US3811754A - Correcting lens - Google Patents

Correcting lens Download PDF

Info

Publication number
US3811754A
US3811754A US00298642A US29864272A US3811754A US 3811754 A US3811754 A US 3811754A US 00298642 A US00298642 A US 00298642A US 29864272 A US29864272 A US 29864272A US 3811754 A US3811754 A US 3811754A
Authority
US
United States
Prior art keywords
lens
elements
correcting
correcting lens
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00298642A
Inventor
A Morrell
Hekken F Van
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Licensing Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US00298642A priority Critical patent/US3811754A/en
Priority to AU60810/73A priority patent/AU472436B2/en
Priority to IT29615/73A priority patent/IT995546B/en
Priority to GB4592373A priority patent/GB1450589A/en
Priority to CA183,372A priority patent/CA998270A/en
Priority to BE136759A priority patent/BE806154A/en
Priority to JP48116269A priority patent/JPS4975155A/ja
Priority to NL7314290A priority patent/NL7314290A/xx
Priority to FR7337184A priority patent/FR2203984B1/fr
Priority to DE19732352363 priority patent/DE2352363C3/en
Application granted granted Critical
Publication of US3811754A publication Critical patent/US3811754A/en
Assigned to RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP. OF DE reassignment RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: RCA CORPORATION, A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/22Applying luminescent coatings
    • H01J9/227Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines
    • H01J9/2271Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines by photographic processes
    • H01J9/2272Devices for carrying out the processes, e.g. light houses
    • H01J9/2273Auxiliary lenses and filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Definitions

