US3845817A - Tertiary oil recovery method - Google Patents

Tertiary oil recovery method Download PDF

Info

Publication number
US3845817A
US3845817A US00407116A US40711673A US3845817A US 3845817 A US3845817 A US 3845817A US 00407116 A US00407116 A US 00407116A US 40711673 A US40711673 A US 40711673A US 3845817 A US3845817 A US 3845817A
Authority
US
United States
Prior art keywords
wells
series
production wells
production
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00407116A
Inventor
D Hoyt
A Altamira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US00407116A priority Critical patent/US3845817A/en
Application granted granted Critical
Publication of US3845817A publication Critical patent/US3845817A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/18Repressuring or vacuum methods
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells

Abstract

At the conclusion of a secondary recovery operation in a direct line drive after breakthrough of the driving fluid at the production wells, alternate injection wells in the series for the drive and the production wells in the adjoining series are shut in and the original production wells in the series with the intermediate shut in wells continuing on production for tertiary recovery.

Description

[ Nov. 5, 1974 TERTIARY OIL RECOVERY METHOD [75] Inventors: Donald L. Hoyt, Houston, Tex.;
Anthony Francis Altamira, Dhahran, Saudi Arabia [73] Assignee: Texaco Inc., New York, NY.
[22] Filed: Oct. 17, 1973 [21] Appl. No.: 407,116
[52] US. Cl. 166/245, 166/263 [51} Int. Cl E2lb 43/00, E2lb 43/16 ['58] Field of Search 166/245, 263
[56] References Cited UNITED STATES PATENTS Santourian 166/245 3,253,652 5/1966 Connally, Jr. et al, t 166/245 3,358,754 12/1967 Stelzer et al. 166/245 3,386,504 6/1968 Kunetka l66/245 Primary Examiner-Stephen J. Novosad Attorney, Agent, or FirmT. H. Whaley; C. G. Ries [57] ABSTRACT At the conclusion of a secondary recovery operation in a direct line drive after breakthrough of the driving fluid at the production wells, alternate injection wells in the series for the drive and the production wells in the adjoining series are shut in and the original production wells in the series with the intermediate shut in wells continuing on production for tertiary recovery.
3 Claims, 4 Drawing Figures TERTIARY OIL RECOVERY METHOD FIELD OF THE INVENTION DESCRIPTION OF THE INVENTION In the production of hydrocarbons from permeable subterranean hydrocarbon-bearing formations, it is customary to drill one or more boreholes or wells into the hydrocarbon-bearing formation and produce formation fluids including hydrocarbons, such as oil, through designated production wells, either by the natural formation pressure or by pumping the wells. Sooner or later, the flow of hydrocarbon-bearing fluids diminishes and/or ceases, even though substantial quantities of hydrocarbons are still present in the subterranean formations.
Thus, secondary recovery programs are now an essential part of the overall planning for exploitation of oil and gas-condensate reservoirs in subterranean hydrocarbon-bearing formations. In general, this involves injecting an extraneous fluid, such as water or gas or other displacing compounds, into the reservoir zones to drive formation fluids including hydrocarbons toward production wells by the process commonly referred to as flooding. Usually, this flooding is accomplished by injecting through wells drilled in a pattern,
e.g., the direct and alternating line drives and the more commonly used 5-spot pattern.
When the driving fluid, e.g. water, from the injection well reaches the production wells of a direct line drive, the areal sweep efficiency is 57 percent. By continuing production considerably past breakthrough, it is possible to produce more of the remaining unswept portion of the formation although continued injection will not reduce oil saturation much further.
SUMMARY OF THE INVENTION It is an overall object of the present invention to provide an improved recovery procedure involving initially three wells in line as one of a series in a direct line drive as part of a well pattern arrangement for exploiting a hydrocarbon-bearing formation, by changing the flow gradients to affect cusp formations at production wells in the selected pattern, by shutting in alternate injection and production wells, while continuing injecting driving fluid at the remainder of the injection wells and continuing producing from the remainder of the production wells.
A three well group of a series in a direct line drive is arranged in line so that the intermediate well is completed for injection and the remaining two wells are completed for production. Flooding is initiated at the intermediate well by injection of a driving fluid, such as water, thereinto and proceeds until breakthrough of the flood front occurs at the production wells, at which time, injection via the intermediate wells of adjacent series is terminated and these wells are shut in and also the production wells in the series adjacent thereto. Thereafter, production is continued from the wells in the series with the shut in intermediate wells and injection is continued via the intermediate injection wells in 2 the series with the shut in original production wells. In this manner, formation areas with high oil saturation can be exploited for more complete recovery, this region being unswept by the secondary recovery operation, generally. r
In secondary recovery programs, sweepout is generally given as the percent of available volume invaded by the driving fluid at breakthrough into the production wells. This is done because production past breakthrough, while nearly always attempted, is an uncertain thing. For example, assuming water to be the driving fluid, the water-oil ratio may rise gradually over a period of many years or a well or pattern may go to 100 percent water within months. Much depends on how easily and quickly the water phase envelops the well to such an extent that the relative permeability to oil is reduced to zero.
In many cases, particularly in close spacing, the envelopment is a natural result of the fact that the strongest gradients and highest fluid velocities are on the line between the injection and production wells. In addition, if there is another production well in that same line beyond the first one, then the process of envelopment is accelerated considerably. In such a situation, the water-oil ratio may be expected to increase very sharply, and it is observed usually to do so.
