US3822624A - Film cutting device - Google Patents

Film cutting device Download PDF

Info

Publication number
US3822624A
US3822624A US31582272A US3822624A US 3822624 A US3822624 A US 3822624A US 31582272 A US31582272 A US 31582272A US 3822624 A US3822624 A US 3822624A
Authority
US
United States
Prior art keywords
film
cutting
pulse
output signal
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
A Shoji
T Hirashima
T Toda
K Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10432471A external-priority patent/JPS5652720B2/ja
Priority claimed from JP47000647A external-priority patent/JPS5212436B2/ja
Priority claimed from JP653172A external-priority patent/JPS5536477B2/ja
Priority claimed from JP2755772A external-priority patent/JPS4895291A/ja
Application filed by Canon Inc filed Critical Canon Inc
Application granted granted Critical
Publication of US3822624A publication Critical patent/US3822624A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • B26D5/30Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier
    • B26D5/34Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier scanning being effected by a photosensitive device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03DAPPARATUS FOR PROCESSING EXPOSED PHOTOGRAPHIC MATERIALS; ACCESSORIES THEREFOR
    • G03D15/00Apparatus for treating processed material
    • G03D15/04Cutting; Splicing
    • G03D15/043Cutting or splicing of filmstrips
    • G03D15/046Automatic cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/444Tool engages work during dwell of intermittent workfeed
    • Y10T83/4455Operation initiated by work-driven detector means to measure work length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/444Tool engages work during dwell of intermittent workfeed
    • Y10T83/4458Work-sensing means to control work-moving or work-stopping means
    • Y10T83/446With means to initiate tool feed by same control impulse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/531With plural work-sensing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/541Actuation of tool controlled in response to work-sensing means
    • Y10T83/543Sensing means responsive to work indicium or irregularity

