US3766381A - Apparatus and method of charge-particle spectroscopy for chemical analysis of a sample - Google Patents

Apparatus and method of charge-particle spectroscopy for chemical analysis of a sample Download PDF

Info

Publication number
US3766381A
US3766381A US00250893A US3766381DA US3766381A US 3766381 A US3766381 A US 3766381A US 00250893 A US00250893 A US 00250893A US 3766381D A US3766381D A US 3766381DA US 3766381 A US3766381 A US 3766381A
Authority
US
United States
Prior art keywords
sample
particles
analyzer
image
image plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00250893A
Inventor
J Watson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kratos Analytical Ltd
Original Assignee
J Watson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Watson filed Critical J Watson
Application granted granted Critical
Publication of US3766381A publication Critical patent/US3766381A/en
Assigned to AEI SCIENTIFIC APPARATUS LIMITED BARTON DOCK ROAD, URMSTON, MANCHESTER reassignment AEI SCIENTIFIC APPARATUS LIMITED BARTON DOCK ROAD, URMSTON, MANCHESTER ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ASSOCIATED ELECTRICAL INDUSTRIES LIMITED
Assigned to KRATOS LIMITED reassignment KRATOS LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE MAR 30,1977 Assignors: AEI SCIENTIFIC APPARATUS LIMITED
Assigned to SPECTROS LIMITED reassignment SPECTROS LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KRATOS LIMITED
Assigned to KRATOS ANALYTICAL LIMITED reassignment KRATOS ANALYTICAL LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SPECTROS LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • H01J49/484Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter with spherical mirrors