  • This invention relates to optical correcting lenses for use in laying down arrays of color phosphor deposits in cathode-ray tubes.
  • cathode-ray tubes have mosaic screens or targets of different light emitting or absorbing material.
  • certain types of color television picture tubes usually include a screen comprising arrays of red, green, and blue emitting phosphor lines or dots, electron gun means for exciting the screen, and a color selection electrode, e.g., an apertured sheet metal mask or a wire grill, interposed between the gun means and the screen.
  • a color selection electrode e.g., an apertured sheet metal mask or a wire grill
  • the inner surface of the faceplate is coated with a mixture of phosphor particles adapted to emit light of one of the three colors (e.g., blue), and a photosensitive binder.
  • the light source is sequentially placed in a fixed relationship with each center of deflection of each of the electron beams which later will excite the screen.
  • these deflection centers are not similarly fixed in position but rather vary in position during operation of the tube.
  • One such variation is a shift toward the screen as the angle of deflection increases. This shift of the deflection center parallel to the tube axis causes a radial misregister of the electron impingement spots on the screen with respect to their corresponding phosphor dots established using a fixed light source.
  • the prior art has provided correcting lenses located between the light source and the tube screen which provide appropriate deflection of the light rays so as to locate the position of the phosphor dots at the expected landing positions on the screen of the electron beams.
  • the present invention substantially eliminates undesirable reflection and scatter by providing a correcting lens for use in the formation of a color television picture tube screen having a plurality of individually contoured elements that extend from a point common to all elements to an edge of the lens.
  • FIG. 1 is a plan view of a correcting lens embodying the present invention
  • FIG. 2 is a cross-sectional view taken on line 22 of FIG. 1.
  • FIG. 3 is a cross-sectional view taken on line 3--3 of FIG. 1.
  • FIG. 4 is a plan view of another correcting lens embodying the present invention.
  • FIG. 5 is a cross-sectional view taken on line 55 of FIG. 4.
  • FIG. 6 is a plan view of yet another correcting lens embodying the present invention.
  • FIG. 7 is a cross-sectional view taken on line 7-7 of FIG. 6.
  • FIG. 1 illustrates a pie-shaped lens 10 formed from eight wedge-shaped elements or segments l2, l3, l4, 19.
  • the lens 10 is used in an optical lighthouse between a light source and a color picture tube faceplate to provide optical correction of the light path so that the light exposes photosensitizled portions on the faceplate at the predicted landing locations of the electron beams of the assembled tube.
  • the surfaces I2, l3, l4 19' of the elements in the lens 10 are individually contoured to provide the best overall optical correction for exposure of correspondingly shaped areas of the color television picture tube screen. Because of this in dividual contouring, each lens element has a considerably different surface shape than its adjacent elements, as shown in FIGS.
  • the lens comprises a plurality of discontinuous interfaces located between adjacent elements e.g., interface 20 between elements 16 and 17, 22 between 17 and 18, 24 between 18 and 19.
  • Each interface consists of an internal portion, where the adjacent elements are in physical contact, and an external stepped portion comprising a part of the surface of the lens.
  • These interfaces could cause reflection inside the lens and at the surface of the lens if light from the light source were to strike the interfaces at an angle.
  • lens 10 is placed in the lighthouse so that its central axis 26 points to or is aligned with the light source, the edges of the interfaces are parallel with the light rays. Therefore, since the lightrays cannot strike the interfaces at an angle, reflection and scattering cannot occur.
  • FIG. 4 Another pie-shaped lens 30, having twelve wedgeshaped elements 32, 33, 34, 43, is shown in FIG. 4. Unlike the preceding embodiment, this lens 30 is formed with a continuous contoured surface 44 as shown in FIG. 5. However, elements in this lens are formed of various materials having different indexes of refraction. Therefore, although the lens surface is continuous, discontinuities in correction can exist between each element because of the differences in indexes of refraction. Optimization of the lens depends not only on appropriate contouring of the lens surface, but also in proper choice of the materials selected for each element.
  • discontinuities e.g., discontinuity 46 between elements 38 and 39, 48 between 39 and 40, 50 between 40 and 41, 52 between 41 and 42, and 54 be tween 42 and 43 in this lens 30 are all internal interfaces since the lens has no surface discontinuities.
  • a third lens 60 is shown in the plan and crosssectional views of FIGS. 6 and 7.
  • This lens 60 comprises a single homogeneous piece of material having only its surface designed in a pie-shaped configuration.
  • the lens surface 61 is divided into twelve sector-shaped surface elements or areas, e.g., 62, 63, 64, 73. Each surface area has its own contour to provide the best optical correction to similarly shaped corresponding areas of the screw. Because of this individual contouring, surface discontinuities or steps exist between adjacent surface areas, e.g., discontinuity 74 between areas 68 and 69, 76 between 69 and 70, 78 between 70 and 71, 80 between 71 and 72, and 82 between 72 and 73.
  • each discontinuity passes through and is parallel with the axis of the lens. Therefore, when the lens axis points to or is aligned with a light source, the light rays from the source will pass through the lens parallel to the discontinuities and will not reflect or scatter.
  • lens 30 of FIGS. 4 and can be formed of glass and lens 60 of FIGS. 6 and 7 can be formed of plastic.
  • plastics development as to lens 30
  • lens 60 of FIGS. 6 and 7
  • plastics development as to lens 30
  • lens 60 of glass
  • the plastic is pressure molded against a suitable die.
  • Such die can consist of segments, corresponding to the lens elements, of a material such as stainless steel that have been ground to conform to the lens specification.
  • a correcting lens for use in the formation of a color television picture tube screen comprising a plurality of wedgeshaped elements, a discontinuity between each adjacent element and each of said discontinuities extending from a common point radially to an edge of said lens, and each of said elements being individually contoured for best overall optical correction to light paths for exposure of correspondingly shaped areas of said screen for a source of said light paths on a line passing through said common point and perpendicular to a surface of said lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

A correcting lens for use in the formation of a color television picture tube screen that is excitable by an electron beam comprises a plurality of individually contoured elements that extend from a point common to all elements to an edge of the lens. Adjacent elements are separated by boundaries and all boundaries extend radially outward from the common point. Each element is individually contoured to direct light onto predetermined paths of the electron beam toward a similarly shaped corresponding area of the screen.

