US3768977A - Integral blood oxygenator and heat exchanger - Google Patents

Integral blood oxygenator and heat exchanger Download PDF

Info

Publication number
US3768977A
US3768977A US00240054A US3768977DA US3768977A US 3768977 A US3768977 A US 3768977A US 00240054 A US00240054 A US 00240054A US 3768977D A US3768977D A US 3768977DA US 3768977 A US3768977 A US 3768977A
Authority
US
United States
Prior art keywords
blood
terminus
manifold
array
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00240054A
Inventor
R Brumfield
A Hooper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3768977A publication Critical patent/US3768977A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/32Oxygenators without membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/32Oxygenators without membranes
    • A61M1/322Antifoam; Defoaming
    • A61M1/325Surfactant coating; Improving wettability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/369Temperature treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/03Heart-lung
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/28Blood oxygenators

Definitions

  • ABSTRACT An integral blood oxygenator and blood temperature controller combination concurrently provides blood oxygenation at a precise blood-gas temperature required by a patient.
  • the integral combination operationally insures that the extra-corporeal circulating blood is equilibrated with oxygen gas at a patients required blood temperature.
  • Multiple, small diameter aperture, equal length oxygen exchange tubes are adjacently spaced in a patterned, parallel array and secured at the pairs of tube terminus in an opposed pair of tube header plates, forming a blood-gas-energy exchange tube array.
  • the two-phase blood-oxygen-gas mixture flows upward inside each of the single oxygen exchange tubes, absorbing oxygen and evolving carbon dioxide gas.
  • Precisely temperature controlled water circulates through the gas exchange tube array around the exterior of the oxygen exchange tubes, providing precise blood temperature control during oxygenation process.
  • Blood oxygenators and blood temperature controllers useful for oxygenating patients blood in extracorporeal circulation are classified in Class 23 Subclass 258.5.
  • the improvement taught in this invention is likewise so classified.
  • Fuson in U.S. Pat. No. 3,064,649, issued Nov. 20, I962, discloses a blood filter and a separate heat exchanger apparatus for use with extra-corporeal blood circulating apparatus.
  • a mechanically separate heat exchanger and blood filter are serially connected.
  • the heat exchanger is taught for the induction of hypothermia, a conventional separate oxygenator being disclosed in the specification.
  • thermostabilizer for an extra-corporeal oxygenator of blood.
  • a separate conventional blood oxygenator system is disclosed providing for the oxygenation of the blood, and a heat exchanger is taught for the thermostabilization of the blood temperature.
  • the subject invention teaches an integral blood oxygenator and heat exchanger improvement providing blood oxygenation at a precise blood-gas-temperature required by the patient.
  • the integral blood oxygenator and heat exchanger combination operationally insures that the extracorporeal blood is equilibrated with oxygen gas at a patients required blood temperature.
  • Multiple, small diameter oxygenator tubes having equal tubular lengths are disposed in a patterned parallel array, having a tubular array base terminus and a tubular array top terminus.
  • a base header plate secures thepatterned array of oxygenator tubes at the array base terminus providing a fluid-impervious base plate terminus for the tube array.
  • a top header plate secures the patterned array of oxygenator tubes at the array top terminus, providing a fluid-impervious top plate terminus for the array of tubes.
  • a tubular boundary case secures the base header plate, the top header plate and the multiple oxygenator tubes in a tube exchanger configuration.
  • One heat transfer fluid conduit is conductively secured to the boundary case adjacent to the base header plate.
  • a second heat transfer fluid conduit is secured to the boundary case, and conducts heat transfer fluid adjacent to the top header plate.
  • a two-phase blood-oxygen-gas mixture circulates upwardly inside the multiple oxygenator tubes and a precisely temperature controlled heat transfer fluid circulates exteriorly to the oxygenator tubes inside the tube exchanger configuration.
  • the second heat transfer fluid conduit is conductively secured to the boundary case, disposed to conduct heat transfer fluid in the interior of the case adjacent to the top header plate.
  • the two-phase blood-oxygen flow in the oxygenator can be formed with a minimum of turbulence and damage to the formed elements of the blood by providing an annular blood inlet channel orfice.
  • An inlet blood tubular manifold has a first blood manifold terminus coaxially secured to the blood oxygenator volume boundary case.
  • the first blood manifold terminus has a diameter not less than the external diameter of the boundary case.
  • the blood manifold has a base plate securing the second blood manifold terminus, the plate providing a locus of a multiplicity of gas injection apertures normally disposed through the base plate.
  • a diffusion tube is secured concentrically to the first blood manifold terminus at a first tube terminus of the diffusion tube, the blood diffusion tube having a second tube terminus disposed a spaced small interval from the base plate.
  • the diffusion tube has an internal diameter at least equal to the base plate locus of the multiplicity of gaseous injection apertures, providing an annular blood inlet orfice.
  • FIG. 1 is an elevation perspective partial sectional view of the integral blood oxygenator and heat exchanger.
  • FIG. 2 is a sectional view through 22 of FIG. 1.
  • FIG. 3 is a sectional view through 3-3 of FIG. 1.
  • FIG. 4 is a sectional view through'44 of FIG. 1.
  • FIG. 5 is a sectional view through 5--5 of FIG. 1.
  • FIG. 6 is a sectional view through 6-6 of FIG. 1.
  • FIG. 7 is an encircling view through 7-7 of FIG. 1.
  • FIG. 8 is a further improvement, in a section view similar to the sectional view of FIG. 2.
  • An extra-corporeal integral blood oxygenator and temperature controller 10 is shown in elevational sectional perspective view in FIG. 1, and is suitable for rapidly absorbing oxygen gas in the patients circulating blood, replacing the carbon dioxide.
  • Multiple oxygenator tubes 11, having equal .tubular lengths l2 and small tubular diameters 13, are disposed in a patterned parallel array 14, as further illustrated in FIG. 3.
  • the tubular array 14 has a tubular array base terminus l5 and a tubular array top terminus 16.
  • a base header plate 17 secures the patterned tubular array 14 of oxygenator tubes 11 at the array base terminus l5, providing a fluid-impervious plate terminus for the array of tubes 14.
  • a top header plate 18 secures the patterned array 14 of oxygenator tubes 11 at the array top terminus 16, providing a fluid-impervious plate terminus for the array of tubes 14.
  • a tubular boundary case 19 secures the base header plate 17, the top header plate 18, and the multiple oxygenator tubes 11 in a tubular exchanger configuration 20.
  • At least one heat transfer fluid conduit 21 is conductively secured to the boundary case 19 adjacent to the base header plate 17.
  • At least one heat transfer fluid conduit 22 is conductively secured to the boundary case 19, disposed to conduct heat transfer fluid from the interior of the tubular boundary case 19 adjacent to the top header plate 18.
  • At least one heat transfer fluid tube 24 is conductively secured to the heat transfer fluid manifold 23, the at least one heat transfer fluid tube 24 conductively terminating adjacent to but spaced from the top header plate 18, thus providing a conduit means for the flow 64 of heat transfer agent through the tubular exchanger configuration 20, from the heat transfer conduit 21 to the heat transfer conduit 22.
  • the heat transfer conduit 21 can be used as the heat transfer fluid inlet, and the heat transfer conduit 22 can be used as the heat transfer conduit outlet, or vice versa; the conduit 22 can be used as an inlet and 21 as the outlet.
  • the heat transfer fluid manifold 23 provides a conductive header fitting for the one or more heat transfer fluid tubes 24, together comprising the composite heat transfer conduit means 25.
  • An inlet blood tubular manifold 26 has a first blood manifold terminus 27 which is coaxially secured to the tubular boundary case 19, adjacent to the base header plate 17. As shown in FIGJI, the blood manifold 26 fits snugly around the external diameter of the boundary case 19, the first blood manifold terminus 27 having an inside diameter 28 precisely snugly greater than the boundary case 19.
  • the blood manifold 26 has a base plate 29 forming the second blood manifold terminus.
  • the base plate 29 provides a locus 36 of a multiplicity of gas injection apertures 30 normally disposed through the base plate, as shown in greater detail in the cross sectional view of FIG. 2.
  • the remainder of the bloodoxygen mixer combination is a blood diffusion tube 31 secured concentrically to the first blood manifold terminus 27 at a first tube terminus 32 of the first diffusion tube 31.
  • the diffusion tube 31 has a second tube terminus 33 disposed a small spaced interval 34 from the base plate 29.
  • the diffusion tube 31 has an internal diameter 35 at least equal to the locus 36 of the multiplicity of gas injection apertures 30 in the base plate 29, providing an annular blood inlet orifice 63, typically having an 0.020 inch wide spaced interval 34.
  • FIGS. 2 and 3 A pair of blood inlet conduits 37 are shown in FIGS. 2 and 3 in plan view, and in FIG. 1 in elevation. More than one blood inlet conduit 37 is provided in the event of an emergency stoppage of one conduit, preventing catastrophic stoppage of blood flow to the patient.
  • the conduits are secured to the blood inlet manifold 26.
  • FIG. 1 taken together with FIGS. 2 and 3 illustrate the blood inlet flow 41 through the pair of blood inlet conduits 37.
  • the oxygen gas inlet flow 42 is shown introduced through the gas inlet conduit 39.
  • the blood inlet annular channel 43 is conductively filled with pa- 1 tient blood which flows through the annular blood inlet orifice 63 into the blood-oxygen mixing aperture 44.
