US3773431A - Multiple shell turbine casing for high pressures and high temperatures - Google Patents

Multiple shell turbine casing for high pressures and high temperatures Download PDF

Info

Publication number
US3773431A
US3773431A US00200008A US3773431DA US3773431A US 3773431 A US3773431 A US 3773431A US 00200008 A US00200008 A US 00200008A US 3773431D A US3773431D A US 3773431DA US 3773431 A US3773431 A US 3773431A
Authority
US
United States
Prior art keywords
casing
semi
outer casing
halves
multiple shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00200008A
Inventor
H Bellati
W Domer
H Huber
W Rutti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
BBC Brown Boveri France SA
Original Assignee
BBC Brown Boveri France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri France SA filed Critical BBC Brown Boveri France SA
Application granted granted Critical
Publication of US3773431A publication Critical patent/US3773431A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing

Definitions

  • ABSTRACT A multiple shell casing for a turbine operating at high 4 Claims, 3 Drawing Figures MULTIPLE SHELL TURBINE CASING FOR HIGH PRESSURES AND HIGH TEMPERATURES
  • This invention relates to an improved multiple-shell turbine casing for high pressures and temperatures, consisting of a multi-stage inner casing in the form of a guide blade carrier and split in an axial plane, and an outer casing also split in an axial plane.
  • the casings of steam turbines for high pressures and temperatures are therefore built in the form of a multiple-shell structure.
  • the most common form is a double-shell construction consisting of an inner casing which forms the stationary guide blade carrier, and an outer casing which is at a reduced stage pressure or exhaust-steam pressure and at a lower temperature.
  • the principal object of the present invention is to avoid all the disadvantages mentioned and to make possible turbine casings which satisfy the stated requirements for high pressures and high temperatures, and in so doing keep non-uniform deformation forces of the casing away from the guide blade carrier.
  • this object is achieved in that an axially divided inner casing which constitutes the guide blade carrier is supported by axially spaced load-bearing rings anchored to a foundation and which also extend through and support an axially divided sheet metal outer casing.
  • manufacture is simplified by using sheet-metal i.e., rolled metallic sheet for the outer casing as distinguished from castings. This is unaffected by foundry capacity and stresses can more easily be allowed for. Furthermore, by utilizing sheet metal, no attention need be paid to exact matching of the wall thicknesses, for example, between the cylinder endplate and mantle of the outer casing, or at least less attention than with castings, because there are no dangerous casting stresses.
  • sheet-metal i.e., rolled metallic sheet for the outer casing as distinguished from castings.
  • FIG. 1 is a vertical central longitudinal section through the turbine structure
  • FIG. 2 is a section in the axial dividing plane A-A of FIG. 1, and
  • FIG. 3 is a cross-section taken at line BB of FIG. 1.
  • FIG. 1 a stationary, guide blade carrier, subsequently denoted as an inner casing 11, is shown somewhat schematically as enclosing a bladed rotor 2 mounted on shaft 26.
  • Inner casing 11 rests within and is supported by axially spaced load-bearing rings 6 by means of projections 12 on the casing shown in FIG. 2,
  • the outer casing 3 of the double shell turbine is fabricated from sheet metal parts attached to the loadbearing rings 6 and consisting of welded together endplates 8, bleed-chamber mantle 9, exhaust-steam mantles l0 and a rectangular frame 7 which extends round the axial dividing plane as shown in FIG. 2.
  • Packing glands 22 for shaft 26 are provided at the pass-through holes provided in endplates 8 and rectangular frame 7 and shaft 26 is supported by free-standing bearing pedestals, which are not shown. Accurate longitudinal guidance of the outer casing is provided by guides 17 in endplates 8. These correspond with guideways in the bearing pedestals.
  • Stiffening pieces 27 are fixed inside outer casing 3 to endplates 8. These act as deflector plates for the exhaust steam and, together with brace supports 21 also fixed to endplates 8, serve to counteract deformation of the endplate, particularly in the vicinity of the shaftaperture, i.e., packing glands 22.
