PIPES
DE3107634A1 (en) * 1980-02-28 1982-01-21 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH LOW-ABERRATION RADIATION FOCUSING LENS
FR2493039A1 (en) * 1980-10-29 1982-04-30 Rca Corp IMPROVEMENTS TO THE ELECTRONIC GUNS OF COLOR IMAGE TUBES TO REDUCE SPHERICAL ABERRATION
DE3143022A1 (en) * 1980-10-29 1982-06-03 RCA Corp., 10020 New York, N.Y. "COLORED PIPES WITH IMPROVED INLINE ELECTRON BEAM SYSTEM WITH EXTENDED FOCUS LENS"
US4370593A (en) * 1980-12-30 1983-01-25 Rca Corporation In-line electron gun and method for modifying the same
US4410310A (en) * 1981-04-23 1983-10-18 Rca Corporation Degassing a CRT with modified RF heating of the mount assembly thereof
DE3224790A1 (en) * 1981-07-02 1983-03-10 RCA Corp., 10020 New York, N.Y. METHOD FOR PRODUCING A CATHODE RAY TUBE
DE3225631A1 (en) * 1981-07-10 1983-02-03 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH AN INLINE ELECTRON BEAM SYSTEM WITH IMPROVED EXTENDED FOCUSING LENS
DE3225632A1 (en) * 1981-07-10 1983-02-03 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH IMPROVED INLINE BEAM SYSTEM WITH EXTENDED FOCUSING LENS
DE3225634A1 (en) * 1981-07-10 1983-02-03 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH AN INLINE ELECTRON BEAM SYSTEM WITH EXTENDED FOCUS LENS AND IMPROVED STIGMATOR
US4388552A (en) * 1981-07-10 1983-06-14 Rca Corporation Color picture tube having an improved expanded focus lens type inline electron gun
US4388553A (en) * 1981-07-10 1983-06-14 Rca Corporation Color picture tube having an expanded focus lens type inline electron gun with an improved stigmator
US4400649A (en) * 1981-07-10 1983-08-23 Rca Corporation Color picture tube having an improved expanded focus lens type inline electron gun
US4460845A (en) * 1981-12-01 1984-07-17 Rca Corporation Rigid cathode support structure for an in-line electron gun assembly
DE3246458A1 (en) * 1981-12-16 1983-06-23 Hitachi, Ltd., Tokyo ELECTRONIC SPIN FOR COLOR PIPES
US4620133A (en) * 1982-01-29 1986-10-28 Rca Corporation Color image display systems
DE3304209A1 (en) * 1982-02-10 1983-08-18 RCA Corp., 10020 New York, N.Y. COLOR IMAGE TUBES WITH AN INLINE ELECTRONIC RADIATOR GENERATION SYSTEM
US4449069A (en) * 1982-02-10 1984-05-15 Rca Corporation Color picture tube with focusing electrode having electrostatic field distortion aperture therein
FR2521347A1 (en) * 1982-02-10 1983-08-12 Rca Corp IMPROVEMENTS IN COLOR IMAGE TUBES
US4468588A (en) * 1982-02-10 1984-08-28 Rca Corporation Cathode support structure for an in-line electron gun assembly
US4484102A (en) * 1982-03-02 1984-11-20 Rca Corporation Strengthening means for a deep-drawn in-line electron gun electrode
DE3307183A1 (en) * 1982-03-02 1983-10-06 Rca Corp INLINE ELECTRONIC RADIATOR GENERATION SYSTEM WITH A REINFORCED, DRAWN ELECTRODE
US4486685A (en) * 1982-05-14 1984-12-04 Rca Corporation Electron gun assembly with bead strap having an angulated grasping member
US4614894A (en) * 1982-12-06 1986-09-30 Hitachi Ltd. Electron gun for color picture tube
US4513222A (en) * 1983-01-27 1985-04-23 Rca Corporation Color picture tube having reconvergence slots formed in a screen grid electrode of an inline electron gun
US4558253A (en) * 1983-04-18 1985-12-10 Rca Corporation Color picture tube having an inline electron gun with asymmetric focusing lens
US4528476A (en) * 1983-10-24 1985-07-09 Rca Corporation Cathode-ray tube having electron gun with three focus lenses
US4556819A (en) * 1983-12-13 1985-12-03 Rca Corporation Color picture tube having inline electron gun with coma correction members
US4583024A (en) * 1984-02-21 1986-04-15 Rca Corporation Color picture tube having an inline electron gun with built-in stigmator
US4590402A (en) * 1984-08-31 1986-05-20 Rca Corporation Color picture tube having an improved expanded focus lens type inline electron gun
US4590403A (en) * 1984-08-31 1986-05-20 Rca Corporation Color picture tube having an improved inline electron gun
DE3530932A1 (en) * 1984-08-31 1986-03-06 Rca Corp., Princeton, N.J. COLOR IMAGE TUBES WITH INLINE BEAM SYSTEM
FR2579823A1 (en) * 1985-03-29 1986-10-03 Videocolor Electron gun and television tube using such a gun
EP0198753A1 (en) * 1985-03-29 1986-10-22 Videocolor Electron gun for a cathode ray tube, in particular for colour television
US4634924A (en) * 1985-08-06 1987-01-06 Rca Corporation Electron gun having cylindrical focus lens
US4871940A (en) * 1986-03-07 1989-10-03 Hitachi, Ltd. Color display tube with field controller
US4772826A (en) * 1986-06-26 1988-09-20 Rca Licensing Corporation Color display system
US4730144A (en) * 1986-08-27 1988-03-08 Rca Corporation Color picture tube having inline electron gun with coma correction members
US4877993A (en) * 1987-03-20 1989-10-31 Hitachi, Ltd. Inline type color picture tube having coma distortion correcting mechanism
AT394085B (en) * 1990-07-30 1992-01-27 Austria Metall CORNER ANGLE FOR USE IN HOLLOW PROFILE BARS FOR FRAMES OF WINDOWS, DOORS, FACADE PARTS AND THE LIKE
US6369512B1 (en) 1998-10-05 2002-04-09 Sarnoff Corporation Dual beam projection tube and electron lens therefor
US6384524B1 (en) 1998-11-20 2002-05-07 Samsung Sdi Co., Ltd. Inline electron gun with improved astigmatism for a cathode ray tube
US6559586B1 (en) 2000-02-08 2003-05-06 Sarnoff Corporation Color picture tube including an electron gun in a coated tube neck
FR2806526A1 (en) * 2000-03-14 2001-09-21 Samsung Sdi Co Ltd ELECTRON CANON AND COLORED CATHODE RAY TUBE PROVIDED WITH SAME
CN106090632A (en) * 2016-06-20 2016-11-09 许昌虹榕节能电器设备有限公司 A kind of multiple bases fluorescent material fluorescent tube