Description

OR Brant 3 United States P 3,811,754 Morrell et al. May 21, 1974 [54] CORRECTING LENS FOREIGN PATENTS OR APPLICATIONS Inventory Albe" Maxwell Mom"; Frans 791,312 2/l958 Great Britain 350/194 Hekken, both of Lancaster, Pa.
73 A RCA Cor ration, New York. NY. Primary Examiner-John Corbin l Sslgnee p0 Attorney, Agent, or Firm-Glenn H. Bruestle; Dennis [22] Filed: Oct. 18, 1972 mbeck [2i] Appl. No.: 298,642
[57] ABSTRACT [52] U 8. CL 350/189 95/1 R 350/213 A correcting lens for use in the formation of a color [511 In c1. .1 (5021) 3/04 televisk" Picmre tube Screen that is exciable by [58] Field 0 Search 350/!75 R 189 I93 194 electron beam comprises a plurality of individually 356/21 1 95/1 contoured elements that extend from a point common to all elements to an edge of the lens. Adjacent ele- [56] References Cited ments are separated by boundaries and all boundaries extend radially outward from the common point. Each UNITED STATES PATENTS element is individually contoured to direct light onto 2/1971 Yamazaki el al. X predetermined paths of the electron beam tow rd 3 2,999,126 9/]961 Harries et al. 350/189 X Similarly Shaped Corresponding area of the Screen l,952.237 3/1934 3,495.51 1 2/1970 Javorik 350/189 UX 7 Claims, 7 Drawlng Figures PATENTEmAm 1914 SHEET 2 OF 2 Fig. 7
CORRECTING LENS BACKGROUND OF THE INVENTION This invention relates to optical correcting lenses for use in laying down arrays of color phosphor deposits in cathode-ray tubes.
Many cathode-ray tubes have mosaic screens or targets of different light emitting or absorbing material. For example, certain types of color television picture tubes usually include a screen comprising arrays of red, green, and blue emitting phosphor lines or dots, electron gun means for exciting the screen, and a color selection electrode, e.g., an apertured sheet metal mask or a wire grill, interposed between the gun means and the screen. In one prior art process for forming each color array of phosphor lines or dots on a viewing faceplate within a tube having an apertured mask, the inner surface of the faceplate is coated with a mixture of phosphor particles adapted to emit light of one of the three colors (e.g., blue), and a photosensitive binder. Light is projected from a source through the apertured mask and onto the coating so that the apertured mask functions as a photographic master. The exposed coating is subsequently developed to produce phosphor elements of the first phosphor, e.g., blue emitting lines or dots. The process is repeated for the green-emitting phosphor and red-emitting phosphor utilizing the same apertured mask but repositioning the source of light for each exposure. A more complete description of a prior art process for forming a picture tube screen can be found in US. Pat. No. 2,625,734 issued to Law on Jan. 20, I953.
In exposing the screen through the mask apertures, the light source is sequentially placed in a fixed relationship with each center of deflection of each of the electron beams which later will excite the screen. Unfortunately, these deflection centers are not similarly fixed in position but rather vary in position during operation of the tube. One such variation is a shift toward the screen as the angle of deflection increases. This shift of the deflection center parallel to the tube axis causes a radial misregister of the electron impingement spots on the screen with respect to their corresponding phosphor dots established using a fixed light source.
In the case of a dot screen where three beams are subjected to dynamic convergence, an additional type of deflection center shift occurs. This additional shift is transverse to the tube axis and causes degrouping (e.g., an increase in size of the electron spot trios) misregister of the electron spots related to their associated phosphor dots. These and other types of misregister are discussed in greater detail in the following U.S. Pat. Nos.: 2,885,935 Epstein et al. and 3,282,691 Morrell et al. In order to correct error between the position of electron beam landing and the location of a phosphor dot, the prior art has provided correcting lenses located between the light source and the tube screen which provide appropriate deflection of the light rays so as to locate the position of the phosphor dots at the expected landing positions on the screen of the electron beams.
The design of correcting lenses for use in fabricating color television picture tubes has been described by Epstein et al. in U.S. Pat Nos. 2,817,276 ,and 2,885,935, by Ramberg in US. Pat. No. 3,279,340 and more recently by Yamazaki et al. in U.S. Pat. 3,628,850. The lenses disclosed in the latter two patents have discontinuous surfaces that permit more accurate exposure of the screen. However, because of the discontinuities in the lenses, reflection and light scattering occur at the discontinuous interfaces. Since reflection and scatter may cause misregister and uneven exposure, it is apparent that further development of the prior art correcting lenses is desirable.
SUMMARY OF THE INVENTION The present invention substantially eliminates undesirable reflection and scatter by providing a correcting lens for use in the formation of a color television picture tube screen having a plurality of individually contoured elements that extend from a point common to all elements to an edge of the lens.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a correcting lens embodying the present invention;
FIG. 2 is a cross-sectional view taken on line 22 of FIG. 1.
FIG. 3 is a cross-sectional view taken on line 3--3 of FIG. 1.
FIG. 4 is a plan view of another correcting lens embodying the present invention.
FIG. 5 is a cross-sectional view taken on line 55 of FIG. 4.
