US3858207A - Range sensing target detecting device - Google Patents

Range sensing target detecting device Download PDF

Info

Publication number
US3858207A
US3858207A US00583497A US58349766A US3858207A US 3858207 A US3858207 A US 3858207A US 00583497 A US00583497 A US 00583497A US 58349766 A US58349766 A US 58349766A US 3858207 A US3858207 A US 3858207A
Authority
US
United States
Prior art keywords
target
delay
coupled
output
circuit means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00583497A
Inventor
B Macomber
N Gravelle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US00583497A priority Critical patent/US3858207A/en
Application granted granted Critical
Publication of US3858207A publication Critical patent/US3858207A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/18Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein range gates are used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/04Proximity fuzes; Fuzes for remote detonation operated by radio waves

Definitions

  • a target detecting device having a plurality of gate circuits and time delay computers for determining after intercept of a target, the optimum missile-target range Field of Search 343/7, 7 PF, 12 MD; 102/702 P to effect maximum target damage.
  • SHEET 10F 4 I mt ' MAXIMUM ERROR "*TM ⁇ DIOPTIMUM BURST T 0 Z BENNIE D. MACOMBER NOEL D. GRAVELLE INVENTORS y ATTORNEYS ATTORNEYS PATENTEU 3.858.207 SHEET 2 BF 4 5 MODULATOR T THRESHOLD DISCHARGE l lz 22 IT 28 ,34 ,40 TARGET DELAY VARIABLE TARGET TIME DELAY GATE I THRESHOLD COUNT COMPUTER J ds [l4 24 30 36 42 48 TARGET DELAY VARIABLE TARGET T
  • the present invention relates to target detecting devices and more particularly to target detecting devices having a controlled warhead burst initiation.
  • atime delay between target detection and warhead burst is implemented as a function of relative closing velocity between the target and the missile.
  • the purpose of this time delay is to maximize the probability of the lethal portions of the warhead striking a vulnerable area of the target. If correctly determined, this time delay would be a function not only of closing velocity as in present systems, but also of.
  • the present invention provides a circuit arrangement
  • the input from a radar receiver consisting of a unipolar video pulse train which is the result of the detection of microwave pulses reflected from a target is applied to the inputs of three gates and an amplitude detector.
  • the timing of the gates is such that the pulses pass through target gate one if they have been reflected from anobject the range of which is between R1 feet.
  • Pulses passed through target gate two if they have been reflected from an object the range of which is between 0 and R2 feet.
  • pulses passed through target gate three if they have been reflected from an object the range of which is between 0 and R3 feet.
  • an object of the invention is to provide a means of determining the missile-to-target range at the time of intercept, to permit a more optimum control over warhead burst time to effect maximum target damage.
  • FIGS. 1 and 2 show the relationship between target and missile at time of intercept.
  • FIG. 3 is a graph showing the time relationship between transmit pulse and target gates.
  • FIG. 4 is a graph of a specific example of transmit pulse and a target return from two different targets.
  • FIG. 5 is a block diagram of a preferred embodiment of the invention.
  • FIGS. 6-8 are a schematic diagram of the embodiment of FIG. 4.
  • FIG. 1 an intercept condition with look angle, 6, relative missile target velocity, V,,,,, and miss-distance, RT.
  • the relative velocity of the warhead which may be of the expanding rod type is V,.. T, is the time for rod to travel from warhead to target.
  • the time delay, T between time of detection and time of warhead burst to obtain maximum effectiveness can be determined as follows:
  • the detection angle represents the locus of the position of the first portion of all targets which may be detected by the proximity fuze.
  • the warhead burst lines represents the locus of a vulnerble portion of these targets at optimum warhead burst time.
  • Rod hit lines represent the locus of a vulnerable portion of these targets at the time the warhead lethal agent arrives at the target.
  • the blast radius is the radius of a sphere within which a target will be destroyed if the target is present within this sphere at the time of warhead burst.
  • the present invention provides a system which breaks up the miss-distance factor, RT, into a plurality of parts so that the time delay between target detection and warhead detonation can be computed on the basis of range as well as relative velocity thereby reducing the compromise of present systems.
  • RT miss-distance factor
  • Target gate L is on only for a period of time corresponding to the time required for the transmitted energy to reach an object at slant range SR 1 (FIG. 2) and return through the receiver at which time it isturned off.