  • the oxygen stream 42 flows through the oxygen gas storage aperture 62, through the multiple gas injection apertures 30 in the base plate 29, forming in the bloodoxygen mixing aperture 44 a two-phase mixture of oxygen and blood.
  • the two-phase mixture of blood and oxygen is earlier taught and disclosed in detail in the prior art references cited above, which are by reference made a teaching of this invention.
  • the two-phase blood-oxygen-carbon dioxide gas mixture changing composition is lifted up through the multiple oxygenator tubes 11 of the tubular array 14, emerging at the tube array top terminus 16 as an oxygenated blood-gas foam 45.
  • FIGS. 4 and 7 illustrate in detail view the configuration of the fluid conduit means 25 comprising the heat transfer fluid manifold 23 and the plural heat transfer fluid tubes 24, in relationship to the multiple oxygenator tube 11.
  • a blood defoaming chamber volume 47 is disposed above the tubular exchanger configuration 20.
  • the blood-gas foam 45 venting from the oxygenator tubes 11 collapses in the volume 47, as the foam 45 contacts the defoaming sponge envelope 48 which surrounds the defoaming chamber volume 47.
  • the defoaming sponge envelope is treated with a very thin film of a silicone composition which is known to collapse blood foam, without adding toxic chemical constitutents to the blood stream.
  • the pair of collars 49" together with a pair of compression rings 50, seal the sponge envelope 48 to the case 19, thus requiring the blood-gas foam composition 45 to penetrate the envelope 48 and hence to become degassed.
  • the degassed blood collects in the blood reservoir 65.
  • the tubular blood reservoir 'case 51 has a reservoir base closure 52 secured thereto, having a pair of oxygenated blood outlets 53, shown in FIGS. 1, 4 and 5.
  • the blood oxygenator l0 When the blood oxygenator l0is operated in the normally vertical upright position, the defoamed blood will collect in the blood reservoir 65 and exit through one or both of the pair of blood outlets 53, as indicated by the blood flow 54.
  • the tubular blood reservoir case 51 has a reservoir top closure 55 which is shown in more detail in FIG. 6.
  • the top closure 55 has plural gasvent apertures 56 alternately disposed in the closure 55, allowing the venting of exchanged carbon dioxide gas and the excess oxygen gas, along with water vapor, from the blood oxygenator 10.
  • the indexing pins 57 areshown molded in the reservoir top closure 55, providing securing meansv for centrally indexing and holding the sponge envelope 48.
  • Apertures 59, 60 and 61 are disposed in the top closure 55, the reservoir base closure 52, and the blood manifold 26 respectively.
  • the apertures 59, 60 and 61 are sized and shaped for acceptance of the Luer fitting of a hypodermic syringe, providing apertures for the introduction of medicament that may be required.
  • the apertures may be closed with conventional rubber plug closures. I
  • a further modification illustrated in FIG. 8 provides an annular blood inlet serrated orfice.
  • the further two-phase blood oxygen mixer combination improvement has most of the components as illustrated in FIGS. 1, 2 and 3 and a serrated diffusion tube 80.
  • the serrated diffusion tube 80 has a first tube terminus 81 secured to a header plate 17 and a second tube terminus 82 disposed a spaced interval 83 from the base plate 29.
  • the spaced interval 83 between the second tube terminus 82 and the base plate 29 can be that value which provides a suitable serrated annular blood inlet orfice 84 between the diffusion tube 31 and are physiologically compatible with blood, doing a minimum of damage to the patients extra-corporeal blood circulation.
  • Structural com ponents such as the reservoir top closure 55, the reservoir base closure 52, the base header plate 17, the top header plate 18, the blood inlet manifold 26 and the oxygen gas manifold 38 are injection molded components.
  • the tubular components 51, 19 and 11 can be extruded tubing. It is important for the-patients safety that the components of the blood oxygenator and temperature controller 10 be assembled and secured together by the appropriate fluid-impervious joints as are required.
  • the components can be secured together by cementing'with suitable compatible cement,,by ultrasonic sealing of the chemically compatible components, or by dielectric sealing as is suitable. Specific attention must be given to the selection of chemically compatible and physically compatible plastics throughout the component assemblage, to provide for long term stability of the apparatus 10 in storage and for safety in its usage.
  • polycarbonate oxygenator tubes 11 having a tube internal diameter 13 of 0.270 inch, a wall thickness of 0.015 inch, and a 14 inch length, has a collapse pressure of 89 lbs psi.
  • a similar polypropylene tube having 0.282 inch internal diameter, a 0.009 inch wall, and a 14 inch length has a collapse pressure of approximately [2 psi.
  • the polypropylene has about per cent of the thermal conductivity of the polycarbonate
  • the polycarbonate tubing wall of 0.0 l 5 inch thickness has the same thermal conductivity as the 0.009 inch thick polypropylene tubing wall. It is desirable to use a thicker polycarbonate oxygenator tube, insuring safety from wall collapse due to fluid pressure from a typical water heat transfer fluid which can be circulated through the tubular exchange configuration 20.
  • the extra-corporeal circulation of patient blood carries inherent hazards, as the loss of circulation for a few seconds can be catastrophic for the patient.
  • the patients blood should circulate a minimum of time outside of the patients body and the blood should be maintained at the temperature required by the appropriate surgical procedure.
  • the potentiality of saturating the blood with oxygen and carbon dioxide at a lower blood temperature than is required by the surgical procedure can be eliminated.
  • the elimination of the excessive oxygen consumption and carbon dioxide gas evolution can further eliminate the potential for undesired gas bubble evolution at higher blood temperature excursions, resulting in bubble evolution forming a gas embolism in the patients body.
  • oxygenator tubes .11 having internal diameters 13 of 0.270 inches, and a 14 inch length
  • blood flow rates up to 7,500 ml/min can be oxygenated, utilizing oxygen-blood flow ratios of typically'from 1:1 to 4:1.
  • the same oxygenator size can be utilized for oxygenating of patients ranging in size from juveniles to adults;
  • tubular array disposed in an equal length patterned parallel tubular array, said tubular array ranging from 4 to 24 inches long and said tubes ranging from onesixteenth to five-sixteenths inches in a single tube diameter, said tubular array having a base terminus and a top terminus;
  • a base header plate securing said patterned array of oxygenator tubes at said array base terminus, providing a fluid impervious plate terminus for said array of tubes;
  • a top header plate securing said patterned array of oxygenator tubes at said array top terminus, providing a fluid impervious plate terminus for said array of tubes;
  • a tubular boundary case securing said base header plate, said top header plate and said multiple oxygenator tubes in'a tube exchanger configuration
  • mixing means providing two-phase blood-oxygen gas mixture flow into said blood oxygenator adjacent to said tubular array base terminus;
  • tubular array disposed in an equal length patterned parallel tubular array, said tubular array ranging from 4 to 24 inches long and said tubes ranging from onesixteenth to five-sixteenths inches in a single tube diameter, said tubular array having a base terminus and a top terminus;
  • a base header plate securing said patterned array of oxygenator tubes at said array base terminus, providing a fluid impervious plate terminus for said array of tubes;
  • a top header plate securing said patterned array of oxygenator tubes at said array to terminus, providing a fluid impervious plate terminus for said array of tubes;
  • a tubular boundary case securing said base header plate, said top header plate and said multiple oxygenator tubes in an exchanger configuration
  • an inlet blood tubular manifold having a first blood manifold terminus coaxially secured to said boundary case adjacent to said base header plate, said first blood manifold terminus having an internal di ameter at least equal to the internal diameter of said boundary case, said blood manifold having a base plate securing the second blood manifold terminus, providing a multiplicity of gas injection apertures normally disposed through said base plate;
  • an inlet oxygen gas manifold having a first gas manifold terminus concentrically secured to said blood manifold adjacent to said blood manifold base plate, said first gas manifold terminus having an internal diameter equal to the diameter of said base plate, a closure sealing the second gas manifold terminus opposite said blood manifold base plate;
  • At least one oxygen gas inlet conduit conductively secured to said oxygen gas manifold
  • a tubular boundary case securing said base header plate, said top header plate and said multiple oxygenator tubes in an exchanger configuration
  • At least one heat transfer fluid conduit conductively secured to said boundary case adjacent to said base header plate
  • At least one heat transfer fluid conduit means conductively secured to said boundary case adjacent to said top header plate;
  • an inlet blood tubular manifold having a first blood manifold terminus coaxially secured to said boundary case adjacent to said base header plate, said first blood manifold terminus having an inside diameter at least equal to the external diameter of said boundary case, said blood manifold having a base plate securing the second blood manifold terminus, providing a locus of a multiplicity of gas injection apertures normally disposed through said base plate;
  • a blood diffusion tube secured concentrically to said first blood manifold terminus at a first tube terminus of said diffusion tube, said blood diffusion tube whereby a two-phase blood-oxygen-gas mixture circulates inside the multiple oxygenator tubes and a precisely temperature controlled heat transfer fluid circulates exteriorly to the oxygenator tubes inside the tube exchanger configuration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)

