US3853557A - Photographic diffusion transfer element - Google Patents

Photographic diffusion transfer element Download PDF

Info

Publication number
US3853557A
US3853557A US00005565A US556570A US3853557A US 3853557 A US3853557 A US 3853557A US 00005565 A US00005565 A US 00005565A US 556570 A US556570 A US 556570A US 3853557 A US3853557 A US 3853557A
Authority
US
United States
Prior art keywords
silver
layer
silver halide
precipitating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00005565A
Inventor
H Fassbender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR485/70*[A priority Critical patent/BR7000485D0/en
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US00005565A priority patent/US3853557A/en
Priority to CA099829A priority patent/CA938150A/en
Priority to BE761867A priority patent/BE761867A/en
Priority to FR7101933A priority patent/FR2075796A5/fr
Priority to GB2012871A priority patent/GB1344852A/en
Application granted granted Critical
Publication of US3853557A publication Critical patent/US3853557A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/02Photosensitive materials characterised by the image-forming section
    • G03C8/04Photosensitive materials characterised by the image-forming section the substances transferred by diffusion consisting of inorganic or organo-metallic compounds derived from photosensitive noble metals
    • G03C8/06Silver salt diffusion transfer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/24Photosensitive materials characterised by the image-receiving section
    • G03C8/26Image-receiving layers
    • G03C8/28Image-receiving layers containing development nuclei or compounds forming such nuclei