Definitions

  • This invention relates to a method and apparatus of charged particle spectroscopy for chemical analysis known as ESCA.
  • ESCA a method and apparatus of charged particle spectroscopy for chemical analysis
  • a sample is irradiated with a suitable source of electromagnetic radiation such as X-rays or ultravoilet. This irradiation causes electrons to be released by the sample.
  • a larger surface area of the sample is irradiated.
  • X-rays are not, at least at the present state of technology, capable of being focused, it has been necessary to use a collimator to absorb all rays other than those traversing a small path if a very small and localized spot is to be analyzed. Relative movement of the collimator and X-ray source with respect to the specimen is necessary to select the desired spot on a specimen that is to be irradiated by this collimated beam.
  • the energy of X-rays is a function of what is known as the inverse square law. That is, the strength of X- radiation in any given plane is reduced, as compared to the energy of the X-rays at the source, in proportion to the square of the distance between the source and the plane.
  • the presence of a collimator between the X-ray source and the specimen obviously prevents the source and the specimen from being positioned as closely together as might otherwise be possible.
  • the needed space between the source and the specimen for a collimator obviously prevents maximization of the energy of the X-rays which strike the specimen; and because of the inverse square law, the resultant energy reduction is substantial. 7
  • the present invention provides apparatus for spectroscopy with charged particles such as electrons or ions. With this invention it is possible to analyze charged particles from a small region of a sample without the necessity for using a fine probe or collimated beam of radiation.
  • an extended area of a sample is irradiated so as to release charged particles from the whole of that extended area.
  • a chargedparticle focusing system is provided for forming a charged-particle image of said extended area in an image plane.
  • An apertured image plate is positioned at the image plane for obstructing the passage of charged particles other than those emitted from a small region.
  • An energy analyzer is provided for analyzing the energies of the particles passing through said image plate.
  • the invention provides, in effect, a virtual microprobe" since the apparatus analyzes only those charged particles originating from the small region.
  • the effect is the same as if the sample were irradiated with a fine probe of radiation to cause particles to be emitted only from that small region.
  • a focusing system of five or more lens elements is provided. This permits the apparatus to be used, with the lens plate removed, as an analyzer of the type described in the referenced application without theneed for repositioning the lens elements.
  • FIG. 1 is a schematic diagram of apparatus for electron spectroscopy for chemical analysis of a specimen arranged to operate in a first mode
  • FIG. 2 illustrates another mode of operation of the apparatus of FIG. 1;
  • FIGS. 3, 4, and 5 illustrate three modifications of the arrangement of FIG. 1.
  • a sample 1 is mounted on a sample holder 1A within a sample chamber, a small portion of which is shown at 7.
  • the sample is positioned for irradiation over an extended area by an X-ray beam-2 emitted from an X-ray target 3.
  • the irradiation of the sample causes the sample to release charged particles in the form'of electrons.
  • Some of the emitted electrons are represented by the dashed lines 4. These electrons pass through an aperture in a source slit 5. The slit and the sample are at ground potential.
  • the system 6 has four cylindrical lens components 7-10.
  • the lens component 7 is formed by a part of the sample chamber, and is also at ground potential.
  • the remaining three components $40, respectively, are separate tubular members. At least some of the elements are electrically insulated from the grounded parts of the spectrometer in each mode of operation.
  • the components 7-10 are tubular elements having axially aligned through passages of cylindrical configuration. As shown, the passages are each of the same diameter. The passages are axially aligned with the slit 5.
  • the electrons 4 are focused to form an electron-optical image of the irradiated area of the specimen 1 in an image plane 11.
  • the image in the plate 11 is magnified, with respect to the sample 1, by a factor substantially greater than unity.
  • An apertured image plate 12 is provided.
  • the upper surface of the image plate 12, as viewed in the drawings, is disposed in the plane 11.
  • the plate is apertured to allow some of the electrons forming the image to pass while obstructing the passage of other of the electrons 4.
  • the image plate permits only those electrons emitted from a small region of the sample 1 to pass.
  • the aperture in the source slit 5, on the other hand, is wide enough to pass electrons from a larger specimen area than are permitted to pass through the image aperture in the plate 12.
  • the angular divergence of the electrons passing through the image plate 12 is restricted by means of an angular aperture 13 situated within the lens component and electrically connected thereto.
  • a hemispherical electrostatic analyzer 14 is provided.
  • the analyzer 14 has an entry plane which coincides with the image plane 11.
  • the analyzer has a pair of concentrically mounted metal hemispheres 15, 16 which are mutually electrically insulated.
  • a voltage is applied between the hemispheres 15, 16 by means of an analyzer voltage supply 17.
  • the outer hemisphere 15 is at the negative potential with respect to the inner hemisphere 16 so as to cause electrons passing through the image plate 12 and entering the space between the hemispheres to follow curved trajectories such as the trajectory represented by the dashed lines 18.
  • the electrons which pass through the analyzer form an electron-optical image of the image aperture in the plate 12 in an exit plane 19 of the analyzer.
  • the crossover point of electrons in the exit plane is diametrically opposite to the image aperture. It will be appreciated that in fact a large number of overlapping images of the aperture are'formed in the exit plane 19, since electrons with greater energies will follow trajectories of greater radius of curvature and therefore be focused in different positions.
  • An exit slit 20 is provided.
  • the exit slit has a surface disposed in the exit plane 19.
  • the exit slit serves to select electrons having energies within a certain limited range of the energy spectrum by blocking the passage of non-focused electrons.
  • the selected electrons are detected by an electron multiplier 21 the output of which produces an output signal proportional to the detected electrons.
  • the voltage applied from the supply 17 between the hemispheres l5, 16 is swept through a pre determined range of values by means of a scan unit 24.
  • the result of sweeping the voltage is to proportionally vary the limited range of electron energies which may pass through the exit slit 20 and thus scan through the energy spectrum of the electrons.
  • the output of the counter 23 is fed to the Y-input of an X-Y recorder 25 such as a strip chart recorder.
  • the X-input is fed from the scan unit 24 and is a signal proportional to the analyzer voltage.
  • the recorder produces a record of the energy spectrum of the electrons from the small region of the sample selected by the image plate 12 and enables the chemical structure of that small region to be analyzed.
  • the small region of the specimen which is examined is a selected region. Region selection is accomplished by moving the specimen 1 and'the image plate 12 relatively. In the preferred arrangement, this relative adjustment is accomplished by moving the lens plate 12.
  • FIG. 1 a mechanism for moving the lens plate along a path paralleling the plane of cross section of FIG. 1 is shown. A comparable mechanism is provided but not shown for shifting lens plate 12 along a path perpendicular to the plane of cross section of FIG. 1.
  • a micrometer feed screw 64 is threaded into a fixed nut 65.
  • the feed screw 64 is connected to a positioning rod 66 by a swivel 67. Threading the micrometer feed screw 64 in and out in the nut 65 shifts the rod 66 to the right or left as viewed in FIG. 1 to shift the aperture to the right or left.
  • a flat, annular fringe field plate 26 is provided.
  • the fringe field plate 26 is positioned near the base of the analyzer 14, and serves to overcome fringe field effects at the edges of the analyzer 14.
  • the fringe plate has a spaced pair of apertures 27, 28 respectively adjacent and aligned with the image plate and the exit slit apertures.
  • the fringe field plate apertures allow electrons to pass into and out of the analyzer.
  • the plate 26 is held at a potential intermediate the potentials of the hemispheres 15, 16.
  • a paramagnetic screen (not shown), of a material such as mu-metal may be provided to enclose the analyzer 14 and at least a part of the lens system 6. The screen serves to reduce magnetic and electromagnetic perturbation of the electron trajectories by stray fields.
  • the electron optical focusing system 6 is arranged to retard the electrons by a factor R, in addition to focusing the electrons to form the image in the plane 11.
  • the lens component 8' is connected, along with component 7, to ground potential.
  • the components 9, 10 are connected together electrically, and are held at a negative potential.
  • the focusing of the electrons to form the image in the plane 11 is effected, in this case, by the electric field within the gap 34 between the lens components 8, 9.