Definitions

  • An automatic film cutting device is used to cut rolled or strip film off into sheet film having a predetermined length.
  • This film cutting device comprises detecting means for detecting film cutting marks on film to be cut off, film advancing means for advancing the film,
  • FIG. 1 3
  • FIG-l6 DETECTOR 1 S Cl PAIENTEUJUL 919 SHEET 8 BF 9 FIG. I?
  • S ,434 DETECTOR TIMER I 02 C2 -f2 85
  • R 432 DETECTOR S I b2 d2 B4 A4 ⁇ CUTTER 85 I I O3 435
  • FIG. I8
  • the present invention relates to an automatic film cutting device for cutting a rolled or strip microfiche film into a plurality of microfiche sheets eachhaving a predetermined length or cutting ofi rolled or strip film into the unitized form.
  • Microfilming technique has long found widespread applications in various fields because a large number of data may be recorded on a reduced scale in a very limited small area with an exceedingly high density.
  • microfilm microfiche film has been widely used because a large number of data concerning to one subject may be recorded in rows in a single frame and further because the automatic continuous printing, development, and fixing are feasible in a simple manner.
  • microfiche in the form of strip of roll is generally not convenient for indexing, retrieval and reading so that it is generally cut off into microfiche sheets of a predetermined size or sheets in the unitized form.
  • the conventional film cutting devices used for this purpose are such that a cutter is actuated so as to cut off roll or strip film in response to the output signal from a photoelectric-cell type detector which detects a film cutting mark upon roll or strip film being transported.
  • the spacing between the adjacent cutting marks on rolled or strip film is generally not uniform because of some variations in length of film transported in one time in a camera when the cutting marks are photographed on the film together with the data to be recorded. Therefore the cut-off microfiche sheets are not uniform in length so that great inconvenience arises when they are used in conjunction with a reading or indexing machine or when they are stored in a container.
  • the conventional film cutting devices have a serious defect that rolled or strip film is cut off erroneously not along a predetermined cutting line because the detector gives an erroneous signal whenit detects the noise or stain, scratch or the like on the film in line with the cutting marks.
  • rolled or strip film is cut off into microfiche sheets not uniform in length and in the worst case the data recorded on a microfiche film are so damaged that some data cannot be reproduced.
  • One of the objects of the present invention is therefore to provide an automatic film cutting device which may overcome the above and other problems encountered in the conventional film cutting devices.
  • Another object of the present invention is to provide an automatic film cutting device comprising detecting means for detecting film cutting marks on film to be cut off, film feeding means for feeding the film, and measuring means for measuring the feed of the film, said measuring means being actuated in response to the output signal from said detecting means and said film cutting means being actuated in response to the output signal generated by saidmeasuring means when the film to be cut off is fed by a predetermined length, thereby cutting off the film into a predetermined length.
  • Another object of the present invention is to provide an automatic film cutting device of the type described above wherein the film cutting means may be kept deenergized until the measuring means measures a predetermined length of the film to be cutoff so that the erratic film cutting operation may be completely prevented.
  • Another object of the present invention is to provide an automatic film cutting device of the type described in which at least two detecting means for detecting the cutting marks on the film to be cut off are used so that when and only when both of said at least two detecting means give the output signals simultaneously the cutting means is actuated so as to cut off the film thereby preventing the film from being cut off along an errone' ous cuttingline.
  • FIG. 1 is a fragmentary top view of a film strip to be cut off used for the explanation of film cutting marks marked thereupon;
  • FIG. 2 is a perspective view of a first embodiment of an automatic film cutting device in accordance with the present invention
  • FIG. 3 is a fragmentary diagrammatic view thereof illustrating the arrangement of a film feeding mechanism, a detector and a film cutting mechanism;
  • FIG. 4 is a fragmentary sectional view of the film cutting device shown in FIG. I;
  • FIG. 5 is a view looking in the direction indicated in the line V-V of FIG. 4;
  • FIG. 6 is a block diagram of a control unit of the automatic cutting device shown in FIG. 1;
  • FIG. 7 is a side view, partly in cross section and on enlarged scale, illustrating only the essential component parts of a second embodiment of an automatic film cutting device in accordance with the present invention.
  • FIG. 8 is a block diagram of a control unit thereof.
  • FIG. 9 shows the waveforms of various signals generated in the control unit shown in FIG. 8 used for the explanation of the mode of operation thereof;
  • FIGS. 10 and 11 are block diagrams of two variations of the control unit shown in FIG. 8 7
  • FIG. 12 is a fragmentary perspective view of a third embodiment in accordance with the present invention illustrating only the major component parts thereof;
  • FIGS. 13(a) and 13(1)) are views used for the explanation of a detecting device used in the automatic film cutting device shown in FIG. 12;
  • FIGS. 14'and 15 are views used for the explanation of the relation between the spacing between two detecting means and a spacing between the adjacent film cutting marks on the film to be cut off;
  • FIGS. l6, l7 and 18 are block diagrams of three control units adapted for use in the automatic film cutting device shown in FIG. 12;
  • FIGS. 19, 20, and 21 shows the waveforms of the signals used for the explanation of the mode of operation of the three control units shown in FIGS. 16-18, re spectively.
  • FIG. 1 illustrating a part of unrolled or strip film to be cut off
  • film cutting marks are generally marked upon a film along one side edge thereof.
  • the transparency of the cutting marks is so selected as to be different from that of the film.
  • the spacing between the adjacent cutting marks is not uniform, for example when the spacing between the cutting marks I and II is shorter than that between the cutting marks II and III, the length of one microfiche between the cutting lines la and 2a becomes shorter than that of another microfiche sheet between the cutting lines 20 and 3a.
  • the second microfiche sheet must be cut off along the cutting line 2a so that it has an unwanted extra portion 3a which may be a part of the third microfiche sheet bearing the data.
  • the detector detects it and gives an erroneous signal so that the cutter cuts off film along an erroneous cutting line. Therefore microfiche sheets are not uniform in length and in some cases the data recorded on the film are seriously damaged as described hereinbefore.
  • the present invention was made in order to overcome the above and other related problems encountered in the conventional film cutting devices.
  • FIG. 2 An automatic film cutting device in accordance with the present invention is shown in FIG. 2 as comprising a housing 1, a rolled microfilm 2 mounted on a supporting member 3 extending from the top of the housing 1, a film loop chamber 4 defined in the housing 1 for forming a loop of film unrolled from the rolled microfilm 2, a top panel 6 upon which is advanced an un' rolled film guided by a pair of guide members 7 located along the side edges of the passage for the film 5, a plurality of operating buttons 8 located at the front side of the top panel 6; a removable cover 9 placed over the top panel 6; .a discharge outlet 10 through which a cutoff sheet film 5' is discharged, and a sheet film receiving box 11.
  • a cutter assembly A comprising a movable cutter 12 and a fixed cutter 13
  • a detecting device B comprising a light source 14 and a photoelectric cell 15 disposed upwardly and downwardly of the unrolled film 5, respectively and in opposed relation
  • a film feeding device C comprising a pair of feed rollers 16 and 17.
  • a rotary shaft 18 of the feed roller 17 which is rotatably supported by a pair of suitable supporting members (not shown) disposed within the housing 1, has a gear 19 carried at one end thereof and engaged with a gear 21 carried by a rotary shaft of a pulse motor 20.
  • An eccentric ring 22 is disposed in order to prevent the rotations in the reverse directions of the gears 19 and 21.
  • a ratchet wheel 26 which is rotatable in unison with the gear 24, a holding or engaging disk 27 and a crank 28 are also carried in the order named at the I right end of the control shaft 25.
  • a friction disk 29 is tively the pulse motor 20 may be directly coupled to the rotary shaft 18 of the feed roller 17.
  • an intermediate gear carried by a driving shaft of a motor (not shown) is in mesh with another intermediate gear 24 which is rotatably and slidably carried by a control shaft 25 which in turn is rotatably supported by a pair of supporting interposed between the gear 24 and a sliding member 32 carried by the control shaft 25 for slidable movement, and a friction disk 30 is interposed between the holding disk 27 and the ratchet wheel 26.
  • An internally threaded member or adjusting screw 31 is in mesh with externally threaded screws 25, of the control shaft 25.
  • a coiled spring 33 is loaded between the internally threaded member 31 and the sliding member 32 so that the force of the coiled spring 33 may be adjusted by rotating the internally threaded member or adjusting screw 31.
  • the holding disk 27 and the sliding member 32 slip relative to the friction disks 29 and 30, respectively even when the gear 24 and the ratchet wheel 26 are rotated by the intermediate gear 23 so that the control shaft 25 is normally rotated.
  • a pawl 34 is pivoted to the holding disk 27 with a pivot pin 27,, and a spring 35 is loaded between the holding disk 27 and the pawl 34 so that the pawl 34 is biased to normally rotate in the clockwise direction.
  • the leading end of a rod 36 coupled to an actuating member of a rotary solenoid 37 is in engagement with a stepped portion 34, of the pawl 34 so that when the rotary solenoid 37 is energized the rod 36 is shifted in the direction indicated by the arrow a and then returned to its initial position after a predetermined time.
  • the rod 36 is shifted in the direction a, it is released from the pawl 34 so as topermit the latter to rotate in the clockwise direction.
  • the tooth 34 of the pawl 34 engages with the ratchet wheel 26 so that the holding disk 27 may rotate in unison with the ratchet wheel 26. As a result the control shaft 25 is rotated.
  • a lever 38 is eccentrically pivoted to the crank 28 so as to convert the rotation of the crank 28 into the reciprocal motion.
  • a cam 40 (See FIG. 4) is fixed to the left end of the control shaft 25 so as to actuate a microswitch 41.
  • a connecting lever 42 has its one end pivoted with a pin 38, to the lever 38 and its the other end pivoted to a shaft 44.
  • a cutter supporting member 43 is fixed to the connecting lever 42.
  • a control unit is shown in clock diagram in FIG. 6 as comprising the detecting drvice B, for detecting the cutting marks, flip-flops 102, 103 and 104, an AND gate 105 to which are applied the output of the detecting device B, and the set output of the flip-flop 104; an AND gate 106 to which are applied the clock pulses of a clock pulse generator 107 and the set outputs of the flip-flops 102 and 103, the film feeding device or advancing unit C, including the pulse motor 20 which is driven by the clock pulses, and a counter 109 which is reset in response to the reset output of the flip-flop 102 and counts the clock pulses P, passing through the AND gate 106.
  • the control unit further comprises a decoder 110 coupled to the output terminal of the counter 109 so as to give to signals P and P when the counter 109 has counted a predetermined number of clock pulses P
  • the signal P is generated prior to the signal P and the feed of the unrolled film 5 may be adjusted by adjusting a setting value of the counter 109.
  • a delay line 111 coupled to the output terminal of the AND gate 105 gives the output signal to the resetinput terminal R of a flip-flop 104 to the set input terminals of which is applied the output signal P of the decoder 110.
  • the output signal P of the decoder 110 is applied to the reset input terminal R of the flip-flop 103, and to one of the input terminals of an OR gate 112 to the other input terminal of which is applied the output signal of the AND gate 105.