Abstract

An integral blood oxygenator and blood temperature controller combination concurrently provides blood oxygenation at a precise blood-gas temperature required by a patient. The integral combination operationally insures that the extra-corporeal circulating blood is equilibrated with oxygen gas at a patient''s required blood temperature. Multiple, small diameter aperture, equal length oxygen exchange tubes are adjacently spaced in a patterned, parallel array and secured at the pairs of tube terminus in an opposed pair of tube header plates, forming a blood-gas-energy exchange tube array. The two-phase blood-oxygengas mixture flows upward inside each of the single oxygen exchange tubes, absorbing oxygen and evolving carbon dioxide gas. Precisely temperature controlled water circulates through the gas exchange tube array around the exterior of the oxygen exchange tubes, providing precise blood temperature control during oxygenation process. By equilibrating oxygen consumption and carbon dioxide evolution at a precise blood temperature, undesired gas bubble evolution at higher random blood temperature excursions are minimized, lowering the potentiality of gas bubble evolution and gas embolism.

Description

United States Patent [1 1 Brumtield et a1.
[ INTEGRAL BLOOD OXYGENATOR AND HEAT EXCHANGER [73] Assignee: said Robert C. Brumfield, by said Alton V. Hooper [22] Filed: Mar. 31, 1972 [21] Appl. No.: 240,054
[52] US. Cl. 23/2585, 55/255, 55/256,
128/400, l28/DIG. 3, 195/l.8, 261/122, 261/124 [51] Int. Cl. .Q...-. A61m l/03 [58] Field of Search 23/2585;
128/D1G. 3, 400; 261/122-124, DIG. 28; 55/255, 256; 195/l.8
OTHER PUBLICATIONS Shumway et al., A Mechanical Pump-Oxygenator for Successful Cardiopulmonary By-Pass; Surgery, Vol. 40, No. 5, 11/56, pp. 831839.
Primary ExaminerBarry S. Richman Attorney.l. L. Jones, Sr.
[57] ABSTRACT An integral blood oxygenator and blood temperature controller combination concurrently provides blood oxygenation at a precise blood-gas temperature required by a patient. The integral combination operationally insures that the extra-corporeal circulating blood is equilibrated with oxygen gas at a patients required blood temperature. Multiple, small diameter aperture, equal length oxygen exchange tubes are adjacently spaced in a patterned, parallel array and secured at the pairs of tube terminus in an opposed pair of tube header plates, forming a blood-gas-energy exchange tube array. The two-phase blood-oxygen-gas mixture flows upward inside each of the single oxygen exchange tubes, absorbing oxygen and evolving carbon dioxide gas. Precisely temperature controlled water circulates through the gas exchange tube array around the exterior of the oxygen exchange tubes, providing precise blood temperature control during oxygenation process. By equilibrating oxygen consumption and carbon dioxide evolution at a precise blood temperature, undesired gas bubble evolution at higher random blood temperature excursions are minimized, lowering the potentiality of gas bubble evolution and gas embolism.
3 Claims, 8 Drawing Figures Oct. 23, 1973 United States Patent Brumfield 'et al. I
. PATENIEDucr 30 1975 SHEET 2 [IF 3 INTEGRAL BLOOD OXYGENATOR AND HEAT EXCHANGER CROSS REFERENCES TO RELATED APPLICATIONS This application is related to the-following applications filed earlier by the sole inventor, Robert C. Brumfield:
U.S. patent application, Ser. No. 175,182 for BLOOD OXYGENATOR AND THERMOREGU- LATOR APPARATUS, by Robert C. Brumfield, filed Aug. 26, 1971,;
' U.S. patent application, Ser. No. 196,458 for BLOOD OXYGENATOR FLOW GUIDE, by Robert C. Brumfield, filed Nov. 11,1971;
U.S. patent application, Ser. No. 202,779 for TWO- PHASE FLUIDFLOW GUIDE FOR BLOOD OXY- GENATOR, by Robert C. Brumfield, filed Nov. 29, I971; and v U.S. patent application, Ser. No. 216,649 for LOW PRESSURE HEAT EXCHANGER FOR OXYGEN- ATED BLOOD, by Robert C. Brumfield, filed Jan. 10,
BACKGROUND OF THE INVENTION Blood oxygenators and blood temperature controllers useful for oxygenating patients blood in extracorporeal circulation are classified in Class 23 Subclass 258.5. The improvement taught in this invention is likewise so classified.
Fuson, in U.S. Pat. No. 3,064,649, issued Nov. 20, I962, discloses a blood filter and a separate heat exchanger apparatus for use with extra-corporeal blood circulating apparatus. A mechanically separate heat exchanger and blood filter are serially connected. The heat exchanger is taught for the induction of hypothermia, a conventional separate oxygenator being disclosed in the specification.
DeWall in U.S. Pat. No. 3,256,883, issued June 21, 1966, discloses a two dimensional envelope or bag-type oxygenator comprised in large part of thermoplastic resinous sheet material sealed together. The temperature control or heat exchanger means shown is in the form of a channeled internal water jacket, which is heat sealed between walls of 'the oxygenator in the vicinity of multiple blood channels or conduits, warming or cooling the blood as it passes through those channels. Specifically, this invention teaches the first step of oxygenating the blood at a relatively uncontrolled blood temperature, and then effectively controlling the blood temperature in a second step by circulating the blood through a heat exchanger.
Claff et al in U.S. Pat. No. 3,332,746, issued July 25, I967, discloses a pulsatile membrane apparatus for oxygenating blood, disclosing a separate heat exchange fluid source which circulates through the oxygenator. Grooved metal plates incombination with the externally pumped heat exchange fluid provide a heat transfer energy input or output source for the blood circulating in the oxygenator. The oxygenation of the blood proceeds by diffusion through a suitable membrane.
Farrant, in U.S. Pat. No. 3,374,066, issued Mar.- 19, 1968, teaches a separately disposed thermostabilizer for an extra-corporeal oxygenator of blood. A separate conventional blood oxygenator system is disclosed providing for the oxygenation of the blood, and a heat exchanger is taught for the thermostabilization of the blood temperature.
The subject invention teaches an integral blood oxygenator and heat exchanger improvement providing blood oxygenation at a precise blood-gas-temperature required by the patient. By concurrently equilibrating the oxygen consumption and the carbon dioxide gas evolution at a required precise blood temperature, undesirable gas bubble evolution resulting from lowered gas solubility at higher random blood temperature excursions are minimized, lowering the potentiality of gas embolism.
SUMMARY OF THE INVENTION The integral blood oxygenator and heat exchanger combination operationally insures that the extracorporeal blood is equilibrated with oxygen gas at a patients required blood temperature. Multiple, small diameter oxygenator tubes having equal tubular lengths, are disposed in a patterned parallel array, having a tubular array base terminus and a tubular array top terminus. A base header plate secures thepatterned array of oxygenator tubes at the array base terminus providing a fluid-impervious base plate terminus for the tube array. A top header plate secures the patterned array of oxygenator tubes at the array top terminus, providing a fluid-impervious top plate terminus for the array of tubes. A tubular boundary case secures the base header plate, the top header plate and the multiple oxygenator tubes in a tube exchanger configuration. One heat transfer fluid conduit is conductively secured to the boundary case adjacent to the base header plate. A second heat transfer fluid conduit is secured to the boundary case, and conducts heat transfer fluid adjacent to the top header plate. A two-phase blood-oxygen-gas mixture circulates upwardly inside the multiple oxygenator tubes and a precisely temperature controlled heat transfer fluid circulates exteriorly to the oxygenator tubes inside the tube exchanger configuration. The second heat transfer fluid conduit is conductively secured to the boundary case, disposed to conduct heat transfer fluid in the interior of the case adjacent to the top header plate. The two-phase blood-oxygen flow in the oxygenator can be formed with a minimum of turbulence and damage to the formed elements of the blood by providing an annular blood inlet channel orfice. An inlet blood tubular manifold has a first blood manifold terminus coaxially secured to the blood oxygenator volume boundary case. The first blood manifold terminus has a diameter not less than the external diameter of the boundary case. The blood manifold has a base plate securing the second blood manifold terminus, the plate providing a locus of a multiplicity of gas injection apertures normally disposed through the base plate. A diffusion tube is secured concentrically to the first blood manifold terminus at a first tube terminus of the diffusion tube, the blood diffusion tube having a second tube terminus disposed a spaced small interval from the base plate. The diffusion tube has an internal diameter at least equal to the base plate locus of the multiplicity of gaseous injection apertures, providing an annular blood inlet orfice. By providing a serrated second tube terminus on the blood diffusion tube, further control of the blood input is provided.
Other objects and advantages of this invention are taught in the following description and claims.
BRIEF DESCRIPTION OF THE DRAWINGS A description of this invention is to be read in conjunction with the following drawings:
FIG. 1 is an elevation perspective partial sectional view of the integral blood oxygenator and heat exchanger.
FIG. 2 is a sectional view through 22 of FIG. 1. FIG. 3 is a sectional view through 3-3 of FIG. 1. FIG. 4 is a sectional view through'44 of FIG. 1. FIG. 5 is a sectional view through 5--5 of FIG. 1. FIG. 6 is a sectional view through 6-6 of FIG. 1. FIG. 7 is an encircling view through 7-7 of FIG. 1. FIG. 8 is a further improvement, in a section view similar to the sectional view of FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENT An extra-corporeal integral blood oxygenator and temperature controller 10 is shown in elevational sectional perspective view in FIG. 1, and is suitable for rapidly absorbing oxygen gas in the patients circulating blood, replacing the carbon dioxide. Multiple oxygenator tubes 11, having equal .tubular lengths l2 and small tubular diameters 13, are disposed in a patterned parallel array 14, as further illustrated in FIG. 3. The tubular array 14 has a tubular array base terminus l5 and a tubular array top terminus 16. A base header plate 17 secures the patterned tubular array 14 of oxygenator tubes 11 at the array base terminus l5, providing a fluid-impervious plate terminus for the array of tubes 14. A top header plate 18 secures the patterned array 14 of oxygenator tubes 11 at the array top terminus 16, providing a fluid-impervious plate terminus for the array of tubes 14. A tubular boundary case 19 secures the base header plate 17, the top header plate 18, and the multiple oxygenator tubes 11 in a tubular exchanger configuration 20. At least one heat transfer fluid conduit 21 is conductively secured to the boundary case 19 adjacent to the base header plate 17. At least one heat transfer fluid conduit 22 is conductively secured to the boundary case 19, disposed to conduct heat transfer fluid from the interior of the tubular boundary case 19 adjacent to the top header plate 18. At least one heat transfer fluid tube 24 is conductively secured to the heat transfer fluid manifold 23, the at least one heat transfer fluid tube 24 conductively terminating adjacent to but spaced from the top header plate 18, thus providing a conduit means for the flow 64 of heat transfer agent through the tubular exchanger configuration 20, from the heat transfer conduit 21 to the heat transfer conduit 22. Obviously the heat transfer conduit 21 can be used as the heat transfer fluid inlet, and the heat transfer conduit 22 can be used as the heat transfer conduit outlet, or vice versa; the conduit 22 can be used as an inlet and 21 as the outlet. As shown in FIG. 1 and in further detail in FIG. 7, the heat transfer fluid manifold 23 provides a conductive header fitting for the one or more heat transfer fluid tubes 24, together comprising the composite heat transfer conduit means 25.
An inlet blood tubular manifold 26 has a first blood manifold terminus 27 which is coaxially secured to the tubular boundary case 19, adjacent to the base header plate 17. As shown in FIGJI, the blood manifold 26 fits snugly around the external diameter of the boundary case 19, the first blood manifold terminus 27 having an inside diameter 28 precisely snugly greater than the boundary case 19. The blood manifold 26 has a base plate 29 forming the second blood manifold terminus. The base plate 29 provides a locus 36 of a multiplicity of gas injection apertures 30 normally disposed through the base plate, as shown in greater detail in the cross sectional view of FIG. 2. The remainder of the bloodoxygen mixer combination is a blood diffusion tube 31 secured concentrically to the first blood manifold terminus 27 at a first tube terminus 32 of the first diffusion tube 31. The diffusion tube 31 has a second tube terminus 33 disposed a small spaced interval 34 from the base plate 29. The diffusion tube 31 has an internal diameter 35 at least equal to the locus 36 of the multiplicity of gas injection apertures 30 in the base plate 29, providing an annular blood inlet orifice 63, typically having an 0.020 inch wide spaced interval 34.
A pair of blood inlet conduits 37 are shown in FIGS. 2 and 3 in plan view, and in FIG. 1 in elevation. More than one blood inlet conduit 37 is provided in the event of an emergency stoppage of one conduit, preventing catastrophic stoppage of blood flow to the patient. The conduits are secured to the blood inlet manifold 26. An
' oxygen gas manifold 38 is concentrically secured to the blood manifold second terminus, adjacent to the base plate 29. An oxygen gas inlet conduit 39 is conductively secured to the gas manifold 38. Plural support ribs 40 are shown disposed in the oxygen gas storage aperture 62, providing rigidity for the manifold 38, adding structural strength to the manifold when the blood oxygenator l0 isused in a vertical standing position. FIG. 1, taken together with FIGS. 2 and 3 illustrate the blood inlet flow 41 through the pair of blood inlet conduits 37. The oxygen gas inlet flow 42 is shown introduced through the gas inlet conduit 39.
As further illustrated in FIGS. 1, 2 and 3, the blood inlet annular channel 43 is conductively filled with pa- 1 tient blood which flows through the annular blood inlet orifice 63 into the blood-oxygen mixing aperture 44. The oxygen stream 42 flows through the oxygen gas storage aperture 62, through the multiple gas injection apertures 30 in the base plate 29, forming in the bloodoxygen mixing aperture 44 a two-phase mixture of oxygen and blood. The two-phase mixture of blood and oxygen is earlier taught and disclosed in detail in the prior art references cited above, which are by reference made a teaching of this invention. The two-phase blood-oxygen-carbon dioxide gas mixture changing composition is lifted up through the multiple oxygenator tubes 11 of the tubular array 14, emerging at the tube array top terminus 16 as an oxygenated blood-gas foam 45. Concurrently with the oxygen absorptioncarbon dioxide gas evolution exchange process which is occurring in the multiple oxygenator tubes 11, there is a heat transfer process. The oxygenated blood-gas foam 45, and its predecessor inside the oxygenator tube 11, exchanges energy with the heat transfer fluid typical flow 64 on the exterior of the tube 11 in the tubular exchanger configuration 20. The heat transfer fluid flow channel 46 vents the plural heat transfer fluid tubes 24, conducting the heat transfer fluid through the conduit 22 to the outside of the blood oxygenator 10. FIGS. 4 and 7 illustrate in detail view the configuration of the fluid conduit means 25 comprising the heat transfer fluid manifold 23 and the plural heat transfer fluid tubes 24, in relationship to the multiple oxygenator tube 11.
A blood defoaming chamber volume 47 is disposed above the tubular exchanger configuration 20. The blood-gas foam 45 venting from the oxygenator tubes 11 collapses in the volume 47, as the foam 45 contacts the defoaming sponge envelope 48 which surrounds the defoaming chamber volume 47. As taught in-the prior cross references listed above, the defoaming sponge envelope is treated with a very thin film of a silicone composition which is known to collapse blood foam, without adding toxic chemical constitutents to the blood stream. The pair of collars 49", together with a pair of compression rings 50, seal the sponge envelope 48 to the case 19, thus requiring the blood-gas foam composition 45 to penetrate the envelope 48 and hence to become degassed. The degassed blood collects in the blood reservoir 65. The tubular blood reservoir 'case 51 has a reservoir base closure 52 secured thereto, having a pair of oxygenated blood outlets 53, shown in FIGS. 1, 4 and 5. When the blood oxygenator l0is operated in the normally vertical upright position, the defoamed blood will collect in the blood reservoir 65 and exit through one or both of the pair of blood outlets 53, as indicated by the blood flow 54.
The tubular blood reservoir case 51 has a reservoir top closure 55 which is shown in more detail in FIG. 6. The top closure 55 has plural gasvent apertures 56 alternately disposed in the closure 55, allowing the venting of exchanged carbon dioxide gas and the excess oxygen gas, along with water vapor, from the blood oxygenator 10. The indexing pins 57 areshown molded in the reservoir top closure 55, providing securing meansv for centrally indexing and holding the sponge envelope 48. Apertures 59, 60 and 61 are disposed in the top closure 55, the reservoir base closure 52, and the blood manifold 26 respectively. The apertures 59, 60 and 61 are sized and shaped for acceptance of the Luer fitting of a hypodermic syringe, providing apertures for the introduction of medicament that may be required. The apertures may be closed with conventional rubber plug closures. I