  • the outer ends of brace supports 21 are secured to the load-bearing rings 6 so that axial forces exerted by the steam are transmitted from outer casing 3 to the load-bearing rings 6 located in axially spaced radial planes.
  • Brace supports 21 are also arranged in such manner as to produce a centering effect. It is therefore advantageous to make brace supports 21 adjustable in length, as indicated by coupling sleeves 29.
  • the bleed-chamber mantle 9 fitted between the two axially spaced load-bearing rings 6 is provided with a thermally variable lead-through 20 for steam inlet pipe 1, consisting essentially of a bellows 30 located between the outer casing 3 and steam inlet 1 which is rigidly connected to the inner casing 11.
  • the lead-through 20 is shown only schematically and other specific arrangements different from the one depicted are possible.
  • the rectangular frame 7 provided on the outer, sheet metal casing 3 in the axial dividing plane AA is rigidly connected to the load-bearing rings 6, and is interrupted on the axis of rotation by the packing glands 22, which are also set rigidly in frame 7 and endplate 8.
  • Adjacent t load-bearing rings 6 is a fixed-point support 14 which transmits the axial forces of inner casing 11 to load-bearing rings 6.
  • the main purpose of these feet is to transfer the loads of inner casing 11 and outer casing 3 to foundation 16.
  • FIG. 3 shows a cross-section at line BB of FIG. 1.
  • load-bearing rings 6 are provided with a fixed part 23 which engages a slot 31 in the inner casing 11 and thus, together with keyways 13 between the inner and outer casings, ensures that a central position is maintained.
  • the dual casing structure in accordance with the invention is thus seen to be comprised of an outer casing constructed as two all-welded longitudinal halves which are joined together along an axially dividing horizontal plane, each half consisting of a rectangular blade carrier surrounding the turbine rotor is likewise structured as two longitudinal halves 11, ll joined together along the same axially dividing horizontal plane is supported by the load bearing rings, and the loadbearing rings are seated upon the foundation and thus carry the entire load of the dual casing structure.
  • a multiple shell casing structure for turbines operable at high pressures and high temperatures which comprises an outer casing constructed in the form of two all-welded longitudinal upper and lower halves joined together along an axially dividing horizontal plane, each said casing half being comprised of a rectangular frame, axially spaced radially extending semicircular load bearing ring halves secured to said frame, and a semi-cylindrical jacket half of plate material secured to said ring halves and frame, and an inner casing constituting a guide blade carrier surrounding the turbine rotor, said inner casing being likewise constructed in the form of upper and lower longitudinal halves joined together along the same plane which divides the upper and lower halves of said outer casing, the upper and lower halves of said inner casing being supported by and within said load bearing rings and the load bearing ring halves correlated to the lower half of said outer casing being seatable on a foundation provided for the turbine so as to carry the entire load of the casing structure.
  • each said semi-cylindrical jacket half includes a semi-cylindrical bleed chamber mantle located between and secured to said axially spaced semi-circular load bearing ring halves, and semi-cylindrical exhaust steam mantles located be tween and secured to each of said bearing ring halves and to semi-circular end plates forming the corresponding end walls of said jacket half.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A multiple shell casing for a turbine operating at high pressures and temperatures includes a multi-stage inner casing in the form of a guide blade carrier which is divided along an axial plane, and an outer casing also divided along that same plane. The outer casing is fabricated from sheet metal parts welded together, the inner casing is supported by a pair of axially spaced load-bearing rings which surround it, and these rings which extend through, and also support, the outer casing are anchored onto the turbine foundation.