  • the potential of the components 9, 10 is proportional at any given instant to the potential difference between the hemispheres 15, 16 and hence is proportional to the energy of the electrons which are entering-the detector 21 at that instant. Furthermore, the potential difference between the hemispheres 15, 16 is applied in such a way that the central one of the electron paths 18 is at substantially the same potential as the final lens component 11). Thus electrons along the central path do not undergo any further retardations or accelerations after passing through the focusing system 6.
  • the electrons entering the electron multiplier 21 at any point of the spectrum scan are retarded by the predetermined factor R, which is constant throughout the spectrum. This retardation allows the analyzer to have a higher resolving power and/or allows a greater magnification to be used, thereby increasing the sensitivity of the instrument.
  • FIG. 1 shows one way in which the necessary potentials can be applied to the lens components 7-10, the hemispheres 15, 16 and the fringe field plate 26 for the first mode of operation.
  • the voltage from the supply 17 is applied to the hemispheres 15, 16 by way of a potential divider, comprising four resistances 29-32 connected in series in that order between the negative and positive terminals of the supply 17.
  • the positive end of the potential divider is grounded and the negative end is connected to the outer hemisphere 15.
  • the inner hemisphere 16 is connected to the common point of resistances 31 and 32.
  • the lens component 8 is connected to the grounded component 7.
  • the lens components 9, are connected together and to a sliding contact 33 on the resistance 30.
  • the fringe field plate 26 is connected through resistor 70 to the common point of resistors 29, 30.
  • the potentials of both hemispheres, and also the potential difference between the hemispheres vary porportionally to the supply voltage.
  • the potential of the components 9, 10 varies proportionally to the supply voltage and by suitable adjustment of the sliding contact 33 this potential can be made substantially equal to the mean potential of the hemispheres, and therefore to the potential of the central electron path 18.
  • the voltage between the lens components 8 and 9, which is responsible for both the focusing and the retarding effect of the focusing system 6, varies proportionally to the supply voltage.
  • the potential on the fringe field plate 26 is held intermediate the potentials on the hemispheres 15, 16.
  • FIG. 2 a second mode of operation is shown that is suitable for lower energy electrons, e.g. below 100 EV.
  • the electron optical focusing system is arranged substantially not to retard the electrons, but only to act as a lens, focusing the electrons in the plane 11.
  • the potential difference between the hemispheres 15, 16 is derived from a potentiometer 38, connected across the voltage supply 17.
  • the center point of this potentiometer 38 is grounded so that, as
  • the hemispheres are'held at substantially equal potentials respectively; positive and negative with respect to ground.
  • the central electron path 18 through the analyzer is held'at ground potential as the analyzer voltage is swept.
  • the component 10 is connected, along with the component 7, to ground.
  • the focusing of the electrons to form the image in the plane 11 is effected, in this case, by the electric fields within the gap 35 between the lens components 7 and i 3 and within the gap 36 between the lens components 9 and 10.
  • the component 9 may be connected to ground, along with components 7 and 10, instead of to component 3 so that only component 8 is connected to the positive or negative potential. In that case, focusing will be effected by the electric fields within the gap 35 and gap 34 between the components 8, 9. Which of these two alternatives is used will depend on the magnification required.
  • the image plate 12 may be removable, in which case the apparatus may also be operable in a similar manner to that described in the referenced application, i.e. without the virtual microprobe. In that event the position of the gaps 34-36 will require position corrections if the instrument is to be operated-in all of these further modes.
  • the problem of positioning is overcome by replacing the focusing system 6 by an electron optical focusing system comprising five (or more) lens components 41-45.
  • the apparatus can be operated with the image plate 12 in position, in either of the two virtual microprobe modes described above; or with the image plate 12 removed, the instrument of FIG. 3 can be operated in any of the three modes described in the referenced application.
  • the only necessary changes, apart from removing or inserting the image plate 12, to switch between these modes are changes in the applied electrical potentials.
  • the sample may be irradiated by other forms of electromagnetic radiation, such as ultraviolet light, or by other, nonelectromagnetic radiation, such as electrons.
  • the irradiation is, for example, ultraviolet light
  • the electrons emitted from the sample will in general be of low energies, so that in thatcase I rangement of FIG; 1, the'focusing system 6 comprises the analyzer will be operated in the non-retarding mode only.
  • the apparatus can also'be operated, with the image plate 12 removed, in a further mode, not described in the referenced application.
  • this further mode ' the electrons are substantially not retarded, but are focused by the focusing system with a magnification substantially greater than unity.
  • This mode is useful, for example, where a low-energy microprobe, olet, is used.
  • the apparatusso could only operate in one of the two virtual microprobe" modes described above.
  • FIG. .4 in another modification of the arsuch as ultravi only three lens components 51-53; Such an arrangement can operate in the second virtual microprobe mode, in which the focusing means acts to focus the be sufficient to design
  • the focusing system 6 comprises only two lens components 61, 62.
  • Such an arrangement can operate only in the first virtual microprobe mode, in which the focusing system acts both to focus the electrons and also to retard them.
  • the first component 61 is connected to ground
  • the second component 62 is connected to a suitable, negative, retarding potential.
  • the apparatus described herein includes a hemispherical energy analyzer
  • different kinds of energy analyzers may be used.
  • the hemispherical analyzer may be replaced by a cylindrical mirror analyzer such as described in US. Pat. application Ser. No. 236,748 filed Mar. 21, 1972 by John Merza Watson under the title Method and Apparatus for Charged Particle Spectroscopy.
  • Apparatus for charged-particle spectroscopy for chemical analysis of a sample comprising:
  • an irradiation means for irradiating an extended area of a sample 'so as to release charged particles from the whole of that extended area
  • screening means positioned in said image plane for obstructing the passage of a majority of said charged particles forming said image and having an aperture for passing only those charged particles emitted from a minor region of said area;
  • an energy analyzer for analyzing the energies of the particles passing through said aperture in said screening means; and I e. means for relatively moving said screening means and said sample in adirection generally parallel to 4.
  • Apparatus according to claim 1 wherein said means for irradiating the sample comprises an X-ray source.
  • said screening means comprises an apertured plate member which extends in said image plane
  • said moving means includes drive means coupled to said apertured plate member for moving said plate member in a direction parallel to said image plane.
  • said focusing means comprises a lensing system having at least five lens components.
  • a method of chamical analysis of a sample comprising:
  • the step of analyzing the energies of the particles comprises defleeting the particles in an electrostatic field, positioning collector means to collect deflected particles whose energies lie within a limited range of values, and sweeping the strength of said electrostatic field through a range of values so as to sweep said collector means through the energy spectrum of the charged particles.
  • a method according to claim 7 including the further step of retarding the particles before they enter the analyzer whereby they enter the analyzer with lower said image plane to enable charged particles from different minor regions of said said area to pass to said energy analyzer.
  • said focusing meansl comprises at least four mutually electrically insulated lens components through which the particles pass in turn and means for applying respective potentials to said components.
  • Apparatus according to claim '1 wherein said energy analyzer comprises two concentrically mounted, mutually electrically insulated metal hemispheres, and means for applying a voltage between them.
  • a method according to claim 8 including the step of switching between a first mode of operation in which the particles are retarded, whereby they enter the analyzer with lower energies than they had on being re-. leased from said sample, and a second mode of operation, in which the particles are substantially not retarded before they enter the analyzer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An area of a sample is irradiated with electromagnetic radiation so as to release electrons from the area. The electrons are focused to form an image of the sample in an image plane. An apertured image plate is positioned in the image plane to permit only those electrons from a small region of the emitting area to pass. Electrons passing the aperture are energy analyzed. The result is the equivalent of using a microprobe to irradiate the small region. The particles may be retarded before they enter the analyzer, in order to increase sensitivity. A focusing system of five or more lens elements is shown for permitting the analyzer to be used with or without the lens plate without repositioning the system lenses.