A further modification illustrated in FIG. 8 provides an annular blood inlet serrated orfice. As illustrated in FIG. 8, the further two-phase blood oxygen mixer combination improvement has most of the components as illustrated in FIGS. 1, 2 and 3 and a serrated diffusion tube 80. The serrated diffusion tube 80 has a first tube terminus 81 secured to a header plate 17 and a second tube terminus 82 disposed a spaced interval 83 from the base plate 29. The spaced interval 83 between the second tube terminus 82 and the base plate 29 can be that value which provides a suitable serrated annular blood inlet orfice 84 between the diffusion tube 31 and are physiologically compatible with blood, doing a minimum of damage to the patients extra-corporeal blood circulation. Typically polycarbonate, polypropylene, polyethylene and selected plasticized polyvinyl chloride compositions can be utilized. Structural com ponents such as the reservoir top closure 55, the reservoir base closure 52, the base header plate 17, the top header plate 18, the blood inlet manifold 26 and the oxygen gas manifold 38 are injection molded components. The tubular components 51, 19 and 11 can be extruded tubing. It is important for the-patients safety that the components of the blood oxygenator and temperature controller 10 be assembled and secured together by the appropriate fluid-impervious joints as are required. The components can be secured together by cementing'with suitable compatible cement,,by ultrasonic sealing of the chemically compatible components, or by dielectric sealing as is suitable. Specific attention must be given to the selection of chemically compatible and physically compatible plastics throughout the component assemblage, to provide for long term stability of the apparatus 10 in storage and for safety in its usage.
By utilizingthe flexural rigidity of the polycarbonate plastic it is possible to fabricate a tubular exchanger configuration 20 utilizing multiple polycarbonate oxygenator tubes 11 together with the tubular boundary case 19 and a pair of header plates 17 and 18. Typically polycarbonate oxygenator tubes 11 having a tube internal diameter 13 of 0.270 inch, a wall thickness of 0.015 inch, and a 14 inch length, has a collapse pressure of 89 lbs psi. A similar polypropylene tube having 0.282 inch internal diameter, a 0.009 inch wall, and a 14 inch length has a collapse pressure of approximately [2 psi. Since the polypropylene has about per cent of the thermal conductivity of the polycarbonate, the polycarbonate tubing wall of 0.0 l 5 inch thickness has the same thermal conductivity as the 0.009 inch thick polypropylene tubing wall. It is desirable to use a thicker polycarbonate oxygenator tube, insuring safety from wall collapse due to fluid pressure from a typical water heat transfer fluid which can be circulated through the tubular exchange configuration 20.
The extra-corporeal circulation of patient blood carries inherent hazards, as the loss of circulation for a few seconds can be catastrophic for the patient. The patients blood should circulate a minimum of time outside of the patients body and the blood should be maintained at the temperature required by the appropriate surgical procedure. By concurrently equilibrating the oxygen consumption and the carbon dioxide gas evolution at a precisely controlled blood temperature, the potentiality of saturating the blood with oxygen and carbon dioxide at a lower blood temperature than is required by the surgical procedure can be eliminated. The elimination of the excessive oxygen consumption and carbon dioxide gas evolution can further eliminate the potential for undesired gas bubble evolution at higher blood temperature excursions, resulting in bubble evolution forming a gas embolism in the patients body. Typically by utilizing 33 oxygenator tubes .11, having internal diameters 13 of 0.270 inches, and a 14 inch length, blood flow rates up to 7,500 ml/min can be oxygenated, utilizing oxygen-blood flow ratios of typically'from 1:1 to 4:1. By plugging one or more of the oxygenator tubes 11, the same oxygenator size can be utilized for oxygenating of patients ranging in size from juveniles to adults;
Many modifications and variations in the improvement in the integral blood oxygenator and heat exchanger apparatus can be made in the light of our teaching. It is therefore understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
We claim:
1. An extra-corporeal blood oxygenator and blood temperature controller suitable for exchanging oxygen for carbon dioxide in patient circulating blood, wherein the improvement combination comprises:
a multiplicity of small diameter, oxygenator tubes,
disposed in an equal length patterned parallel tubular array, said tubular array ranging from 4 to 24 inches long and said tubes ranging from onesixteenth to five-sixteenths inches in a single tube diameter, said tubular array having a base terminus and a top terminus;
a base header plate securing said patterned array of oxygenator tubes at said array base terminus, providing a fluid impervious plate terminus for said array of tubes;
a top header plate securing said patterned array of oxygenator tubes at said array top terminus, providing a fluid impervious plate terminus for said array of tubes;
a tubular boundary case securing said base header plate, said top header plate and said multiple oxygenator tubes in'a tube exchanger configuration;
a pair of heat transfer fluid conduits conductively secured to said boundary case adjacent to said base header plate, one said conduit draining said boundary case adjacent to said base header plate, and the second said conduit extending inside and terminating insidesaid boundary-case adjacent to said top header plate, draining said boundary case; and
mixing means providing two-phase blood-oxygen gas mixture flow into said blood oxygenator adjacent to said tubular array base terminus;
whereby a two-phase blood-oxygen-carbon dioxide gas mixture circulates inside said multiple oxygenator tubes, and a precisely temperature controlled heat transfer fluid circulates exteriorly to the oxygenator tubes inside the tube exchanger configuration.
2. An extra-corporeal blood oxygenator and blood temperature controller suitable for exchanging oxygen for carbon dioxide in patient circulating blood, wherein the improvement combination comprises:
a multiplicity of small diameter, oxygenator tubes,
disposed in an equal length patterned parallel tubular array, said tubular array ranging from 4 to 24 inches long and said tubes ranging from onesixteenth to five-sixteenths inches in a single tube diameter, said tubular array having a base terminus and a top terminus;
a base header plate securing said patterned array of oxygenator tubes at said array base terminus, providing a fluid impervious plate terminus for said array of tubes;
a top header plate securing said patterned array of oxygenator tubes at said array to terminus, providing a fluid impervious plate terminus for said array of tubes;
a tubular boundary case securing said base header plate, said top header plate and said multiple oxygenator tubes in an exchanger configuration;
a pair of heat transfer fluid conduits conductively se- 6 ond said conduit extending inside and terminating inside said boundary case adjacent to said top header plate, draining said boundary case;
an inlet blood tubular manifold having a first blood manifold terminus coaxially secured to said boundary case adjacent to said base header plate, said first blood manifold terminus having an internal di ameter at least equal to the internal diameter of said boundary case, said blood manifold having a base plate securing the second blood manifold terminus, providing a multiplicity of gas injection apertures normally disposed through said base plate;
an inlet oxygen gas manifold having a first gas manifold terminus concentrically secured to said blood manifold adjacent to said blood manifold base plate, said first gas manifold terminus having an internal diameter equal to the diameter of said base plate, a closure sealing the second gas manifold terminus opposite said blood manifold base plate;
at least one blood inlet conduit conductively secured to said blood manifold; and,
at least one oxygen gas inlet conduit conductively secured to said oxygen gas manifold;
whereby a two-phase blood-oxygen-carbon dioxide gas mixture circulates inside said multiple oxygenator tubes, and a precisely temperature controlled heat transfer fluid circulates exteriorly to the oxygenator tubes inside the tube exchanger configuration.
3. An extra-corporeal blood oxygenator and blood temperature controller suitable for exchanging oxygen for carbon dioxide in patient circulating blood, wherein the improvement combination comprises:
viding a fluid impervious plate terminus for said 7 array of tubes;
a tubular boundary case securing said base header plate, said top header plate and said multiple oxygenator tubes in an exchanger configuration;
at least one heat transfer fluid conduit conductively secured to said boundary case adjacent to said base header plate;
at least one heat transfer fluid conduit means conductively secured to said boundary case adjacent to said top header plate;
an inlet blood tubular manifold having a first blood manifold terminus coaxially secured to said boundary case adjacent to said base header plate, said first blood manifold terminus having an inside diameter at least equal to the external diameter of said boundary case, said blood manifold having a base plate securing the second blood manifold terminus, providing a locus of a multiplicity of gas injection apertures normally disposed through said base plate; and,
a blood diffusion tube secured concentrically to said first blood manifold terminus at a first tube terminus of said diffusion tube, said blood diffusion tube whereby a two-phase blood-oxygen-gas mixture circulates inside the multiple oxygenator tubes and a precisely temperature controlled heat transfer fluid circulates exteriorly to the oxygenator tubes inside the tube exchanger configuration.