Definitions

  • ABSTRACT A photographic silver salt diffusion transfer element of the integral type having the silver precipitation stratum located above a support and below the lightsensitive silver halide emulsion provided on the element is improved by providing a further silver precipitation layer'over the light-sensitive emulsion. Elements provided with this stratum over the emulsion layer which are subjected to processing in equipment provided with rollers which contact the element result in elimination of scoring or marking of the element which may interfere with the transport of exposed elements through the processing apparatus.
  • a TT'ORNEY PHOTOGRAPHHC lDlFFUSllUN TRANSFER ELEWNT The invention relates to a photographic element of the silver salt diffusion type wherein undeveloped silver halide of an exposed silver halide emulsion layer is transferred as a silver complex imagewise by imbibition to a silver precipitating layer to form a positive silver image thereon. More particularly, the invention relates to such a photographic element of the integral type wherein the emulsion layer and silver precipitating layer are provided on a single support, the precipitating layer being provided on the support below the emulsion layer.
  • Integral photographic elements including a precipitating layer located below a lightsensitive silver halide emulsion are well known.
  • a multi-layer element such as one carrying on a support two gelatin layers of different solubility, the layer next to the support containing a silver precipitating agent and being harder than the outer gelatin layer which is a gelatin emulsion layer containing silver halide.
  • development is carried out with the silver halide solvent-containing developer to obtain a silver positive in the hardened gelatin silver precipitating layer, after which the emulsion layer containing the negative silver image is washed off, leaving the positive silver image. on the support.
  • the silver halide diffusion transfer element to which the invention relates are of the integral type including a support, a silver precipitating layer, and a lightsensitive silver halide layer thereover. These elements are known per se as illustrated by the disclosure of US. Pat. No. 3,020,155, mentioned above.
  • the support may comprise any photographic support such as paper, cellulose ester, synthetic resin, glass, etc., and may be provided with one or more auxiliary layers such as subbing layers.
  • the support is preferably opaque and white either by virtue of the support material itself, e.g., paper, or by providing an opaque, white auxiliary layer on a support, such as a transparent synthetic resin film.
  • a transparent support is preferred where the image produced in the silver precipitating layer is a negative with respect to the original subject.
  • the silver precipitating layer hereinafter referred to as the first silver precipitating layer, provided beneath the light-sensitive silver halide layer, is a waterpermeable organic colloid layer containing a silver precipitating agent, that is, an agent capable of yielding with silver ion a dark-colored argental or silvercontaining substance, when dissolved silver salts from the emulsion layer come into contact with it.
  • the silver precipitating agent may comprise either physical development nuclei or a chemical precipitant for silver ions.
  • Suitable silver precipitating agents for use in the silver precipitating layer for forming the argental image include metal sulfides, metal selenides, metal polysultides, metal polyselenide's, thiourea, mercaptans, stannous halides, heavy metals, and heavy metal salts, and fogged silver halide.
  • Heavy metal sulfides such as lead, silver, zinc, antimony, cadmium and bismuth sulfides are useful, particularly the sulfides of lead and zinc alone or in admixture, or'complex salts of these with thioacetamide, dithio-oxamide, or dithio-biuret.
  • the heavy metals include silver, gold, platinum, palladium and mercury preferably in the colloidal form. The noble metals are particularly efficacious.
  • the silver precipitating layer may be applied directly to a support such as paper, or to suitably subbed cellu' lose derivative supports and synthetic polymer supports from solutions or dispersions of the silver precipitating agents in a colloid vehicle such as gelatin.
  • the colloid vehicle of the silver precipitating layer is insoluble in the solution used for removing the: emulsion layer from the element in processing. If gelatin is used, it should be hardened.
  • Hydrophilic cellulose esters and synthetic polymers are useful as a vehicle in the silver precipitating layer insofar as they meet the requirement of having a solubility appreciably different from that of the colloid vehicle of the emulsion layer.
  • the silver halide emulsion can be applied directly over the silver precipitating layer, but preferably a thin layer comprising the binder of the light-sensitive emulsion layer is first applied followed by the. emulsion layer.
  • This thin layer is not absolutely essential; however, it has been'found to facilitate the clean removal of the emulsion from the silver precipitating layer.
  • the silver halide component of the emulsi on is not especially critical and can include various silver halides and mixtures of silver halides such as silver bromoiodide, silver chloride or silver bromide optically sensitized in the'usual manner.
  • the emulsion may be a developing-out emulsion designed for development to negative images in which case the image obtained in the silver precipitating layer is a positive with respect to the original subject. If desired, the emulsion can be of the direct positive type with the result that the silver image developed in the emulsion is a positive and the image in the silver precipitating layer a negative in respect to the original subject.
  • No. 2,541,472 are useful in conferring the direct positive characteristics to the emulsions.
  • the water-permeable colloid binder of the emulsion layer is one which is appreciably more soluble in water or alkaline solution than the colloid binderof the first silver precipitating layer.
  • suitable binders such as gelatin either unhardened or substantially less hardened than the gelatin which may be used for the silver precipitating stratum in which case the melting point of the emulsion binder is substantially lower than that of the precipitating layer.
  • Other known binders include hydrophilic, somewhat water soluble synthetic resins such as partially hydrolyzed polyvinyl esters, polyvinyl acetals, polyamides, polyvinyl alcohol,
  • the last class of materials is the preferred binder by virtue of its ease of removal from the photographic element.
  • the preferred binder for the emulsion layer thus comprises at least a major portion of the cellulose binders disclosed in U.S. Pat. No. 3,020,155. These binders are dibasic half esters of cellulose ethers or cellulose esters.
  • the cellulose ethers and esters are preferably the alkyl ethers and esters and more preferably lower alkyl of one to four carbon atoms.
  • the dibasic acids include aromatic acids, e.g., phthalic, and aliphatic acids either saturated, e.g., succinic, or unsaturated, e.g., maleic.
  • Representative carboxylated cellulose derivatives are the alkali-soluble acid-insoluble dibasic acid half esters of the cellulose ethyl ethers including the phthalic, succinic, and maleic acid half esters of ethyl celluloses and their ammonium, alkali metal and amine salts, the half esters being made from cellulose ethyl ethers having an alkoxy content of at least 42 percent and the half esters having a dicarboxylic acid radical content of at least percent and preferably at least 20 percent.
  • the ethyl cellulose phthalates made from cellulose ethyl ethers having at least 42 percent ethoxy] and containing at least -5 and preferably about 20 percent phthalyl are particularly efficacious for use in the emulsion layer.
  • a satisfactory cellulose ether phthalate can be made by the esterification of a cellulose ethyl ether containing 42 percent ethoxy until about 5 to percent phthalation has taken place.
  • a preferred cellulose ether phthalate is thus made from a cellulose ethyl ether containing 45 percent ethoxyl, the final ester containing about 24 percent phthalyl.
  • the ethyl cellulose phthalates employed may vary as to viscosity.
  • plasticizer such as triacetin or polyethyleneglycol in the ethyl cellulose phthalate cmposition. composition.
  • alkali-soluble acid-insoluble dibasic acid half esters of cellulose esters such as various cellulose acetate phthalates are likewise useful as the emulsion vehicle.
  • a typical cellulose acetate phthalate contains 34 percent phthalyl and 19 percent acetyl. These esters can be made by methods known in the art or as shown in the above Hiatt et al., invention. Similarly, cellulose phthalate containing about 50 percent phthalyl can be used as the major part of the emulsion vehicle.
  • the build up of objectionable deposits on rollers in equipment used to process the known integral elements described above is substantially reduced by providing a second silver precipitating layer on the element over the silver halide emulsion layer.