Description

APPARATUS AND METHOD OF CHARGE-PARTICLE SPECTROSCOPY FOR CHEMICAL ANALYSIS OF A SAMPLE John Merza Watson, 436 Parrs Wood Rd., Manchester, England Filed: May 8, 1972 Appl. No.: 250,893
Inventor:
Foreign Application Priority Data May 7, 1971 Great Britain 13,344/71 lint. Cl. H01j 37/00 Field of Search 250/495 AE, 49.5 C, 250/419 ME [56] References Cited UNITED STATES PATENTS 3,617,741 11/1971 Siegbahn 250/49.5 HE
US. Cl. ..250/49.5 AE, 250/295, 250/305 [451 on 16-, E973 [57] ABSTRACT An area of a sample is irradiated with electromagnetic radiation so as to release electrons from the area. The electrons are focused to form an image of the sample in an image plane. An apertured image plate is positioned in the image plane to permit only those electrons from a small region of the emitting area to pass. Electrons passing the aperture are energy analyzed. The result is the equivalent of using a microprobe to irradiate the small region. The particles may be retarded before they enter the analyzer, in order to increase sensitivity. A focusing system of five or more lens elements is shown for permitting the analyzer to be used with or without the lens plate without repositioning the system lenses.
10/1940 Sukumlyn 250/495 C 11 Claims, 11 Drawing Figures Scan Recorder Unll' PATENTED DU 16 I973 sum 2 or 2 Fig.3
will I II! Fig. 5
Fig. 4
I APPARATUS AND METHOD OF CHARGE-PARTICLE SPECTROSCOPY FOR CHEMICAL ANALYSIS OF A SAMPLE CROSS REFERENCE TO RELATED APPLICATION This application is related to U. S. application for letters Pat. No. 119,327 filed Feb. 26, 1971 by Brian Noel Green and John Merza Watson, entitled Electron Retardation.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method and apparatus of charged particle spectroscopy for chemical analysis known as ESCA. In this class of analysis, a sample is irradiated with a suitable source of electromagnetic radiation such as X-rays or ultravoilet. This irradiation causes electrons to be released by the sample.
2. Description of the Prior Art With the apparatus of the referenced patent application, emitted electrons pass through an electron lens system into an electrostatic analyzer. The amount a given electron is deflected as it passes through the electrostatic analyzer is a function of the energy of the electron. Analysis is achieved then by scanning the potentials applied to the analyzer so that electrons of differ ing energies are sequentially focused on a detector.
Typically with an ESCA instrument, when the irradiation source is X-rays, a larger surface area of the sample is irradiated. Since X-rays are not, at least at the present state of technology, capable of being focused, it has been necessary to use a collimator to absorb all rays other than those traversing a small path if a very small and localized spot is to be analyzed. Relative movement of the collimator and X-ray source with respect to the specimen is necessary to select the desired spot on a specimen that is to be irradiated by this collimated beam. With this relative movement being required within the high-vacuum conditions in a source chamber, it will be appreciated that it is difficult to be certain just what portion of the sample is being irradiated. In addition, it is difficult to manipulate the device to return to a specific spot afer one has actually moved the beam away. Further, the confinement of the X-ray source, its collimator and the specimen within an evacuated chamber creates mechanical and manipulation problems which are difficult to overcome.
The energy of X-rays is a function of what is known as the inverse square law. That is, the strength of X- radiation in any given plane is reduced, as compared to the energy of the X-rays at the source, in proportion to the square of the distance between the source and the plane. The presence of a collimator between the X-ray source and the specimen obviously prevents the source and the specimen from being positioned as closely together as might otherwise be possible. The needed space between the source and the specimen for a collimator obviously prevents maximization of the energy of the X-rays which strike the specimen; and because of the inverse square law, the resultant energy reduction is substantial. 7
.There have also been proposals to use a fine probe,
known as a microprobe, in the analysis of a small area SUMMARY OF THE INVENTION The present invention provides apparatus for spectroscopy with charged particles such as electrons or ions. With this invention it is possible to analyze charged particles from a small region of a sample without the necessity for using a fine probe or collimated beam of radiation.
According to the present invention, an extended area of a sample is irradiated so as to release charged particles from the whole of that extended area. A chargedparticle focusing system is provided for forming a charged-particle image of said extended area in an image plane. An apertured image plate is positioned at the image plane for obstructing the passage of charged particles other than those emitted from a small region. An energy analyzer is provided for analyzing the energies of the particles passing through said image plate.
The invention provides, in effect, a virtual microprobe" since the apparatus analyzes only those charged particles originating from the small region. The effect is the same as if the sample were irradiated with a fine probe of radiation to cause particles to be emitted only from that small region.
In addition, a focusing system of five or more lens elements is provided. This permits the apparatus to be used, with the lens plate removed, as an analyzer of the type described in the referenced application without theneed for repositioning the lens elements.
Accordingly, it is the principal object of the invention to provide a method and apparatus for charged-particle spectroscopy which permits analysis of charged particles from a small region of a sample.
This and other objects of the invention will become apparent from the following description of various embodiments of the invention, by way of example with reference to the accompanying drawings.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of apparatus for electron spectroscopy for chemical analysis of a specimen arranged to operate in a first mode;
FIG. 2 illustrates another mode of operation of the apparatus of FIG. 1; and,
FIGS. 3, 4, and 5 illustrate three modifications of the arrangement of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, a sample 1 is mounted on a sample holder 1A within a sample chamber, a small portion of which is shown at 7. The sample is positioned for irradiation over an extended area by an X-ray beam-2 emitted from an X-ray target 3.
The irradiation of the sample causes the sample to release charged particles in the form'of electrons. Some of the emitted electrons are represented by the dashed lines 4. These electrons pass through an aperture in a source slit 5. The slit and the sample are at ground potential.
After the electrons pass through slit 5, they enter an electron optical focusing system 6. The system 6 has four cylindrical lens components 7-10. The lens component 7 is formed by a part of the sample chamber, and is also at ground potential. The remaining three components $40, respectively, are separate tubular members. At least some of the elements are electrically insulated from the grounded parts of the spectrometer in each mode of operation. The components 7-10 are tubular elements having axially aligned through passages of cylindrical configuration. As shown, the passages are each of the same diameter. The passages are axially aligned with the slit 5.
In operation, when suitable potentials are applied to the components 8-10, as will be described, the electrons 4 are focused to form an electron-optical image of the irradiated area of the specimen 1 in an image plane 11. The image in the plate 11 is magnified, with respect to the sample 1, by a factor substantially greater than unity.
An apertured image plate 12 is provided. The upper surface of the image plate 12, as viewed in the drawings, is disposed in the plane 11. The plate is apertured to allow some of the electrons forming the image to pass while obstructing the passage of other of the electrons 4. Thus, the image plate permits only those electrons emitted from a small region of the sample 1 to pass. The aperture in the source slit 5, on the other hand, is wide enough to pass electrons from a larger specimen area than are permitted to pass through the image aperture in the plate 12.