A procedure to inhibit the growth of the cusp at a production well, so that the percentage of oil produced per bbl. of produced formation fluids will be greater for a longer time, to provide for more recovery, more quickly, than in present procedures, involves the imposition of a new set of forces (flow gradients) shortly after breakthrough, directed in such a way that the new pattern of flow gradients will inhibit the normal tendency of a cusp to swell and envelop a production well.
From a potentiometric model study, by continued production past breakthrough of a secondary recovery program in a direct line drive, using the same injection and production wells, the sweepout can eventually approach percent, if the well continues to produce. However, in an actual hydrocarbon reservoir, the cusp of the driving fluid swells so rapidly in this case that the water-oil ratio goes very quickly to over 90 percent. By this time, the water saturation around the well will be so high that continued flow of the oil phase is veryunlikely and the pattern may have to be abandoned at about 70 percent total sweepout.
With the injection wells of alternate series of the line drive pattern of wells being closed in and the alternate production wells of the adjacent series of wells being closed in also, the interface position at breakthrough of driving fluid from the original injection wells not closed in shows that the cusp of previously injected fluid is still small, and the water-oil production ratio by calculations based on shape is about 37 percent at which time the pattern sweepout is about 88 percent, rising thereafter to percent. This principle of imposing new flow gradients by changing the functions of certain wells can be applied in virtually any reservoir whether drilled on a pattern or not.
Other objects, advantages and features of this invention will become apparent from a consideration of the specification with reference to the figures of the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 discloses the symbols used in the remaining figures of the drawings;
FIG. 2 illustrates two phases of a secondary recovery program of a direct line drive, indicating production at breakthrough and production following the same;
FIG. 3 discloses the termination of the cross flood phase of a tertiary line drive recovery procedure; and
FIG. 4 discloses the differences in water cuts during production past breakthrough of a direct line drive and a cross flood phase of a line drive.
The objects of the invention are achieved by the shutting in of alternate injection and production wells located in adjacent series of a direct line drive pattern at the time of breakthrough of the driving fluid at the production wells and thereafter continuing production from the series with the shut in intermediate well and while injecting driving fluid from the series with the shut in original production wells.
The specification and the figures of the drawings schematically disclose and illustrate the practice and the advantages of the invention, examples of which have been observed in potentiometric model studies which simulate secondary and tertiary recovery operations. The model studies indicate a sweepout obtained in an ideal reservoir, although the recovery from an actual sweepout of a particular field may be greater or less, depending on field parameters.
Throughout the figures of the drawings, the same symbols will be maintained as disclosed in FIG. 1, viz. a solid circle indicates a production well, a crossed open circle a shut in well, and an open circle with a first quadrant arrow indicates an original injection well.
Referring to FIG. 2, there is disclosed symbolically a direct line drive in a secondary recovery procedure, wherein the original injection wells are aligned with the production wells, with a d/a of l. Breakthrough of the driving fluid at the production wells with a sweep efficiency of 57 percent, is indicated by the dash lines. The solid lines indicate a sweepout of about 70 percent when production is continued after breakthrough, when the water production rate reaches 90 percent.
Referring to FIG. 3 and following breakthrough, as indicated by the dash lines in FIG. 2, the original injection wells in alternate series of three wells in the direct line drive pattern are shut in, together with the production wells in the adjacent series of three wells, and production is continued via the wells in the series with the shut in intermediate wells and injection continues via the original intermediate injection wells of the adjoinated with favorable economic resultsfollowing the conclusion of a secondary recovery operation followingbreakthrough of driving fluid at the production wells by introducing a new set of flow gradients to affect cusp formation at the production wells.
- As will be apparent to those skilled in the art in the light of the accompanying disclosure, other changes and alterations are possible in the practice of this invention without departing from the spirit or scope thereof.
We claim:
1. At the conclusion of a secondary recovery opera tion in a method of producing formation fluids including hydrocarbons from a subterranean hydrocarbonbearing formation by a direct line drive which comprises penetrating said formation with a plurality of wells disposed in a linear pattern and comprising a series of a pair of production wells and an intermediate injection well, injecting an extraneous fluid into said formation via said intermediate injection well to displace formation fluids including hydrocarbons in said formation toward said production wells, producing said formation fluids including hydrocarbons from said formation via said production wells till breakthrough of said extraneous fluid thereat, thereupon initiating a tertiary recovery operation by imposing a new set of flow gradients comprising the steps of shutting in the intermediate injection wells in alternate series and shutting in the production wells in the series adjacent thereto, and thereupon injecting said extraneous fluid via the remainder of the intermediate injection wells of said series and producing formation fluids via the remainder of said production wells.
2. In the method as defined in claim 1, said intermediate injection well and said pair of production wells being disposed in a common row of said series thereof.
posed respectively in common rows of said series.