  • the second silver precipitating layer comprises a silver precipitating agent of the known type mentioned above dispersed in a water-permeable colloid binder which may be any of the conventional binders mentioned above for use in either the first precipitating layer or in the emulsion layer. It is not required that the binder is water soluble as in the case of the emulsion layer since the presence of a water-permeable layer over the emulsion layer has been found not to substantially interfere with the removal of the emulsion layer by conventional means.
  • the binder thus conveniently and preferably comprises gelatin.
  • a representative sensitive element includes: a support 10 such as paper, cellulose ester or synthetic resin, if desired carrying a subbing layer not shown on the support; a silver precipitating layer 11, for example, a gelatin layer containing a colloidal heavy metal or heavy metal sulfide; the emulsion layer 12 containing silver halide grains dispersed in the alkali-soluble acidinsoluble cellulose derivative; and over the emulsion layer a second silver precipitating layer 13 which may be the same as the first layer both in composition and weight.
  • a support 10 such as paper, cellulose ester or synthetic resin, if desired carrying a subbing layer not shown on the support
  • a silver precipitating layer 11 for example, a gelatin layer containing a colloidal heavy metal or heavy metal sulfide
  • the emulsion layer 12 containing silver halide grains dispersed in the alkali-soluble acidinsoluble cellulose derivative
  • a second silver precipitating layer 13 which may be the same as the first layer both in composition and weight.
  • An element according to the present invention is processed in the usual manner by development with a silver halide developing solution containing a silver halide solvent such as sodium thiosulfate with the result that a silver image is developed in the emulsion layer and shortly thereafter the residual undeveloped silver halide is transformed to a soluble silver complex, a portion of which diffuses imagewise to the first silver precipitating layer where an argental image is formed by reaction of the silver complex with the silver precipitating agent of the silver precipitating layer.
  • the emulsion layer containing the negative silver image is then merely washed from the support with an excess of water to obtain the reproduction wherein the argental positive image is present in the first silver precipitating layer.
  • the second silver precipitating layer is removed with the emulsion layer.
  • the exposed element In conventional processing equipment, the exposed element is usually transported through a series of processing chambers or sections by work advancing means, such as rollers, which contact the element. In the first chamber or section the exposed element is contacted with a developer solution whereby the desired image is produced in the first precipitating layer. In a subsequent stage or stages the element is washed to remove the overlying emulsion layer and the second precipitating layer, and the element is usually given a final rinse to remove residual chemicals.
  • a typical process involves four stages: development, aqueous spray wash, aqueous soak wash, and final water rinse. In either or both of the washing stages, the element is contacted with water which may be slightly alkaline. The process may also employ a stop bath stage.
  • the second precipitating layer can be applied directly over the emulsion layer or a thin subbing layer comprising any of the water-permeable colloids mentioned herein may be employed between it and the underlying emulsion layer.
  • the second precipitating layer can be coated by apparatus and with techniques used conventionally to provide silver precipitating layers.
  • the layers may contain generally the same amount of precipitating agent used in the first precipitating layer although the amount can vary widely, provided the layer is not rendered opaque. In general, the amount of precipitating agent will be from 0.8 X to 2.0 X 10" moles of precipitating agent per square foot.
  • the thickness of the second layer may vary widely and will generally be that which is sufficient to provide a transparent layer having an effective amount of precipitating agent. In general, the layer will have a thickness of from 0.0005 to 0.002 millimeters.
  • An integral silver halide diffusion transfer element containing the following layers in order over a photographic polyethylene-coated paper support: (1) a silver precipitating layer, (2) an organic water-permeable colloid layer, and (3) a silver halide emulsion layer, is prepared as follows: a 10 percent gelatin solution (250 cc) is diluted with 750 cc water. 2.5 cc of l N Na s are then added to the solution. 250 cc of water containing 2.6 cc of l N zinc nitrate are added slowly to the sulfide solution through a jet, resulting in the formation of a colloidal dispersion of zinc sulfide.
  • a l percent aqueous solution of the sodium salt (or other alkali metal salt) of cellulose ether phthalate (an ethyl cellulose containing 45.8 percent ethoxyl phthalated to 22.7 percent phthalyl) at a coverage of 0. lb. per sq. ft.
  • the mass is stirred at 30C, thoroughly dispersed and then coated over the sodium salt of cellulose ether phthalate interlayer at a coverage of 600 sq. ft. per mole of silver halide and dried in the conventional manner.
  • ltek Positive Process equipment which includes several workadvancing rollers to transport the print through devel oping, spray wash, soak wash and final rinse sections of the apparatus.
  • the developer employed is the following:
  • ethylene diamine tetraacetic acid 1.0 gm/l tetra sodium salt hydroquinone 10.0 gm/l l-phenyl-3-pyrazolidone 0.8 gm/l sodium sulfite 50.0 gm/l sodium thiosulfate 5H O 20.0 gm/l trisodium phosphate l2H O 100.0 gm/l potassium bromide 0.5 gm/l potassium chloride 16.0 gm/l boric anhydride 0.4 gmll (packaging ingredient) 0.25 gm/l 2-fi phenethyl isoquinolinium bromide pH 11.2
  • Example 2 A plurality of integral photographic diffusion transfer element are made as in Example 1 except that a second silver precipitating layer is coated over the silver halide emulsion layer.
  • the second precipitating layer is provided from a coating solution which is the same as that used to coat the first layer, and coated at equal weight.
  • the elements are then exposed and processed as in Example 1. After 1,600 prints are processed in the device,
  • Example 3 Elements similar to that of Example 2 are prepared except that the coating weight of the second layer is percent of the first precipitating layer in Example 3 and 137 percent in Example 4. Results are similar to that of Example 2.
  • the present invention results in a substantially reduced deposit during processing, the processing is otherwise not adversely affected. That is, the element can be exposed and processed in the usual manner in conventional apparatus such as the ltek equipment mentioned.
  • a light-sensitive photographic element comprising a support, a first silver precipitating agent on the sup port, a water soluble light-sensitive silver halide emulsion layer provided over said precipitating agent and being capable of being removed from said element by aqueous washing without removing said first precipitating agent, and a temporary, removable second silver precipitating agent which is water premeable and coated over said emulsion layer, said first silver precipitating agent, said silver halide emulsion layer, and said second precipitating agent all being on the same support.
  • a light-sensitive photographic element comprising silver halide dispersed in a binder which comprises an alkali-soluble acid-insoluble carboxylated cellulose derivative.
  • a light-sensitive photographic element wherein said binder is selected from the group consisting of dibasic acid half-esters of cellulose ethers, and dibasic acid half-esters of cellulose esters.
  • 8 cipitating agent comprises gelatin.
  • each of said first and second silver precipitating agents is in a gelatin hinder, the gelatin binder of said second silver precipitating agent having a lower melting point than the gelatin binder of said first silver precipitating agent.
  • said second silver precipitating agent is a member selected from the group consisting of heavy metals, thiourea, mercaptans, sta'nnous ha-v lides, heavy metal salts, and fogged silver halide.
  • said silver precipitating layer the improvement which comprises utilizing an integral silver halide diffusion transfer photographic element according to claim 1 to reduce the accumulation of deposit on said work advancing means.
  • a method of forming a photographic image which comprises developing a latent image in the emulsion layer of an exposed element of claim 1 with an alkaline silver halide developing solution containing a silver halide developing agent and a silver halide solvent for a time sufficient to form a silver image and an imagewise distribution of a soluble silver complex to diffuse imagewise to said silver precipitating agents and the silver of said portion of silver complex to be precipitated by said agents and removing the emulsion layer and said second agent from said first agent.