The angular divergence of the electrons passing through the image plate 12 is restricted by means of an angular aperture 13 situated within the lens component and electrically connected thereto.
A hemispherical electrostatic analyzer 14 is provided. The analyzer 14 has an entry plane which coincides with the image plane 11. The analyzer has a pair of concentrically mounted metal hemispheres 15, 16 which are mutually electrically insulated. In operation, a voltage is applied between the hemispheres 15, 16 by means of an analyzer voltage supply 17. As will be described in greater detail, the outer hemisphere 15 is at the negative potential with respect to the inner hemisphere 16 so as to cause electrons passing through the image plate 12 and entering the space between the hemispheres to follow curved trajectories such as the trajectory represented by the dashed lines 18.
The electrons which pass through the analyzer form an electron-optical image of the image aperture in the plate 12 in an exit plane 19 of the analyzer. The crossover point of electrons in the exit plane is diametrically opposite to the image aperture. It will be appreciated that in fact a large number of overlapping images of the aperture are'formed in the exit plane 19, since electrons with greater energies will follow trajectories of greater radius of curvature and therefore be focused in different positions.
An exit slit 20 is provided. The exit slit has a surface disposed in the exit plane 19. The exit slit serves to select electrons having energies within a certain limited range of the energy spectrum by blocking the passage of non-focused electrons. The selected electrons are detected by an electron multiplier 21 the output of which produces an output signal proportional to the detected electrons.
In operation, the voltage applied from the supply 17 between the hemispheres l5, 16 is swept through a pre determined range of values by means of a scan unit 24. The result of sweeping the voltage is to proportionally vary the limited range of electron energies which may pass through the exit slit 20 and thus scan through the energy spectrum of the electrons.
The output of the counter 23 is fed to the Y-input of an X-Y recorder 25 such as a strip chart recorder. The X-input is fed from the scan unit 24 and is a signal proportional to the analyzer voltage. Thus, the recorder produces a record of the energy spectrum of the electrons from the small region of the sample selected by the image plate 12 and enables the chemical structure of that small region to be analyzed.
The small region of the specimen which is examined is a selected region. Region selection is accomplished by moving the specimen 1 and'the image plate 12 relatively. In the preferred arrangement, this relative adjustment is accomplished by moving the lens plate 12. In FIG. 1, a mechanism for moving the lens plate along a path paralleling the plane of cross section of FIG. 1 is shown. A comparable mechanism is provided but not shown for shifting lens plate 12 along a path perpendicular to the plane of cross section of FIG. 1.
Referring to FIG. 1, a micrometer feed screw 64 is threaded into a fixed nut 65. The feed screw 64 is connected to a positioning rod 66 by a swivel 67. Threading the micrometer feed screw 64 in and out in the nut 65 shifts the rod 66 to the right or left as viewed in FIG. 1 to shift the aperture to the right or left.
A flat, annular fringe field plate 26 is provided. The fringe field plate 26 is positioned near the base of the analyzer 14, and serves to overcome fringe field effects at the edges of the analyzer 14. The fringe plate has a spaced pair of apertures 27, 28 respectively adjacent and aligned with the image plate and the exit slit apertures. The fringe field plate apertures allow electrons to pass into and out of the analyzer. The plate 26 is held at a potential intermediate the potentials of the hemispheres 15, 16.
It will be appreciated that all the parts of the apparatus through which the electrons pass must be held in a high vacuum. In addition, a paramagnetic screen (not shown), of a material such as mu-metal may be provided to enclose the analyzer 14 and at least a part of the lens system 6. The screen serves to reduce magnetic and electromagnetic perturbation of the electron trajectories by stray fields.
OPERATION In a first mode of operation, the electron optical focusing system 6 is arranged to retard the electrons by a factor R, in addition to focusing the electrons to form the image in the plane 11. As shown in FIG. 1, the lens component 8'is connected, along with component 7, to ground potential. The components 9, 10 are connected together electrically, and are held at a negative potential. l
The focusing of the electrons to form the image in the plane 11 is effected, in this case, by the electric field within the gap 34 between the lens components 8, 9.
The potential of the components 9, 10 is proportional at any given instant to the potential difference between the hemispheres 15, 16 and hence is proportional to the energy of the electrons which are entering-the detector 21 at that instant. Furthermore, the potential difference between the hemispheres 15, 16 is applied in such a way that the central one of the electron paths 18 is at substantially the same potential as the final lens component 11). Thus electrons along the central path do not undergo any further retardations or accelerations after passing through the focusing system 6.
In this mode, the electrons entering the electron multiplier 21 at any point of the spectrum scan, are retarded by the predetermined factor R, which is constant throughout the spectrum. This retardation allows the analyzer to have a higher resolving power and/or allows a greater magnification to be used, thereby increasing the sensitivity of the instrument.
FIG. 1 shows one way in which the necessary potentials can be applied to the lens components 7-10, the hemispheres 15, 16 and the fringe field plate 26 for the first mode of operation. The voltage from the supply 17 is applied to the hemispheres 15, 16 by way of a potential divider, comprising four resistances 29-32 connected in series in that order between the negative and positive terminals of the supply 17. The positive end of the potential divider is grounded and the negative end is connected to the outer hemisphere 15. The inner hemisphere 16 is connected to the common point of resistances 31 and 32. The lens component 8 is connected to the grounded component 7. The lens components 9, are connected together and to a sliding contact 33 on the resistance 30. The fringe field plate 26 is connected through resistor 70 to the common point of resistors 29, 30.
As the output of the supply 17 is varied, the potentials of both hemispheres, and also the potential difference between the hemispheres, vary porportionally to the supply voltage. Similarly, the potential of the components 9, 10 varies proportionally to the supply voltage and by suitable adjustment of the sliding contact 33 this potential can be made substantially equal to the mean potential of the hemispheres, and therefore to the potential of the central electron path 18. In addition, the voltage between the lens components 8 and 9, which is responsible for both the focusing and the retarding effect of the focusing system 6, varies proportionally to the supply voltage. Further, the potential on the fringe field plate 26 is held intermediate the potentials on the hemispheres 15, 16.
Referring now toFIG. 2, a second mode of operation is shown that is suitable for lower energy electrons, e.g. below 100 EV. Here the electron optical focusing system is arranged substantially not to retard the electrons, but only to act as a lens, focusing the electrons in the plane 11.
In this mode, the potential difference between the hemispheres 15, 16 is derived from a potentiometer 38, connected across the voltage supply 17. The center point of this potentiometer 38 is grounded so that, as
a result, the hemispheres are'held at substantially equal potentials respectively; positive and negative with respect to ground. Thus, the central electron path 18 through the analyzer is held'at ground potential as the analyzer voltage is swept. The component 10 is connected, along with the component 7, to ground. The intermediate componentsB, 9.are connected together and to a tapping point on. the potentiometer 38 which can be set at either a positive or a negative potential with respect to ground.