Claims (2)

  1. 2. An extra-corporeal blood oxygenator and blood temperature controller suitable for exchanging oxygen for carbon dioxide in patient circulating blood, wherein the improvement combination comprises: a multiplicity of small diameter, oxygenator tubes, disposed in an equal length patterned parallel tubular array, said tubular array ranging from 4 to 24 inches long and said tubes ranging from one-sixteenth to five-sixteenths inches in a single tube diameter, said tubular array having a base terminus and a top terminus; a base header plate securing said patterned array of oxygenator tubes at said array base terminus, providing a fluid impervious plate terminus for said array of tubes; a top header plate securing said patterned array of oxygenator tubes at said array top terminus, providing a fluid impervious plate terminus for said array of tubes; a tubular boundary case securing said base header plate, said top header plate and said multiple oxygenator tubes in an exchanger configuration; a pair of heat transfer fluid conduits conductively secured to said boundary case adjacent to said base header plate, one said conduit draining said boundary case adjacent to said header plate, and the second said conduit extending inside and terminating inside said boundary case adjacent to said top header plate, draining said boundary case; an inlet blood tubular manifold having a first blood manifold terminus coaxially secured to said boundary case adjacent to said base header plate, said first blood manifold terminus having an internal diameter at least equal to the internal diameter of said boundary case, said blood manifold having a base plate securing the second blood manifold terminus, providing a multiplicity of gas injection apertures normally disposed through said base plate; an inlet oxygen gas manifold having a first gas manifold terminus concentrically secured to said blood manifold adjacent to said blood manifold base plate, said first gas manifold terminus having an internal diameter equal to the diameter of said base plate, a closure sealing the second gas manifold terminus opposite said blood manifold base plate; at least one blood inlet conduit conductively secured to said blood manifold; and, at least one oxygen gas inlet conduit conductively secured to said oxygen gas manifold; whereby a two-phase blood-oxygen-carbon dioxide gas mixture circulates inside said multiple oxygenator tubes, and a precisely temperature controlled heat transfer fluid circulates exteriorly to the oxygenator tubes inside the tube exchanger configuration.
  2. 3. An extra-corporeal blood oxygenator and blood temperature controller suitable for exchanging oxygen for carbon dioxide in patient circulating blood, wherein the improvement combination comprises: multiple, small diameter oxygenator tubes, having equal tubular lengths disposed in a patterned parallel array having a tubular array base terminus and a tubular array top terminus; a base header plate securing said patterned array of oxygenator tubes at said array base terminus, providing a fluid impervious plate terminus for said array of tubes; a top header plate securing said patterned array of oxygenator tubes at said array top terminus, providing a fluid impervious plate terminus for said array of tubes; a tubular boundary case securing said base header plate, said top header plate and said multiple Oxygenator tubes in an exchanger configuration; at least one heat transfer fluid conduit conductively secured to said boundary case adjacent to said base header plate; at least one heat transfer fluid conduit means conductively secured to said boundary case adjacent to said top header plate; an inlet blood tubular manifold having a first blood manifold terminus coaxially secured to said boundary case adjacent to said base header plate, said first blood manifold terminus having an inside diameter at least equal to the external diameter of said boundary case, said blood manifold having a base plate securing the second blood manifold terminus, providing a locus of a multiplicity of gas injection apertures normally disposed through said base plate; and, a blood diffusion tube secured concentrically to said first blood manifold terminus at a first tube terminus of said diffusion tube, said blood diffusion tube having a second tube terminus disposed a small spaced interval from said base plate, said first diffusion tube having an internal diameter at least equal to that of the base plate locus of said multiplicity of gas injection apertures, providing an annular blood inlet orifice; whereby a two-phase blood-oxygen-gas mixture circulates inside the multiple oxygenator tubes and a precisely temperature controlled heat transfer fluid circulates exteriorly to the oxygenator tubes inside the tube exchanger configuration.
US00240054A 1972-03-31 1972-03-31 Integral blood oxygenator and heat exchanger Expired - Lifetime US3768977A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24005472A 1972-03-31 1972-03-31

Publications (1)

Publication Number Publication Date
US3768977A true US3768977A (en) 1973-10-30

Family

ID=22904911

Family Applications (1)

Application Number Title Priority Date Filing Date
US00240054A Expired - Lifetime US3768977A (en) 1972-03-31 1972-03-31 Integral blood oxygenator and heat exchanger

Country Status (7)