  • the on times for target gates 2 and 3 are determined in a similar manner by the time required for energy to be reflected from objects at slant ranges SR 2 and SR 3 respectively.
  • the transmit pulse which is reflected from a target is called a target return.
  • the target return should occur during the time interval that target gate 1 is on, the target return will appear at the output of target gates l, 2, and 3 simultaneously and the slant range to the target is known to be less than SR 1. If the target return should, instead, occur after target gate 1 is off but before target gate 2 is off, the target return will appear at the output of target gates 2 and 3 only and the slant range to the target is known to be greater than SR 1 but less than SR 2. If thetarget return should, instead, occur after target gate 2 is off but before target gate 3 is off, the target return will appear at the output of target gate 3 only and the slant range to the target is known to be greater than SR 2 but less than SR 3.
  • time delay equation shows that the time delay required is directly proportional to range, RT.
  • the correct time delay for targets detected in range R R for a given V,,,,, V,, and 6 is T then the correct time delay for the other two range intervals is a fraction of T determined by the ratio of the midpoints of the range intervals.
  • time delay for range R -R is:
  • K, K are constants to be determined by intercept lethality analysis.
  • the cutoff from one range bracket to another should be kept to a minimum to reduce the possibility of range ambiguity.
  • a fifty nsec transmit pulse and target return signals at twenty-five and thirty feet.
  • a video gate is applied to the received signals allowing only the first fifty nsec of the received pulse (which has been stretched and rounded by the IF amplifier) to pass.
  • the pulse returned from a twenty-five feet range now has an effective pulse of twenty-five nsec and the pulse returned from the thirty feet range now has an effective pulse width of fifteen nsec.
  • These pulses are now separately fed through a low pass filter to a variable threshold circuit which has been set to the peak amplitude before gating action had diminished the pulse width.
  • the pulse corresponding to the object at twenty-five feet range would exceed the threshold whereas the pulse corresponding to the object at thirty feet would not because of the greater attenuation of the narrower pulse by the low pass filter.
  • the reflected target signal is received at terminal 10 and fed to gates 12, 14, and 16 and to peak detector 18.
  • Gates 12, 14, and 16 are each controlled by a gate control circuit 20 which is initiated by input signals from the radar modulator l3 controlled by clock 15.
  • the signals passed by gates 12, 14, and 16 are coupled through delay lines 22, 24, and 26 to variable threshold circuits 28, 30, and 32 respectively which will produce an output signal as determined by the output of detector 18.
  • a discharge pulse is fed from threshold discharge circuit 17 to peak detector 18 and will later be described in more detail.
  • the pulses generated by a threshold circuit are counted by their corresponding counter (34, 36, 38) and if a sufficient number of pulses are counted within a predetermined time, an output pulse will be fed to a corresponding computer (40, 42, 44).
  • Each computer will produce an output pulse at its output terminal (46, 48, 50).
  • the output of each computer will be delayed from its input by an amount proportional to the closing velocity information supplied by the missile homing system, R, and the particular target gate from which the target return was processed.
  • R closing velocity information supplied by the missile homing system
  • targets detected at a range such that the target return signals are processed only by target gates 2 and 3 will cause warhead burst to be controlled by time delay computer 2.
  • target return processed only by target gate 3 will cause warhead detonation to be controlled by time delay computer 3.
  • FIG. 6 there is shown in schematic diagram form the gate control circuit 20 of FIG. 4.
  • Input signals from the radar modulator 13 are fed to input terminal where it is fed to a variable width blocking oscillator 62 which generates a series of pulses that are fed to a fixed width blocking oscillator 64 and a delay line 66.
  • Blocking oscillator 64 generates an output pulse at terminal 68 for each pulse received from blocking oscillator 62 and is fed as the gating pulse to target gate 12 (FIG. 5).
  • the delayed signal from delay line 66 is fed to fixed blocking oscillator 70 and delay line 72.
  • Blocking oscillator 70 generates an output pulse at terminal 74 which is fed to target gate 14.
  • the twice delayed signal at the output of delay line 72 is fed to fixed width blocking oscillator 76 which generates an output pulse at terminal 78 which is fed to target gate 16.
  • Delay lines 66 and 72 may be of the lumped constant type.
  • target gate 12 is shown as a normally conducting transistor 80 having a transistor 82 connected between the base and emitter for turning it off in response to a timing pulseat terminal 84 received from gate control 20 (FIG. 5).