Abstract

A photographic silver salt diffusion transfer element of the integral type having the silver precipitation stratum located above a support and below the light-sensitive silver halide emulsion provided on the element is improved by providing a further silver precipitation layer over the light-sensitive emulsion. Elements provided with this stratum over the emulsion layer which are subjected to processing in equipment provided with rollers which contact the element result in elimination of scoring or marking of the element which may interfere with the transport of exposed elements through the processing apparatus.

Description

111111 Mates atet [1 1 i nsshender 1 1 PHOTOGRAPHIIC IDIFIFUSHON TRANSFER ELEMENT [75] Inventor: Henry .1. Fasslbender, Rochester,
[73] Assignee: Eastman Kodak Company,
Rochester, NY.
22 Filed: Jan/26, 1970 21 App]. No.; 5,565
[52] US. Cl 96/29 R [51] int. Cl G03c 5/54 [58] Field of Search 96/76, 29
[56] References Cited UNITED STATES PATENTS 2,543,181 2/1951 Land 96/29 2,563,342 8/1951 Land 96/29 2,861,885 11/1958 Land 96/29 3,020,155 2/1962 Yackel et a1 96/29 3,062,643 11/1962 Bloom et a1. I 96/29 3,152,904 10/1964 Shepard et aL... 96/76 3,235,599 2/1966 Green et all 96/29 1 Dec 10, mm
Primary Examiner-David Klein Assistant Examiner-John L. Goodrow Attorney, Agent, or Firm-H. E. Byers [5 7] ABSTRACT A photographic silver salt diffusion transfer element of the integral type having the silver precipitation stratum located above a support and below the lightsensitive silver halide emulsion provided on the element is improved by providing a further silver precipitation layer'over the light-sensitive emulsion. Elements provided with this stratum over the emulsion layer which are subjected to processing in equipment provided with rollers which contact the element result in elimination of scoring or marking of the element which may interfere with the transport of exposed elements through the processing apparatus.
10 Claims, 1 Drawing lFigure SECOIVD .SILVER PREC/PITAT/IVG LAYER SILVER HALIDE-AL/(ALI SOLUBLE 7 CELLULOSE DERIVATIVE VEHICLE I"IR$7' SILVER PRECIP/TAT/NG LAYER I, SUPPORT HENRY J. FAS$BENDER INVENTOR.
A TT'ORNEY PHOTOGRAPHHC lDlFFUSllUN TRANSFER ELEWNT The invention relates to a photographic element of the silver salt diffusion type wherein undeveloped silver halide of an exposed silver halide emulsion layer is transferred as a silver complex imagewise by imbibition to a silver precipitating layer to form a positive silver image thereon. More particularly, the invention relates to such a photographic element of the integral type wherein the emulsion layer and silver precipitating layer are provided on a single support, the precipitating layer being provided on the support below the emulsion layer.
Integral photographic elements including a precipitating layer located below a lightsensitive silver halide emulsion are well known. For example, it is known to provide a multi-layer element such as one carrying on a support two gelatin layers of different solubility, the layer next to the support containing a silver precipitating agent and being harder than the outer gelatin layer which is a gelatin emulsion layer containing silver halide. After exposure of the element, development is carried out with the silver halide solvent-containing developer to obtain a silver positive in the hardened gelatin silver precipitating layer, after which the emulsion layer containing the negative silver image is washed off, leaving the positive silver image. on the support. Similar elements are known where the gelatin binder of the emulsion layer is replaced in whole or in part by organic colloid vehicles having a decidedly different solubility than the organic colloid vehicle present in the silver precipitating layer. One of the most satisfactory classes of organic colloids found to be useful in this respect comprise the alkali-soluble, acid-insoluble carboxylated cellulose derivatives disclosed in US. Pat. No. 3,020,155, the disclosure of which is herein incorporated by reference. However, irrespective of which type of integral silver halide diffusion transfer element is used, it has been found that in processing such elements in conventional processing equipment which includes rollers for advancing and processing. the photographic elements, there is an objectionable deposit built up on the rollers with the passage of time.
It is an object of the present invention to provide a diffusion transfer photographic element of the integral type which can be processed in processing equipment which includes rollers and which substantially reduces the amount of objectionable deposit built up on the rollers. It is a further object of the invention to provide a process for developing photographic images in said elements in equipment which includes work-advancing rollers wherein build-up of deposits on the rollers is minimized to permit operation of the process over longer periods of time. Further objects of the invention will be apparent from the following detailed disclosure.
The silver halide diffusion transfer element to which the invention relates are of the integral type including a support, a silver precipitating layer, and a lightsensitive silver halide layer thereover. These elements are known per se as illustrated by the disclosure of US. Pat. No. 3,020,155, mentioned above.
The support may comprise any photographic support such as paper, cellulose ester, synthetic resin, glass, etc., and may be provided with one or more auxiliary layers such as subbing layers. When it is desired to produce a positive (relative to the original subject) image in the silver precipitating layer, the support is preferably opaque and white either by virtue of the support material itself, e.g., paper, or by providing an opaque, white auxiliary layer on a support, such as a transparent synthetic resin film. A transparent support is preferred where the image produced in the silver precipitating layer is a negative with respect to the original subject.
The silver precipitating layer, hereinafter referred to as the first silver precipitating layer, provided beneath the light-sensitive silver halide layer, is a waterpermeable organic colloid layer containing a silver precipitating agent, that is, an agent capable of yielding with silver ion a dark-colored argental or silvercontaining substance, when dissolved silver salts from the emulsion layer come into contact with it. The silver precipitating agent may comprise either physical development nuclei or a chemical precipitant for silver ions.
Suitable silver precipitating agents for use in the silver precipitating layer for forming the argental image include metal sulfides, metal selenides, metal polysultides, metal polyselenide's, thiourea, mercaptans, stannous halides, heavy metals, and heavy metal salts, and fogged silver halide. Heavy metal sulfides such as lead, silver, zinc, antimony, cadmium and bismuth sulfides are useful, particularly the sulfides of lead and zinc alone or in admixture, or'complex salts of these with thioacetamide, dithio-oxamide, or dithio-biuret. The heavy metals include silver, gold, platinum, palladium and mercury preferably in the colloidal form. The noble metals are particularly efficacious.
The silver precipitating layer may be applied directly to a support such as paper, or to suitably subbed cellu' lose derivative supports and synthetic polymer supports from solutions or dispersions of the silver precipitating agents in a colloid vehicle such as gelatin. The colloid vehicle of the silver precipitating layer is insoluble in the solution used for removing the: emulsion layer from the element in processing. If gelatin is used, it should be hardened. Hydrophilic cellulose esters and synthetic polymers are useful as a vehicle in the silver precipitating layer insofar as they meet the requirement of having a solubility appreciably different from that of the colloid vehicle of the emulsion layer.
The silver halide emulsion can be applied directly over the silver precipitating layer, but preferably a thin layer comprising the binder of the light-sensitive emulsion layer is first applied followed by the. emulsion layer. This thin layer is not absolutely essential; however, it has been'found to facilitate the clean removal of the emulsion from the silver precipitating layer.