Country Link
US (1) US3768977A (en)
JP (1) JPS5739778B2 (en)
CA (1) CA1005304A (en)
DE (1) DE2314644C3 (en)
FR (1) FR2178922B3 (en)
GB (1) GB1419551A (en)
IT (1) IT981809B (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058369A (en) * 1974-01-28 1977-11-15 Bentley Laboratories, Inc. Oxygenator
JPS5340698U (en) * 1976-09-13 1978-04-08
US4158693A (en) * 1977-12-29 1979-06-19 Texas Medical Products, Inc. Blood oxygenator
US4160801A (en) * 1977-10-19 1979-07-10 Surgikos Heat exchanger-blood oxygenator combination
FR2416039A1 (en) * 1978-02-02 1979-08-31 Gambro Ab DEVICE FOR THE DIFFUSION OF SUBSTANCES BETWEEN TWO FLUIDS AND SIMULTANEOUS HEATING OF AT LEAST ONE OF THESE FLUIDS
US4177816A (en) * 1978-03-27 1979-12-11 Sci-Med Life Systems, Inc. Heat exchanger for blood
US4180896A (en) * 1977-12-29 1980-01-01 Texas Medical Products, Inc. Blood oxygenator assembly method
US4188360A (en) * 1978-09-08 1980-02-12 Japan Medical Supply Co., Ltd. Artificial lung with a built-in heat exchanger
FR2446642A1 (en) * 1979-01-16 1980-08-14 Baxter Travenol Lab APPARATUS FOR OXYGENING BLOOD
US4228125A (en) * 1978-06-20 1980-10-14 Cobe Laboratories, Inc. Gas exchange apparatus
US4261951A (en) * 1978-03-02 1981-04-14 Dsd "Metalchim" Apparatus for blood oxygenation
FR2468376A1 (en) * 1979-11-06 1981-05-08 Bard Inc C R BLOOD OXYGENATOR
US4407777A (en) * 1981-07-22 1983-10-04 Wilkinson William R Blood oxygenator
US4440723A (en) * 1981-07-10 1984-04-03 Bentley Laboratories, Inc. Blood oxygenator
US4568367A (en) * 1982-11-15 1986-02-04 Shiley Incorporated Blood defoamer with improved liquid seal
US4585056A (en) * 1984-04-18 1986-04-29 Norton Company Heat exchanger
WO1987001946A1 (en) * 1985-09-30 1987-04-09 Regents Of The University Of Minnesota Appratus and method for rapid infusion of circulatory supportive fluids
US4720462A (en) * 1985-11-05 1988-01-19 Robert Rosenson Culture system for the culture of solid tissue masses and method of using the same
US4722829A (en) * 1986-03-24 1988-02-02 Giter Gregory D Blood oxygenator
US4818447A (en) * 1987-04-27 1989-04-04 Kiyomoto Tekko Kabushiki Kaisha Apparatus for mass transferring between phases different from each other
US4895683A (en) * 1987-04-27 1990-01-23 Kiyomoto Tekko Kabushiki Kaisha Apparatus for mass transferring between phases different from each other
US5108372A (en) * 1990-12-12 1992-04-28 Houston Advanced Research Center Intravenous fluid temperature regulation method and apparatus
US5195976A (en) * 1990-12-12 1993-03-23 Houston Advanced Research Center Intravenous fluid temperature regulation method and apparatus
US5578267A (en) * 1992-05-11 1996-11-26 Minntech Corporation Cylindrical blood heater/oxygenator
WO2000038818A1 (en) 1998-12-30 2000-07-06 Cardiovention, Inc. Integrated extracorporeal blood oxygenator, pump and heat exchanger system
US6224829B1 (en) 1998-12-30 2001-05-01 Cadiovention, Inc. Integrated blood oxygenator and pump system having means for reducing fiber breakage
US6368557B1 (en) 1998-12-30 2002-04-09 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing manifold flooding
US6379618B1 (en) * 1998-12-30 2002-04-30 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing microbubble generation
US6454999B1 (en) 1998-12-30 2002-09-24 Cardiovention, Inc. Integrated blood pump and oxygenator system having extended blood flow path
US20050077228A1 (en) * 2003-10-03 2005-04-14 Mri S.R.L. Societa Unipersonale Blood treatment machine and unit
US20060116743A1 (en) * 2002-08-09 2006-06-01 Peter Gibson Fixation system for an implantable medical device
US20080243045A1 (en) * 2003-10-03 2008-10-02 Medical Service S.R.L Apparatus and method for the treatment of blood
US20110264170A1 (en) * 2002-08-09 2011-10-27 Peter Gibson Cochlear implant component having a unitary faceplate
US8777832B1 (en) 2013-03-14 2014-07-15 The University Of Kentucky Research Foundation Axial-centrifugal flow catheter pump for cavopulmonary assistance
US8906300B2 (en) 2011-08-11 2014-12-09 The University Of Kentucky Research Foundation Even perfusion pump-integrated blood oxygenator
US20150231322A1 (en) * 2014-02-17 2015-08-20 Patrick Richard Spearman Systems And Methods For Treating Blood
US10780258B2 (en) 2015-03-10 2020-09-22 Life Warmer Inc. Thermic infusion system
US10848883B2 (en) 2011-05-24 2020-11-24 Cochlear Limited Convertibility of a bone conduction device
US10946134B2 (en) 2014-02-17 2021-03-16 Humanity Life Extension Llc Systems and methods for treating blood
US11033673B2 (en) 2014-02-17 2021-06-15 Humanity Life Extension Llc Systems and methods for treating blood
US11089413B2 (en) 2012-08-28 2021-08-10 Cochlear Limited Removable attachment of a passive transcutaneous bone conduction device with limited skin deformation
US11147907B2 (en) 2018-12-10 2021-10-19 Humanity Life Extension Llc Systems and methods for treating blood
US11219709B2 (en) 2018-12-10 2022-01-11 Humanity Life Extension Llc Systems and methods for treating blood
US11707580B2 (en) 2017-09-08 2023-07-25 Life Warmer Inc. Thermic infusion system dry tube detector
US11889272B2 (en) 2011-10-12 2024-01-30 Cochlear Limited Implantable medical device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158625A (en) * 1974-11-19 1976-05-22 Mitsubishi Electric Corp
US5217689A (en) * 1989-10-26 1993-06-08 Baxter International Inc. Blood oxygenation system
DE102008045621A1 (en) 2008-09-03 2010-03-04 Novalung Gmbh Gas transfer device and use of a structured membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228456A (en) * 1965-03-01 1966-01-11 Du Pont Method and apparatus employing hollow polyfluorinated plastic filaments for heat exchange
US3291568A (en) * 1964-04-06 1966-12-13 Richard D Santter Cardio-pulmonary by-pass oxygenator unit
US3437450A (en) * 1965-01-04 1969-04-08 James M Greenwood Hyperbaric heart pump oxygenator with hypothermia
US3493347A (en) * 1967-12-12 1970-02-03 Hazen F Everett Blood oxygenator
US3547591A (en) * 1968-10-16 1970-12-15 Jose C Torres Bubble film oxygenator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US321568A (en) * 1885-07-07 Means for closing cans