  • the video signal received at terminal 10 and passed by gate 12 is fed through delay line 22 to the base 86 of transistor 88 pled through a compound emitter follower driver circuit 96 to the base of transistor 90.
  • Thevoltage stored on capacitor is the threshold voltage and will be discharged through diode 97 to'the threshold discharge circuit 17 through terminal 50 (FIG. 5).
  • Discharge circuit 17 may be a one shot multivibrator which is triggered by the output of clock 15 and has a pulse width sufficient to permit target gate 16 to turn off.
  • Capacitor 95 is discharged at the end of the output pulse from discharge circuit 17.
  • the output signal from transistor 88 is coupled by coupling capacitor 98 to emitter follower 100 of target counter 34.
  • the pulse out of emitter follower 100 is fed to blocking oscillator 102 which generates an output pulse for every input pulse received.
  • the pulses generated by blocking oscillator 102 are fed to staircase generator 104.
  • Resistor 105 provides a decay for capacitor 107 so that if a predetermined number of pulses are not received with a given time the voltage of capacitor 107 will never build up to a sufficient amplitude to cause Zener diode 106 to break down and discharge capacitor 107.
  • the discharge pulse from capacitor 107 triggers a Schmitt trigger 108 to produce an output signal suitable for processing by computer 40.
  • Computer 40 (FIG. 8) consists of a monostable multivibrator 110 which is triggered by the input signal from Schmitt trigger 108 (FIG. 7).
  • the bias supplied from emitter follower circuit 112 to the base of transistor 114 is proportional to the closing velocity of the missile and target and is for the purpose of controlling the pulse width or delay of multivibrator 110.
  • the inputsignal to emitter follower circuit 112 is the R voltage from impedance network 41 (FIG. and represents velocity and is supplied by the missile guidance (not shown) range.
  • the output pulse from the computer is coupled through a differentiating capacitor 115 to diodes 116 and 118 which are to permit only negative pulses to be fed to output terminal 120 for utilization by a firing circuit (not shown).
  • a guided missile range sensing target detecting device comprising:
  • target gate control means coupled to said plurality of target gate circuits for controlling the time interval each gate is open
  • 'delay filter circuit means coupled to each of said target gate circuits for attenuating signals which have a pulse width less than a predetermined value
  • variable threshold circuit means coupled to each of said delay filter circuit means for passing only the video signals received from said delay filter circuit means when they exceed the output signal from said peak detector circuit
  • target count circuit means coupled to each of said variable threshold circuit means for producing an output pulse in response to a predetermined number of video pulses received from said variable threshold circuit means within a predetermined time interval
  • a plurality of computer circuit means each having a first input coupled to the output of a target count circuit means and having a second input for receiving a voltge proportional to missile to target closing velocity for producing an output firing pulse in response to the presence of a pulse from said target count circuit.
  • said target gate circuits comprises:
  • first and second transistors each having a base, emitter and a collector
  • the base of said first transistor being coupled to an input terminal for receiving said video signals
  • the emitter of said first transistor being connected to an output terminal and through a load'resistor to the emitter of said second transistor.
  • an input terminal coupled to receive input pulses from a periodic pulse generating means
  • variable width blocking oscillator having an input coupled to said input terminal for producing a series of output pulses in response to the periodic pulses at said input terminal
  • a first fixed width blocking oscillator coupled directly to said variable width blocking oscillator for producing a first series of gating pulses
  • a first delay circuit having a first predetermined delay coupled to the output of said variable width blocking oscillator
  • a second fixed width blocking oscillator coupled to said delay circuit for producing a second series of gating pulses delayed with respect to said first series of timing pulses by the amount of said first predetermined delay
  • a third fixed w'idth blocking oscillator coupled to said second delay circuit for producing a series of gating pulses delayed with respect to said first series of gating pulses by the amount of delay of said first and second delay circuits combined.
  • said computer circuit comprises a monostable multivibrator triggered by the output of said target count circuit and biased by a voltage proportional to the missile to target closing velocity as modified to represent slant range to