Description

United States Patent Bellati et a1.
[ 1 Nov. 20, 1973 MULTIPLE SHELL TURBINE CASING FOR HIGH PRESSURES AND HIGH TEMPERATURES Inventors: Hans Bellati, Wettingen; Wolfgang D'omer, Kirchdorf; Hans Huber, Neuenhof; Willi Riittl, Nussbaumen, all of Switzerland Aktiengesellschaft Brown, Boveri & Cie, Baden, Switzerland Filed: Nov. 18, 1971 Appl. N0.: 200,008
Assignee:
Foreign Application Priority Data Dec. 8, 1970 Switzerland 18308/70 US. Cl 415/108, 415/101, 415/135, 415/219 Int. Cl. F0ld 25/26 Field of Search 415/101, 102, 103, 415/108, 219,135
References Cited UNITED STATES PATENTS 1/1960 Smith et a1 15/135 3,594,095 7/1971 Trassel et a1 415/108 FOREIGN PATENTS OR APPLICATIONS 990,543 4/1965 Great Britain 415/108 1,106,087 7/1955 France 415/108 Primary ExaminerC. J. Husar Att0rneyRalph E. Parker et al.
[5 7 ABSTRACT A multiple shell casing for a turbine operating at high 4 Claims, 3 Drawing Figures MULTIPLE SHELL TURBINE CASING FOR HIGH PRESSURES AND HIGH TEMPERATURES This invention relates to an improved multiple-shell turbine casing for high pressures and temperatures, consisting of a multi-stage inner casing in the form of a guide blade carrier and split in an axial plane, and an outer casing also split in an axial plane.
It is required in general of casings for steam turbines, depending on the turbine construction, that they should withstand high pressures and temperatures with only slight deformation and with a uniform as possible expansion of the casing and rotor so that favorable small blade and seal clearances can be maintained under all operating conditions.
With high pressures and temperatures, the wall thickness of single-shell turbine casings is too great to meet these requirements satisfactorily because the thermal stresses cannot be accommodated, or only with great difficulty. Also, the thick walls constitute a further possible source of faults because the risk of defects in the casting is greatly increased. The casings of steam turbines for high pressures and temperatures are therefore built in the form of a multiple-shell structure. The most common form is a double-shell construction consisting of an inner casing which forms the stationary guide blade carrier, and an outer casing which is at a reduced stage pressure or exhaust-steam pressure and at a lower temperature.
As a result of the transition to steam turbines of even greater unit capacity, due in particular to the rapid development of nuclear power stations, the multiple-shell construction has become unable to satisfy the requirements referred to above. The greater volumes of steam to be processed by each turbine unit demanded increased casing dimensions, while the greater number of stages required per unit resulted in higher stresses which in turn led to a further increase in wall thickness.
This, however, gives rise to individual casing shells with very thick walls which present serious casting problems and hinder the course of technical progress.
Attempts have been made to split the casing shells "and then weld them together after casting, but this method does not provide a satisfactory solution. Welding did not reduce the time needed to manufacture the whole turbine casing, but rather increased it, although the risk of a casting reject was slightly lessened. However, the danger of cavities and gas bubbles when using casting steel alloys, for example, CrMo9l0 to DIN 17006, cannot be eliminated. Furthermore, when alloyed casting steels are used, welding large wall thicknesses of these materials presents serious technical difficulties, and in many cases is even impossible because the weldability of the steel can no longer be guaranteed.
The principal object of the present invention is to avoid all the disadvantages mentioned and to make possible turbine casings which satisfy the stated requirements for high pressures and high temperatures, and in so doing keep non-uniform deformation forces of the casing away from the guide blade carrier. In accordance with the invention, this object is achieved in that an axially divided inner casing which constitutes the guide blade carrier is supported by axially spaced load-bearing rings anchored to a foundation and which also extend through and support an axially divided sheet metal outer casing.
