US3862643A - Pilot pump bleed control for earthmoving scrapers - Google Patents

Pilot pump bleed control for earthmoving scrapers Download PDF

Info

Publication number
US3862643A
US3862643A US335910A US33591073A US3862643A US 3862643 A US3862643 A US 3862643A US 335910 A US335910 A US 335910A US 33591073 A US33591073 A US 33591073A US 3862643 A US3862643 A US 3862643A
Authority
US
United States
Prior art keywords
pilot
control valve
valve spool
pressure
bleed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US335910A
Inventor
Joseph E Dezelan
Henry J Jessen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Tractor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Tractor Co filed Critical Caterpillar Tractor Co
Priority to US335910A priority Critical patent/US3862643A/en
Priority to CA189,140A priority patent/CA994206A/en
Priority to JP49021566A priority patent/JPS49114204A/ja
Priority to GB845374A priority patent/GB1459857A/en
Priority to BE141377A priority patent/BE811564A/en
Priority to US05/483,132 priority patent/US3935792A/en
Application granted granted Critical
Publication of US3862643A publication Critical patent/US3862643A/en
Assigned to CATERPILLAR INC., A CORP. OF DE. reassignment CATERPILLAR INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CATERPILLAR TRACTOR CO., A CORP. OF CALIF.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/0422Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with manually-operated pilot valves, e.g. joysticks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/004Fluid pressure supply failure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86582Pilot-actuated
    • Y10T137/86606Common to plural valve motor chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86622Motor-operated
    • Y10T137/8663Fluid motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86734With metering feature

Definitions

  • One of the principal objectives of this invention is to provide a pilot control system for scrapers that is suitable for operating open center control valves,so needless horsepower loss will not occur by pumping large volumes of hydraulic fluid at high pressures over relief valves.
  • a pilot bleed control system which includes a pilot pump with its outlet connected to a pilot valve having a pilot spool with metering slots so it is operable to develop two equal pressures within the pilot valve body and having two conduits communicating these equal pressures to reaction chambers associated with opposite ends of a control spool of a remote open center control valve with bleed passages in the opposite ends of the control valve spool whereby positive bleeds from the pilot valve to the control valve are established and shifting of the pilot spool will cause the control valve spool to shift proportionally due to change in the pressures in the two conduits resulting from variations in the flows across the several metering slots in the pilot valve.
  • a safety valve incorporated in a hydraulic circuit underload can be employed to provide an emergency source of pressurized fluid if the pilot pump fails by using the pilot pump output pressure to operate the valve and connecting it to the pilot valve.
  • pilot valve 10 Normally, pressurized fluid is supplied to the pilot valve 10 by a pilot pump 16 via check valve 17 and conduit 19.
  • the output of the pilot pump is only several gallons per minute and is relieved at approximately 500 psi by relief valve 20.
  • the higher volume implement pump which operates at higher pressures does not needlessly consume horsepower until an implement circuit is operated.
  • pilot spool lands 27 and 28 Each of these pilot spool lands includes a plurality of metering slots 29 which bleed pressurized hydraulic fluid from the inlet groove to separate outlet grooves, 30 and 31, on opposite sides of the inlet groove.
  • metering slots 29 which bleed pressurized hydraulic fluid from the inlet groove to separate outlet grooves, 30 and 31, on opposite sides of the inlet groove.
  • each reaction surface includes a drain passage 53, with an included orifice 54 that bleeds pressure from its associated chambers slowly to drain or the reservoir 47.
  • a continuous bleed occurs, purging conduits 33 and 36 of cold viscous hydraulic fluid, as well as on trapped air.
  • a conduit 65 connects the output of the pilot pump 16 to the safety valve 60 and, as can be seen in FIG. 2, the pressure from the pilot acts on the top of valve piston 66 to hold the safety valve in the off" position so that pressure in line 45 cannot communicate with line 63 or to port 67, above the jack piston 62, through bleed passage 68. If pilot pump pressure is lost, the spring 69 and fluid pressure in line 45 will move the valve piston to open port 67 and open communication between line 45 and line 63. As a result, the bowl will very slowly lower due to flow through the bleed passage 68 to port 67.
  • a pilot bleed control system for a remotely located control valve comprising:
  • pilot pump providing a source of pressurized fluid
  • pilot valve connected to said pilot pump to receive said pressurized fluid
  • said pilot valve having two spaced apart outlet grooves and also having a pilot valve spool with separate metering lands thereon for metered fluid flow to each of said outlet grooves when said pilot valve spool is in the neutral position, means in said pilot valve connecting each of said outlet grooves to drain via restricted passages in the neutral position of said pilot valve and operable to cause a positive pressure in each of said grooves due to said metered fluid flow thereto, said pilot valve spool having a spring centering means operable to return it to the neutral position and 1 also having manually operated lever means connected thereto to reciprocate said pilot valve spool;
  • control valve having supplied thereto a separate source of fluid pressure and also having a control valve spool for controlling fluid communication to its control ports for communicating such fluid pressure, said control valve having a chamber means at opposite ends of said control valve spool, each chamber being in communication with its associated end of said control valve spool;
  • a biasing means connected to said control valve spool operable to urge it to a neutral position
  • each end of said control valve spool communicating with a drain operable to bleed pressure from within its associated chamber means to said drain whereby a positive bleed is achieved through the control system at all times and said control valve spool will shift proportional to a pressure differential occurring in said several chamber means created when said pilot valve spool is manually shifted to create such pressure differential.
  • control valve is an open center type and the separate source of fluid pressure delivers higher pressure than the pilot pump pressure when said control valve is actuated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Servomotors (AREA)
  • Operation Control Of Excavators (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Abstract