  • the output signal of the OR gate 112 is applied to one of the two input terminals of an AND gate 113 to the other input terminal of which is applied the output signal of the AND gate 105.
  • the output signal of the AND gate 113 is applied to the film cutting device A, which gives the pu;se P when the unrolled film 5 is cut into a predetermined length.
  • the pulse P is applied to the set input terminals S of the flip-flops 102 and 103 thereby setting them.
  • the set output signal of the flipflop 104 is also applied to the AND gate 113, the latter gives the output signal of the cutting device A so that the unrolled film is cut off into a predetermined length. That is, in response to the output signal of the AND gate 113 the rotary solenoid 37 (SeeFlGS. 4 and 5) is energized so as to shift the rod 36 in the direction a to release the pawl 34.
  • the pawl 34 is rotated in the clockwise direction under the force of the spring 35 so that its tooth 34,, engages with the ratchet wheel 26 which is rotating in unison with the gear 24. Therefore the pawl 34 is rotated in unison with the ratchet wheel 26 so that the holding disk 27 and hence the control shaft 25 are rotated.
  • the movable cutter 12 is returned to its initial position.
  • the unrolled film is stopped and is cut off by the film cutting device A,.
  • the cam 40 rotates in unison with the control shaft 25 so as to actuate the microswiitch 41 after the unrolled film 5 has been cut off, thereby giving the pulse P representing the completion of the film cutting operation.
  • the flip-flops 102 and 103 are setlagain and the set outputs of them are applied to the AND gate 106 so that the clock pulses P are permitted to pass through the AND gate 106 and applied to the pulse motor 20 in the advancing or feeding device C Therefore the pulse motor 20 starts to rotate again so as to feed the unrolled film 5.
  • the clock pulses P passing through the AND gate 106 are also applied to the counter 109.
  • the counter 109 counts a predetermined number of clock pulses P it gives the output signal P which is applied to the set input terminal of the flip-flop 104, and then gives the signal P;, which is applied to the flip-flop 103 so as to reset it.
  • the flip-flop 103 is reset, the clock pulses P cannot pass through the AND gate 106 so that the pulse motor 20 in the feeding device C isstopped, whereby the film feed is interrupted.
  • the output signal P is also applied to the AND gate 113 through the OR gate 112 to which is also applied the set output of the flip-flop 104.
  • the AND gate 113 gives the output signal so as to actuate the film cutting device A, in the manner described hereinbefore.
  • the above operations may be summarized as follows: When the unrolled film is fed by a predetermined distance the feed of the film is interrupted regardless of the fact whether a film cutting mark is detected or not; and then the film cutting device is actuated to cut off the unrolled film.
  • the pulse P is generated from the film cutting device A, so as to set the flip-flops 102 and 103.
  • the clock pulses P are permitted again to pass through the AND gate 106 and applied to the pulse motor 20 in the film feeding or advancing device C whereby the film feeding is re sumed.
  • the film is cut off in response to the signal from the detecting device 13, in the manner described hereinbefore.
  • the film cutting device when the detecting device B, gives an erraneous signal when the counter 109 is counting the clock pulses, the film cutting device remains deactivated until the unrolled film is advanced by a predetermined distance. Thus the erratic film cutting operation may be completely prevented.
  • the instant embodiment the flip-flop 104 is reset in response to the signal which is delayed in time by the delay line 111, but it will be understood that this delay line 111 may be eliminated. That is, the decoder is so arranged as to give the signal when the counter 109 which has been reset starts to count the first clock pulse. In response to the signal from the decoder 110 the flip-flop 104 is reset so that the signal from the detecting device B, may be interrupted until the counter 109 counts a predetermined number of clock pulses, thereby preventing the erratic film cutting operation.
  • the automatic film cutting device in accordance with the present invention is very simple in construction because in response to the detection of the film cutting mark, the counter is reset; the film cutting device is actuated in response to the output signal from the counter when the latter has counted a predetermined number of clock pulses so as to cut off the rolled film which has been advanced by a predetermined distance independently of a film cutting mark; and even when the spacing between the film cutting marks is long a rolled film may be cut off into film sheets of a predetermined length.
  • the automatic film cutting device in accordance with the present invention is adapted for use in conjunction with the information retrieval. Furthermore the automatic film cutting device in accordance with the present invention may cut off both side edges of each sheet by a pair of movable and fixed cutters.
  • the unrolled film may be cut off into a predetermined length with a high degree of accuracy. Since the circuit for interrupting the signal from the detecting device is provided, the film cutting device will not be actuated until the counter has counted a predetermined number of clock pulses even when the detecting device gives an erraneous signal in response to the detection of a surface flaw such as a stain, a scratch or the like of the film so that erratic film cutting operation may be completely prevented.
  • the second embodiment is shown as comprising a pair of film feed rollers 211 and 212 carried by a rotary shaft 213 which also carries a ratchet wheel 214.
  • a pawl (not shown) engages with the ratchet wheel 214, the rotation of the rotary shaft 213 is stopped.
  • An electromagnetic clutch 215 is carried by a shaft 216.
  • Gears 218 and 219 which are formed integral are in mesh with a gear 217 and a gear 220 carried by a driving shaft 221, respectively.
  • the driving shaft 221 is drivingly coupled to a motor (not shown) through a sprocket wheel 222 fixed to the right end of the driving shaft 221.
  • An encoder 223 fixed to the right end of the rotary shaft 213 is adapted to detect the angle of rotation of the rotary shaft so as to generate the signal.
  • the encoder 223 of the type described above is well known in the art so that no detailed description will be made in this specification.
  • a control unit of the second embodiment is shown in FIG. 8.
  • the control unit comprises a memory 227, a pulse counter 228 and AND gates G,G;,.
  • the input signals are applied as indicated by the arrows, and a double line indicates a mechanical coupling.
  • the waveforms of the output signals at various points in the control unit shown in FIG. 8 are shown in FIG. 9.
  • the counter 228 When the counter 228 has counted a predetermined number of pulses P,', that is when the unrolled film has been advanced by a predetermined length, it gives the output signal which passes through the AND gate G and is applied to the AND gate C;, as a film cutting permission signal P,, as shown in FIG. 9 at f,,. Therefore the unrolled film is now ready to be cut off.
  • the pulse P' See s in FIG. 9
  • the AND gate G gives the output pulse P' as shown at C0 in FIG. 9 which is applied as a feed-interruption signal to the feeding device C and also to the counter 228 and memory 227 so as to reset them.
  • the output pulse P' is further applied to the film cutting device A so as to actuate the movable cutter for a time duration between t, and t as shown at i in FIG. 9.
  • the unrolled film is stopped, held stationary and cut off.
  • the encoder 223 is de-energized so that the pulse P, disappears.
  • the cutting device A gives a pulse P, as shown at d, in FIG. 9 representing the completion of film cutting operation.
  • the pulse P is applied to the memory 227 so as to set the same and also to the film feeding device C so as to resume the film feeding operation.
  • the encoder 223 is actuated so as to give the pulse P,.
  • the gate G remains closed so that even when the detecting device B gives an erroneous pulse in response to the detection of a stain or scratch on the unrolled film, the erroneous pulse P',-, as shown at e, in FIG. 9 cannot pass through the gate 0,. Therefore the cutting device A is not actuated so that the unrolled film will not be cut off erroneously.
  • the erratic film cutting operation may be completely prevented by suitably selecting the time at which the cutting-permission pulse P,; is generated.
  • the high level shown at g indicates a time duration when the current is fed to the driving motor in the feeding device C
  • the low level shown at h indicates a time duration when the feeding device C is actuated
  • the high level at 1 ⁇ indicates a time duration when the movable cutter is actuated.
  • means for measuring or detecting the unrolled film fed by a predetermined length is reset and gives the cutting-permission signal when the unrolled film has been advanced by a predetermined length so that the cutting device is actuated to cut off the unrolled film when and only when both the cutting-permission signal and the signal from the detecting device are present simultaneously.
  • the cutting-permission signal is not present, the cutting device will not be actuated even when the detecting device detects a strain or scratch on the unrolled film so that the erratic cutting operation may be completely prevented.
  • FIGS. 10 and 11 the variations of the control unit of the present invention will be described.
  • a block diagram shown in FIG. 10 to an actuating circuit in the cutting device A, are applied the output signal of the detecting device 8,, and the signal from an actuating circuit D, in an encoder control unit D both of which are delayed in time through a time delaying circuit A,.
  • the output signals of the detecting device 5,, and the actuating circuit D are also applied to a film feed interruption circuit C, of the feeding device D that is a control circuit for disengaging the electromagnetic clutch 215 (See FIG. 7) thereby stopping the rotation of the ratchet wheel 214.
  • the output signal derived when the film cutting device A has cut off the unrolled film is applied to a film-feed-restarting circuit C in the feeding device C that is a control circuit for accomplishing the operation opposite to that carried by the fiIm-feed-interruption circuit C
  • the signal from the cutting mark detecting device B is applied to a reset circuit D' in the encoder control unit D.
  • the cutting device A the detecting device 3;, and the film feeding device C are similar in construction to those in the second embodiment described hereinbefore.
  • the detecting device'B in response to the detection of a film cutting mark the detecting device'B gives the pulse b which is applied through an OR gate 325 to the feedinterruption circuit C, in the film feeding device C and to a delaying circuit A, in the cutting device A which cuts off the unrolled film after it has been stopped and held stationary.
  • the pulse b from the detecting device B is also fed into a memory 326 and a counter 327 so as to reset them.
  • the pulse a (representing the completion of the film cutting operation) which is fed to the feed-restarting circuit C in the feeding device C, so as to resume the feed of unrolled film.
  • the pulse a is also fed into the memory 326 so as to set it.
  • the encoder D gives a pulse at which is fed through an AND gate 328 into the counter 327 so as to be counted. Therefore the feed of unrolled film may be stored.
  • the counter 327 gives a pulse e when the unrolled film is advanced by a predetermined distance.
  • This pulse e is applied through the OR gate 325 to the feed-interruption circuit C in the feeding device C and to the delaying circuit A, in the cutting device A;, so that the unrolled film is stopped and is cut off along the broken line 2a shown in FIG. 1'
  • the detecting device B When the detecting device B detects the next cutting mark Ill it gives the pulse 12 so that the unrolled film is cut off along the dotted line 3a in the manner described above. l
  • the encoder is set in response to either of the signals generated by the-cutting device, and when the counter counts a predetermined number of pulses, the unrolled film is cut off even when a cutting mark is not detected. Therefore even when the spacing between the cutting marks is long, the unrolledfilm may be cut off into a predetermined length.
  • all of the cut-off film sheets have a uniform length so that the film sheets may be convenientlystored in a tray in a microfiche retrieving machine or the like.
  • the encoder is set so that the length of the unrolled film to be cut off may be mea sured with a higher degree of accuracy.