The advantages of the construction according to the invention for the high-pressure inner casing, and in many instances also the high-temperature intermediate-pressure casing, of a steam turbine reside in the fact that manufacture is simplified and that any occurring deformations can more easily be accommodated. Also, the wall thickness of the casing parts is reduced, resulting in an appreciable saving in raw material.
More particularly, manufacture is simplified by using sheet-metal i.e., rolled metallic sheet for the outer casing as distinguished from castings. This is unaffected by foundry capacity and stresses can more easily be allowed for. Furthermore, by utilizing sheet metal, no attention need be paid to exact matching of the wall thicknesses, for example, between the cylinder endplate and mantle of the outer casing, or at least less attention than with castings, because there are no dangerous casting stresses.
A preferred embodiment of a turbine casing according to the invention is shown schematically in the accompanying drawings wherein:
FIG. 1 is a vertical central longitudinal section through the turbine structure;
FIG. 2 is a section in the axial dividing plane A-A of FIG. 1, and
FIG. 3 is a cross-section taken at line BB of FIG. 1.
In FIG. 1 a stationary, guide blade carrier, subsequently denoted as an inner casing 11, is shown somewhat schematically as enclosing a bladed rotor 2 mounted on shaft 26. Inner casing 11 rests within and is supported by axially spaced load-bearing rings 6 by means of projections 12 on the casing shown in FIG. 2,
such that forces resulting from the dead weight of inner casing 11, reactions of the piping and the torque of rotation are transmitted via keyways l3 and the fixedpoint supports 14 visible in FIG. 2 to the load-bearing rings 6.
The outer casing 3 of the double shell turbine is fabricated from sheet metal parts attached to the loadbearing rings 6 and consisting of welded together endplates 8, bleed-chamber mantle 9, exhaust-steam mantles l0 and a rectangular frame 7 which extends round the axial dividing plane as shown in FIG. 2.
Packing glands 22 for shaft 26 are provided at the pass-through holes provided in endplates 8 and rectangular frame 7 and shaft 26 is supported by free-standing bearing pedestals, which are not shown. Accurate longitudinal guidance of the outer casing is provided by guides 17 in endplates 8. These correspond with guideways in the bearing pedestals.
Stiffening pieces 27 are fixed inside outer casing 3 to endplates 8. These act as deflector plates for the exhaust steam and, together with brace supports 21 also fixed to endplates 8, serve to counteract deformation of the endplate, particularly in the vicinity of the shaftaperture, i.e., packing glands 22. The outer ends of brace supports 21 are secured to the load-bearing rings 6 so that axial forces exerted by the steam are transmitted from outer casing 3 to the load-bearing rings 6 located in axially spaced radial planes. Brace supports 21 are also arranged in such manner as to produce a centering effect. It is therefore advantageous to make brace supports 21 adjustable in length, as indicated by coupling sleeves 29.
The bleed-chamber mantle 9 fitted between the two axially spaced load-bearing rings 6 is provided with a thermally variable lead-through 20 for steam inlet pipe 1, consisting essentially of a bellows 30 located between the outer casing 3 and steam inlet 1 which is rigidly connected to the inner casing 11. In the drawing, the lead-through 20 is shown only schematically and other specific arrangements different from the one depicted are possible.
Intermediate webs 19 are connected to load-bearing rings 6 by way of flexible seals 18, not further depicted, such that bleed steam can flow through slot 28 into bleed chamber 4 and leave through bleed-steam stub pipe 25 located in mantle 9. The bleed steam then flows, for example, to a preheater.
The greater part of the steam entering inner casing 11 through steam inlet 1 expands, imparting energy to rotor 2, and then flows into exhaust-steam chamber 5, from where it passes in the case of a nuclear power station, for example, through exhaust stub pipe 24 to a water separator, and/or an intermediate heater. The arrows denote the direction of steam flow within the casing during operation.