In an earthmoving scraper a low volume, low pressure, pilot pump supplies fluid pressure to a pilot control valve which routes this fluid through bleed lines to a remote scraper control valve that operates the bowl jacks on the scraper from a separate source of pressurized hydraulic fluid. By manually varying the bleed rates of the output of the pilot pump with the spool of the pilot valve, proportion actuation of the control valve can be obtained through differential pressures in the bleed lines connecting it to the pilot valve. A safety valve connected in the bowl carry circuit supplies an alternate source of fluid pressure to the pilot valve if the pilot pump fails, ensuring positive fail-safe operation of the system.

Description

United States Patent 1191 Dezelan et al.
l l Jan. 28, 1975 [54] PILOT PUMP BLEED CONTROL FOR 3,557,829 l/l97l Finley 1. 91/46] X 3,566,749 3/l97l Allen Cl tll. 9l/46l X [75] Inventors: Joseph E. De1 zelan, Joliet; Henry .1. Primary C Cohen wllmmgton' bmh of Attorney, Agent, or FirmPhillips, Moore, [73] Assignee: Caterpillar Tractor Co., Peoria lll. Welssenberger Lemplofgi Smlbala [2]] Appl. No.: 335,910 In an earthmoving scraper a low volume, low pressure. pilot pump supplies fluid pressure to a pilot control [52] U S 137/625 63 91/461 137/625 66 valve which routes this fluid through bleed lines to a 137/625 remote scraper control valve that operates the bowl [511 In Cl Flsb 13/042 F161 11/67 jacks on the scraper from a separate source of press-ur- 531 Field of Search l37/625.6 625.63, 625.66, hydlau'lc BY "l "l bleed 137/625 3, 91/46] 52 rates of the output of the pllot pump with the spool of the pilot v'alve, proportion actuation of the control [56] References Cited valve can be obtained through differential pressures in the bleed lines connecting it to the pilot valve. A UNITED STATES PATENTS safety valve connected in the bowl carry circuit 2,800,143 7/1957 Keller u. l37/625.63 pli a alternate source of fluid pressure to the pilot valve if the pilot pump fails, ensuring positive came l 7 3,220,318 ll/l965 McGuire l37/625.66 x Safe system 3.477344 11/1969 Fisher 91/52 3 Claims, 2 Drawing Figures 1.1 N 11% 12 la 14 15 1a 10 37 a0 29 25 29 37) 1\1-l\111//1/ I A 7 38% 32174 LII "A" SIDE "5': SIDE '3 -33 q i 36 E 33 62 in *45} 1 1 PILOT PUMP BLEED CONTROL FOR EARTI-IMOVING SCRAPERS BACKGROUND OF THE INVENTION In earthmoving scrapers a number of the implement components on the scraper portion must be controlled from the tractor portion by the operator. As a result, numerous high pressure hydraulic hoses often must cross the articulated hitch between the tractor and scraper portions, or an alternate arrangement selected, involving locating the control valves on the scraper portion and operating them by remote control systems.
While such an alternate arrangement has many advantages, it does require a safe, reliable, positive acting remote control system to operate the control valves on the scraper portion, as the operator does not have any direct physical access to the main control valves. Because of these requirements, pilot-operated control systems using positive bleed arrangements have been used, such as disclosed in US. Pat. No. 3,515,032 which issued to .1. E. Dezclan et al. on June 2, 1970. Also see U.S. Pat. No. 3,048,978 which issued to I-Iare on Aug. 14, 1962 and US. Pat. No. 3,160,174 issued to Schmiel on Dec. 8, 1964 and U.S. Pat. No. 3,220,318 issued to McGuire on Nov. 30, 1965. The current invention is related to a bleed control system similar to the one disclosed in some of these patents.
One of the principal objectives of this invention is to provide a pilot control system for scrapers that is suitable for operating open center control valves,so needless horsepower loss will not occur by pumping large volumes of hydraulic fluid at high pressures over relief valves.
Another object is the provision of a pilot-operated system which includes fail-safe features for earthmoving scrapers.
Summary of the Invention The above objects and others can be accomplished with a pilot bleed control system which includes a pilot pump with its outlet connected to a pilot valve having a pilot spool with metering slots so it is operable to develop two equal pressures within the pilot valve body and having two conduits communicating these equal pressures to reaction chambers associated with opposite ends of a control spool of a remote open center control valve with bleed passages in the opposite ends of the control valve spool whereby positive bleeds from the pilot valve to the control valve are established and shifting of the pilot spool will cause the control valve spool to shift proportionally due to change in the pressures in the two conduits resulting from variations in the flows across the several metering slots in the pilot valve. A safety valve incorporated in a hydraulic circuit underload can be employed to provide an emergency source of pressurized fluid if the pilot pump fails by using the pilot pump output pressure to operate the valve and connecting it to the pilot valve.
BRIEF DESCRIPTION OF THE DRAWINGS The instant invention will be better understood when the specification is read in conjunction with the accompanying drawings wherein:
FIG. 1 is a schematic of the pilot control circuit with the details of the valve components illustrated in section; and
FIG. 2 is an enlarged section of the safety valve utilized to ensure fail-safe operation of the pilot control system, with parts broken away.
DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1 a broken line separates the several components of the system and those on the A side of the line are mounted on the tractor portion while those on the B side of the line are typically located on the scraper portion. Flexible connections for the lines and conduits which are utilized across the hitch are not shown. Pilot valve 10, on the tractor portion, includes a manualoperated control handle 11 pivotally mounted at one end of the valve body 12 and connected so as the handle is rocked on its pivot it will reciprocate a pilot valve spool 13, mounted in the valve body. Centering springs 14 and 15 with associated washer seats are connected to the opposite end of the pilot spool and are operable to return this spool and the control handle to neutral (indicated by N) when the handle is released.
Normally, pressurized fluid is supplied to the pilot valve 10 by a pilot pump 16 via check valve 17 and conduit 19. The output of the pilot pump is only several gallons per minute and is relieved at approximately 500 psi by relief valve 20. Through the use of the pilot pump, the higher volume implement pump which operates at higher pressures does not needlessly consume horsepower until an implement circuit is operated.
The output of the pilot pump via conduit 19 enters port 25 in the pilot valve body 12 which communicates with an inlet groove 26, closed on opposite sides by pilot spool lands 27 and 28. Each of these pilot spool lands includes a plurality of metering slots 29 which bleed pressurized hydraulic fluid from the inlet groove to separate outlet grooves, 30 and 31, on opposite sides of the inlet groove. As the bleed rate to each outlet groove is nearly identical, approximately the same pressure will be developed in each outlet groove when the pilot valve spool is in a neutral position and similar restrictions on the egress of fluid from the outlet grooves are employed.
Outlet groove.31 includes a port 32 which is connected across the articulated hitch (not shown) via conduit 33 to a control valve 34 on the scraper portion, while outlet groove 30 which includes port 35 is similarly connected to the control valve through conduit 36. Thus, with the pilot valve spool in neutral fluid pressure can be transmitted to the control valve via these two conduits. To ensure a positive pressure in each of these conduits, each outlet groove is in communication with a separate drain groove 24 across associated recesses 37 in the pilot valve spool when it is in the neutral position and each of these drain grooves is respectively vented to reservoir 38 via their own separate orifice 39. With the metering slots 29 arranged to deliver more fluid capacity than the orifices can pass, a positive pressure in conduits 33 and 36 is ensured and, as indicated, their respective pressures are equal when the pilot valve spool is in a neutral position.
On the scraper portion the open center type control valve 34 is connected directly to the higher pressure implement pump 40 via line 41, but it should be understood this pump could also be located on the tractor portion with a high pressure line connecting it to the control valve. Control valve spool 42 in the control valve, when shifted will close drain port 43 in the control valve body 44 and cause the implement pump to pressurize either line 45 or 46 (depending on the'direction of spool shift) while connecting the unpressurized line to drain or reservoir 47. Conventional lands and grooves are used in the control valve spool and control valve body to effect this operation. Thus, the main or implement pump is not working (consuming power) when the implement circuits are not in use.
A heavy duty centering spring 50 is connected between the control valve body 44 and one end of the control valve spool 42 and with the accompanying washer-like spring seats, returns the control valve spool to a neutral position when a force displacing it in either direction is removed. In the instant invention, differential pressures in lines 33 and 36 provide the displacing force. This is provided by forming separate chambers 51 and 52 respectively at opposite ends of the control valve spool and connecting conduit 33 to chamber 52 and conducting conduit 36 with chamber 51. Within each chamber the associated end of the control valve spool projecting thereinto provides a reaction surface for the pressure within its associated chamber, allowing differential pressures at opposite ends of the spool to shift it against the centering spring force. In order to provide a positive and continuous bleed each reaction surface includes a drain passage 53, with an included orifice 54 that bleeds pressure from its associated chambers slowly to drain or the reservoir 47. Thus, with the valve positions shown in the drawings, a continuous bleed occurs, purging conduits 33 and 36 of cold viscous hydraulic fluid, as well as on trapped air.