  • the automatic film cutting device in accordance with the present invention only a pair of movable and stationary cutters are used to cut ofl both side edges (in the latral direction) of the unrolled film so that the automatic film cutting machine may be made simple in construction and may be fabricated at a less cost.
  • FIG. 12 the third embodiment of an automatic film cutting device in accordance with the present invention will be described.
  • only one film cutting mark detecting device is used, but in the third embodiment at least two film cutting mark detecting devices are used.
  • the detecting devices detect the film cutting marks on the unrolled film so as to actuate the cutting device and to prevent the erratic film cut ting operation.
  • the third embodiment generally comprises the cutting device A.,, the cutting mark detecting devices 8., and B for detecting the film cutting marks I", II, and so on on the unrolled film ll), and the film feeding device C
  • the cutting device A. and the film feeding device C are substantially similar in construction to those of the first and second embodiments described hereinbefore.
  • the first detecting device B is interposed between the cutting device A and the feeding device C
  • Each of the two detecting devices B and B comprises a light source 410 or 410 and a photoelectric cell 411 or 41.1 so asto detect the film cutting marks I, II and so on on the unrolled film 400 and to give the signals.
  • FIGS. 13(a) and 13(b) show the devices for detecting the film cutting marks on the unrolled film.
  • a light source 424 is disposed upwardly of the unrolled film 400 whereas a photoelectric cell 424 is disposed downwardly of the film. That is, the detection device shown in FIG. 13(a) is of a transmission type.
  • FIG. 13(a) shows the detection device shown in FIG. 13(a) of a transmission type.
  • a reflecting mirror 426 is disposed downwardly of the film 400 and a light source 424, a half mirror 427 and a photoelectric cell 425 may pass disposed upwardly of the film in such a manner that the I light emitted from the light source 424' may pass through thehalf mirror 427, reflected back by the reflector 426 and then by the half mirror 427 and intercepted by the photoelectric cell 425'. Therefore the arrangement shown in FIG. 13(h) is a reflection type detecting device.
  • FIGS. 14 and 15 show the relation between the positions of the detecting devices and the film cutting marks on the unrolled film.
  • the detecting devices B4 and B are so located as to detect the film cutting marks I", II, and so on marked along one side of the unrolled film 400 and as to be spaced apart from each other by a distance equal to or slightly longer than the distance I or 1+ a between the projected images of the two cutting marks. Therefore the detecting devices B and B may simultaneously detect the cutting marks or the detecting device B first detects the cutting mark II and then the detecting device B detects the cutting mark I" a short time later when the unrolled film 400 is transported in the direction indicated by the arrow.
  • the two detecting devices 8.; and B are spaced apart from each other by a distance slightly shorter than the distance between the projected images of the adjacent cutting marks. That is, the distance between the two detecting devices 3., and B is (I a).
  • 1 1 devices 3,, B a flip-flop 430, an AND gate 431, and the film cutting device A.,.
  • the signals are applied as indicated by the arrows.
  • FIG. 19 illustrating the waveforms of various signals.
  • the flip-flop 430 which has been reset, is driven into the set state to give the signal as shown at C, in FIG. 19 to the AND gate 431.
  • the detecting device 3. detects the cutting mark after the detecting device B detected the cutting mark and gives the pulse signal P as shown as d in FIG. 19 to the AND gate 431 so that the latter gives the output signal as shown at d, in FIG.
  • the cutting device A is actuated so as to cut off the unrolled film 400.
  • the cutting device A gives the signal as shown at e in FIG. 19 to the reset input terminal R of the flip-flop 430 so that the latter is driven into the reset state.
  • the detecting device B detects a stain or scratch on the film 400, it gives an erroneous pulse P to the flip-flop 430. Therefore the flip-flop 430 is set and gives the output signal as shown at C in FIG. 19 to the AND gate 431.
  • the output signal of the detecting device B is not applied to the AND gate 431, and AND gate 431 will not give the output signal to the cutting device A, so that the latter is not actuated mistakingly.
  • the erratic film cutting operation is completely prevented.
  • the flip-flop 430 When the detecting device B detects the next film cutting mark to give the pulse P the flip-flop 430 has been already in the set state.
  • the detecting device detects the cutting mark to give the pulse signal P to the AND gate 431, the latter gives the output signal such as shown at d in FIG. 19 because the flip-flop 430 has been already set. Therefore after the unrolled film is stopped and held stationary the film cutting device A, is actuated so as to cut off the film. The above operations are cycled to consecutively cut off the unrolled film.
  • the detecting device 8. detects a stain or scratch on the film 400 and gives a pulse signal, the flip-flop 430 has been already reset so that the cutting device A, is not actuated. Thus, the erratic film cutting operation may be prevented.
  • the cutting device A is actuated so as to cut off the film erroneously.
  • This erratic film cutting operation may be prevented by the control units shown in FIGS. 17 and 18, in which similar reference numerals are used to designate similar circuit components.
  • the control unit shown in FIG. 17 generally comprises the two detecting circuits B and B a flip-flop 432, an AND gate 433, a timer 434 and the cutting device A,,.
  • the timer 434 is activated and then deactivated a time I, later, and the flip-flop 432 is reset in response to the trailing edge of the output pulse of the timer 434.
  • the detecting device B In response to the detection of a film cutting mark on the film 400 being transported by the feeding device, the detecting device B gives the pulse signal (a in FIG. 20) which drives the flip-flop 432 into the set state.
  • the flip-flop 432 gives the signal as shown at C in FIG. 20 in response to which the timer 434 is actuated to give the pulse signal as shown at f in FIG. 20 to the AND gate 433.
  • the detecting device B detects the cutting mark and gives the pulse P as shown at b in FIG. 20 to the AND gate 433. Therefore the AND gate 433 gives the output signal as shown at d in FIG. 20 to the cutting device A, so that the latter is actuated so as to cut off the unrolled film 400 after it is stopped and held stationary.
  • the flipflop 432 is driven into the reset state the time 1 after the timer 434 has been activated.
  • the flip-flop 432 When the film is transported again and the detecting device B detects the noise to give the pulse P shown at a in FIG. 20, the flip-flop 432 is set and the timer 434 is activated. Since the timer 434 resets the flip-flop 430 the time 2., after it has been set, the AND gates 433 gives no output signal even when the detecting device B detects the noise and gives the pulse signal P, shown at b in FIG. 20. Therefore the cutting device A., is not actuated so that the erratic film cutting operation may be prevented.
  • the timer 434 is so set that as to give the pulse signal for a time duration slightly longer than the time duration between the time when the first detecting device B detects the correct cutting mark and the time when the second detecting device 8., detects the same cutting mark.
  • the control unit shown in FIG. 18 generally comprises the detecting devices B, and B a flip-flop 435, a three-input AND gate 436, a timer 437 a NOT circuit and the cutting device A
  • the timer 437 is activated in response to the signal from the cutting device A, representing the completion of film cutting operation and is deactivated a time t later.
  • the detecting device 8 Upon detection of a cutting mark, the detecting device 8:, gives the pulse signal P,,- as shown at a in FIG. 21 to the flip-flop 435 so that the latter is set and gives the output signal as shown at C in FIG. 21 to the AND gate 436.
  • the AND gate 436 gives the output signal as shown at d in FIG. 21 to the cutting device A, because the timer 437 is deactivated (See FIG. 21, f Therefore the cutting device A; is actuated so as to cut off the unrolled film when it is stopped and held stationary. After having cut off the film, the cutting device A, gives the signal as shown at a in FIG.
  • the timer 437 gives the output signal as shownatf in FIG. 21 to the NOT circuit 438 which in turn gives the output signal as shown at g in FIG. 21 to the flip-flop 435 so that the latter is driven into the reset state.
  • the NOT circuit 438 gives a low-level signal (See FIG. 21, g;,) to the AND gate 436 so that the latter will not give the output signal. Therefore the cutting device A is not actuated even when the detecting devices B and B detect the noise such as a stain or scratch on the film and give the pulse signals P, and P," so that the erratic cutting operation may be completely prevented.
  • control units shown in FIGS. 17 and 18 may be combined to provide a variation of a control unit in which the flip-flop 435 is set in response to the output signal of the timer 434 shown in FIG. 17.
  • the detecting devices B and B may be spaced apart from each other by a distance equal to the spacing between the adjacent film cutting marks.
  • the difference a or a between the spacing (l i a) between the detecting devices and the spacing l between the projected images of the adjacent cutting marks may be suitably selected, but it is preferable to select a small difference a or a in order to attain the high degree of accuracy in detection.
  • the unrolled film has been described as a medium to be cut off by the automatic cutting device in accordance with the present invention, but it will be understood that any rolled transparent or opaque medium such as paper or the like may be cut off by the cutting device of the present invention.
  • the cutting marks are preferably opaque and in case of an opaque medium such as paper it is preferable to mark the cutting marks by a pencil or ink or to perforate the medium.
  • more than two detecting devices may be used in a control unit.
  • the film cutting device is actuated. Therefore when the detecting devices detect the noise and generate the erroneous signals, the cutting device is not actuated so that the erratic film cutting operation may be prevented.
  • a film cutting device comprising a. detecting means for detecting film cutting marks on a film to be cut off, i
  • said measuring means being actuated in response to said signal from said detecting means and giving the output signal when said film has been fed 14 by a predetemiined length so as to actuate said cutting means.
  • said film feeding means includes a pulse motor whose rotation is controlled by a clock pulse train, said film feeding means starting to feed the film in response to said clock pulse train;
  • said measuring means including a counter for counting said clock pulse train applied to said pulse motor, said counter being reset in response to said signal from said detecting means and giving the output signal when said counter has counted at predetermined number of clock pulses so that said cut ting means'is actuated to cut off said film.
  • said measuring means comprises an encoder coupled to said driving motor and a pulse counter adapted to count the pulses generated by said encoder, said pulse counter being reset in response to said signal from said detecting means and giving the output signal for actuating said film cutting means when said pulse counter counts a predetermined of pulses from said encoder;
  • said film cutting means includes an AND gate to which are i applied the output signals of said detecting means and said pulse counter, and starts the film cutting operation in response to the output signal of said AND gate.
  • said measuring means comprises an encoder coupled to said driving motor and a pulse counter which is reset in response to the output signal of said detecting means and gives the output signal for actuating said cutting means when said pulse counter counts a predetermined number of pulses from said encoder;
  • said cutting means is coupled to said pulse counter and is actuated in response to said output signal from said pulsecounter so as to cut off said film into a predetermined length.
  • said detecting means comprising a gate circuit for gating said signal from said detecting means until said counter counts said predetermined number of clock pulses, whereby said film cutting means remains de-energized until said film is fed by said predetermined length.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Control Of Cutting Processes (AREA)
  • Controlling Sheets Or Webs (AREA)