The focusing of the electrons to form the image in the plane 11 is effected, in this case, by the electric fields within the gap 35 between the lens components 7 and i 3 and within the gap 36 between the lens components 9 and 10.
In an unillustrated alternative arrangement to that of FIG. 2, the component 9 may be connected to ground, along with components 7 and 10, instead of to component 3 so that only component 8 is connected to the positive or negative potential. In that case, focusing will be effected by the electric fields within the gap 35 and gap 34 between the components 8, 9. Which of these two alternatives is used will depend on the magnification required.
It will be appreciated that switching between these two modes is effected purely by changing electrical connections to the components 7-10, and the hemispheres 15, 16, without any alteration of the mechanical layout of the analyzer.
The image plate 12 may be removable, in which case the apparatus may also be operable in a similar manner to that described in the referenced application, i.e. without the virtual microprobe. In that event the position of the gaps 34-36 will require position corrections if the instrument is to be operated-in all of these further modes.
Referring now to FIG. 3, in a modification of the arrangement of FIG. 1, the problem of positioning is overcome by replacing the focusing system 6 by an electron optical focusing system comprising five (or more) lens components 41-45. By connecting these components to suitable electrical potentials the apparatus can be operated with the image plate 12 in position, in either of the two virtual microprobe modes described above; or with the image plate 12 removed, the instrument of FIG. 3 can be operated in any of the three modes described in the referenced application. The only necessary changes, apart from removing or inserting the image plate 12, to switch between these modes are changes in the applied electrical potentials.
While in the example described above the sample is irradiated with X-radiation, in alternative embodiments of this invention the sample may be irradiated by other forms of electromagnetic radiation, such as ultraviolet light, or by other, nonelectromagnetic radiation, such as electrons. Where the irradiation is, for example, ultraviolet light, the electrons emitted from the sample will in general be of low energies, so that in thatcase I rangement of FIG; 1, the'focusing system 6 comprises the analyzer will be operated in the non-retarding mode only.
The apparatus can also'be operated, with the image plate 12 removed, in a further mode, not described in the referenced application. In this further mode,' the electrons are substantially not retarded, but are focused by the focusing system with a magnification substantially greater than unity. This mode is useful, for example, where a low-energy microprobe, olet, is used.
For some purposes, it might the apparatusso that it could only operate in one of the two virtual microprobe" modes described above. Referring to FIG. .4, in another modification of the arsuch as ultravi only three lens components 51-53; Such an arrangement can operate in the second virtual microprobe mode, in which the focusing means acts to focus the be sufficient to design Referring to FIG. 5, in a further modification of the arrangement of FIG. 1, the focusing system 6 comprises only two lens components 61, 62. Such an arrangement can operate only in the first virtual microprobe mode, in which the focusing system acts both to focus the electrons and also to retard them. In this case, the first component 61 is connected to ground, and the second component 62 is connected to a suitable, negative, retarding potential.
It should be appreciated that while the apparatus described herein includes a hemispherical energy analyzer, in other forms of the invention different kinds of energy analyzersmay be used. For example, the hemispherical analyzer may be replaced by a cylindrical mirror analyzer such as described in US. Pat. application Ser. No. 236,748 filed Mar. 21, 1972 by John Merza Watson under the title Method and Apparatus for Charged Particle Spectroscopy.
Although the invention has been described in its preferred form, it is to be understood that the present disclosure has been made only by way of example and that numerous changes in details may be made without departing from the spirit and'the scope of the invention as hereinafter claimed.
What is claimed is:
1. Apparatus for charged-particle spectroscopy for chemical analysis of a sample comprising:
a. an irradiation means for irradiating an extended area of a sample 'so as to release charged particles from the whole of that extended area;
b. charged-particle focusing means for forming a charged-particle imageof said extended area of saidsample in an image'plane;
c. screening means positioned in said image plane for obstructing the passage of a majority of said charged particles forming said image and having an aperture for passing only those charged particles emitted from a minor region of said area;
d. an energy analyzer for analyzing the energies of the particles passing through said aperture in said screening means; and I e. means for relatively moving said screening means and said sample in adirection generally parallel to 4. Apparatus according to claim 1 wherein said means for irradiating the sample comprises an X-ray source.
5. An apparatus as defined in claim 1 wherein said screening means comprises an apertured plate member which extends in said image plane, and said moving means includes drive means coupled to said apertured plate member for moving said plate member in a direction parallel to said image plane.
6. The apparatus of claim 5 wherein said focusing means comprises a lensing system having at least five lens components.
7. A method of chamical analysis of a sample comprising:
a. irradiating an extended area of the sample so as to release charged particles from the whole of that extended area;
b. focusing said charged particles to form a charged particle image of said extended area of said sample in an image plane;
0. inserting a screening means having an aperture in said image plane to obstruct the passage of all said charged particles forming said image except those emitted from a minor region of said area;
d. analyzing the energies of the unobstructed particles in an energy analyzer; and
e. relatively moving said screening means and said sample in a direction parallel to said image plane to enable charged particles from different minor regions of said area to pass to said energy analyzer.
8. A method according to claim 7 wherein the step of analyzing the energies of the particles comprises defleeting the particles in an electrostatic field, positioning collector means to collect deflected particles whose energies lie within a limited range of values, and sweeping the strength of said electrostatic field through a range of values so as to sweep said collector means through the energy spectrum of the charged particles.
9. A method according to claim 7 including the further step of retarding the particles before they enter the analyzer whereby they enter the analyzer with lower said image plane to enable charged particles from different minor regions of said said area to pass to said energy analyzer.
2. Apparatus according to claim 1 wherein said focusing meanslcomprises at least four mutually electrically insulated lens components through which the particles pass in turn and means for applying respective potentials to said components.
3. Apparatus according to claim '1 wherein said energy analyzer comprises two concentrically mounted, mutually electrically insulated metal hemispheres, and means for applying a voltage between them.
energies than they had on being released from said sample.
10. A method according to claim 8 including the step of switching between a first mode of operation in which the particles are retarded, whereby they enter the analyzer with lower energies than they had on being re-. leased from said sample, and a second mode of operation, in which the particles are substantially not retarded before they enter the analyzer.
11. A method according to claim 10 wherein said step of switching is performed by altering electrical connections only. v I
II! l i l l