With both pumps running when the operator shifts handle 11 to the raised R position, the fluid pressure bleed to -outlet groove 30 will be interrupted while the fluid flow to outlet groove 31 will be increased. As a result, the pressure communicated to chamber 52 wil increase with respect to chamber 51 causing the control valve spool 42 to move into the latter chamber and couple implement pump 40 with line 45. Due to the presence of the metering slots in the pilot valve spool 13, the resulting differential pressure in the two chambers can be proportionally varied, giving full control of the control valve over a wide range of operating rates, when using a smaller, more easily manipulated pilot control valve. Obviously, when the pressure equalizes in the several chambers the centering spring 50 will return the control valve spool to neutral. The operation is identical when the control handle 11 is placed in the lower or L position, except that line 46 is pressurized instead of line 45, the latter then being vented to reservoir.
To insure fail-safe operation a special safety valve 60 is employed in the bowl carry circuit which includes lines 45 and 46 connected to bowl lift jack 61 (only jack being shown). This safety-valve, better shown in FIG. 2, is connected to line 45, which communicates with the rod end of jack 61, so if the bowl is off the ground, its weight and the weight of its contents will be supported by jack piston 62, ensuring a positive pressure in line 45. The safety valve also is connected to the pilot valve via line 63 and check valve 64, as shown in FIG. 1.
A conduit 65 connects the output of the pilot pump 16 to the safety valve 60 and, as can be seen in FIG. 2, the pressure from the pilot acts on the top of valve piston 66 to hold the safety valve in the off" position so that pressure in line 45 cannot communicate with line 63 or to port 67, above the jack piston 62, through bleed passage 68. If pilot pump pressure is lost, the spring 69 and fluid pressure in line 45 will move the valve piston to open port 67 and open communication between line 45 and line 63. As a result, the bowl will very slowly lower due to flow through the bleed passage 68 to port 67.
However, it is also necessary that the operator have the ability to lower the bowl quickly, since this can stop the vehicle in emergency situations. By utilizing the pressure in line 63 and the pilot valve, this can be accomplished if the operator moves the control handle 11 to the emergency lower or L," position. When this is done spool land 28, which normally closes port 70, opens this port allowing fluid pressure from line 63 to communicate with outlet groove 30 via the inlet groove. As can be seen, this port is normally closed off from the inlet groove by this land in the L position but opens in the L, position. As a'result, conduit 36 will be pressurized with the bowl carry pressure and shift the control'valve spool 42 to lower the bowl whether or not either pump is operational as the weight of the bowl will cause it to lower without pump pressure. Check valve 17 prevents loss of the bowl carry pressure through the pilot pump circuit.
We claim:
l. A pilot bleed control system for a remotely located control valve comprising:
a pilot pump providing a source of pressurized fluid;
a pilot valve connected to said pilot pump to receive said pressurized fluid, said pilot valve having two spaced apart outlet grooves and also having a pilot valve spool with separate metering lands thereon for metered fluid flow to each of said outlet grooves when said pilot valve spool is in the neutral position, means in said pilot valve connecting each of said outlet grooves to drain via restricted passages in the neutral position of said pilot valve and operable to cause a positive pressure in each of said grooves due to said metered fluid flow thereto, said pilot valve spool having a spring centering means operable to return it to the neutral position and 1 also having manually operated lever means connected thereto to reciprocate said pilot valve spool;
a control valve having supplied thereto a separate source of fluid pressure and also having a control valve spool for controlling fluid communication to its control ports for communicating such fluid pressure, said control valve having a chamber means at opposite ends of said control valve spool, each chamber being in communication with its associated end of said control valve spool;
a first conduit means connecting one of said outlet grooves with one of said chamber means;
a second conduit means connecting said other of said outlet grooves with said other chamber means;
a biasing means connected to said control valve spool operable to urge it to a neutral position; and
bleed passages in each end of said control valve spool communicating with a drain operable to bleed pressure from within its associated chamber means to said drain whereby a positive bleed is achieved through the control system at all times and said control valve spool will shift proportional to a pressure differential occurring in said several chamber means created when said pilot valve spool is manually shifted to create such pressure differential.
wherein the control valve is an open center type and the separate source of fluid pressure delivers higher pressure than the pilot pump pressure when said control valve is actuated.