The rectangular frame 7 provided on the outer, sheet metal casing 3 in the axial dividing plane AA is rigidly connected to the load-bearing rings 6, and is interrupted on the axis of rotation by the packing glands 22, which are also set rigidly in frame 7 and endplate 8. Adjacent t load-bearing rings 6 is a fixed-point support 14 which transmits the axial forces of inner casing 11 to load-bearing rings 6. The same purpose is served by projections 12, which form the connection between inner casing 11 and load-bearing ring 6, and also transmit the peripheral forces resulting from the torque of rotation and piping reaction forces.
Feet 15, let into or set into foundation 16, engage the outer circumference of load-bearing rings 6. The main purpose of these feet is to transfer the loads of inner casing 11 and outer casing 3 to foundation 16.
FIG. 3 shows a cross-section at line BB of FIG. 1. There it will be seen that load-bearing rings 6 are provided with a fixed part 23 which engages a slot 31 in the inner casing 11 and thus, together with keyways 13 between the inner and outer casings, ensures that a central position is maintained.
The dual casing structure in accordance with the invention is thus seen to be comprised of an outer casing constructed as two all-welded longitudinal halves which are joined together along an axially dividing horizontal plane, each half consisting of a rectangular blade carrier surrounding the turbine rotor is likewise structured as two longitudinal halves 11, ll joined together along the same axially dividing horizontal plane is supported by the load bearing rings, and the loadbearing rings are seated upon the foundation and thus carry the entire load of the dual casing structure.
It follows from the preceding description that with a dual shell turbine casing built in accordance with the invention, the load-bearing rings 6 together with frame 7 .and endplates 8 of the outer sheet metal casing, and brace supports 21 form the supporting framework of the outer casing 3, while the sheet metal parts that form the mantles 9 and 10 are subjected only to the forces resulting from the internal pressure, i.e., have the function of an outer enclosure.
In this way it is possible to support or arrange the inner casing 11 so that it can expand freely, and expansion of the inner casing is not opposed by forces originating from the outer casing 3.
We claim:
1. A multiple shell casing structure for turbines operable at high pressures and high temperatures which comprises an outer casing constructed in the form of two all-welded longitudinal upper and lower halves joined together along an axially dividing horizontal plane, each said casing half being comprised of a rectangular frame, axially spaced radially extending semicircular load bearing ring halves secured to said frame, and a semi-cylindrical jacket half of plate material secured to said ring halves and frame, and an inner casing constituting a guide blade carrier surrounding the turbine rotor, said inner casing being likewise constructed in the form of upper and lower longitudinal halves joined together along the same plane which divides the upper and lower halves of said outer casing, the upper and lower halves of said inner casing being supported by and within said load bearing rings and the load bearing ring halves correlated to the lower half of said outer casing being seatable on a foundation provided for the turbine so as to carry the entire load of the casing structure.
2. A multiple shell casing structure for turbines as defined in claim 1 wherein said outer casing is provided with at least one thermally variable lead-through for a steam inlet pipe which is rigidly connected to said inner casing.
3. A multiple shell casing structure for turbines as defined in claim 1 and which further includes brace type supports located within said outer casing and which extend between said load bearing rings and the end plates of said semi-cylindrical jackets.
4. A multiple shell casing structure for turbines as defined in claim 1 wherein each said semi-cylindrical jacket half includes a semi-cylindrical bleed chamber mantle located between and secured to said axially spaced semi-circular load bearing ring halves, and semi-cylindrical exhaust steam mantles located be tween and secured to each of said bearing ring halves and to semi-circular end plates forming the corresponding end walls of said jacket half.