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A target detecting device having a plurality of gate circuits and time delay computers for determining after intercept of a target, the optimum missile-target range to effect maximum target damage.

Description

Macomber et al.
RANGE SENSING TARGET DETECTING DEVICE nited States Patent Inventors: Bennie D. Macomber, Norco; Noel D, Gravelle, Riverside, both of Calif.
Assignee:
Filed:
Appl. No.:
The United States of America as represented by the Secretary of the Navy, Washington, DC.
Sept. 29, 1966 US, Cl. 343/7 PF, 102/702 P Int. Cl.
[ Dec. 31, 1974 Primary ExaminerT. H. Tubbesing Attorney, Agent, or Firm--Richard S. Sciascia; Joseph M. St. Amand; T. M. Phillips 5 7 ABSTRACT A target detecting device having a plurality of gate circuits and time delay computers for determining after intercept of a target, the optimum missile-target range Field of Search 343/7, 7 PF, 12 MD; 102/702 P to effect maximum target damage.
5 Claims, 8 Drawing Figures MODULATOR ,CLOCK Y J -i THRESHOLD A DISCHARGE l IZ ,22 TT ,2a ,34 I ,40
74s TARGET VARIABLE TARGET T|ME DE| .AY V ELAY A GATE D THRESHOLD. COUNT COMPUTER T f ds ,|4 24 30- as 42 4a TARGET DELAY VARIABLE TARGET T|ME.DE| AY a GATE 2 THRESHOLD COUNT COMPUTER |o T 1 dz TARGET DELAY VARIABLE TARGET nME DELAY E GATE 3" THRESHOLD COUNT I COMPUTER 4 l8 EMITTER FOLLOWER 'V R AND PEAK i DETECTOR 3 PATENTEDBEB31 I914 3, 858.207
SHEET 10F 4 I mt ' MAXIMUM ERROR "*TM\DIOPTIMUM BURST T 0 Z BENNIE D. MACOMBER NOEL D. GRAVELLE INVENTORS y ATTORNEYS ATTORNEYS PATENTEU 3.858.207 SHEET 2 BF 4 5 MODULATOR T THRESHOLD DISCHARGE l lz 22 IT 28 ,34 ,40 TARGET DELAY VARIABLE TARGET TIME DELAY GATE I THRESHOLD COUNT COMPUTER J ds [l4 24 30 36 42 48 TARGET DELAY VARIABLE TARGET T|ME DELAY a GATE 2 THRESHOLD COUNT COMPUTER I0 4 f f T l6 26 32 38 44 TARGET DELAY VARIABLE TARGET TIME DELAY GATE 3 THRESHOLD COUNT COMPUTER ,Ia EMITTER FOLLOwER DR'VER AND PEAK 5 DETECTOR vIDEO GATE CUTOFF TRANSMIT PULSE RECEIVE PULsE f ON 25 FT +50 NSEC-b 30 FT TRANSMIT PULSE OFF TARGET GATE I ON -|5NSEC OFF OFF TARGET GATE 2 25 mm 0N OFF TARGET I ON GATE 3 I I v TIME I OUTPUT OF 3 vIDEO GATE 25H FIG 4 30 FT BENNIE D. MACOMBER I THRESHOLD SET NOEL D. GRAVELLE BY AMPLITUDE OF INVENTORS INPUT TO RECEIVED PULSE THRESHOLD CIRCUIT BEFORE GATING BY 25 FT 2/, 30 FT J 2 PATEHTEDUEE3 1 I974 SHEET 3 OF 4 BENNIE D. MACOMBER NOEL D. GRAVELLE W Aw INVENTORS ATTORNEYS AIENTEDB B 3.858.207
SHEET l UF 4 COMPUTER 2 M131 (D A) i: l j o m TARGET GATE CONTROL FIG.8
BENNIE D. MACOMBER NOEL D. GRAVELLE INVENTORS TTORNEYS FIG.- 6
RANGE SENSING TARGET DETECTING DEVICE The invention herein described may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
The present invention relates to target detecting devices and more particularly to target detecting devices having a controlled warhead burst initiation.
In proximity fuze systemspresently in use on antiaircraft guided missiles, atime delay between target detection and warhead burst is implemented as a function of relative closing velocity between the target and the missile. The purpose of this time delay is to maximize the probability of the lethal portions of the warhead striking a vulnerable area of the target. If correctly determined, this time delay would be a function not only of closing velocity as in present systems, but also of.
' to effect maximum target damage.
The present invention provides a circuit arrangement,
which permits the use of multiple range gates and special adapted thresholds which permit sharp range deflnition, resulting in the determination of target range at the time of target detection. The input from a radar receiver consisting of a unipolar video pulse train which is the result of the detection of microwave pulses reflected from a target is applied to the inputs of three gates and an amplitude detector. The timing of the gates is such that the pulses pass through target gate one if they have been reflected from anobject the range of which is between R1 feet. Pulses passed through target gate two if they have been reflected from an object the range of which is between 0 and R2 feet. In a similar manner pulses passed through target gate three if they have been reflected from an object the range of which is between 0 and R3 feet. An ampli- I tude detector and threshold driver set the thresholds on an individual pulse basis, thereby providing sharp discrimination between ranges regardless of pulse amplitude. Accordingly, an object of the invention is to provide a means of determining the missile-to-target range at the time of intercept, to permit a more optimum control over warhead burst time to effect maximum target damage. 7
Other objects and many of the attendant advantages of this invention will become readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
FIGS. 1 and 2 show the relationship between target and missile at time of intercept.
' FIG. 3 is a graph showing the time relationship between transmit pulse and target gates. FIG. 4 is a graph of a specific example of transmit pulse and a target return from two different targets.
FIG. 5 is a block diagram of a preferred embodiment of the invention.
FIGS. 6-8 are a schematic diagram of the embodiment of FIG. 4.
Referring now to the drawings there is shown in FIG. 1 an intercept condition with look angle, 6, relative missile target velocity, V,,,,, and miss-distance, RT. The relative velocity of the warhead which may be of the expanding rod type is V,.. T, is the time for rod to travel from warhead to target. The time delay, T between time of detection and time of warhead burst to obtain maximum effectiveness can be determined as follows:
In FIGS. 1 and 2, the detection angle represents the locus of the position of the first portion of all targets which may be detected by the proximity fuze. The warhead burst lines represents the locus of a vulnerble portion of these targets at optimum warhead burst time. Rod hit lines represent the locus of a vulnerable portion of these targets at the time the warhead lethal agent arrives at the target. In FIG. 2, the blast radius is the radius of a sphere within which a target will be destroyed if the target is present within this sphere at the time of warhead burst.