Claims (3)

1. A pilot bleed control system for a remotely located control valve comprising: a pilot pump providing a source of pressurized fluid; a pilot valve connected to said pilot pump to receive said pressurized fluid, said pilot valve having two spaced apart outlet grooves and also having a pilot valve spool with separate metering lands thereon for metered fluid flow to each of said outlet grooves when said pilot valve spool is in the neutral position, means in said pilot valve connecting each of said outlet grooves to drain via restricted passages in the neutral position of said pilot valve and operable to cause a positive pressure in each of said grooves due to said metered fluid flow thereto, said pilot valve spool having a spring centering means operable to return it to the neutral position and also having manually operated lever means connected thereto to reciprocate said pilot valve spool; a control valve having supplied thereto a separate source of fluid pressure and also having a control valve spool for controlling fluid communication to its control ports for communicating such fluid pressure, said control valve having a chamber means at opposite ends of said control valve spool, each chamber being in communication with its associated end of said control valve spool; a first conduit means connecting one of said outlet grooves with one of said chamber means; a second conduit means connecting said other of said outlet grooves with said other chamber means; a biasing means connected to said control valve spool operable to urge it to a neutral position; and bleed passages in each end of said control valve spool communicating with a drain operable to bleed pressure from within its associated chamber means to said drain whereby a positive bleed is achieved through the control system at all times and said control valve spool will shift proportional to a pressure differential occurring in said several chamber means created when said pilot valve spool is manually shifted to create such pressure differential.
2. The pilot bleed control system defined in claim 1 wherein the bleed passages in each end of the control valve spool include restrictions to limit the flow of fluid from their associated chambers.
3. The pilot control system defined in claim 1 wherein the control valve is an open center type and the separate source of fluid pressure delivers higher pressure than the pilot pump pressure when said control valve is actuated.
US335910A 1973-02-26 1973-02-26 Pilot pump bleed control for earthmoving scrapers Expired - Lifetime US3862643A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US335910A US3862643A (en) 1973-02-26 1973-02-26 Pilot pump bleed control for earthmoving scrapers
CA189,140A CA994206A (en) 1973-02-26 1973-12-28 Pilot pump bleed control for earthmoving scrapers
JP49021566A JPS49114204A (en) 1973-02-26 1974-02-25
GB845374A GB1459857A (en) 1973-02-26 1974-02-25 Hydraulic control apparatus
BE141377A BE811564A (en) 1973-02-26 1974-02-26 LEAKING PILOT PUMP CONTROL FOR EXCAVATORS