Claims (11)

1. Apparatus for charged-particle spectroscopy for chemical analysis of a sample comprising: a. an irradiation means for irradiating an extended area of a sample so as to release charged particles from the whole of that extended area; b. charged-particle focusing means for forming a chargedparticle image of said extended area of said sample in an image plane; c. screening means positioned in said image plane for obstructing the passage of a majority of said charged particles forming said image and having an aperture for passing only those charged particles emitted from a minor region of said area; d. an energy analyzer for analyzing the energies of the particles passing through said aperture in said screening means; and e. means for relatively moving said screening means and said sample in a direction generally parallel to said image plane to enable charged particles from different minor regions of said said area to pass to said energy analyzer.
2. Apparatus according to claim 1 wherein said focusing means comprises at least four mutually electrically insulated lens components through which the particles pass in turn, and means for applying respective potentials to said components.
3. Apparatus according to claim 1 wherein said energy analyzer comprises two concentrically mounted, mutually electrically insuLated metal hemispheres, and means for applying a voltage between them.
4. Apparatus according to claim 1 wherein said means for irradiating the sample comprises an X-ray source.
5. An apparatus as defined in claim 1 wherein said screening means comprises an apertured plate member which extends in said image plane, and said moving means includes drive means coupled to said apertured plate member for moving said plate member in a direction parallel to said image plane.
6. The apparatus of claim 5 wherein said focusing means comprises a lensing system having at least five lens components.
7. A method of chamical analysis of a sample comprising: a. irradiating an extended area of the sample so as to release charged particles from the whole of that extended area; b. focusing said charged particles to form a charged particle image of said extended area of said sample in an image plane; c. inserting a screening means having an aperture into said image plane to obstruct the passage of all said charged particles forming said image except those emitted from a minor region of said area; d. analyzing the energies of the unobstructed particles in an energy analyzer; and e. relatively moving said screening means and said sample in a direction parallel to said image plane to enable charged particles from different minor regions of said area to pass to said energy analyzer.
8. A method according to claim 7 wherein the step of analyzing the energies of the particles comprises deflecting the particles in an electrostatic field, positioning collector means to collect deflected particles whose energies lie within a limited range of values, and sweeping the strength of said electrostatic field through a range of values so as to sweep said collector means through the energy spectrum of the charged particles.
9. A method according to claim 7 including the further step of retarding the particles before they enter the analyzer whereby they enter the analyzer with lower energies than they had on being released from said sample.
10. A method according to claim 8 including the step of switching between a first mode of operation in which the particles are retarded, whereby they enter the analyzer with lower energies than they had on being released from said sample, and a second mode of operation, in which the particles are substantially not retarded before they enter the analyzer.
11. A method according to claim 10 wherein said step of switching is performed by altering electrical connections only.
US00250893A 1971-05-07 1972-05-08 Apparatus and method of charge-particle spectroscopy for chemical analysis of a sample Expired - Lifetime US3766381A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1384471 1971-05-07

Publications (1)

Publication Number Publication Date
US3766381A true US3766381A (en) 1973-10-16

Family

ID=10030367

Family Applications (1)

Application Number Title Priority Date Filing Date
US00250893A Expired - Lifetime US3766381A (en) 1971-05-07 1972-05-08 Apparatus and method of charge-particle spectroscopy for chemical analysis of a sample

Country Status (3)

Country Link
US (1) US3766381A (en)
DE (1) DE2222339A1 (en)
GB (1) GB1332207A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870882A (en) * 1973-05-23 1975-03-11 Gca Corp Esca x-ray source
JPS50104983A (en) * 1974-01-22 1975-08-19
US3937957A (en) * 1973-06-19 1976-02-10 Leybold-Heraeus-Gmbh & Co. Apparatus for determining the energy of charged particles
EP0137650A2 (en) * 1983-08-16 1985-04-17 Vg Instruments Group Limited Charged particle energy spectrometer
EP0243059A2 (en) * 1986-04-22 1987-10-28 Kratos Analytical Limited A charged particle analyser
EP0293924A2 (en) * 1987-06-05 1988-12-07 Physical Electronics, Inc. Direct imaging monochromatic electron microscope
US4806754A (en) * 1987-06-19 1989-02-21 The Perkin-Elmer Corporation High luminosity spherical analyzer for charged particles
US4810879A (en) * 1986-04-22 1989-03-07 Spectros Limited Charged particle energy analyzer
EP0470299A1 (en) * 1990-08-08 1992-02-12 Koninklijke Philips Electronics N.V. Energy filter for charged particle beam apparatus
US5118941A (en) * 1991-04-23 1992-06-02 The Perkin-Elmer Corporation Apparatus and method for locating target area for electron microanalysis
US5315113A (en) * 1992-09-29 1994-05-24 The Perkin-Elmer Corporation Scanning and high resolution x-ray photoelectron spectroscopy and imaging
US5444242A (en) * 1992-09-29 1995-08-22 Physical Electronics Inc. Scanning and high resolution electron spectroscopy and imaging
US5451783A (en) * 1993-03-26 1995-09-19 Fisons Plc Charged-particle analyser
US5506414A (en) * 1993-03-26 1996-04-09 Fisons Plc Charged-particle analyzer
US5602899A (en) * 1996-01-31 1997-02-11 Physical Electronics Inc. Anode assembly for generating x-rays and instrument with such anode assembly
US20040125913A1 (en) * 2002-12-27 2004-07-01 Physical Electronics, Inc. Nondestructive characterization of thin films based on acquired spectrum
US20040135081A1 (en) * 2002-12-27 2004-07-15 Physical Electronics, Inc. Nondestructive characterization of thin films using measured basis spectra
US20040238735A1 (en) * 2001-10-26 2004-12-02 Larson Paul E. System and method for depth profiling and characterization of thin films
US20070010973A1 (en) * 2005-07-11 2007-01-11 Paola Dececco Method and system for non-destructive distribution profiling of an element in a film
US7561438B1 (en) 2004-12-22 2009-07-14 Revera Incorporated Electronic device incorporating a multilayered capacitor formed on a printed circuit board
US20120261571A1 (en) * 2009-09-24 2012-10-18 Dietmar Funnemann Imaging energy filter for electrically charged particles and spectroscope having same
US8435738B2 (en) 2011-09-25 2013-05-07 Theranos, Inc. Systems and methods for multi-analysis
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US8697377B2 (en) 2007-10-02 2014-04-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9464981B2 (en) 2011-01-21 2016-10-11 Theranos, Inc. Systems and methods for sample use maximization
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9997346B1 (en) 2017-06-30 2018-06-12 Mb Scientific Ab Electron spectrometer
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US11133166B2 (en) * 2017-12-15 2021-09-28 Leibniz-Institut Für Festkörper- Und Werkstofffors Momentum-resolving photoelectron spectrometer and method for momentum-resolved photoelectron spectroscopy
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2920972A1 (en) * 1978-05-25 1979-11-29 Kratos Ltd DEVICE FOR SPECTROSCOPY WITH CHARGED PARTICLES
US4358680A (en) * 1979-11-30 1982-11-09 Kratos Limited Charged particle spectrometers
CN112147667A (en) * 2020-09-11 2020-12-29 兰州空间技术物理研究所 Sensor for space low-energy ion detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2219405A (en) * 1938-08-20 1940-10-29 Thomas W Sukumlyn Electromagnetic lens
US3617741A (en) * 1969-09-02 1971-11-02 Hewlett Packard Co Electron spectroscopy system with a multiple electrode electron lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2219405A (en) * 1938-08-20 1940-10-29 Thomas W Sukumlyn Electromagnetic lens
US3617741A (en) * 1969-09-02 1971-11-02 Hewlett Packard Co Electron spectroscopy system with a multiple electrode electron lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electron Optics Klemperer Cambridge Univ. Press 1953. *