The present invention provides a system which breaks up the miss-distance factor, RT, into a plurality of parts so that the time delay between target detection and warhead detonation can be computed on the basis of range as well as relative velocity thereby reducing the compromise of present systems. This is illustrated by considering that if the miss distance were X instead of RT (FIG. 1) that the time delay T which was optimum for miss distance RT would allow the target to pass the missile to point Y when the warhead is burst and the damage to the target would be reduced. Therefore the delay time from target detection to warhead burst must take into account the miss distance to the target to achieve maximum damage to the target. FIG.
2 shows how, RT, is broken into three sub-ranges, R R -R and R R This is accomplished as shown by the timing diagram of FIG. 3.' Referring to FIG. 3, all target gates are off while the transmitter is on and all target gates are turned on as the transmitter goes off. Target gate L is on only for a period of time corresponding to the time required for the transmitted energy to reach an object at slant range SR 1 (FIG. 2) and return through the receiver at which time it isturned off. The on times for target gates 2 and 3 are determined in a similar manner by the time required for energy to be reflected from objects at slant ranges SR 2 and SR 3 respectively. In a radar type proximity fuze the transmit pulse which is reflected from a target is called a target return. If thetarget return should occur during the time interval that target gate 1 is on, the target return will appear at the output of target gates l, 2, and 3 simultaneously and the slant range to the target is known to be less than SR 1. If the target return should, instead, occur after target gate 1 is off but before target gate 2 is off, the target return will appear at the output of target gates 2 and 3 only and the slant range to the target is known to be greater than SR 1 but less than SR 2. If thetarget return should, instead, occur after target gate 2 is off but before target gate 3 is off, the target return will appear at the output of target gate 3 only and the slant range to the target is known to be greater than SR 2 but less than SR 3. R is larger than R R and R -R since the effective blast radius of the warhead does not require fine resolution at close range and the length of the first range gate sets the IF and video bandwidth of the system and the length of the transmitted pulse. As shown above, the time delay equation shows that the time delay required is directly proportional to range, RT. Hence if the correct time delay for targets detected in range R R for a given V,,,,, V,, and 6 is T then the correct time delay for the other two range intervals is a fraction of T determined by the ratio of the midpoints of the range intervals. Thus time delay for range R -R, is:
and the time delay for range R, is:
where:
K,, K are constants to be determined by intercept lethality analysis. To implement a range sensing target detecting device effectively, the cutoff from one range bracket to another should be kept to a minimum to reduce the possibility of range ambiguity.
Referring to the waveforms of FIG. 4, there is shown a fifty nsec transmit pulse and target return signals at twenty-five and thirty feet. A video gate is applied to the received signals allowing only the first fifty nsec of the received pulse (which has been stretched and rounded by the IF amplifier) to pass. The pulse returned from a twenty-five feet range now has an effective pulse of twenty-five nsec and the pulse returned from the thirty feet range now has an effective pulse width of fifteen nsec. These pulses are now separately fed through a low pass filter to a variable threshold circuit which has been set to the peak amplitude before gating action had diminished the pulse width. The pulse corresponding to the object at twenty-five feet range would exceed the threshold whereas the pulse corresponding to the object at thirty feet would not because of the greater attenuation of the narrower pulse by the low pass filter.
As shown in FIG. 5, the reflected target signal is received at terminal 10 and fed to gates 12, 14, and 16 and to peak detector 18. Gates 12, 14, and 16 are each controlled by a gate control circuit 20 which is initiated by input signals from the radar modulator l3 controlled by clock 15. The signals passed by gates 12, 14, and 16 are coupled through delay lines 22, 24, and 26 to variable threshold circuits 28, 30, and 32 respectively which will produce an output signal as determined by the output of detector 18. As soon as target gate 16 is turned off, a discharge pulse is fed from threshold discharge circuit 17 to peak detector 18 and will later be described in more detail. The pulses generated by a threshold circuit are counted by their corresponding counter (34, 36, 38) and if a sufficient number of pulses are counted within a predetermined time, an output pulse will be fed to a corresponding computer (40, 42, 44). Each computer will produce an output pulse at its output terminal (46, 48, 50). However the output of each computer will be delayed from its input by an amount proportional to the closing velocity information supplied by the missile homing system, R, and the particular target gate from which the target return was processed. Thus if a target is detected within target gate 1, 2, and 3, there will be simultaneous inputs to all three computers but since the delay within computer 1 is less than the delay within computer 2 and 3 the warhead burst will be controlled by time delay computer I. In a similar manner targets detected at a range such that the target return signals are processed only by target gates 2 and 3 will cause warhead burst to be controlled by time delay computer 2. Likewise target return processed only by target gate 3 will cause warhead detonation to be controlled by time delay computer 3.
For illustrative purposes, only one channel of the block diagram of FIG. 4 has been shown in the schematic diagrams of FIGS. 6-8. Referring to FIG. 6 there is shown in schematic diagram form the gate control circuit 20 of FIG. 4. Input signals from the radar modulator 13 are fed to input terminal where it is fed to a variable width blocking oscillator 62 which generates a series of pulses that are fed to a fixed width blocking oscillator 64 and a delay line 66. Blocking oscillator 64 generates an output pulse at terminal 68 for each pulse received from blocking oscillator 62 and is fed as the gating pulse to target gate 12 (FIG. 5). The delayed signal from delay line 66 is fed to fixed blocking oscillator 70 and delay line 72. Blocking oscillator 70 generates an output pulse at terminal 74 which is fed to target gate 14. The twice delayed signal at the output of delay line 72 is fed to fixed width blocking oscillator 76 which generates an output pulse at terminal 78 which is fed to target gate 16. Delay lines 66 and 72 may be of the lumped constant type.