Abstract

An automatic film cutting device is used to cut rolled or strip film off into sheet film having a predetermined length. This film cutting device comprises detecting means for detecting film cutting marks on film to be cut off, film advancing means for advancing the film, and measuring means for measuring the advancement of the film. The measuring means is actuated in response to the output signal from the detecting means, and the film cutting means is actuated in response to the output signal generated by the measuring means when the film to be cut off is fed by a predetermined length, thereby cutting off the film into a predetermined length.

Description

United States Patent [191 Shoji et al. July 9, 1974 [5 FILM CUTTING DEVICE [56] References Cited [75] Inventors: Akira Shoji, Yokohama; Takao N D STATES PATENTS Toda; Kano Tanaka, both of Tokyo; 3,699,832 10/1972 Smith et al 83/37] x Takashi Hirashima, Kawasaki, all of Japan [73] Assignee: Canon Kabushiki Kaisha, Tokyo,
Japan [22] Filed: Dec. 18, 1972 [21] Appl. No.: 315,822
[30] Foreign Application Priority Data [58] Field of Search 83/208, 209, 210, 364, i 83/367, 371
Primary ExaminerJ. M. Meister Attorney, Agent, or Firm-Fitzpatrick, Cella, Harper & Scinto [5 7] ABSTRACT An automatic film cutting device is used to cut rolled or strip film off into sheet film having a predetermined length. This film cutting device comprises detecting means for detecting film cutting marks on film to be cut off, film advancing means for advancing the film,
and measuring means for measuring the advancement 5 Claims, 22 Drawing Figures PATENTED 3.822.624
SHEETEHFQ V FIG. 4
PATENTED JU SHEET 3 BF 9 FIG. 6
PULSE GENERATOR ADVANCING UNIT COUNTER DECODERF/I DETECTOR DELAY CIRCUIT FIG. 8
CUTTER COU PULSE NTER AND
GATE
MEMORY DETECTOR CUTTER ADVANCING UNIT ENCODER PATENTED 91974 3. 822 624 SHEET 7 BF 9 I FIG. l3(b) FIG. l3m) gg 427% A25' C L It *iw FIG. l4
1 3 FIG-l6 DETECTOR 1 S Cl PAIENTEUJUL 919 SHEET 8 BF 9 FIG. I? S ,434 DETECTOR TIMER I 02 C2 -f2 85 R 432 DETECTOR S I b2 d2 B4 A4\ CUTTER 85 I I O3 435 FIG. I8
S DETECTOR C3 I 84 R A4 I b3 436 I DETECTOR I I j CUTTER 7 NOT I CIRCUIT S TIMER 93 438 F l6. l9
PI] PI" P|j+| t3 Zj-l I 03 P2j dI FL n I\ k 1 FILM CUTTING DEVICE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic film cutting device for cutting a rolled or strip microfiche film into a plurality of microfiche sheets eachhaving a predetermined length or cutting ofi rolled or strip film into the unitized form.
Microfilming technique has long found widespread applications in various fields because a large number of data may be recorded on a reduced scale in a very limited small area with an exceedingly high density. Of microfilm microfiche film has been widely used because a large number of data concerning to one subject may be recorded in rows in a single frame and further because the automatic continuous printing, development, and fixing are feasible in a simple manner.
2. Description of the Prior Art i f However microfiche in the form of strip of roll is generally not convenient for indexing, retrieval and reading so that it is generally cut off into microfiche sheets of a predetermined size or sheets in the unitized form. In general the conventional film cutting devices used for this purpose are such that a cutter is actuated so as to cut off roll or strip film in response to the output signal from a photoelectric-cell type detector which detects a film cutting mark upon roll or strip film being transported. However the spacing between the adjacent cutting marks on rolled or strip film is generally not uniform because of some variations in length of film transported in one time in a camera when the cutting marks are photographed on the film together with the data to be recorded. Therefore the cut-off microfiche sheets are not uniform in length so that great inconvenience arises when they are used in conjunction with a reading or indexing machine or when they are stored in a container.
Furthermore the conventional film cutting devices have a serious defect that rolled or strip film is cut off erroneously not along a predetermined cutting line because the detector gives an erroneous signal whenit detects the noise or stain, scratch or the like on the film in line with the cutting marks. As a result rolled or strip film is cut off into microfiche sheets not uniform in length and in the worst case the data recorded on a microfiche film are so damaged that some data cannot be reproduced.
SUMMARY OF THE INVENTION One of the objects of the present invention is therefore to provide an automatic film cutting device which may overcome the above and other problems encountered in the conventional film cutting devices.
Another object of the present invention is to provide an automatic film cutting device comprising detecting means for detecting film cutting marks on film to be cut off, film feeding means for feeding the film, and measuring means for measuring the feed of the film, said measuring means being actuated in response to the output signal from said detecting means and said film cutting means being actuated in response to the output signal generated by saidmeasuring means when the film to be cut off is fed by a predetermined length, thereby cutting off the film into a predetermined length.
Another object of the present invention is to provide an automatic film cutting device of the type described above wherein the film cutting means may be kept deenergized until the measuring means measures a predetermined length of the film to be cutoff so that the erratic film cutting operation may be completely prevented.
Another object of the present invention is to provide an automatic film cutting device of the type described in which at least two detecting means for detecting the cutting marks on the film to be cut off are used so that when and only when both of said at least two detecting means give the output signals simultaneously the cutting means is actuated so as to cut off the film thereby preventing the film from being cut off along an errone' ous cuttingline.
The above and other objects, features and advantages of the present invention will become more apparent from the following description of some preferred embodiments thereof takenin conjunction with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a fragmentary top view of a film strip to be cut off used for the explanation of film cutting marks marked thereupon; 1
FIG. 2 is a perspective view of a first embodiment of an automatic film cutting device in accordance with the present invention;
FIG. 3 is a fragmentary diagrammatic view thereof illustrating the arrangement of a film feeding mechanism, a detector and a film cutting mechanism;
FIG. 4 is a fragmentary sectional view of the film cutting device shown in FIG. I;
FIG. 5 is a view looking in the direction indicated in the line V-V of FIG. 4;
FIG. 6 is a block diagram of a control unit of the automatic cutting device shown in FIG. 1;
FIG. 7 is a side view, partly in cross section and on enlarged scale, illustrating only the essential component parts of a second embodiment of an automatic film cutting device in accordance with the present invention;
FIG. 8 is a block diagram of a control unit thereof;
FIG. 9 shows the waveforms of various signals generated in the control unit shown in FIG. 8 used for the explanation of the mode of operation thereof;
FIGS. 10 and 11 are block diagrams of two variations of the control unit shown in FIG. 8 7
FIG. 12 is a fragmentary perspective view of a third embodiment in accordance with the present invention illustrating only the major component parts thereof;
FIGS. 13(a) and 13(1)) are views used for the explanation of a detecting device used in the automatic film cutting device shown in FIG. 12;
FIGS. 14'and 15 are views used for the explanation of the relation between the spacing between two detecting means and a spacing between the adjacent film cutting marks on the film to be cut off;
FIGS. l6, l7 and 18 are block diagrams of three control units adapted for use in the automatic film cutting device shown in FIG. 12; and
FIGS. 19, 20, and 21 shows the waveforms of the signals used for the explanation of the mode of operation of the three control units shown in FIGS. 16-18, re spectively.
DESCRIPTION or THE PREFERRED EMBODIMENTS First referring to FIG. 1 illustrating a part of unrolled or strip film to be cut off, film cutting marks are generally marked upon a film along one side edge thereof. The transparency of the cutting marks is so selected as to be different from that of the film. As described hereinbefore, when the spacing between the adjacent cutting marks is not uniform, for example when the spacing between the cutting marks I and II is shorter than that between the cutting marks II and III, the length of one microfiche between the cutting lines la and 2a becomes shorter than that of another microfiche sheet between the cutting lines 20 and 3a. The second microfiche sheet must be cut off along the cutting line 2a so that it has an unwanted extra portion 3a which may be a part of the third microfiche sheet bearing the data.
When there exists a noise, that is a stain or scratch IL, on the film in line with the cutting marks II and III, the detector detects it and gives an erroneous signal so that the cutter cuts off film along an erroneous cutting line. Therefore microfiche sheets are not uniform in length and in some cases the data recorded on the film are seriously damaged as described hereinbefore.
The present invention was made in order to overcome the above and other related problems encountered in the conventional film cutting devices.
An automatic film cutting device in accordance with the present invention is shown in FIG. 2 as comprising a housing 1, a rolled microfilm 2 mounted on a supporting member 3 extending from the top of the housing 1, a film loop chamber 4 defined in the housing 1 for forming a loop of film unrolled from the rolled microfilm 2, a top panel 6 upon which is advanced an un' rolled film guided by a pair of guide members 7 located along the side edges of the passage for the film 5, a plurality of operating buttons 8 located at the front side of the top panel 6; a removable cover 9 placed over the top panel 6; .a discharge outlet 10 through which a cutoff sheet film 5' is discharged, and a sheet film receiving box 11.
Next referring to FIG. 3, within the cover 9 are disposed a cutter assembly A, comprising a movable cutter 12 and a fixed cutter 13, a detecting device B, comprising a light source 14 and a photoelectric cell 15 disposed upwardly and downwardly of the unrolled film 5, respectively and in opposed relation, and a film feeding device C, comprising a pair of feed rollers 16 and 17.
Next referring to FIGS. 3 and 4, a rotary shaft 18 of the feed roller 17 which is rotatably supported by a pair of suitable supporting members (not shown) disposed within the housing 1, has a gear 19 carried at one end thereof and engaged with a gear 21 carried by a rotary shaft of a pulse motor 20. Thus the rotation of the pulse motor is transmitted to the feed roller 17 through the gears 21, 19 and the rotary shaft 18. An eccentric ring 22 is disposed in order to prevent the rotations in the reverse directions of the gears 19 and 21. Altemamembers. A ratchet wheel 26 which is rotatable in unison with the gear 24, a holding or engaging disk 27 and a crank 28 are also carried in the order named at the I right end of the control shaft 25. A friction disk 29 is tively the pulse motor 20 may be directly coupled to the rotary shaft 18 of the feed roller 17.
Referring to particularly FIG. 4, an intermediate gear carried by a driving shaft of a motor (not shown) is in mesh with another intermediate gear 24 which is rotatably and slidably carried by a control shaft 25 which in turn is rotatably supported by a pair of supporting interposed between the gear 24 and a sliding member 32 carried by the control shaft 25 for slidable movement, and a friction disk 30 is interposed between the holding disk 27 and the ratchet wheel 26. An internally threaded member or adjusting screw 31 is in mesh with externally threaded screws 25, of the control shaft 25. A coiled spring 33 is loaded between the internally threaded member 31 and the sliding member 32 so that the force of the coiled spring 33 may be adjusted by rotating the internally threaded member or adjusting screw 31. The holding disk 27 and the sliding member 32 slip relative to the friction disks 29 and 30, respectively even when the gear 24 and the ratchet wheel 26 are rotated by the intermediate gear 23 so that the control shaft 25 is normally rotated.
Referring to FIG. 5, a pawl 34 is pivoted to the holding disk 27 with a pivot pin 27,, and a spring 35 is loaded between the holding disk 27 and the pawl 34 so that the pawl 34 is biased to normally rotate in the clockwise direction. The leading end of a rod 36 coupled to an actuating member of a rotary solenoid 37 is in engagement with a stepped portion 34, of the pawl 34 so that when the rotary solenoid 37 is energized the rod 36 is shifted in the direction indicated by the arrow a and then returned to its initial position after a predetermined time. When the rod 36 is shifted in the direction a, it is released from the pawl 34 so as topermit the latter to rotate in the clockwise direction. The tooth 34 of the pawl 34 engages with the ratchet wheel 26 so that the holding disk 27 may rotate in unison with the ratchet wheel 26. As a result the control shaft 25 is rotated.
A lever 38 is eccentrically pivoted to the crank 28 so as to convert the rotation of the crank 28 into the reciprocal motion. A cam 40 (See FIG. 4) is fixed to the left end of the control shaft 25 so as to actuate a microswitch 41. V
A connecting lever 42 has its one end pivoted with a pin 38, to the lever 38 and its the other end pivoted to a shaft 44. A cutter supporting member 43 is fixed to the connecting lever 42. When the lever 38 is shifted in the direction indicated by the arrow b, the connecting lever 42 swings about the shaft 44 in the counterclockwise direction so that the movable cutter 12 carried by the supporting member 43 is caused to move downwardly thereby cutting off the unrolled film 5 cooperating with the stationary cutter 13.
A control unit is shown in clock diagram in FIG. 6 as comprising the detecting drvice B, for detecting the cutting marks, flip- flops 102, 103 and 104, an AND gate 105 to which are applied the output of the detecting device B, and the set output of the flip-flop 104; an AND gate 106 to which are applied the clock pulses of a clock pulse generator 107 and the set outputs of the flip- flops 102 and 103, the film feeding device or advancing unit C, including the pulse motor 20 which is driven by the clock pulses, and a counter 109 which is reset in response to the reset output of the flip-flop 102 and counts the clock pulses P, passing through the AND gate 106.
The control unit further comprises a decoder 110 coupled to the output terminal of the counter 109 so as to give to signals P and P when the counter 109 has counted a predetermined number of clock pulses P The signal P is generated prior to the signal P and the feed of the unrolled film 5 may be adjusted by adjusting a setting value of the counter 109. A delay line 111 coupled to the output terminal of the AND gate 105 gives the output signal to the resetinput terminal R of a flip-flop 104 to the set input terminals of which is applied the output signal P of the decoder 110. The output signal P of the decoder 110 is applied to the reset input terminal R of the flip-flop 103, and to one of the input terminals of an OR gate 112 to the other input terminal of which is applied the output signal of the AND gate 105. The output signal of the OR gate 112 is applied to one of the two input terminals of an AND gate 113 to the other input terminal of which is applied the output signal of the AND gate 105. The output signal of the AND gate 113 is applied to the film cutting device A, which gives the pu;se P when the unrolled film 5 is cut into a predetermined length. The pulse P is applied to the set input terminals S of the flip- flops 102 and 103 thereby setting them.