Claims (4)

1. A multiple shell casing structure for turbines operable at high pressures and high temperatures which comprises an outer casing constructed in the form of two all-welded longitudinal upper and lower halves joined together along an axially dividing horizontal plane, each said casing half being comprised of a rectangular frame, axially spaced radially extending semicircular load bearing ring halves secured to said frame, and a semi-cylindrical jacket half of plate material secured to said ring halves and frame, and an inner casing constituting a guide blade carrier surrounding the turbine rotor, said inner casing being likewise constructed in the form of upper and lower longitudinal halves joined together along the same plane which divides the upper and lower halves of said outer casing, the upper and lower halves of said inner casing being supported by and within said load bearing rings and the load bearing ring halves correlated to the lower half of said outer casing being seatable on a foundation provided for the turbine so as to carry the entire load of the casing structure.
2. A multiple shell casing structure for turbines as defined in claim 1 wherein said outer casing is provided with at least one thermally variable lead-through for a steam inlet pipe which is rigidly connected to said inner casing.
3. A multiple shell casing structure for turbines as defined in claim 1 and which further includes brace type supports located within said outer casing and which extend between said load bearing rings and the end plates of said semi-cylindrical jackets.
4. A multiple shell casing structure for turbines as defined in claim 1 wherein each said semi-cylindrical jacket half includes a semi-cylindrical bleed chamber mantle located between and secured to said axially spaced semi-circular load bearing ring halves, and semi-cylindrical exhaust steam mantles located between and secured to each of said bearing ring halves and to semi-circular end plates forming the corresponding end walls of said jacket half.
US00200008A 1970-12-08 1971-11-18 Multiple shell turbine casing for high pressures and high temperatures Expired - Lifetime US3773431A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1830870A CH524758A (en) 1970-12-08 1970-12-08 Multi-shell turbine housing for high pressures and high temperatures

Publications (1)

Publication Number Publication Date
US3773431A true US3773431A (en) 1973-11-20

Family

ID=4432030

Family Applications (1)

Application Number Title Priority Date Filing Date
US00200008A Expired - Lifetime US3773431A (en) 1970-12-08 1971-11-18 Multiple shell turbine casing for high pressures and high temperatures

Country Status (10)

Country Link
US (1) US3773431A (en)
AT (1) AT316592B (en)
AU (1) AU456315B2 (en)
CA (1) CA948994A (en)
CH (1) CH524758A (en)
DE (1) DE2102771A1 (en)
DK (1) DK132805C (en)
FR (1) FR2117426A5 (en)
NL (1) NL159467B (en)
SE (1) SE406349B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880549A (en) * 1973-11-19 1975-04-29 Stork Koninklijke Maschf Turbine
US3915588A (en) * 1973-10-16 1975-10-28 Bbc Brown Boveri & Cie Two-shell axial-plane split casing structure for high-capacity low-pressure sections of a steam turbine
US4029432A (en) * 1974-11-18 1977-06-14 Bbc Brown Boveri & Company Limited Thermal turbomachine
US4326832A (en) * 1978-11-14 1982-04-27 Tokyo Shibaura Denki Kabushiki Kaisha Exhaust outer casing
US4915581A (en) * 1989-01-03 1990-04-10 Westinghouse Electric Corp. Steam turbine with improved inner cylinder
US4936002A (en) * 1989-04-03 1990-06-26 Westinghouse Electric Corp. Method of modifying integral steam chest steam turbines
US5078571A (en) * 1987-12-17 1992-01-07 Bbc Brown Boveri Ag Multi-cylinder steam turbine
US5149247A (en) * 1989-04-26 1992-09-22 Gec Alsthom Sa Single hp-mp internal stator for a steam turbine with controlled steam conditioning
US20040175267A1 (en) * 2003-03-03 2004-09-09 Hofer Douglas Carl Methods and apparatus for assembling turbine engines
US20050106006A1 (en) * 2003-11-15 2005-05-19 Alstom Technology Ltd Steam turbine and method for the production of such a steam turbine
JP2008240725A (en) * 2007-03-02 2008-10-09 Alstom Technology Ltd Steam turbine
CN102216569A (en) * 2008-11-13 2011-10-12 西门子公司 Inner housing for a turbomachine
US20120207595A1 (en) * 2011-02-11 2012-08-16 Alstom Technology Ltd Exhaust device for a steam turbine module
US20120282089A1 (en) * 2011-05-05 2012-11-08 General Electric Company Support arrangement for a steam turbine lp inner casing
JP2016089806A (en) * 2014-11-11 2016-05-23 三菱日立パワーシステムズ株式会社 Steam turbine
US20180142573A1 (en) * 2016-11-24 2018-05-24 Kabushiki Kaisha Toshiba Steam turbine
US10487692B2 (en) * 2016-11-24 2019-11-26 Kabushiki Kaisha Toshiba Steam turbine
US10677092B2 (en) * 2018-10-26 2020-06-09 General Electric Company Inner casing cooling passage for double flow turbine
US10746058B2 (en) * 2018-03-06 2020-08-18 Kabushiki Kaisha Toshiba Steam turbine
US11060414B2 (en) * 2016-10-21 2021-07-13 Mitsubishi Heavy Industries, Ltd. Steam turbine and steam turbine control method
US11174758B2 (en) * 2019-12-11 2021-11-16 Kabushiki Kaisha Toshiba Steam turbine
US11352910B2 (en) * 2017-07-03 2022-06-07 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same
US11560812B2 (en) 2018-11-13 2023-01-24 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same
WO2023162412A1 (en) * 2022-02-22 2023-08-31 三菱重工業株式会社 Rotating-machine casing support structure and rotating machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1106087A (en) * 1953-08-21 1955-12-12 Sulzer Ag Turbine
US2919890A (en) * 1955-09-16 1960-01-05 Gen Electric Adjustable gas turbine nozzle assembly
GB990543A (en) * 1960-07-20 1965-04-28 Escher Wyss Ag Improvements in or relating to high-pressure axial-flow machines such as compressorsand turbines
US3594095A (en) * 1968-12-03 1971-07-20 Siemens Ag Casing for low-pressure stages of steam turbines of completely welded multishell construction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1106087A (en) * 1953-08-21 1955-12-12 Sulzer Ag Turbine
US2919890A (en) * 1955-09-16 1960-01-05 Gen Electric Adjustable gas turbine nozzle assembly
GB990543A (en) * 1960-07-20 1965-04-28 Escher Wyss Ag Improvements in or relating to high-pressure axial-flow machines such as compressorsand turbines
US3594095A (en) * 1968-12-03 1971-07-20 Siemens Ag Casing for low-pressure stages of steam turbines of completely welded multishell construction