The silver halide component of the emulsi on is not especially critical and can include various silver halides and mixtures of silver halides such as silver bromoiodide, silver chloride or silver bromide optically sensitized in the'usual manner. The emulsion may be a developing-out emulsion designed for development to negative images in which case the image obtained in the silver precipitating layer is a positive with respect to the original subject. If desired, the emulsion can be of the direct positive type with the result that the silver image developed in the emulsion is a positive and the image in the silver precipitating layer a negative in respect to the original subject. The procedures of Leermakers, US. Pat. No. 2,184,013 and Kendall et al., US. Pat.
No. 2,541,472 are useful in conferring the direct positive characteristics to the emulsions.
The water-permeable colloid binder of the emulsion layer is one which is appreciably more soluble in water or alkaline solution than the colloid binderof the first silver precipitating layer. Several suitable binders are known such as gelatin either unhardened or substantially less hardened than the gelatin which may be used for the silver precipitating stratum in which case the melting point of the emulsion binder is substantially lower than that of the precipitating layer. Other known binders include hydrophilic, somewhat water soluble synthetic resins such as partially hydrolyzed polyvinyl esters, polyvinyl acetals, polyamides, polyvinyl alcohol,
polyvinyl pyrrolidone, non-carboxylated cellulose derivatives such as methyl cellulose, and acid-insoluble alkali-soluble carboxylated cellulose derivatives. The last class of materials, more fully described in U.S. Pat. No. 3,020,155, is the preferred binder by virtue of its ease of removal from the photographic element. The preferred binder for the emulsion layer thus comprises at least a major portion of the cellulose binders disclosed in U.S. Pat. No. 3,020,155. These binders are dibasic half esters of cellulose ethers or cellulose esters. The cellulose ethers and esters are preferably the alkyl ethers and esters and more preferably lower alkyl of one to four carbon atoms. The dibasic acids include aromatic acids, e.g., phthalic, and aliphatic acids either saturated, e.g., succinic, or unsaturated, e.g., maleic.
Representative carboxylated cellulose derivatives are the alkali-soluble acid-insoluble dibasic acid half esters of the cellulose ethyl ethers including the phthalic, succinic, and maleic acid half esters of ethyl celluloses and their ammonium, alkali metal and amine salts, the half esters being made from cellulose ethyl ethers having an alkoxy content of at least 42 percent and the half esters having a dicarboxylic acid radical content of at least percent and preferably at least 20 percent.
The ethyl cellulose phthalates made from cellulose ethyl ethers having at least 42 percent ethoxy] and containing at least -5 and preferably about 20 percent phthalyl are particularly efficacious for use in the emulsion layer. Thus a satisfactory cellulose ether phthalate can be made by the esterification of a cellulose ethyl ether containing 42 percent ethoxy until about 5 to percent phthalation has taken place. A preferred cellulose ether phthalate is thus made from a cellulose ethyl ether containing 45 percent ethoxyl, the final ester containing about 24 percent phthalyl. The ethyl cellulose phthalates employed may vary as to viscosity. In the case of low viscosity esters, such as those whose salts have a viscosity of less than 10 cps. in 4 percent solution in water, it may be desirable to incorporate some plasticizer, such as triacetin or polyethyleneglycol in the ethyl cellulose phthalate cmposition. composition.
The preparation and properties of these ether phthalates and methods for preparing emulsions containing them, suitable for application over the silver precipitatins y r 9f e. sens t vefilementst is siess beq. gt fully in the Talbot and McCleary U.S. Pat. No. 2,725,293, granted Nov. 29, 1955. In addition to the peptizing agents disclosed in the last-mentioned invention for preparing the cellulose ether phthalate emulsions, gelatin is equally useful. Malm et al., U.S. Pat. No. 2,718,667 and Hiatt et al., U.S. Pat. application Ser. No. 272,697, filed Feb. 20, 1952, now U.S. Pat. No. 2,759,925, may also be referred to for a description and synthesis of useful cellulose ether phthalates.
The alkali-soluble acid-insoluble dibasic acid half esters of cellulose esters such as various cellulose acetate phthalates are likewise useful as the emulsion vehicle. A typical cellulose acetate phthalate contains 34 percent phthalyl and 19 percent acetyl. These esters can be made by methods known in the art or as shown in the above Hiatt et al., invention. Similarly, cellulose phthalate containing about 50 percent phthalyl can be used as the major part of the emulsion vehicle.
According to the invention, the build up of objectionable deposits on rollers in equipment used to process the known integral elements described above is substantially reduced by providing a second silver precipitating layer on the element over the silver halide emulsion layer. The second silver precipitating layer comprises a silver precipitating agent of the known type mentioned above dispersed in a water-permeable colloid binder which may be any of the conventional binders mentioned above for use in either the first precipitating layer or in the emulsion layer. It is not required that the binder is water soluble as in the case of the emulsion layer since the presence of a water-permeable layer over the emulsion layer has been found not to substantially interfere with the removal of the emulsion layer by conventional means. The binder thus conveniently and preferably comprises gelatin.
A typical photographic element according to the invention is shown in the drawing which is a greatly enlarged cross-sectional diagrammatic view of a photographic element according to the invention. As shown therein, a representative sensitive element includes: a support 10 such as paper, cellulose ester or synthetic resin, if desired carrying a subbing layer not shown on the support; a silver precipitating layer 11, for example, a gelatin layer containing a colloidal heavy metal or heavy metal sulfide; the emulsion layer 12 containing silver halide grains dispersed in the alkali-soluble acidinsoluble cellulose derivative; and over the emulsion layer a second silver precipitating layer 13 which may be the same as the first layer both in composition and weight.
An element according to the present invention is processed in the usual manner by development with a silver halide developing solution containing a silver halide solvent such as sodium thiosulfate with the result that a silver image is developed in the emulsion layer and shortly thereafter the residual undeveloped silver halide is transformed to a soluble silver complex, a portion of which diffuses imagewise to the first silver precipitating layer where an argental image is formed by reaction of the silver complex with the silver precipitating agent of the silver precipitating layer. The emulsion layer containing the negative silver image is then merely washed from the support with an excess of water to obtain the reproduction wherein the argental positive image is present in the first silver precipitating layer. The second silver precipitating layer is removed with the emulsion layer. In conventional processing equipment, the exposed element is usually transported through a series of processing chambers or sections by work advancing means, such as rollers, which contact the element. In the first chamber or section the exposed element is contacted with a developer solution whereby the desired image is produced in the first precipitating layer. In a subsequent stage or stages the element is washed to remove the overlying emulsion layer and the second precipitating layer, and the element is usually given a final rinse to remove residual chemicals. A typical process involves four stages: development, aqueous spray wash, aqueous soak wash, and final water rinse. In either or both of the washing stages, the element is contacted with water which may be slightly alkaline. The process may also employ a stop bath stage.