Claims (3)

1. At the conclusion of a secondary recovery operation in a method of producing formation fluids including hydrocarbons from a subterranean hydrocarbon-bearing formation by a direct line drive which comprises penetrating said formation with a plurality of wells disposed in a linear pattern and comprising a series of a pair of production wells and an intermediate injection well, injecting an extraneous fluid into said formation via said intermediate injection well to displace formation fluids including hydrocarbons in said formation toward said production wells, producing said formation fluids including hydrocarbons from said formation via said production wells till breakthrough of said extraneous fluid thereat, thereupon initiating a tertiary recovery operation by imposing a new set of flow gradients comprising the steps of shuTting in the intermediate injection wells in alternate series and shutting in the production wells in the series adjacent thereto, and thereupon injecting said extraneous fluid via the remainder of the intermediate injection wells of said series and producing formation fluids via the remainder of said production wells.
2. In the method as defined in claim 1, said intermediate injection well and said pair of production wells being disposed in a common row of said series thereof.
3. In the method as defined in claim 2, said intermediate injection well and said production wells being disposed respectively in common rows of said series.
US00407116A 1973-10-17 1973-10-17 Tertiary oil recovery method Expired - Lifetime US3845817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00407116A US3845817A (en) 1973-10-17 1973-10-17 Tertiary oil recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00407116A US3845817A (en) 1973-10-17 1973-10-17 Tertiary oil recovery method

Publications (1)

Publication Number Publication Date
US3845817A true US3845817A (en) 1974-11-05

Family

ID=23610656

Family Applications (1)

Application Number Title Priority Date Filing Date
US00407116A Expired - Lifetime US3845817A (en) 1973-10-17 1973-10-17 Tertiary oil recovery method

Country Status (1)

Country Link
US (1) US3845817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586752A (en) * 1978-04-10 1986-05-06 Union Oil Company Of California Solution mining process
US4612989A (en) * 1985-06-03 1986-09-23 Exxon Production Research Co. Combined replacement drive process for oil recovery
US5246071A (en) * 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586752A (en) * 1978-04-10 1986-05-06 Union Oil Company Of California Solution mining process
US4612989A (en) * 1985-06-03 1986-09-23 Exxon Production Research Co. Combined replacement drive process for oil recovery
US5246071A (en) * 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles

Similar Documents

Publication Publication Date Title
US10196888B2 (en) Placement and uses of lateral assisting wellbores and/or kick-off wellbores
US10408033B2 (en) Well design to enhance hydrocarbon recovery
US3805892A (en) Secondary oil recovery
US4635720A (en) Heavy oil recovery process using intermittent steamflooding
US3455392A (en) Thermoaugmentation of oil production from subterranean reservoirs
US5314019A (en) Method for treating formations
US4683951A (en) Chemical flooding and controlled pressure pulse fracturing process for enhanced hydrocarbon recovery from subterranean formations
RU2515651C1 (en) Method for multiple hydraulic fracturing of formation in horizontal shaft of well
US4120357A (en) Method and apparatus for recovering viscous petroleum from thick tar sand
US3358762A (en) Thermoaugmentation of oil-producing reservoirs
US20210148211A1 (en) Methods and systems for ballooned hydraulic fractures and complex toe-to-heel flooding
US4109722A (en) Thermal oil recovery method
US3393735A (en) Interface advance control in pattern floods by use of control wells
US3845817A (en) Tertiary oil recovery method
US3872922A (en) Tertiary recovery operation
US4109723A (en) Thermal oil recovery method
US3874449A (en) Tertiary recovery operation
US3903966A (en) Tertiary recovery operation
US3380525A (en) 7-well delta pattern for secondary recovery
RU2637539C1 (en) Method for formation of cracks or fractures
Pritchard et al. Improving oil recovery through WAG cycle optimization in a gravity-overide-dominated miscible flood
US3834461A (en) Tertiary recovery operation
US3637014A (en) Secondary oil recovery process using time-dependent shear-thinning liquid
US3877521A (en) Tertiary recovery operation
US3878891A (en) Tertiary recovery operation