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915588A (en) * 1973-10-16 1975-10-28 Bbc Brown Boveri & Cie Two-shell axial-plane split casing structure for high-capacity low-pressure sections of a steam turbine
US3880549A (en) * 1973-11-19 1975-04-29 Stork Koninklijke Maschf Turbine
US4029432A (en) * 1974-11-18 1977-06-14 Bbc Brown Boveri & Company Limited Thermal turbomachine
US4326832A (en) * 1978-11-14 1982-04-27 Tokyo Shibaura Denki Kabushiki Kaisha Exhaust outer casing
US5078571A (en) * 1987-12-17 1992-01-07 Bbc Brown Boveri Ag Multi-cylinder steam turbine
US4915581A (en) * 1989-01-03 1990-04-10 Westinghouse Electric Corp. Steam turbine with improved inner cylinder
US4936002A (en) * 1989-04-03 1990-06-26 Westinghouse Electric Corp. Method of modifying integral steam chest steam turbines
US5149247A (en) * 1989-04-26 1992-09-22 Gec Alsthom Sa Single hp-mp internal stator for a steam turbine with controlled steam conditioning
US20040175267A1 (en) * 2003-03-03 2004-09-09 Hofer Douglas Carl Methods and apparatus for assembling turbine engines
US6854954B2 (en) * 2003-03-03 2005-02-15 General Electric Company Methods and apparatus for assembling turbine engines
US20050106006A1 (en) * 2003-11-15 2005-05-19 Alstom Technology Ltd Steam turbine and method for the production of such a steam turbine
US7165934B2 (en) * 2003-11-15 2007-01-23 Alstom Technology, Ltd. Steam turbine and method for the production of such a steam turbine
JP2008240725A (en) * 2007-03-02 2008-10-09 Alstom Technology Ltd Steam turbine
CN102216569A (en) * 2008-11-13 2011-10-12 西门子公司 Inner housing for a turbomachine
US20120207595A1 (en) * 2011-02-11 2012-08-16 Alstom Technology Ltd Exhaust device for a steam turbine module
US9243516B2 (en) * 2011-02-11 2016-01-26 Alstom Technology Ltd Exhaust device for a steam turbine module
US20120282089A1 (en) * 2011-05-05 2012-11-08 General Electric Company Support arrangement for a steam turbine lp inner casing
US8821110B2 (en) * 2011-05-05 2014-09-02 General Electric Company Support arrangement for a steam turbine LP inner casing
JP2016089806A (en) * 2014-11-11 2016-05-23 三菱日立パワーシステムズ株式会社 Steam turbine
US11060414B2 (en) * 2016-10-21 2021-07-13 Mitsubishi Heavy Industries, Ltd. Steam turbine and steam turbine control method
US10487692B2 (en) * 2016-11-24 2019-11-26 Kabushiki Kaisha Toshiba Steam turbine
US10662817B2 (en) * 2016-11-24 2020-05-26 Kabushiki Kaisha Toshiba Steam turbine
US20180142573A1 (en) * 2016-11-24 2018-05-24 Kabushiki Kaisha Toshiba Steam turbine
US11352910B2 (en) * 2017-07-03 2022-06-07 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same
US10746058B2 (en) * 2018-03-06 2020-08-18 Kabushiki Kaisha Toshiba Steam turbine
US10677092B2 (en) * 2018-10-26 2020-06-09 General Electric Company Inner casing cooling passage for double flow turbine
US11560812B2 (en) 2018-11-13 2023-01-24 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same
US11174758B2 (en) * 2019-12-11 2021-11-16 Kabushiki Kaisha Toshiba Steam turbine
WO2023162412A1 (en) * 2022-02-22 2023-08-31 三菱重工業株式会社 Rotating-machine casing support structure and rotating machine