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291568A (en) * 1964-04-06 1966-12-13 Richard D Santter Cardio-pulmonary by-pass oxygenator unit
US3437450A (en) * 1965-01-04 1969-04-08 James M Greenwood Hyperbaric heart pump oxygenator with hypothermia
US3228456A (en) * 1965-03-01 1966-01-11 Du Pont Method and apparatus employing hollow polyfluorinated plastic filaments for heat exchange
US3493347A (en) * 1967-12-12 1970-02-03 Hazen F Everett Blood oxygenator
US3547591A (en) * 1968-10-16 1970-12-15 Jose C Torres Bubble film oxygenator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shumway et al., A Mechanical Pump Oxygenator for Successful Cardiopulmonary By Pass; Surgery, Vol. 40, No. 5, 11/56, pp. 831 839. *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058369A (en) * 1974-01-28 1977-11-15 Bentley Laboratories, Inc. Oxygenator
JPS5340698U (en) * 1976-09-13 1978-04-08
US4160801A (en) * 1977-10-19 1979-07-10 Surgikos Heat exchanger-blood oxygenator combination
US4158693A (en) * 1977-12-29 1979-06-19 Texas Medical Products, Inc. Blood oxygenator
US4180896A (en) * 1977-12-29 1980-01-01 Texas Medical Products, Inc. Blood oxygenator assembly method
US4272373A (en) * 1978-02-02 1981-06-09 Gambro Ab Apparatus for the transfer of substances between two fluids with simultaneous tempering of at least one of the fluids
FR2416039A1 (en) * 1978-02-02 1979-08-31 Gambro Ab DEVICE FOR THE DIFFUSION OF SUBSTANCES BETWEEN TWO FLUIDS AND SIMULTANEOUS HEATING OF AT LEAST ONE OF THESE FLUIDS
US4261951A (en) * 1978-03-02 1981-04-14 Dsd "Metalchim" Apparatus for blood oxygenation
US4177816A (en) * 1978-03-27 1979-12-11 Sci-Med Life Systems, Inc. Heat exchanger for blood
US4228125A (en) * 1978-06-20 1980-10-14 Cobe Laboratories, Inc. Gas exchange apparatus
US4188360A (en) * 1978-09-08 1980-02-12 Japan Medical Supply Co., Ltd. Artificial lung with a built-in heat exchanger
FR2446642A1 (en) * 1979-01-16 1980-08-14 Baxter Travenol Lab APPARATUS FOR OXYGENING BLOOD
US4280981A (en) * 1979-11-06 1981-07-28 C. R. Bard, Inc. Blood oxygenator
DE3041616A1 (en) * 1979-11-06 1981-05-14 C.R. Bard, Inc., Murray Hill, N.J. DEVICE FOR ENHANCING BLOOD WITH OXYGEN
FR2468376A1 (en) * 1979-11-06 1981-05-08 Bard Inc C R BLOOD OXYGENATOR
US4440723A (en) * 1981-07-10 1984-04-03 Bentley Laboratories, Inc. Blood oxygenator
US4407777A (en) * 1981-07-22 1983-10-04 Wilkinson William R Blood oxygenator
US4568367A (en) * 1982-11-15 1986-02-04 Shiley Incorporated Blood defoamer with improved liquid seal
US4585056A (en) * 1984-04-18 1986-04-29 Norton Company Heat exchanger
WO1987001946A1 (en) * 1985-09-30 1987-04-09 Regents Of The University Of Minnesota Appratus and method for rapid infusion of circulatory supportive fluids
US4705508A (en) * 1985-09-30 1987-11-10 Regents Of The University Of Minnesota Apparatus and method for rapid infusion of circulatory supportive fluids
US4720462A (en) * 1985-11-05 1988-01-19 Robert Rosenson Culture system for the culture of solid tissue masses and method of using the same
US4722829A (en) * 1986-03-24 1988-02-02 Giter Gregory D Blood oxygenator
US4818447A (en) * 1987-04-27 1989-04-04 Kiyomoto Tekko Kabushiki Kaisha Apparatus for mass transferring between phases different from each other
US4895683A (en) * 1987-04-27 1990-01-23 Kiyomoto Tekko Kabushiki Kaisha Apparatus for mass transferring between phases different from each other
US5108372A (en) * 1990-12-12 1992-04-28 Houston Advanced Research Center Intravenous fluid temperature regulation method and apparatus
US5195976A (en) * 1990-12-12 1993-03-23 Houston Advanced Research Center Intravenous fluid temperature regulation method and apparatus
US5578267A (en) * 1992-05-11 1996-11-26 Minntech Corporation Cylindrical blood heater/oxygenator
US6368557B1 (en) 1998-12-30 2002-04-09 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing manifold flooding
US6224829B1 (en) 1998-12-30 2001-05-01 Cadiovention, Inc. Integrated blood oxygenator and pump system having means for reducing fiber breakage
WO2000038818A1 (en) 1998-12-30 2000-07-06 Cardiovention, Inc. Integrated extracorporeal blood oxygenator, pump and heat exchanger system
US6379618B1 (en) * 1998-12-30 2002-04-30 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing microbubble generation
US6454999B1 (en) 1998-12-30 2002-09-24 Cardiovention, Inc. Integrated blood pump and oxygenator system having extended blood flow path
US6503450B1 (en) 1998-12-30 2003-01-07 Cardiovention, Inc. Integrated blood oxygenator and pump system
US9545522B2 (en) 2002-08-09 2017-01-17 Cochlear Limited Fixation system for an implantable medical device
US11045655B2 (en) 2002-08-09 2021-06-29 Cochlear Limited Fixation system for an implantable medical device
US11439834B2 (en) 2002-08-09 2022-09-13 Cochlear Limited Fixation system for an implantable medical device
US20110264170A1 (en) * 2002-08-09 2011-10-27 Peter Gibson Cochlear implant component having a unitary faceplate
US20060116743A1 (en) * 2002-08-09 2006-06-01 Peter Gibson Fixation system for an implantable medical device
US8774929B2 (en) * 2002-08-09 2014-07-08 Cochlear Limited Cochlear implant component having a unitary faceplate
US10610691B2 (en) 2002-08-09 2020-04-07 Cochlear Limited Fixation system for an implantable medical device
US8070952B2 (en) 2003-10-03 2011-12-06 Medical Service S.R.L. Apparatus and method for the treatment of blood
US20050077228A1 (en) * 2003-10-03 2005-04-14 Mri S.R.L. Societa Unipersonale Blood treatment machine and unit
US20080243045A1 (en) * 2003-10-03 2008-10-02 Medical Service S.R.L Apparatus and method for the treatment of blood
US11546708B2 (en) 2011-05-24 2023-01-03 Cochlear Limited Convertibility of a bone conduction device
US10848883B2 (en) 2011-05-24 2020-11-24 Cochlear Limited Convertibility of a bone conduction device
US11910166B2 (en) 2011-05-24 2024-02-20 Cochlear Limited Convertibility of a bone conduction device
US8906300B2 (en) 2011-08-11 2014-12-09 The University Of Kentucky Research Foundation Even perfusion pump-integrated blood oxygenator
US9468557B2 (en) 2011-08-11 2016-10-18 The University Of Kentucky Research Foundation Compact heat exchanger for veno-venous perfusion-induced systemic hyperthermia systems
US11889272B2 (en) 2011-10-12 2024-01-30 Cochlear Limited Implantable medical device
US11089413B2 (en) 2012-08-28 2021-08-10 Cochlear Limited Removable attachment of a passive transcutaneous bone conduction device with limited skin deformation
US8777832B1 (en) 2013-03-14 2014-07-15 The University Of Kentucky Research Foundation Axial-centrifugal flow catheter pump for cavopulmonary assistance
US9555184B2 (en) 2014-02-17 2017-01-31 Patrick Richard Spearman Systems and methods for treating blood
US11033673B2 (en) 2014-02-17 2021-06-15 Humanity Life Extension Llc Systems and methods for treating blood
WO2015123645A3 (en) * 2014-02-17 2015-11-12 Spearman Patrick Richard Systems and methods for treating blood
US10773012B2 (en) * 2014-02-17 2020-09-15 Humanity Life Extension Llc Systems and methods for treating blood
US20150231322A1 (en) * 2014-02-17 2015-08-20 Patrick Richard Spearman Systems And Methods For Treating Blood
US11344662B2 (en) 2014-02-17 2022-05-31 Humanity Life Extension Llc Systems and methods for treating blood
US10946134B2 (en) 2014-02-17 2021-03-16 Humanity Life Extension Llc Systems and methods for treating blood
US10780258B2 (en) 2015-03-10 2020-09-22 Life Warmer Inc. Thermic infusion system
US11707580B2 (en) 2017-09-08 2023-07-25 Life Warmer Inc. Thermic infusion system dry tube detector
US11219709B2 (en) 2018-12-10 2022-01-11 Humanity Life Extension Llc Systems and methods for treating blood
US11147907B2 (en) 2018-12-10 2021-10-19 Humanity Life Extension Llc Systems and methods for treating blood

Also Published As

Publication number Publication date
JPS5739778B2 (en) 1982-08-23
DE2314644B2 (en) 1979-04-26
DE2314644C3 (en) 1979-12-20
DE2314644A1 (en) 1973-10-04
CA1005304A (en) 1977-02-15
FR2178922B3 (en) 1976-03-19
JPS4915289A (en) 1974-02-09
FR2178922A1 (en) 1973-11-16
IT981809B (en) 1974-10-10
GB1419551A (en) 1975-12-31

Similar Documents

Publication Publication Date Title
US3768977A (en) Integral blood oxygenator and heat exchanger
US3769162A (en) Blood oxygenator and thermoregulator apparatus
US3468631A (en) Blood oxygenator with heat exchanger
US3807958A (en) A bubble oxygenerator including a blood foam return exchanger device
US2972349A (en) Capillary oxygenator
US4138464A (en) Blood oxygenator with integral heat exchanger
US4138288A (en) Method and apparatus for oxygenating and regulating the temperature of blood
US4902476A (en) Heat exchanger and blood oxygenator apparatus
US4376095A (en) Hollow fiber-type artificial lung having enclosed heat exchanger
US4282180A (en) Blood oxygenator
US3764271A (en) Blood oxygenator in combination with a low pressure heat exchanger
US3505686A (en) Device for effecting blood interchange functions
US3175555A (en) Apparatus for treating blood
EP0103899A2 (en) Hollow fiber-type artificial lung
EP0234713A2 (en) Unitary heat exchanger and debubbler for a liquid
US4182739A (en) Blood oxygenator
JPS5843105B2 (en) Extracorporeal blood circuit device
JPH0523791B2 (en)
US4297318A (en) Blood oxygenator
US3769163A (en) Blood oxygenator flow guide
US3256883A (en) Oxygenator with heat exchanger
US4256692A (en) Membrane oxygenator
US4585056A (en) Heat exchanger
US3827860A (en) Blood oxygenation device
US3058464A (en) Oxygenator