FIG. 6 is a plan view of yet another correcting lens embodying the present invention.
FIG. 7 is a cross-sectional view taken on line 7-7 of FIG. 6.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 illustrates a pie-shaped lens 10 formed from eight wedge-shaped elements or segments l2, l3, l4, 19. The lens 10 is used in an optical lighthouse between a light source and a color picture tube faceplate to provide optical correction of the light path so that the light exposes photosensitizled portions on the faceplate at the predicted landing locations of the electron beams of the assembled tube. The surfaces I2, l3, l4 19' of the elements in the lens 10 are individually contoured to provide the best overall optical correction for exposure of correspondingly shaped areas of the color television picture tube screen. Because of this in dividual contouring, each lens element has a considerably different surface shape than its adjacent elements, as shown in FIGS. 2 and 3. Therefore, the lens comprises a plurality of discontinuous interfaces located between adjacent elements e.g., interface 20 between elements 16 and 17, 22 between 17 and 18, 24 between 18 and 19. Each interface consists of an internal portion, where the adjacent elements are in physical contact, and an external stepped portion comprising a part of the surface of the lens. These interfaces could cause reflection inside the lens and at the surface of the lens if light from the light source were to strike the interfaces at an angle. However, when lens 10 is placed in the lighthouse so that its central axis 26 points to or is aligned with the light source, the edges of the interfaces are parallel with the light rays. Therefore, since the lightrays cannot strike the interfaces at an angle, reflection and scattering cannot occur.
Another pie-shaped lens 30, having twelve wedgeshaped elements 32, 33, 34, 43, is shown in FIG. 4. Unlike the preceding embodiment, this lens 30 is formed with a continuous contoured surface 44 as shown in FIG. 5. However, elements in this lens are formed of various materials having different indexes of refraction. Therefore, although the lens surface is continuous, discontinuities in correction can exist between each element because of the differences in indexes of refraction. Optimization of the lens depends not only on appropriate contouring of the lens surface, but also in proper choice of the materials selected for each element. The discontinuities, e.g., discontinuity 46 between elements 38 and 39, 48 between 39 and 40, 50 between 40 and 41, 52 between 41 and 42, and 54 be tween 42 and 43 in this lens 30 are all internal interfaces since the lens has no surface discontinuities.
A third lens 60 is shown in the plan and crosssectional views of FIGS. 6 and 7. This lens 60 comprises a single homogeneous piece of material having only its surface designed in a pie-shaped configuration. The lens surface 61 is divided into twelve sector-shaped surface elements or areas, e.g., 62, 63, 64, 73. Each surface area has its own contour to provide the best optical correction to similarly shaped corresponding areas of the screw. Because of this individual contouring, surface discontinuities or steps exist between adjacent surface areas, e.g., discontinuity 74 between areas 68 and 69, 76 between 69 and 70, 78 between 70 and 71, 80 between 71 and 72, and 82 between 72 and 73. The plane of each discontinuity passes through and is parallel with the axis of the lens. Therefore, when the lens axis points to or is aligned with a light source, the light rays from the source will pass through the lens parallel to the discontinuities and will not reflect or scatter.
The foregoing embodiments can be constructed of any suitable refractive material, e.g., glass or optical plastic. Preferably, lens 30 of FIGS. 4 and can be formed of glass and lens 60 of FIGS. 6 and 7 can be formed of plastic. Such preference is solely dictated by the present state of the art in plastics development (as to lens 30) and by the present state of the art in grinding and polishing of glass lens (as to lens 60). [n a method for forming lens of plastic, the plastic is pressure molded against a suitable die. Such die can consist of segments, corresponding to the lens elements, of a material such as stainless steel that have been ground to conform to the lens specification.
We claim:
1. A correcting lens for use in the formation of a color television picture tube screen comprising a plurality of wedgeshaped elements, a discontinuity between each adjacent element and each of said discontinuities extending from a common point radially to an edge of said lens, and each of said elements being individually contoured for best overall optical correction to light paths for exposure of correspondingly shaped areas of said screen for a source of said light paths on a line passing through said common point and perpendicular to a surface of said lens.
2. The correcting lens as defined in claim 1, wherein said elements include sector surface portions of said lens.
3. The correcting lens as defined in claim 2, wherein said lens is of a single homogeneous piece of material.
4. The correcting lens as defined in claim 1, wherein said elements are individual wedge-shaped parts, said parts interfitted to form said lens.
5. The correcting lens as defined in claim 4, wherein at least two of said parts are of materials having different indexes of refraction.
6. The correcting lens as defined in claim 1, wherein said discontinuities extend through said lens and consist of an interior interface and an exterior surface step.
7. The correcting lens as defined in claim 1, wherein said discontinuities consist only of surface portions of said lens.