The second precipitating layer can be applied directly over the emulsion layer or a thin subbing layer comprising any of the water-permeable colloids mentioned herein may be employed between it and the underlying emulsion layer. The second precipitating layer can be coated by apparatus and with techniques used conventionally to provide silver precipitating layers. The layers may contain generally the same amount of precipitating agent used in the first precipitating layer although the amount can vary widely, provided the layer is not rendered opaque. In general, the amount of precipitating agent will be from 0.8 X to 2.0 X 10" moles of precipitating agent per square foot. The thickness of the second layer may vary widely and will generally be that which is sufficient to provide a transparent layer having an effective amount of precipitating agent. In general, the layer will have a thickness of from 0.0005 to 0.002 millimeters.
The following examples are included for a further understanding of the invention.
' EXAMPLE 1 An integral silver halide diffusion transfer element, containing the following layers in order over a photographic polyethylene-coated paper support: (1) a silver precipitating layer, (2) an organic water-permeable colloid layer, and (3) a silver halide emulsion layer, is prepared as follows: a 10 percent gelatin solution (250 cc) is diluted with 750 cc water. 2.5 cc of l N Na s are then added to the solution. 250 cc of water containing 2.6 cc of l N zinc nitrate are added slowly to the sulfide solution through a jet, resulting in the formation of a colloidal dispersion of zinc sulfide. To this dispersion are added 10 liters of a 3 percent gelatin solution, 300 cc of a 7.6 percent saponin solution and 134 cc of a 10% formaldehyde solution. The mixture is dispersed at 40C and then coated on a photographic paper support at a coverage of 2 lb. of solution per 100 sq. ft. of coated surface and dried, forming the silver precipitating layer.
Over the silver precipitating layer is coated a l percent aqueous solution of the sodium salt (or other alkali metal salt) of cellulose ether phthalate (an ethyl cellulose containing 45.8 percent ethoxyl phthalated to 22.7 percent phthalyl) at a coverage of 0. lb. per sq. ft.
To 1 liter of a positive speed, sulfur sensitized high contrast chlorobromide emulsion containing approximately 30 g of gelatin and one mole of silver halide per liter, are added the following ingredients:
30 cc of a 50 percent aqueous solution of glycerine cc of a solution containing 34 gm of salicylaldehyde oxime per liter of MeOH cc of a 7.6 percent saponin solution 12.5 cc of a solution containing 0.2 gm of lcarboxymethyl-S-[(3-ethyl-2(3)- benzoxazolylidene)ethylidene1-3-phenyl-2- thiohydantoin in 30 cc of MeOH 1 drop of triethylamine To the above mixture are added 4 liters of a 4 percent solution of the ammonium salt of the cellulose ether phthalate just mentioned and 2 gm of 3-methylbenzothiazoline-Z-thione dissolved in :methyl alcohol. The mass is stirred at 30C, thoroughly dispersed and then coated over the sodium salt of cellulose ether phthalate interlayer at a coverage of 600 sq. ft. per mole of silver halide and dried in the conventional manner. After exposure, several elements are processed in ltek Positive Process equipment which includes several workadvancing rollers to transport the print through devel oping, spray wash, soak wash and final rinse sections of the apparatus. The developer employed is the following:
ethylene diamine tetraacetic acid, 1.0 gm/l tetra sodium salt hydroquinone 10.0 gm/l l-phenyl-3-pyrazolidone 0.8 gm/l sodium sulfite 50.0 gm/l sodium thiosulfate 5H O 20.0 gm/l trisodium phosphate l2H O 100.0 gm/l potassium bromide 0.5 gm/l potassium chloride 16.0 gm/l boric anhydride 0.4 gmll (packaging ingredient) 0.25 gm/l 2-fi phenethyl isoquinolinium bromide pH 11.2
Example 2 A plurality of integral photographic diffusion transfer element are made as in Example 1 except that a second silver precipitating layer is coated over the silver halide emulsion layer. The second precipitating layer is provided from a coating solution which is the same as that used to coat the first layer, and coated at equal weight. The elements are then exposed and processed as in Example 1. After 1,600 prints are processed in the device,
the process is interrupted and the rollers inspected. A
small deposit is observed on the rollers which deposit amounts to substantially less than that of Example 1.
Examples 3 and 4 Elements similar to that of Example 2 are prepared except that the coating weight of the second layer is percent of the first precipitating layer in Example 3 and 137 percent in Example 4. Results are similar to that of Example 2.
While the present invention results in a substantially reduced deposit during processing, the processing is otherwise not adversely affected. That is, the element can be exposed and processed in the usual manner in conventional apparatus such as the ltek equipment mentioned.
Although the invention has been described in considerable detail with particular reference to certain preferred embodiments thereof, it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
I claim:
1. A light-sensitive photographic element comprising a support, a first silver precipitating agent on the sup port, a water soluble light-sensitive silver halide emulsion layer provided over said precipitating agent and being capable of being removed from said element by aqueous washing without removing said first precipitating agent, and a temporary, removable second silver precipitating agent which is water premeable and coated over said emulsion layer, said first silver precipitating agent, said silver halide emulsion layer, and said second precipitating agent all being on the same support.
2. A light-sensitive photographic element according to claim 1 wherein said silver halide emulsion layer comprises silver halide dispersed in a binder which comprises an alkali-soluble acid-insoluble carboxylated cellulose derivative.
3. A light-sensitive photographic element according to claim 2 wherein said binder is selected from the group consisting of dibasic acid half-esters of cellulose ethers, and dibasic acid half-esters of cellulose esters.
8 cipitating agent comprises gelatin.
7. A light-sensitive photographic element according to claim 1 wherein each of said first and second silver precipitating agents is in a gelatin hinder, the gelatin binder of said second silver precipitating agent having a lower melting point than the gelatin binder of said first silver precipitating agent.
8. A light-sensitive photographic element according to claim 5 wherein said second silver precipitating agent is a member selected from the group consisting of heavy metals, thiourea, mercaptans, sta'nnous ha-v lides, heavy metal salts, and fogged silver halide.
9. in a process of producing an image in the silver precipitating layer of a photographically exposed integral silver halide diffusion transfer photographic element comprising a support, a silver precipitating layer, and a photographically exposed silver halide emulsion layer thereover, wherein the element is advanced through photographic development apparatus by work advancing means to provide a photographic image in,
said silver precipitating layer, the improvement which comprises utilizing an integral silver halide diffusion transfer photographic element according to claim 1 to reduce the accumulation of deposit on said work advancing means.
10. A method of forming a photographic image which comprises developing a latent image in the emulsion layer of an exposed element of claim 1 with an alkaline silver halide developing solution containing a silver halide developing agent and a silver halide solvent for a time sufficient to form a silver image and an imagewise distribution of a soluble silver complex to diffuse imagewise to said silver precipitating agents and the silver of said portion of silver complex to be precipitated by said agents and removing the emulsion layer and said second agent from said first agent.