Similar Documents

Publication Publication Date Title
US3873879A (en) In-line electron gun
US3772554A (en) In-line electron gun
US4086513A (en) Plural gun cathode ray tube having parallel plates adjacent grid apertures
CA1177514A (en) Color picture tube having an improved inline electron gun with an expanded focus lens
US4319163A (en) Electron gun with deflection-synchronized astigmatic screen grid means
US3952224A (en) In-line electron guns having consecutive grids with aligned vertical, substantially elliptical apertures
GB2033650A (en) Electron gun with astigmatic flare-reducing beam forming region
US4583024A (en) Color picture tube having an inline electron gun with built-in stigmator
US3984723A (en) Display system utilizing beam shape correction
US4317065A (en) Color picture tube having an improved electron gun with expanded lenses
US4520292A (en) Cathode-ray tube having an asymmetric slot formed in a screen grid electrode of an inline electron gun
US4196370A (en) CRT generating three inline beams and having shunts for weakening center beam horizontal magnetic deflection and strengthening vertical deflection
US3970890A (en) Plural beam cathode ray tube including an astigmatic electron lens and self-converging
US4558253A (en) Color picture tube having an inline electron gun with asymmetric focusing lens
US4396862A (en) Color picture tube with means for affecting magnetic deflection fields in electron gun area
US5006754A (en) Color display tube with magnetic field shaping plates
US3619686A (en) Color cathode-ray tube with in-line plural electron sources and central section of common grid protruding toward central source
US4370593A (en) In-line electron gun and method for modifying the same
JPH0367295B2 (en)
US3883771A (en) Collinear electron gun system including accelerating grid having greater effective thickness for off axis beams
US3579008A (en) Color tube having asymetrical electrostatic convergence correction system
US4634923A (en) Color picture tube having improved electron gun
GB2175743A (en) Cathode-ray tube electron gun having improved screen grid
US4730144A (en) Color picture tube having inline electron gun with coma correction members
US4449069A (en) Color picture tube with focusing electrode having electrostatic field distortion aperture therein

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, P

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RCA CORPORATION, A CORP. OF DE;REEL/FRAME:004993/0131

Effective date: 19871208