Claims (7)

1. A correcting lens for use in the formation of a color television picture tube screen comprising a plurality of wedgeshaped elements, a discontinuity between each adjacent element and each of said discontinuities extending from a common point radially to an edge of said lens, and each of said elements being individually contoured for best overall optical correction to light paths for exposure of correspondingly shaped areas of said screen for a source of said light paths on a line passing through said common point and perpendicular to a surface of said lens.
2. The correcting lens as defined in claim 1, wherein said elements include sector surface portions of said lens.
3. The correcting lens as defined in claim 2, wherein said lens is of a single homogeneous piece of material.
4. The correcting lens as defined in claim 1, wherein said elements are individual wedge-shaped parts, said parts interfitted to form said lens.
5. The correcting lens as defined in claim 4, wherein at least two of said parts are of materials having different indexes of refraction.
6. The correcting lens as defined in claim 1, wherein said discontinuities extend through said lens and consist of an interior interface and an exterior surface step.
7. The correcting lens as defined in claim 1, wherein said discontinuities consist only of surface portions of said lens.
US00298642A 1972-10-18 1972-10-18 Correcting lens Expired - Lifetime US3811754A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US00298642A US3811754A (en) 1972-10-18 1972-10-18 Correcting lens
AU60810/73A AU472436B2 (en) 1972-10-18 1973-09-27 Correcting lens
IT29615/73A IT995546B (en) 1972-10-18 1973-10-01 CORRECTION LENS
GB4592373A GB1450589A (en) 1972-10-18 1973-10-02 Correcting lens
CA183,372A CA998270A (en) 1972-10-18 1973-10-15 Correcting lens for color cathode ray tubes
JP48116269A JPS4975155A (en) 1972-10-18 1973-10-16
BE136759A BE806154A (en) 1972-10-18 1973-10-16 CORRECTION LENSES ESPECIALLY FOR THE REALIZATION OF CINESCOPES
NL7314290A NL7314290A (en) 1972-10-18 1973-10-17
FR7337184A FR2203984B1 (en) 1972-10-18 1973-10-18
DE19732352363 DE2352363C3 (en) 1972-10-18 1973-10-18 Correction lens for the production of a color television picture tube screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00298642A US3811754A (en) 1972-10-18 1972-10-18 Correcting lens

Publications (1)

Publication Number Publication Date
US3811754A true US3811754A (en) 1974-05-21

Family

ID=23151399

Family Applications (1)

Application Number Title Priority Date Filing Date
US00298642A Expired - Lifetime US3811754A (en) 1972-10-18 1972-10-18 Correcting lens

Country Status (9)

Country Link
US (1) US3811754A (en)
JP (1) JPS4975155A (en)
AU (1) AU472436B2 (en)
BE (1) BE806154A (en)
CA (1) CA998270A (en)
FR (1) FR2203984B1 (en)
GB (1) GB1450589A (en)
IT (1) IT995546B (en)
NL (1) NL7314290A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936151A (en) * 1972-12-04 1976-02-03 Hitachi, Ltd. Correction lenses utilized to form fluorescent screens of colour picture tubes
DE3305979A1 (en) * 1983-02-21 1984-08-23 Richard 8901 Neusäß Wallner Light compressor
EP0354786A2 (en) * 1988-08-12 1990-02-14 Minnesota Mining And Manufacturing Company Multifocal diffractive lens
WO2011033437A1 (en) * 2009-09-18 2011-03-24 Koninklijke Philips Electronics N.V. Luminaire and optical component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952237A (en) * 1930-11-24 1934-03-27 Ylla-Conte Jose Lens for the concentration of solar heat
GB791312A (en) * 1953-03-26 1958-02-26 Theodore Hendrik Nakken Photographic objectives
US2999126A (en) * 1958-05-29 1961-09-05 Harries Television Res Ltd Facetted correction lens for minimizing keystoning of off-axis projectors
US3495511A (en) * 1967-10-05 1970-02-17 Nat Video Corp Heterogeneous lens for forming phosphor patterns on color kinescope
US3628850A (en) * 1970-02-24 1971-12-21 Hitachi Ltd Correcting lens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918572A (en) * 1972-06-14 1974-02-19