US05/483,132 US3935792A (en) 1973-02-26 1974-06-26 Pilot pump bleed control for earthmoving scrapers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US335910A US3862643A (en) 1973-02-26 1973-02-26 Pilot pump bleed control for earthmoving scrapers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/483,132 Division US3935792A (en) 1973-02-26 1974-06-26 Pilot pump bleed control for earthmoving scrapers

Publications (1)

Publication Number Publication Date
US3862643A true US3862643A (en) 1975-01-28

Family

ID=23313742

Family Applications (1)

Application Number Title Priority Date Filing Date
US335910A Expired - Lifetime US3862643A (en) 1973-02-26 1973-02-26 Pilot pump bleed control for earthmoving scrapers

Country Status (5)

Country Link
US (1) US3862643A (en)
JP (1) JPS49114204A (en)
BE (1) BE811564A (en)
CA (1) CA994206A (en)
GB (1) GB1459857A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987703A (en) * 1974-08-12 1976-10-26 Caterpillar Tractor Co. Combined restrictor and dead engine lowering valve
US4011891A (en) * 1975-08-06 1977-03-15 Applied Power Inc. Proportional flow control valve
US4024798A (en) * 1975-05-01 1977-05-24 Caterpillar Tractor Co. Control valve providing two speed operation for a motor
US4044795A (en) * 1974-05-31 1977-08-30 Bennes Marrel Selective and proportional hydraulic remote control device, in particular for handling and public work gears
US4197878A (en) * 1978-03-30 1980-04-15 Ideus, Inc. Hydraulic valve
US4253540A (en) * 1979-10-29 1981-03-03 Caterpillar Tractor Co. Steering system for cold environments
WO1981001124A1 (en) * 1979-10-29 1981-04-30 Gen Signal Corp Pressure compensated steering system
US4320691A (en) * 1979-11-16 1982-03-23 Caterpillar Tractor Co. Hydraulic load lifting system with hydraulic surcharge to make up valve pilot lines
US4355506A (en) * 1977-08-26 1982-10-26 Leonard Willie B Pump-motor power limiter and pressure relief
US4392415A (en) * 1980-12-19 1983-07-12 Caterpillar Tractor Co. Control for dead engine lower
US4633762A (en) * 1983-05-26 1987-01-06 Bennes Marrel Speed limiting device designed to equip the slide valve of a hydraulic system
GB2185554A (en) * 1986-01-17 1987-07-22 Commercial Shearing Fluid valves
US4833798A (en) * 1987-06-11 1989-05-30 Mannesmann Ag Hydraulic control for earth working machines
EP0351402A1 (en) * 1987-08-27 1990-01-24 Caterpillar Inc. Load responsive control system adapted to use of negative load pressure in operation of system controls
US6397890B1 (en) * 1999-02-15 2002-06-04 Case Corp. Variable metering fluid control valve
GB2371846A (en) * 2000-12-19 2002-08-07 Snecma Moteurs A fail safe valve
CN1295440C (en) * 2004-03-08 2007-01-17 尚继良 Integrated manual multiple directional control valve for lader
WO2012119568A1 (en) * 2011-03-10 2012-09-13 湖南三一智能控制设备有限公司 Reversing valve having m type functionality
US11236770B2 (en) * 2017-03-17 2022-02-01 Kyb Corporation Servo regulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158805U (en) * 1978-04-28 1979-11-06