Next the mode of operationof the control unit with the above construction will be described in detail hereinafter. y i
I. When a cutting mark is detected In response to the detection of a cutting mark by the detecting device B, it gives the signal to the AND gate 105. Since the set output signal of the flip-flop 104 is also applied to the AND gate 105, the latter gives the output signal which resets the flip-flop 102. As a result the clockpulses from the clock pulse generator 107 cannot pass through the AND gate 106 so that the pulse motor 20 in the advancing or feeding device C is stopped. Therefore the advancement of the unrolled film 5 is interrupted. When the flip-flop 102 isreset, the counter 109 is also reset. The output signal of the AND gate 105 is also applied to the AND gate 113 through the OR gate 112. Since the set output signal of the flipflop 104 is also applied to the AND gate 113, the latter gives the output signal of the cutting device A so that the unrolled film is cut off into a predetermined length. That is, in response to the output signal of the AND gate 113 the rotary solenoid 37 (SeeFlGS. 4 and 5) is energized so as to shift the rod 36 in the direction a to release the pawl 34. The pawl 34 is rotated in the clockwise direction under the force of the spring 35 so that its tooth 34,, engages with the ratchet wheel 26 which is rotating in unison with the gear 24. Therefore the pawl 34 is rotated in unison with the ratchet wheel 26 so that the holding disk 27 and hence the control shaft 25 are rotated. Therefore the lever 38 which is coupled to the crank28 is shifted in the direction b so that the movable cutter 12 carried by the supporting member which in turn is carried by the connecting lever 42 is caused to move downwardly so as to cut the unrolled film 5 in cooperation with the fixed cutter 13.
When the control shaft '25 makes one rotation and the rod 36 is returned to its initial position the rod 36 engages with thestepped portion 34 of the pawl 34 again so that the holding disk 27 is released from the ratchet wheel 26.
After the unrolled film 5 is cut off, the movable cutter 12 is returned to its initial position. Thus, in response to the detection of the cutting mark, the unrolled film is stopped and is cut off by the film cutting device A,.
The cam 40 rotates in unison with the control shaft 25 so as to actuate the microswiitch 41 after the unrolled film 5 has been cut off, thereby giving the pulse P representing the completion of the film cutting operation. in response to the pulse P the flip- flops 102 and 103 are setlagain and the set outputs of them are applied to the AND gate 106 so that the clock pulses P are permitted to pass through the AND gate 106 and applied to the pulse motor 20 in the advancing or feeding device C Therefore the pulse motor 20 starts to rotate again so as to feed the unrolled film 5.
The clock pulses P passing through the AND gate 106 are also applied to the counter 109. As described hereinbefore, when the counter 109 counts a predetermined number of clock pulses P it gives the output signal P which is applied to the set input terminal of the flip-flop 104, and then gives the signal P;, which is applied to the flip-flop 103 so as to reset it. When the flip-flop 103 is reset, the clock pulses P cannot pass through the AND gate 106 so that the pulse motor 20 in the feeding device C isstopped, whereby the film feed is interrupted. The output signal P is also applied to the AND gate 113 through the OR gate 112 to which is also applied the set output of the flip-flop 104. Therefore the AND gate 113 gives the output signal so as to actuate the film cutting device A, in the manner described hereinbefore. The above operations may be summarized as follows: When the unrolled film is fed by a predetermined distance the feed of the film is interrupted regardless of the fact whether a film cutting mark is detected or not; and then the film cutting device is actuated to cut off the unrolled film. Upon completion of the film cutting operation, the pulse P is generated from the film cutting device A, so as to set the flip- flops 102 and 103. The clock pulses P, are permitted again to pass through the AND gate 106 and applied to the pulse motor 20 in the film feeding or advancing device C whereby the film feeding is re sumed. When a film cutting mark is detected, the film is cut off in response to the signal from the detecting device 13, in the manner described hereinbefore.
2. When the surface flaws such as stains, scratches or the like on the film are detected erroneously When the detecting device B detects a correct cutting mark, its output, passing through the AND gate and the delay line 111, is applied to the flip-flop 104 so as to reset the latter. Therefore, even when the detecting device B, gives the erroneous signal in response to the detection of a surface flaw such as a stain, a scratch or the like, the flip-flop 104 has been already reset so that no output signal is derived from the AND gate 113, As a result the film cutting device A is not actuated so that the unrolled film 5 is not cut off at all. More particularly when the detecting device B, gives an erraneous signal when the counter 109 is counting the clock pulses, the film cutting device remains deactivated until the unrolled film is advanced by a predetermined distance. Thus the erratic film cutting operation may be completely prevented.
1n the instant embodiment the flip-flop 104 is reset in response to the signal which is delayed in time by the delay line 111, but it will be understood that this delay line 111 may be eliminated. That is, the decoder is so arranged as to give the signal when the counter 109 which has been reset starts to count the first clock pulse. In response to the signal from the decoder 110 the flip-flop 104 is reset so that the signal from the detecting device B, may be interrupted until the counter 109 counts a predetermined number of clock pulses, thereby preventing the erratic film cutting operation. As described hereinbefore, the automatic film cutting device in accordance with the present invention is very simple in construction because in response to the detection of the film cutting mark, the counter is reset; the film cutting device is actuated in response to the output signal from the counter when the latter has counted a predetermined number of clock pulses so as to cut off the rolled film which has been advanced by a predetermined distance independently of a film cutting mark; and even when the spacing between the film cutting marks is long a rolled film may be cut off into film sheets of a predetermined length. The automatic film cutting device in accordance with the present invention is adapted for use in conjunction with the information retrieval. Furthermore the automatic film cutting device in accordance with the present invention may cut off both side edges of each sheet by a pair of movable and fixed cutters. Since the driving pulses applied to the film feeding device are counted by the counter, the unrolled film may be cut off into a predetermined length with a high degree of accuracy. Since the circuit for interrupting the signal from the detecting device is provided, the film cutting device will not be actuated until the counter has counted a predetermined number of clock pulses even when the detecting device gives an erraneous signal in response to the detection of a surface flaw such as a stain, a scratch or the like of the film so that erratic film cutting operation may be completely prevented.
Next referring to FIG. 7 the second embodiment of the present invention will be described hereinafter. The second embodiment is shown as comprising a pair of film feed rollers 211 and 212 carried by a rotary shaft 213 which also carries a ratchet wheel 214. When a pawl (not shown) engages with the ratchet wheel 214, the rotation of the rotary shaft 213 is stopped. An electromagnetic clutch 215 is carried by a shaft 216. Gears 218 and 219 which are formed integral are in mesh with a gear 217 and a gear 220 carried by a driving shaft 221, respectively. The driving shaft 221 is drivingly coupled to a motor (not shown) through a sprocket wheel 222 fixed to the right end of the driving shaft 221. An encoder 223 fixed to the right end of the rotary shaft 213 is adapted to detect the angle of rotation of the rotary shaft so as to generate the signal. The encoder 223 of the type described above is well known in the art so that no detailed description will be made in this specification.
A control unit of the second embodiment is shown in FIG. 8. The control unit comprises a memory 227, a pulse counter 228 and AND gates G,G;,. The input signals are applied as indicated by the arrows, and a double line indicates a mechanical coupling. The waveforms of the output signals at various points in the control unit shown in FIG. 8 are shown in FIG. 9.
Next the mode of operation of the second embodiment will be described with reference to FIGS. 8 and 9. As the pair of feed rollers 211 and 212 in the advancing unit or feeding device C rotates, the unrolled film is advanced and the pulses P, are generated from the encoder 223 as shown at A in FIG. 9 and are fed into the counter 228 through the AND gate G, which is opened when the output signel 1 that isgenerated when and only when the memory 227 is set is applied to the AND gate C,. When the counter 228 has counted a predetermined number of pulses P,', that is when the unrolled film has been advanced by a predetermined length, it gives the output signal which passes through the AND gate G and is applied to the AND gate C;, as a film cutting permission signal P,, as shown in FIG. 9 at f,,. Therefore the unrolled film is now ready to be cut off. When the pulse P' (See s in FIG. 9) is simultaneously applied to the AND gate G from the film cutting mark detecting device B the AND gate G gives the output pulse P' as shown at C0 in FIG. 9 which is applied as a feed-interruption signal to the feeding device C and also to the counter 228 and memory 227 so as to reset them. The output pulse P' is further applied to the film cutting device A so as to actuate the movable cutter for a time duration between t, and t as shown at i in FIG. 9. Now the unrolled film is stopped, held stationary and cut off. In this case the encoder 223 is de-energized so that the pulse P, disappears. When the unrolled film is cut off, the cutting device A, gives a pulse P, as shown at d, in FIG. 9 representing the completion of film cutting operation. The pulse P, is applied to the memory 227 so as to set the same and also to the film feeding device C so as to resume the film feeding operation. Then the encoder 223 is actuated so as to give the pulse P,.
When the pulse P, (the film-cutting-permission signal) is not derived the gate G remains closed so that even when the detecting device B gives an erroneous pulse in response to the detection of a stain or scratch on the unrolled film, the erroneous pulse P',-, as shown at e, in FIG. 9 cannot pass through the gate 0,. Therefore the cutting device A is not actuated so that the unrolled film will not be cut off erroneously. Thus the erratic film cutting operation may be completely prevented by suitably selecting the time at which the cutting-permission pulse P,; is generated.
In FIG. 9, the high level shown at g, indicates a time duration when the current is fed to the driving motor in the feeding device C the low level shown at h indicates a time duration when the feeding device C is actuated; and the high level at 1}, indicates a time duration when the movable cutter is actuated.
In the second embodiment, in response to the detection of a film cutting mark, means for measuring or detecting the unrolled film fed by a predetermined length is reset and gives the cutting-permission signal when the unrolled film has been advanced by a predetermined length so that the cutting device is actuated to cut off the unrolled film when and only when both the cutting-permission signal and the signal from the detecting device are present simultaneously. When the cutting-permission signal is not present, the cutting device will not be actuated even when the detecting device detects a strain or scratch on the unrolled film so that the erratic cutting operation may be completely prevented.
Next referring to FIGS. 10 and 11 the variations of the control unit of the present invention will be described. In a block diagram shown in FIG. 10, to an actuating circuit in the cutting device A, are applied the output signal of the detecting device 8,, and the signal from an actuating circuit D, in an encoder control unit D both of which are delayed in time through a time delaying circuit A,. The output signals of the detecting device 5,, and the actuating circuit D, are also applied to a film feed interruption circuit C, of the feeding device D that is a control circuit for disengaging the electromagnetic clutch 215 (See FIG. 7) thereby stopping the rotation of the ratchet wheel 214. The output signal derived when the film cutting device A has cut off the unrolled film is applied to a film-feed-restarting circuit C in the feeding device C that is a control circuit for accomplishing the operation opposite to that carried by the fiIm-feed-interruption circuit C The signal from the cutting mark detecting device B is applied to a reset circuit D' in the encoder control unit D. The cutting device A the detecting device 3;, and the film feeding device C are similar in construction to those in the second embodiment described hereinbefore.
In the variation of the control unit shown in block diagram in FIG. 11, in response to the detection of a film cutting mark the detecting device'B gives the pulse b which is applied through an OR gate 325 to the feedinterruption circuit C, in the film feeding device C and to a delaying circuit A, in the cutting device A which cuts off the unrolled film after it has been stopped and held stationary. The pulse b from the detecting device B is also fed into a memory 326 and a counter 327 so as to reset them. After the cutting device A has cut off the unrolled film, it gives the pulse a (representing the completion of the film cutting operation) which is fed to the feed-restarting circuit C in the feeding device C, so as to resume the feed of unrolled film. The pulse a is also fed into the memory 326 so as to set it.
When the feed of unrolled film is stored again, the encoder D gives a pulse at which is fed through an AND gate 328 into the counter 327 so as to be counted. Therefore the feed of unrolled film may be stored.
When the film cutting marks on the unrolled film is spaced apart by a predetermined distance as indicated by the cutting marks II and III, the counter 327 gives a pulse e when the unrolled film is advanced by a predetermined distance. This pulse e is applied through the OR gate 325 to the feed-interruption circuit C in the feeding device C and to the delaying circuit A, in the cutting device A;, so that the unrolled film is stopped and is cut off along the broken line 2a shown in FIG. 1'
When the detecting device B detects the next cutting mark Ill it gives the pulse 12 so that the unrolled film is cut off along the dotted line 3a in the manner described above. l