Referring to FIG. 7, target gate 12 is shown as a normally conducting transistor 80 having a transistor 82 connected between the base and emitter for turning it off in response to a timing pulseat terminal 84 received from gate control 20 (FIG. 5). The video signal received at terminal 10 and passed by gate 12 is fed through delay line 22 to the base 86 of transistor 88 pled through a compound emitter follower driver circuit 96 to the base of transistor 90.'Thevoltage stored on capacitor is the threshold voltage and will be discharged through diode 97 to'the threshold discharge circuit 17 through terminal 50 (FIG. 5). Discharge circuit 17 may be a one shot multivibrator which is triggered by the output of clock 15 and has a pulse width sufficient to permit target gate 16 to turn off. Capacitor 95 is discharged at the end of the output pulse from discharge circuit 17.
The output signal from transistor 88 is coupled by coupling capacitor 98 to emitter follower 100 of target counter 34. The pulse out of emitter follower 100 is fed to blocking oscillator 102 which generates an output pulse for every input pulse received. The pulses generated by blocking oscillator 102 are fed to staircase generator 104. Resistor 105 provides a decay for capacitor 107 so that if a predetermined number of pulses are not received with a given time the voltage of capacitor 107 will never build up to a sufficient amplitude to cause Zener diode 106 to break down and discharge capacitor 107. The discharge pulse from capacitor 107 triggers a Schmitt trigger 108 to produce an output signal suitable for processing by computer 40.
Computer 40 (FIG. 8) consists of a monostable multivibrator 110 which is triggered by the input signal from Schmitt trigger 108 (FIG. 7). The bias supplied from emitter follower circuit 112 to the base of transistor 114 is proportional to the closing velocity of the missile and target and is for the purpose of controlling the pulse width or delay of multivibrator 110. The inputsignal to emitter follower circuit 112 is the R voltage from impedance network 41 (FIG. and represents velocity and is supplied by the missile guidance (not shown) range. The output pulse from the computer is coupled through a differentiating capacitor 115 to diodes 116 and 118 which are to permit only negative pulses to be fed to output terminal 120 for utilization by a firing circuit (not shown).
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
1. In a guided missile range sensing target detecting device, the combination comprising:
a. a plurlity of target gate circuits for receiving video signals reflected from a target,
b. target gate control means coupled to said plurality of target gate circuits for controlling the time interval each gate is open,
c. peak detector circuit means having an input for receiving and producing an-output proportional to the amplitudeof the reflected video signals,
d. 'delay filter circuit means coupled to each of said target gate circuits for attenuating signals which have a pulse width less than a predetermined value,
e. variable threshold circuit means coupled to each of said delay filter circuit means for passing only the video signals received from said delay filter circuit means when they exceed the output signal from said peak detector circuit,
f. target count circuit means coupled to each of said variable threshold circuit means for producing an output pulse in response to a predetermined number of video pulses received from said variable threshold circuit means within a predetermined time interval,
g. a plurality of computer circuit means each having a first input coupled to the output of a target count circuit means and having a second input for receiving a voltge proportional to missile to target closing velocity for producing an output firing pulse in response to the presence of a pulse from said target count circuit.
said target gate circuits comprises:
a. first and second transistors each having a base, emitter and a collector,
b. the base of said first transistor being coupled to an input terminal for receiving said video signals,
c. the base of said second transistor being coupled to said target gate control means,
d. the collector'of said second transistor being connected to thebase of said first transistor,
e. the emitter of said first transistor being connected to an output terminal and through a load'resistor to the emitter of said second transistor.
3. The detecting device of claim 1 wherein said delay filter circuit means provides a sufficient delay of the video signal passed to permit the output voltage of said peak detector resulting from the same video signal to reach said variable threshold circuit means first.
4. The detecting device of claim 1 wherein said target gate control means comprises:
a. an input terminal coupled to receive input pulses from a periodic pulse generating means,
b. a variable width blocking oscillator having an input coupled to said input terminal for producing a series of output pulses in response to the periodic pulses at said input terminal,
c. a first fixed width blocking oscillator coupled directly to said variable width blocking oscillator for producing a first series of gating pulses,
d. a first delay circuit having a first predetermined delay coupled to the output of said variable width blocking oscillator,
e. a second fixed width blocking oscillator coupled to said delay circuit for producing a second series of gating pulses delayed with respect to said first series of timing pulses by the amount of said first predetermined delay,
f. a second delay circuithaving a delay equal to that of said first delay circuit,
g. a third fixed w'idth blocking oscillator coupled to said second delay circuit for producing a series of gating pulses delayed with respect to said first series of gating pulses by the amount of delay of said first and second delay circuits combined.
5. The detecting device of claim 1 wherein said computer circuit comprises a monostable multivibrator triggered by the output of said target count circuit and biased by a voltage proportional to the missile to target closing velocity as modified to represent slant range to