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952237A (en) * 1930-11-24 1934-03-27 Ylla-Conte Jose Lens for the concentration of solar heat
GB791312A (en) * 1953-03-26 1958-02-26 Theodore Hendrik Nakken Photographic objectives
US2999126A (en) * 1958-05-29 1961-09-05 Harries Television Res Ltd Facetted correction lens for minimizing keystoning of off-axis projectors
US3495511A (en) * 1967-10-05 1970-02-17 Nat Video Corp Heterogeneous lens for forming phosphor patterns on color kinescope
US3628850A (en) * 1970-02-24 1971-12-21 Hitachi Ltd Correcting lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936151A (en) * 1972-12-04 1976-02-03 Hitachi, Ltd. Correction lenses utilized to form fluorescent screens of colour picture tubes
DE3305979A1 (en) * 1983-02-21 1984-08-23 Richard 8901 Neusäß Wallner Light compressor
EP0354786A2 (en) * 1988-08-12 1990-02-14 Minnesota Mining And Manufacturing Company Multifocal diffractive lens
EP0354786A3 (en) * 1988-08-12 1991-08-14 Minnesota Mining And Manufacturing Company Multifocal diffractive lens
WO2011033437A1 (en) * 2009-09-18 2011-03-24 Koninklijke Philips Electronics N.V. Luminaire and optical component
CN102549333A (en) * 2009-09-18 2012-07-04 皇家飞利浦电子股份有限公司 Luminaire and optical component
US8746936B2 (en) 2009-09-18 2014-06-10 Koninklijke Philips N.V. Luminaire and optical component
CN102549333B (en) * 2009-09-18 2014-12-10 皇家飞利浦电子股份有限公司 Luminaire and optical component

Also Published As

Publication number Publication date
BE806154A (en) 1974-02-15
NL7314290A (en) 1974-04-22
AU6081073A (en) 1975-03-27
DE2352363B2 (en) 1976-04-15
DE2352363A1 (en) 1974-05-09
JPS4975155A (en) 1974-07-19
AU472436B2 (en) 1976-05-27
GB1450589A (en) 1976-09-22
FR2203984B1 (en) 1976-05-07
IT995546B (en) 1975-11-20
FR2203984A1 (en) 1974-05-17
CA998270A (en) 1976-10-12

Similar Documents

Publication Publication Date Title
US4490010A (en) Rear projection screen
US2755402A (en) Color kinescopes of the masked-target dot-screen variety
US3279340A (en) Art of making color-phosphor mosaic screens
EP0051977B1 (en) Rear projection apparatus
JPS583530B2 (en) rear projector armchair
US3784282A (en) Correcting lens used to form fluorescent screens of colour television receiving tubes
US2947899A (en) Color image reproducers
US4866466A (en) Method of producing a color picture tube screen
US3811754A (en) Correcting lens
KR900005539B1 (en) Color picture tube having improved shadow mask
US3211067A (en) Method of exposing a multi-color target structure
US3893750A (en) Cathode-ray tube screening correction lens with a non-solarizing material
US2885935A (en) Color-kinescopes, etc.
US4001018A (en) Method for making a stripe screen on a face plate of a cathode ray tube by rotating correction lens
US3385184A (en) Optical system for use in making color-phosphor mosaic screens
US4037936A (en) Correcting lens having two effective surfaces
US3993487A (en) Method for manufacture of color television picture tubes using rotating light source
US3003874A (en) Optical correction in manufacture of color image reproducers
US2937297A (en) Image display device
US4271247A (en) Color picture tube with screen having light absorbing areas
US3828358A (en) Exposure apparatus for the direct photographic production of a phosphor screen on the face-plate of a color picture tube
US3767395A (en) Multiple exposure color tube screening
US20020018945A1 (en) Exposure apparatus for multi-neck cathode ray tube and exposure method using the same
JP2527426B2 (en) Color TV picture tube
US3788848A (en) Methods of manufacture of color picture tubes

Legal Events

Date Code Title Description
AS Assignment

Owner name: RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, P

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RCA CORPORATION, A CORP. OF DE;REEL/FRAME:004993/0131

Effective date: 19871208