In the variations of the control unit described above, the encoder is set in response to either of the signals generated by the-cutting device, and when the counter counts a predetermined number of pulses, the unrolled film is cut off even when a cutting mark is not detected. Therefore even whenthe spacing between the cutting marks is long, the unrolledfilm may be cut off intoa predetermined length. Thus all of the cut-off film sheets have a uniform length so that the film sheets may be convenientlystored in a tray in a microfiche retrieving machine or the like.
Furthermore inresponse to the signal given when the unrolled film is cut off the encoder is set so that the length of the unrolled film to be cut off may be mea sured with a higher degree of accuracy. In the automatic film cutting device in accordance with the present invention only a pair of movable and stationary cutters are used to cut ofl both side edges (in the latral direction) of the unrolled film so that the automatic film cutting machine may be made simple in construction and may be fabricated at a less cost.
Next referring to FIG. 12, the third embodiment of an automatic film cutting device in accordance with the present invention will be described. In the first and second embodiments described hereinbefore, only one film cutting mark detecting device is used, but in the third embodiment at least two film cutting mark detecting devices are used. The detecting devices detect the film cutting marks on the unrolled film so as to actuate the cutting device and to prevent the erratic film cut ting operation.
The third embodiment generally comprises the cutting device A.,, the cutting mark detecting devices 8., and B for detecting the film cutting marks I", II, and so on on the unrolled film ll), and the film feeding device C The cutting device A. and the film feeding device C are substantially similar in construction to those of the first and second embodiments described hereinbefore. It should be noted that the first detecting device B is interposed between the cutting device A and the feeding device C Each of the two detecting devices B and B comprises a light source 410 or 410 and a photoelectric cell 411 or 41.1 so asto detect the film cutting marks I, II and so on on the unrolled film 400 and to give the signals.
FIGS. 13(a) and 13(b) show the devices for detecting the film cutting marks on the unrolled film. In FIG. 13(a) a light source 424 is disposed upwardly of the unrolled film 400 whereas a photoelectric cell 424 is disposed downwardly of the film. That is, the detection device shown in FIG. 13(a) is of a transmission type. In FIG. 13(1)) a reflecting mirror 426 is disposed downwardly of the film 400 and a light source 424, a half mirror 427 and a photoelectric cell 425 may pass disposed upwardly of the film in such a manner that the I light emitted from the light source 424' may pass through thehalf mirror 427, reflected back by the reflector 426 and then by the half mirror 427 and intercepted by the photoelectric cell 425'. Therefore the arrangement shown in FIG. 13(h) is a reflection type detecting device.
FIGS. 14 and 15 show the relation between the positions of the detecting devices and the film cutting marks on the unrolled film. In FIG. 14, the detecting devices B4 and B are so located as to detect the film cutting marks I", II, and so on marked along one side of the unrolled film 400 and as to be spaced apart from each other by a distance equal to or slightly longer than the distance I or 1+ a between the projected images of the two cutting marks. Therefore the detecting devices B and B may simultaneously detect the cutting marks or the detecting device B first detects the cutting mark II and then the detecting device B detects the cutting mark I" a short time later when the unrolled film 400 is transported in the direction indicated by the arrow.
In FIG. 15 the two detecting devices 8.; and B are spaced apart from each other by a distance slightly shorter than the distance between the projected images of the adjacent cutting marks. That is, the distance between the two detecting devices 3., and B is (I a).
1 1 devices 3,, B a flip-flop 430, an AND gate 431, and the film cutting device A.,. The signals are applied as indicated by the arrows.
The mode of operation of the control unit shown in FIG. 16 will be described with reference to FIG. 19 illustrating the waveforms of various signals. In response to the pulse Pij (See FIG. 19, a generated by the detecting device B when the latter detects the cutting mark on the unrolled film 400 being transported, the flip-flop 430, which has been reset, is driven into the set state to give the signal as shown at C, in FIG. 19 to the AND gate 431. Next the detecting device 3., detects the cutting mark after the detecting device B detected the cutting mark and gives the pulse signal P as shown as d in FIG. 19 to the AND gate 431 so that the latter gives the output signal as shown at d, in FIG. 19 to the cutting device A Therefore the cutting device A is actuated so as to cut off the unrolled film 400. After the unrolled film 400 has been cut off, the cutting device A, gives the signal as shown at e in FIG. 19 to the reset input terminal R of the flip-flop 430 so that the latter is driven into the reset state. When the detecting device B detects a stain or scratch on the film 400, it gives an erroneous pulse P to the flip-flop 430. Therefore the flip-flop 430 is set and gives the output signal as shown at C in FIG. 19 to the AND gate 431. However, the output signal of the detecting device B is not applied to the AND gate 431, and AND gate 431 will not give the output signal to the cutting device A, so that the latter is not actuated mistakingly. Thus the erratic film cutting operation is completely prevented.
When the detecting device B detects the next film cutting mark to give the pulse P the flip-flop 430 has been already in the set state. When the detecting device detects the cutting mark to give the pulse signal P to the AND gate 431, the latter gives the output signal such as shown at d in FIG. 19 because the flip-flop 430 has been already set. Therefore after the unrolled film is stopped and held stationary the film cutting device A, is actuated so as to cut off the film. The above operations are cycled to consecutively cut off the unrolled film. When the detecting device 8., detects a stain or scratch on the film 400 and gives a pulse signal, the flip-flop 430 has been already reset so that the cutting device A, is not actuated. Thus, the erratic film cutting operation may be prevented. However, when the detecting device 8., detects a stain or scratch on the film and gives the erroneous signal immediately after the first detecting device B has detected the stain or scratch, the cutting device A is actuated so as to cut off the film erroneously. This erratic film cutting operation may be prevented by the control units shown in FIGS. 17 and 18, in which similar reference numerals are used to designate similar circuit components.
The control unit shown in FIG. 17 generally comprises the two detecting circuits B and B a flip-flop 432, an AND gate 433, a timer 434 and the cutting device A,,. In response to the set output signal of the flipflop 432, the timer 434 is activated and then deactivated a time I, later, and the flip-flop 432 is reset in response to the trailing edge of the output pulse of the timer 434.
The mode of operation will be described with reference to FIG. 20. In response to the detection of a film cutting mark on the film 400 being transported by the feeding device, the detecting device B gives the pulse signal (a in FIG. 20) which drives the flip-flop 432 into the set state. The flip-flop 432 gives the signal as shown at C in FIG. 20 in response to which the timer 434 is actuated to give the pulse signal as shown at f in FIG. 20 to the AND gate 433. After the time later, the detecting device B detects the cutting mark and gives the pulse P as shown at b in FIG. 20 to the AND gate 433. Therefore the AND gate 433 gives the output signal as shown at d in FIG. 20 to the cutting device A, so that the latter is actuated so as to cut off the unrolled film 400 after it is stopped and held stationary. The flipflop 432 is driven into the reset state the time 1 after the timer 434 has been activated.
When the film is transported again and the detecting device B detects the noise to give the pulse P shown at a in FIG. 20, the flip-flop 432 is set and the timer 434 is activated. Since the timer 434 resets the flip-flop 430 the time 2., after it has been set, the AND gates 433 gives no output signal even when the detecting device B detects the noise and gives the pulse signal P, shown at b in FIG. 20. Therefore the cutting device A., is not actuated so that the erratic film cutting operation may be prevented. The timer 434 is so set that as to give the pulse signal for a time duration slightly longer than the time duration between the time when the first detecting device B detects the correct cutting mark and the time when the second detecting device 8., detects the same cutting mark.
The control unit shown in FIG. 18 generally comprises the detecting devices B, and B a flip-flop 435, a three-input AND gate 436, a timer 437 a NOT circuit and the cutting device A The timer 437 is activated in response to the signal from the cutting device A, representing the completion of film cutting operation and is deactivated a time t later.
Upon detection of a cutting mark, the detecting device 8:, gives the pulse signal P,,- as shown at a in FIG. 21 to the flip-flop 435 so that the latter is set and gives the output signal as shown at C in FIG. 21 to the AND gate 436. When the detecting device B detects the cutting mark and gives the pulse signal P as shown at b in FIG.'21, the AND gate 436 gives the output signal as shown at d in FIG. 21 to the cutting device A, because the timer 437 is deactivated (See FIG. 21, f Therefore the cutting device A; is actuated so as to cut off the unrolled film when it is stopped and held stationary. After having cut off the film, the cutting device A, gives the signal as shown at a in FIG. 21 to the timer 437 to activate it. The timer 437 gives the output signal as shownatf in FIG. 21 to the NOT circuit 438 which in turn gives the output signal as shown at g in FIG. 21 to the flip-flop 435 so that the latter is driven into the reset state. As long as the timer 437 is activated, the NOT circuit 438 gives a low-level signal (See FIG. 21, g;,) to the AND gate 436 so that the latter will not give the output signal. Therefore the cutting device A is not actuated even when the detecting devices B and B detect the noise such as a stain or scratch on the film and give the pulse signals P, and P," so that the erratic cutting operation may be completely prevented.
Furthermore the control units shown in FIGS. 17 and 18 may be combined to provide a variation of a control unit in which the flip-flop 435 is set in response to the output signal of the timer 434 shown in FIG. 17. When the distance between the cutting marks on the film is constant, the detecting devices B and B may be spaced apart from each other by a distance equal to the spacing between the adjacent film cutting marks.
The mode of operation of the control unit in which the detecting devices B and B are spaced apart from each other by a distance (I a) slightly shorter than the spacing 1 between the projected images of the adjacent cutting marks will not be described in this specification because it is apparent to those skilled in the art when the detecting devices 8.; and B are replaced by the detecting devices B and B respectively in the above explanation.
The difference a or a between the spacing (l i a) between the detecting devices and the spacing l between the projected images of the adjacent cutting marks may be suitably selected, but it is preferable to select a small difference a or a in order to attain the high degree of accuracy in detection.
So far the unrolled film has been described as a medium to be cut off by the automatic cutting device in accordance with the present invention, but it will be understood that any rolled transparent or opaque medium such as paper or the like may be cut off by the cutting device of the present invention. In case of a transparent medium such as film the cutting marks are preferably opaque and in case of an opaque medium such as paper it is preferable to mark the cutting marks by a pencil or ink or to perforate the medium. Furthermore more than two detecting devices may be used in a control unit.
As described hereinbefore in the third embodiment two detecting devices are used in such a manner that only when both of them give the signals simultaneously, the film cutting device is actuated. Therefore when the detecting devices detect the noise and generate the erroneous signals, the cutting device is not actuated so that the erratic film cutting operation may be prevented.
So far only the essential features of the present invention have been described in this specification, but it will be understood that various modifications and variations can be effected within the scope of the present invention.
We claim:
1. A film cutting device comprising a. detecting means for detecting film cutting marks on a film to be cut off, i
b. cutting means for cutting said film in response to the signal from said detecting means,
c. film feeding means for feeding said film into said detecting means and said film cutting means,
d. measuring means for measuring the feed of said film fed by said feeding means,
said measuring means being actuated in response to said signal from said detecting means and giving the output signal when said film has been fed 14 by a predetemiined length so as to actuate said cutting means.
2. A film cutting device as set forth in claim 1 wherein said film feeding means includes a pulse motor whose rotation is controlled by a clock pulse train, said film feeding means starting to feed the film in response to said clock pulse train;
said measuring means including a counter for counting said clock pulse train applied to said pulse motor, said counter being reset in response to said signal from said detecting means and giving the output signal when said counter has counted at predetermined number of clock pulses so that said cut ting means'is actuated to cut off said film.
3. A film cutting device as set forth in claim 1 wherein said film feeding means includes a driving motor;
said measuring means comprises an encoder coupled to said driving motor and a pulse counter adapted to count the pulses generated by said encoder, said pulse counter being reset in response to said signal from said detecting means and giving the output signal for actuating said film cutting means when said pulse counter counts a predetermined of pulses from said encoder; and
said film cutting means includes an AND gate to which are i applied the output signals of said detecting means and said pulse counter, and starts the film cutting operation in response to the output signal of said AND gate.
4. A film cutting device as set forth in claim 1 wherein said film feeding means includes a driving motor;
said measuring means comprises an encoder coupled to said driving motor and a pulse counter which is reset in response to the output signal of said detecting means and gives the output signal for actuating said cutting means when said pulse counter counts a predetermined number of pulses from said encoder; and
said cutting means is coupled to said pulse counter and is actuated in response to said output signal from said pulsecounter so as to cut off said film into a predetermined length. 5. A cutting device as set forth in claim 2 wherein said detecting means comprising a gate circuit for gating said signal from said detecting means until said counter counts said predetermined number of clock pulses, whereby said film cutting means remains de-energized until said film is fed by said predetermined length.