Claims (5)

1. In a guided missile range sensing target detecting device, the combination comprising: a. a plurlity of target gate circuits for receiving video signals reflected from a target, b. target gate control means coupled to said plurality of target gate circuits for controlling the time interval each gate is open, c. peak detector circuit means having an input for receiving and producing an output proportional to the amplitude of the reflected video signals, d. delay filter circuit means coupled to each of said target gate circuits for attenuating signals which have a pulse width less than a predetermined value, e. variable threshold circuit means coupled to each of said delay filter circuit means for passing only the video signals received from said delay filter circuit means when they exceed the output signal from said peak detector circuit, f. target count circuit means coupled to each of said variable threshold circuit means for producing an output pulse in response to a predetermined number of video pulses received from said variable threshold circuit means within a predetermined time interval, g. a plurality of computer circuit means each having a first input coupled to the output of a target count circuit means and having a second input for receiving a voltge proportional to missile to target closing velocity for producing an output firing pulse in response to the presence of a pulse from said target count circuit.
2. In the detecting device of claim 1 wherein each of said target gate circuits comprises: a. first and second transistors each having a base, emitter and a collector, b. the base of said first transistor being coupled to an input terminal for receiving said video signals, c. the base of said second transistor being coupled to said target gate control means, d. the collector of said second transistor being connected to the base of said first transistor, e. the emitter of said first transistor being connected to an output terminal and through a load resistor to the emitter of said second transistor.
3. The detecting device of claim 1 wherein said delay filter circuit means provides a sufficient delay of the video signal passed to permit the output voltage of said peak detector resulting from the same video signal to reach said variable threshold circuit means first.
4. The detecting device of claim 1 wherein said target gate control means comprises: a. an input terminal coupled to receive input pulses from a periodic pulse generating means, b. a variable width blocking oscillator having an input coupled to said input terminal for producing a series of output pulses in response to the periodic pulses at said input terminal, c. a first fixed width blocking oscillator coupled directly to said variable width blocking oscillator for producing a first series of gating pulses, d. a first delay circuit having a first predetermined delay coupled to the output of said variable width blocking oscillator, e. a second fixed width blocking oscillator coupled to said delay circuit for producing a second series of gating pulses delayed with respect to said first series of timing pulses by the amount of said first predetermined delay, f. a second delay circuit having a delay equal to that of said first delay circuit, g. a third fixed width blocking oscillator coupled to said second delay circuit for producing a series of gating pulses delayed with respect to said first series of gating pulses by the amount of delay of said first and second delay circuits combined.
5. The detecting device of claim 1 wherein said computer circuit comprises a monostable multivibrator triggered by the output of said target count circUit and biased by a voltage proportional to the missile to target closing velocity as modified to represent slant range to the target.
US00583497A 1966-09-29 1966-09-29 Range sensing target detecting device Expired - Lifetime US3858207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00583497A US3858207A (en) 1966-09-29 1966-09-29 Range sensing target detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00583497A US3858207A (en) 1966-09-29 1966-09-29 Range sensing target detecting device

Publications (1)

Publication Number Publication Date
US3858207A true US3858207A (en) 1974-12-31

Family

ID=24333343

Family Applications (1)

Application Number Title Priority Date Filing Date
US00583497A Expired - Lifetime US3858207A (en) 1966-09-29 1966-09-29 Range sensing target detecting device

Country Status (1)

Country Link
US (1) US3858207A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135452A (en) * 1978-01-09 1979-01-23 The United States Of America As Represented By The Secretary Of The Navy Time delay computer using fuze doppler for air-to-air missiles
US4168663A (en) * 1954-12-01 1979-09-25 The United States Of America As Represented By The Secretary Of The Army Computer fuzes
US4170008A (en) * 1975-02-28 1979-10-02 The United States Of America As Represented By The Secretary Of The Air Force Clutter discriminating fuze apparatus
US4232609A (en) * 1973-09-20 1980-11-11 Messerschmitt-Bolkow-Blohm Gmbh Proximity fuse
US4236157A (en) * 1978-12-22 1980-11-25 The United States Of America As Represented By The Secretary Of The Navy Target detection device
FR2563000A1 (en) * 1984-04-13 1985-10-18 Aerospatiale ARMY AND MISSILE SYSTEM FOR THE STRUCTURAL DESTRUCTION OF AN AIR TARGET USING FOCUSED LOAD
WO1986006470A1 (en) * 1985-04-25 1986-11-06 Rheinmetall Gmbh Process for operating a proximity fuse, and device for the implementation of the process
US4651647A (en) * 1985-04-01 1987-03-24 Werkzeugmaschinenfabrik Oerlikon-Buehrle Ag Adjustable range proximity fuze
US4848239A (en) * 1984-09-28 1989-07-18 The Boeing Company Antiballistic missile fuze
US5366179A (en) * 1992-07-22 1994-11-22 Deutsche Aerospace Ag Method of initiating the detonation of a warhead and arrangement for implementing the method
GB2302228A (en) * 1990-04-07 1997-01-08 Messerschmitt Boelkow Blohm Proximity fuze
US20060279452A1 (en) * 2005-06-10 2006-12-14 Honeywell International Inc. Methods and systems utilizing Doppler prediction to enable fusing
DE3504419B3 (en) * 1984-02-10 2007-08-30 Thomson-TRT Défense Device for igniting an explosive charge in the vicinity of a target