Claims (10)

1. A LIGHT-SENSITIVE PHOTOGRAPHIC ELEMENT COMPRISING A SUPPORT, A FIRST SILVER PRECIPITATING AGENT ON THE SUPPORT, A WATER SOLUBLE LIGHT-SENSITIVE SILVER HALIDE EMULSION LAYER PROVIDED OVER SAID PRECIPITATING AGENT AND BEING CAPABLE OF BEING REMOVED FROM SAID ELEMENT BY AQUEOUS WASHING WITHOUT REMOVING SAID FIRST PRECIPITATING AGENT, AND A TEMPORARY, REMOVABLE SECOND SILVER PRECIPITATING AGENT WHICH IS WATER PREMEABLE AND COATED OVER SAID EMULSION LAYER, SAID FIRST SILVER PRECIPITATING AGENT, SAID SILVER HALIDE EMULSION LAYER, AND SAID SECOND PRECIPITATING AGENT ALL BEING ON THE SAME SUPPORT.
2. A light-sensitive photographic element according to claim 1 wherein said silver halide emulsion layer comprises silver halide dispersed in a binder which comprises an alkali-soluble acid-insoluble carboxylated cellulose derivative.
3. A light-sensitive photographic element according to claim 2 wherein said binder is selected from the group consisting of dibasic acid half-esters of cellulose ethers, and dibasic acid half-esters of cellulose esters.
4. A light-sensitive photographic element according to claim 3 wherein said binder is a member selected from the group consisting of ethyl cellulose phthalate and cellulose acetate phthalate.
5. A light-sensitive photographic element according to claim 1 wherein said second silver precipitating agent is dispersed in a binder selected from the group consisting of gelatin, hydrophilic synthetic resins, cellulose ethers, and alkali-soluble, acid-insoluble carboxylated cellulose derivatives.
6. A light-sensitive photographic element according to claim 5 wherein the binder of said second silver precipitating agent comprises gelatin.
7. A light-sensitive photographic element according to claim 1 wherein each of said first and second silver precipitating agents is in a gelatin binder, the gelatin binder of said second silver precipitating agent having a lower melting point than the gelatin binder of said first silver precipitating agent.
8. A light-sensitive photographic element according to claim 5 wherein said second silver precipitating agent is a member selected from the group consisting of heavy metals, thiourea, mercaptans, stannous halides, heavy metal salts, and fogged silver halide.
9. In a process of producing an image in the silver precipitating layer of a photographically exposed integral silver halide diffusion transfer photographic element comprising a support, a silver precipitating layer, and a photographically exposed silver halide emulsion layer thereover, wherein the element is advanced through photographic development apparatus by work advancing means to provide a photographic image in said silver precipitating layer, the improvement which comprises utilizing an integral silver halide diffusion transfer photographic element according to claim 1 to reduce the accumulation of deposit on said work advancing means.
10. A method of forming a photographic image which comprises developing a latent image in the emulsion layer of an exposed element of claim 1 with an alkaline silver halide developing solution containing a silver halide developing agent and a silver halide solvent for a time sufficient to form a silver image and an imagewise distribution of a soluble silver complex to diffuse imagewise to said silver precipitating agents and the silver of said portion of silver complex to be precipitated by said agents and removing the emulsion layer and said second agent from said first agent.
US00005565A 1970-01-26 1970-01-26 Photographic diffusion transfer element Expired - Lifetime US3853557A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR485/70*[A BR7000485D0 (en) 1970-01-26 1970-01-25 ELEMENT OF PHOTOGRAPHIC TRANSFER BY DIFFUSION
US00005565A US3853557A (en) 1970-01-26 1970-01-26 Photographic diffusion transfer element
CA099829A CA938150A (en) 1970-01-26 1970-12-04 Photographic diffusion transfer element
BE761867A BE761867A (en) 1970-01-26 1971-01-21 NEW PHOTOGRAPHIC PRODUCT THAT CAN BE USED IN THE DIFFUSION-TRANSFER PROCESS
FR7101933A FR2075796A5 (en) 1970-01-26 1971-01-21
GB2012871A GB1344852A (en) 1970-01-26 1971-04-19 Silver salt diffusion transfer process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00005565A US3853557A (en) 1970-01-26 1970-01-26 Photographic diffusion transfer element