Claims (5)

1. A film cutting device comprising a. detecting means for detecting film cutting marks on a film to be cut off, b. cutting means for cutting said film in response to the signal from said detecting means, c. film feeding means for feeding said film into said detecting means and said film cutting means, d. measuring means for measuring thE feed of said film fed by said feeding means, said measuring means being actuated in response to said signal from said detecting means and giving the output signal when said film has been fed by a predetermined length so as to actuate said cutting means.
2. A film cutting device as set forth in claim 1 wherein said film feeding means includes a pulse motor whose rotation is controlled by a clock pulse train, said film feeding means starting to feed the film in response to said clock pulse train; said measuring means including a counter for counting said clock pulse train applied to said pulse motor, said counter being reset in response to said signal from said detecting means and giving the output signal when said counter has counted a predetermined number of clock pulses so that said cutting means is actuated to cut off said film.
3. A film cutting device as set forth in claim 1 wherein said film feeding means includes a driving motor; said measuring means comprises an encoder coupled to said driving motor and a pulse counter adapted to count the pulses generated by said encoder, said pulse counter being reset in response to said signal from said detecting means and giving the output signal for actuating said film cutting means when said pulse counter counts a predetermined of pulses from said encoder; and said film cutting means includes an AND gate to which are applied the output signals of said detecting means and said pulse counter, and starts the film cutting operation in response to the output signal of said AND gate.
4. A film cutting device as set forth in claim 1 wherein said film feeding means includes a driving motor; said measuring means comprises an encoder coupled to said driving motor and a pulse counter which is reset in response to the output signal of said detecting means and gives the output signal for actuating said cutting means when said pulse counter counts a predetermined number of pulses from said encoder; and said cutting means is coupled to said pulse counter and is actuated in response to said output signal from said pulse counter so as to cut off said film into a predetermined length.
5. A cutting device as set forth in claim 2 wherein said detecting means comprising a gate circuit for gating said signal from said detecting means until said counter counts said predetermined number of clock pulses, whereby said film cutting means remains de-energized until said film is fed by said predetermined length.
US31582272 1971-12-22 1972-12-18 Film cutting device Expired - Lifetime US3822624A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10432471A JPS5652720B2 (en) 1971-12-22 1971-12-22
JP47000647A JPS5212436B2 (en) 1971-12-24 1971-12-24
JP653172A JPS5536477B2 (en) 1972-01-14 1972-01-14
JP2755772A JPS4895291A (en) 1972-03-17 1972-03-17

Publications (1)

Publication Number Publication Date
US3822624A true US3822624A (en) 1974-07-09

Family

ID=27453220

Family Applications (1)

Application Number Title Priority Date Filing Date
US31582272 Expired - Lifetime US3822624A (en) 1971-12-22 1972-12-18 Film cutting device

Country Status (2)

Country Link
US (1) US3822624A (en)
DE (1) DE2263076B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967518A (en) * 1975-03-31 1976-07-06 Cx Corporation Camera filmstrip processor controlled by film marks
US4026172A (en) * 1975-03-17 1977-05-31 Hagger Company Belt loop trimming apparatus
US4098158A (en) * 1976-02-20 1978-07-04 Agfa-Gevaert Ag Method of and apparatus for severing strips of material
US4119246A (en) * 1977-07-07 1978-10-10 Haggar Company Apparatus for crimping belt loops
US4144575A (en) * 1974-06-06 1979-03-13 The Measuregraph Company Apparatus for dispensing fabric from a bolt
US4208933A (en) * 1977-01-31 1980-06-24 Armour And Company Method and machine for slicing materials
US4603539A (en) * 1982-10-05 1986-08-05 Geimuplast Peter Mundt Gmbh & Co. Kg. Method and apparatus for automatically framing slides in a framing apparatus
US5373762A (en) * 1992-02-14 1994-12-20 Kabushikikaisha Barudan Method of cutting label tapes
US20030121378A1 (en) * 2001-12-28 2003-07-03 Sirois Robert D. Diodometer
US20160358323A1 (en) * 2015-06-03 2016-12-08 Boe Technology Group Co., Ltd. Anisotropic Conductive Film Cutting Calibration System and Method
US20220110302A1 (en) * 2020-10-09 2022-04-14 Yunior Dominguez Collapsible bait net

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699832A (en) * 1971-04-16 1972-10-24 Eastman Kodak Co Control circuit for automating the operation of a film cutter or like apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699832A (en) * 1971-04-16 1972-10-24 Eastman Kodak Co Control circuit for automating the operation of a film cutter or like apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144575A (en) * 1974-06-06 1979-03-13 The Measuregraph Company Apparatus for dispensing fabric from a bolt
US4026172A (en) * 1975-03-17 1977-05-31 Hagger Company Belt loop trimming apparatus
US4070937A (en) * 1975-03-17 1978-01-31 Haggar Company Belt loop trimming apparatus
US3967518A (en) * 1975-03-31 1976-07-06 Cx Corporation Camera filmstrip processor controlled by film marks
US4098158A (en) * 1976-02-20 1978-07-04 Agfa-Gevaert Ag Method of and apparatus for severing strips of material
US4208933A (en) * 1977-01-31 1980-06-24 Armour And Company Method and machine for slicing materials
US4119246A (en) * 1977-07-07 1978-10-10 Haggar Company Apparatus for crimping belt loops
US4603539A (en) * 1982-10-05 1986-08-05 Geimuplast Peter Mundt Gmbh & Co. Kg. Method and apparatus for automatically framing slides in a framing apparatus
US5373762A (en) * 1992-02-14 1994-12-20 Kabushikikaisha Barudan Method of cutting label tapes
US20030121378A1 (en) * 2001-12-28 2003-07-03 Sirois Robert D. Diodometer
US20160358323A1 (en) * 2015-06-03 2016-12-08 Boe Technology Group Co., Ltd. Anisotropic Conductive Film Cutting Calibration System and Method
US10163032B2 (en) * 2015-06-03 2018-12-25 Boe Technology Group Co., Ltd. Anisotropic conductive film cutting calibration system and method
US20220110302A1 (en) * 2020-10-09 2022-04-14 Yunior Dominguez Collapsible bait net

Also Published As

Publication number Publication date
DE2263076A1 (en) 1973-06-28
DE2263076B2 (en) 1976-09-02

Similar Documents

Publication Publication Date Title
US3556512A (en) Document feed apparatus
US3822624A (en) Film cutting device
US3793915A (en) Film cutting apparatus
US4042298A (en) Document filming camera
US3988064A (en) Reader-printer
US2177638A (en) Reading machine
US3868877A (en) Film cutting device
US3740136A (en) Micro-image viewer-printer machine
US4046470A (en) Printing paper cutting device for an electrical copier
GB1593120A (en) Automatic microfilm camera
US2632545A (en) Double sheet stop for photographic copying apparatus
US4436391A (en) Apparatus for projecting any selected image in a recording medium having images recorded thereon in at least two lines
US3999846A (en) Information search device
US4453823A (en) Method of stopping a film
US3904099A (en) Information retrieval system
US3636316A (en) Device for determining initial position of cards for use in a data processing equipment
US3907415A (en) Film searching apparatus
US3953123A (en) Transport apparatus for an automatic micro-image viewer printer machine
US2649018A (en) Control mechanism for photographic copying apparatus
US3765758A (en) Micro-image viewer-printer machine optical assembly
JPS6322307B2 (en)
US3615133A (en) Photocopy apparatus
US4193685A (en) Fixed message carrier
US3472590A (en) Photocopy apparatus
US3212395A (en) Camera digital display