Also Published As

Publication number Publication date
NL159467B (en) 1979-02-15
DK132805B (en) 1976-02-09
CH524758A (en) 1972-06-30
CA948994A (en) 1974-06-11
AU3534871A (en) 1973-05-10
AT316592B (en) 1974-07-25
DE2102771A1 (en) 1972-06-29
SE406349B (en) 1979-02-05
NL7116701A (en) 1972-06-12
AU456315B2 (en) 1974-12-12
DK132805C (en) 1976-07-12
FR2117426A5 (en) 1972-07-21

Similar Documents

Publication Publication Date Title
US3773431A (en) Multiple shell turbine casing for high pressures and high temperatures
US3746463A (en) Multi-casing turbine
US4362464A (en) Turbine cylinder-seal system
US5483792A (en) Turbine frame stiffening rails
EP2828487B1 (en) Low pressure steam turbine seal arrangement
US8870526B2 (en) Axially segmented guide vane mount for a gas turbine
US3314648A (en) Stator vane assembly
US4078812A (en) Combined seal and guide arrangement for two coaxially arranged machine parts
US2497041A (en) Nozzle ring for gas turbines
GB705150A (en) Improvements in and relating to variable guide blade arrangements for high temperature turbines
US4102598A (en) Single case low pressure turbine
US7165934B2 (en) Steam turbine and method for the production of such a steam turbine
US20080213091A1 (en) Steam Turbine
US4487014A (en) Gas generator and turbine unit
US2815645A (en) Super-critical pressure elastic fluid turbine
US3166295A (en) Guide wheel for condensing turbines of great and greatest power
US3843281A (en) Casing of a fluid flow machine
US2304994A (en) Turbine cylinder cooling
US4149832A (en) Turbocompressor
US3915588A (en) Two-shell axial-plane split casing structure for high-capacity low-pressure sections of a steam turbine
US2888240A (en) Fluid cooled barrel cylinder for turbines
GB1427217A (en) Nuclear reactor installations tool-free detachable connectors for electric power conduits
US2996280A (en) Heat shield
US3677658A (en) Split casting steam chest, nozzle chamber and casing assembly for turbines
US2655307A (en) Gas turbine rotor arrangement