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800143A (en) * 1952-07-21 1957-07-23 North American Aviation Inc Hydraulic regulating valve
US2993477A (en) * 1958-12-17 1961-07-25 Ibm Regenerative hydraulic control valve
US3213886A (en) * 1962-10-22 1965-10-26 Pearne And Lacy Machine Compan Flow control valve with stop means movable at a controlled rate
US3220318A (en) * 1963-11-21 1965-11-30 John R Mcguire Hydraulic system
US3477344A (en) * 1967-05-24 1969-11-11 United Aircraft Corp Fluid mechanical hysteretic device
US3557829A (en) * 1969-09-11 1971-01-26 Caterpillar Tractor Co Pilot valve for actuating a main control of the hydraulic circuit
US3566749A (en) * 1968-03-13 1971-03-02 Caterpillar Tractor Co Hydraulic flow amplifier valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800143A (en) * 1952-07-21 1957-07-23 North American Aviation Inc Hydraulic regulating valve
US2993477A (en) * 1958-12-17 1961-07-25 Ibm Regenerative hydraulic control valve
US3213886A (en) * 1962-10-22 1965-10-26 Pearne And Lacy Machine Compan Flow control valve with stop means movable at a controlled rate
US3220318A (en) * 1963-11-21 1965-11-30 John R Mcguire Hydraulic system
US3477344A (en) * 1967-05-24 1969-11-11 United Aircraft Corp Fluid mechanical hysteretic device
US3566749A (en) * 1968-03-13 1971-03-02 Caterpillar Tractor Co Hydraulic flow amplifier valve
US3557829A (en) * 1969-09-11 1971-01-26 Caterpillar Tractor Co Pilot valve for actuating a main control of the hydraulic circuit