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508258A (en) * 1967-08-31 1970-04-21 Ericsson Telefon Ab L M Method and arrangement for choosing a target with a definite order number by means of a target seeker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508258A (en) * 1967-08-31 1970-04-21 Ericsson Telefon Ab L M Method and arrangement for choosing a target with a definite order number by means of a target seeker

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168663A (en) * 1954-12-01 1979-09-25 The United States Of America As Represented By The Secretary Of The Army Computer fuzes
US4232609A (en) * 1973-09-20 1980-11-11 Messerschmitt-Bolkow-Blohm Gmbh Proximity fuse
US4170008A (en) * 1975-02-28 1979-10-02 The United States Of America As Represented By The Secretary Of The Air Force Clutter discriminating fuze apparatus
US4135452A (en) * 1978-01-09 1979-01-23 The United States Of America As Represented By The Secretary Of The Navy Time delay computer using fuze doppler for air-to-air missiles
US4236157A (en) * 1978-12-22 1980-11-25 The United States Of America As Represented By The Secretary Of The Navy Target detection device
DE3504419B3 (en) * 1984-02-10 2007-08-30 Thomson-TRT Défense Device for igniting an explosive charge in the vicinity of a target
FR2563000A1 (en) * 1984-04-13 1985-10-18 Aerospatiale ARMY AND MISSILE SYSTEM FOR THE STRUCTURAL DESTRUCTION OF AN AIR TARGET USING FOCUSED LOAD
EP0161962A1 (en) * 1984-04-13 1985-11-21 AEROSPATIALE Société Nationale Industrielle Weapon system and missile for destroying the structure of an aeral target using a focussed charge
US4848239A (en) * 1984-09-28 1989-07-18 The Boeing Company Antiballistic missile fuze
US4651647A (en) * 1985-04-01 1987-03-24 Werkzeugmaschinenfabrik Oerlikon-Buehrle Ag Adjustable range proximity fuze
WO1986006470A1 (en) * 1985-04-25 1986-11-06 Rheinmetall Gmbh Process for operating a proximity fuse, and device for the implementation of the process
US4773328A (en) * 1985-04-25 1988-09-27 Rheinmetall Gmbh Method of actuating a proximity fuze and device for implementing the method
GB2302228B (en) * 1990-04-07 1997-07-09 Messerschmitt Boelkow Blohm Proximity fuse
GB2302228A (en) * 1990-04-07 1997-01-08 Messerschmitt Boelkow Blohm Proximity fuze
US5366179A (en) * 1992-07-22 1994-11-22 Deutsche Aerospace Ag Method of initiating the detonation of a warhead and arrangement for implementing the method
US20060279452A1 (en) * 2005-06-10 2006-12-14 Honeywell International Inc. Methods and systems utilizing Doppler prediction to enable fusing
US7352319B2 (en) * 2005-06-10 2008-04-01 Honeywell International Inc. Methods and systems utilizing Doppler prediction to enable fusing
US20080122677A1 (en) * 2005-06-10 2008-05-29 Honeywell International Inc. Methods and systems utilizing doppler prediction to enable fusing
US7453392B2 (en) 2005-06-10 2008-11-18 Honeywell International Inc. Methods and systems utilizing Doppler prediction to enable fusing
US20090045998A1 (en) * 2005-06-10 2009-02-19 Honeywell International Inc. Methods and systems utilizing doppler prediction to enable fusing

Similar Documents

Publication Publication Date Title
US3858207A (en) Range sensing target detecting device
US4649796A (en) Method and apparatus for setting a projectile fuze during muzzle exit
EP0208050B1 (en) Adjustable range proximity fuze
US4307400A (en) Electronic countermeasures system and method of utilizing the same
GB1588608A (en) Warhead having a proximity fuse
GB1108880A (en) Improvements in or relating to airborne triggering systems
US5350134A (en) Target identification systems
US4185560A (en) Fore and aft fuzing system
US4096480A (en) Air target fuze time-gated decision circuit
US3902172A (en) Infrared gated radio fuzing system
US4135452A (en) Time delay computer using fuze doppler for air-to-air missiles
US3959641A (en) Digital rangefinder correlation
GB1368367A (en) Terrainfollowing radar system
JPH03148596A (en) Missile decoy system
US3113305A (en) Semi-active proximity fuze
EP0309734A1 (en) Method for firing a projectile in the proximity of a target
US3688701A (en) Command fuze
US3918060A (en) Terminal aim point refinement circuit
US4119966A (en) Clutter discriminating apparatus for use with pulsed doppler radar systems and the like
US4170008A (en) Clutter discriminating fuze apparatus
US3725935A (en) Leading edge discriminator circuit
US6504601B2 (en) Laser range measuring device for a fuse
US3911438A (en) Proximity sensing device
US4992793A (en) Device for rejecting pulse repeater deception jamming
US8098191B1 (en) Electronic curtain for vehicle protection