Publications (1)

Publication Number Publication Date
US3853557A true US3853557A (en) 1974-12-10

Family

ID=21716499

Family Applications (1)

Application Number Title Priority Date Filing Date
US00005565A Expired - Lifetime US3853557A (en) 1970-01-26 1970-01-26 Photographic diffusion transfer element

Country Status (6)

Country Link
US (1) US3853557A (en)
BE (1) BE761867A (en)
BR (1) BR7000485D0 (en)
CA (1) CA938150A (en)
FR (1) FR2075796A5 (en)
GB (1) GB1344852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298673A (en) * 1972-03-10 1981-11-03 Fuji Photo Film Co., Ltd. Lithographic type diffusion transfer developing composition
US5030545A (en) * 1988-06-08 1991-07-09 Fuji Photo Film Co., Ltd. Method of forming images by silver salt diffusion transfer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543181A (en) * 1947-01-15 1951-02-27 Polaroid Corp Photographic product comprising a rupturable container carrying a photographic processing liquid
US2563342A (en) * 1947-01-28 1951-08-07 Polaroid Corp Photographic product and process
US2861885A (en) * 1954-11-04 1958-11-25 Polaroid Corp Photographic processes and products
GB874046A (en) * 1958-05-12 1961-08-02 Polaroid Corp Photographic transfer processes and products for use in such processes
US3020155A (en) * 1956-05-23 1962-02-06 Eastman Kodak Co Photographic diffusion transfer process
US3062643A (en) * 1959-05-22 1962-11-06 Eastman Kodak Co Photographic diffusion transfer process
US3152904A (en) * 1959-12-21 1964-10-13 Minncsota Mining And Mfg Compa Print-out process and image reproduction sheet therefor
US3235599A (en) * 1962-10-17 1966-02-15 Polaroid Corp Mono-n-benzyl-diamino-phenyl compounds
US3311473A (en) * 1962-06-28 1967-03-28 Eastman Kodak Co Silver halide diffusion process and products therefor
US3607270A (en) * 1967-06-08 1971-09-21 Agfa Gevaert Nv Unitary, permanently composite, photographic light-sensitive sheet material for use in the silver complex diffusion transfer process for producing images

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543181A (en) * 1947-01-15 1951-02-27 Polaroid Corp Photographic product comprising a rupturable container carrying a photographic processing liquid
US2563342A (en) * 1947-01-28 1951-08-07 Polaroid Corp Photographic product and process
US2861885A (en) * 1954-11-04 1958-11-25 Polaroid Corp Photographic processes and products
US3020155A (en) * 1956-05-23 1962-02-06 Eastman Kodak Co Photographic diffusion transfer process
GB874046A (en) * 1958-05-12 1961-08-02 Polaroid Corp Photographic transfer processes and products for use in such processes
US3062643A (en) * 1959-05-22 1962-11-06 Eastman Kodak Co Photographic diffusion transfer process
US3152904A (en) * 1959-12-21 1964-10-13 Minncsota Mining And Mfg Compa Print-out process and image reproduction sheet therefor
US3311473A (en) * 1962-06-28 1967-03-28 Eastman Kodak Co Silver halide diffusion process and products therefor
US3235599A (en) * 1962-10-17 1966-02-15 Polaroid Corp Mono-n-benzyl-diamino-phenyl compounds
US3607270A (en) * 1967-06-08 1971-09-21 Agfa Gevaert Nv Unitary, permanently composite, photographic light-sensitive sheet material for use in the silver complex diffusion transfer process for producing images

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298673A (en) * 1972-03-10 1981-11-03 Fuji Photo Film Co., Ltd. Lithographic type diffusion transfer developing composition
US5030545A (en) * 1988-06-08 1991-07-09 Fuji Photo Film Co., Ltd. Method of forming images by silver salt diffusion transfer

Also Published As

Publication number Publication date
FR2075796A5 (en) 1971-10-08
BE761867A (en) 1971-07-01
BR7000485D0 (en) 1973-04-26
GB1344852A (en) 1974-01-23
CA938150A (en) 1973-12-11

Similar Documents

Publication Publication Date Title
US2592368A (en) Gelatine silver halide emulsion layer containing a dihydroxy diphenyl tanning developing agent
US3300306A (en) Process for the manufacture of printing plates
US3155515A (en) Photographic products
US3020155A (en) Photographic diffusion transfer process
US3150977A (en) Light-sensitive photographic materials
US2699393A (en) Photographic process for the direct production of positive images
US3415649A (en) Process for the production of light-sensitive material containing coating aids
US2725296A (en) Two-layer integral negative positive photographic material
US2843485A (en) Transfer process of photographic printing
US3607269A (en) Image-receiving elements and photographic processes employing same
US3168400A (en) Rapid processing of photographic color materials
US3985561A (en) Diffusion transfer process using silver halide emulsions with 90% chloride and high binder to silver halide ratios
US3736872A (en) Lithographic printing plate and process
US2685510A (en) Sensitive photographic element for use in the silk screen process
US3853557A (en) Photographic diffusion transfer element
US3311473A (en) Silver halide diffusion process and products therefor
US3149970A (en) Production of photographic silver images by physical development
US3369902A (en) Lithographic plates sensitized with oxacarbocyanine and benzimidazole carbocyanine dyes
US2414839A (en) Light sensitized lead printing compounds and process of reproduction
US3554750A (en) Process for the production of photographic images
US3753764A (en) Photographic diffusion transfer product and process
US3775128A (en) Silver halide emulsion containing a triazine as antifoggant
US4149889A (en) Direct offset printing plate
US2937945A (en) Process and photographic material for the direct production of positive photographicimages
US3575703A (en) Photographic diffusion transfer product and process