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044795A (en) * 1974-05-31 1977-08-30 Bennes Marrel Selective and proportional hydraulic remote control device, in particular for handling and public work gears
US3987703A (en) * 1974-08-12 1976-10-26 Caterpillar Tractor Co. Combined restrictor and dead engine lowering valve
US4024798A (en) * 1975-05-01 1977-05-24 Caterpillar Tractor Co. Control valve providing two speed operation for a motor
US4011891A (en) * 1975-08-06 1977-03-15 Applied Power Inc. Proportional flow control valve
US4355506A (en) * 1977-08-26 1982-10-26 Leonard Willie B Pump-motor power limiter and pressure relief
US4197878A (en) * 1978-03-30 1980-04-15 Ideus, Inc. Hydraulic valve
US4253540A (en) * 1979-10-29 1981-03-03 Caterpillar Tractor Co. Steering system for cold environments
WO1981001124A1 (en) * 1979-10-29 1981-04-30 Gen Signal Corp Pressure compensated steering system
WO1981001123A1 (en) * 1979-10-29 1981-04-30 L Berg Steering system for cold environments
US4311006A (en) * 1979-10-29 1982-01-19 General Signal Corporation Pressure compensated steering system
US4320691A (en) * 1979-11-16 1982-03-23 Caterpillar Tractor Co. Hydraulic load lifting system with hydraulic surcharge to make up valve pilot lines
US4392415A (en) * 1980-12-19 1983-07-12 Caterpillar Tractor Co. Control for dead engine lower
US4633762A (en) * 1983-05-26 1987-01-06 Bennes Marrel Speed limiting device designed to equip the slide valve of a hydraulic system
GB2185554A (en) * 1986-01-17 1987-07-22 Commercial Shearing Fluid valves
FR2593261A1 (en) * 1986-01-17 1987-07-24 Commercial Shearing VALVE STRUCTURE WITH FLUID
GB2185554B (en) * 1986-01-17 1990-03-21 Commercial Shearing Fluid valves
US4833798A (en) * 1987-06-11 1989-05-30 Mannesmann Ag Hydraulic control for earth working machines
EP0351402A1 (en) * 1987-08-27 1990-01-24 Caterpillar Inc. Load responsive control system adapted to use of negative load pressure in operation of system controls
EP0351402A4 (en) * 1987-08-27 1990-02-06 Caterpillar Inc Load responsive control system adapted to use of negative load pressure in operation of system controls.
US6397890B1 (en) * 1999-02-15 2002-06-04 Case Corp. Variable metering fluid control valve
GB2371846A (en) * 2000-12-19 2002-08-07 Snecma Moteurs A fail safe valve
GB2371846B (en) * 2000-12-19 2004-08-11 Snecma Moteurs A fail-freeze servovalve
CN1295440C (en) * 2004-03-08 2007-01-17 尚继良 Integrated manual multiple directional control valve for lader
WO2012119568A1 (en) * 2011-03-10 2012-09-13 湖南三一智能控制设备有限公司 Reversing valve having m type functionality
US11236770B2 (en) * 2017-03-17 2022-02-01 Kyb Corporation Servo regulator

Also Published As

Publication number Publication date
GB1459857A (en) 1976-12-31
BE811564A (en) 1974-08-26
JPS49114204A (en) 1974-10-31
CA994206A (en) 1976-08-03

Similar Documents

Publication Publication Date Title
US3862643A (en) Pilot pump bleed control for earthmoving scrapers
US4986071A (en) Fast response load sense control system
JP4856131B2 (en) Hydraulic system of work machine
US3304953A (en) Fluid power system and valve mechanisms therefor
JP3476533B2 (en) Hydraulic pressure control system for hydraulic actuator control
KR100298068B1 (en) Pressure compensating hydraulic control valve system
US3878864A (en) Bypass valve
JPS6246724B2 (en)
US3840049A (en) Compact fluid motor control system with float position
US3472261A (en) Directional control valve
US6505645B1 (en) Multiple hydraulic valve assembly with a monolithic block
US3868821A (en) Automatic pump control system
US3267961A (en) Valve
US3935792A (en) Pilot pump bleed control for earthmoving scrapers
US3771558A (en) Combined open-center pressure control and regeneration valve
JPS6018844B2 (en) Compensated multifunctional hydraulic device
US4141280A (en) Dual pump flow combining system
US5907991A (en) Quick drop valve control
US5673557A (en) Displacement control system for variable displacement type hydraulic pump
US4006667A (en) Hydraulic control system for load supporting hydraulic motors
US3746040A (en) Directional control valve
US4341243A (en) Pressure reducing valve with floating stem for make-up vent
US5579676A (en) Hydraulic valve to maintain control in fluid-loss condition
JP3289852B2 (en) Direction control valve for flow rate support
US3474708A (en) Valve assembly for fluid motors and the like

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., 100 N.E. ADAMS STREET, PEORIA, I

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CATERPILLAR TRACTOR CO., A CORP. OF CALIF.;REEL/FRAME:004669/0905

Effective date: 19860515

Owner name: CATERPILLAR INC., A CORP. OF DE.,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CATERPILLAR TRACTOR CO., A CORP. OF CALIF.;REEL/FRAME:004669/0905

Effective date: 19860515