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870882A (en) * 1973-05-23 1975-03-11 Gca Corp Esca x-ray source
US3937957A (en) * 1973-06-19 1976-02-10 Leybold-Heraeus-Gmbh & Co. Apparatus for determining the energy of charged particles
JPS50104983A (en) * 1974-01-22 1975-08-19
JPS5811569B2 (en) * 1974-01-22 1983-03-03 日本電子株式会社 Dense Bunkousouchi
EP0137650A2 (en) * 1983-08-16 1985-04-17 Vg Instruments Group Limited Charged particle energy spectrometer
EP0137650A3 (en) * 1983-08-16 1986-06-11 Vg Instruments Group Limited Charged particle energy spectrometer
US4810879A (en) * 1986-04-22 1989-03-07 Spectros Limited Charged particle energy analyzer
EP0243059A2 (en) * 1986-04-22 1987-10-28 Kratos Analytical Limited A charged particle analyser
EP0243059A3 (en) * 1986-04-22 1988-06-01 Kratos Analytical Limited A charged particle analyser
EP0293924A2 (en) * 1987-06-05 1988-12-07 Physical Electronics, Inc. Direct imaging monochromatic electron microscope
US4810880A (en) * 1987-06-05 1989-03-07 The Perkin-Elmer Corporation Direct imaging monochromatic electron microscope
EP0293924A3 (en) * 1987-06-05 1990-02-28 The Perkin-Elmer Corporation Direct imaging monochromatic electron microscope
US4806754A (en) * 1987-06-19 1989-02-21 The Perkin-Elmer Corporation High luminosity spherical analyzer for charged particles
EP0470299A1 (en) * 1990-08-08 1992-02-12 Koninklijke Philips Electronics N.V. Energy filter for charged particle beam apparatus
US5126565A (en) * 1990-08-08 1992-06-30 U.S. Philips Corp. Energy filter for charged particle beam apparatus
US5118941A (en) * 1991-04-23 1992-06-02 The Perkin-Elmer Corporation Apparatus and method for locating target area for electron microanalysis
US5315113A (en) * 1992-09-29 1994-05-24 The Perkin-Elmer Corporation Scanning and high resolution x-ray photoelectron spectroscopy and imaging
US5444242A (en) * 1992-09-29 1995-08-22 Physical Electronics Inc. Scanning and high resolution electron spectroscopy and imaging
US5451783A (en) * 1993-03-26 1995-09-19 Fisons Plc Charged-particle analyser
US5506414A (en) * 1993-03-26 1996-04-09 Fisons Plc Charged-particle analyzer
US5602899A (en) * 1996-01-31 1997-02-11 Physical Electronics Inc. Anode assembly for generating x-rays and instrument with such anode assembly
EP0788136A1 (en) 1996-01-31 1997-08-06 Physical Electronics, Inc. Anode assembly for generating x-rays and instrument with such anode assembly
US7449682B2 (en) 2001-10-26 2008-11-11 Revera Incorporated System and method for depth profiling and characterization of thin films
US20040238735A1 (en) * 2001-10-26 2004-12-02 Larson Paul E. System and method for depth profiling and characterization of thin films
US20040125913A1 (en) * 2002-12-27 2004-07-01 Physical Electronics, Inc. Nondestructive characterization of thin films based on acquired spectrum
US20040135081A1 (en) * 2002-12-27 2004-07-15 Physical Electronics, Inc. Nondestructive characterization of thin films using measured basis spectra
US6800852B2 (en) * 2002-12-27 2004-10-05 Revera Incorporated Nondestructive characterization of thin films using measured basis spectra
US6891158B2 (en) 2002-12-27 2005-05-10 Revera Incorporated Nondestructive characterization of thin films based on acquired spectrum
US7561438B1 (en) 2004-12-22 2009-07-14 Revera Incorporated Electronic device incorporating a multilayered capacitor formed on a printed circuit board
US7411188B2 (en) 2005-07-11 2008-08-12 Revera Incorporated Method and system for non-destructive distribution profiling of an element in a film
US20080283743A1 (en) * 2005-07-11 2008-11-20 Paola Dececco Method and system for non-destructive distribution profiling of an element in a film
US20070010973A1 (en) * 2005-07-11 2007-01-11 Paola Dececco Method and system for non-destructive distribution profiling of an element in a film
US7884321B2 (en) 2005-07-11 2011-02-08 Revera, Incorporated Method and system for non-destructive distribution profiling of an element in a film
US20110144787A1 (en) * 2005-07-11 2011-06-16 Paola Dececco Method and system for non-destructive distribution profiling of an element in a film
US8269167B2 (en) 2005-07-11 2012-09-18 Revera, Incorporated Method and system for non-destructive distribution profiling of an element in a film
US9201030B2 (en) 2005-07-11 2015-12-01 Revera, Incorporated Method and system for non-destructive distribution profiling of an element in a film
US8610059B2 (en) 2005-07-11 2013-12-17 Revera, Incorporated Method and system for non-destructive distribution profiling of an element in a film
US8916823B2 (en) 2005-07-11 2014-12-23 ReVara, Incorporated Method and system for non-destructive distribution profiling of an element in a film
US9121851B2 (en) 2007-10-02 2015-09-01 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9435793B2 (en) 2007-10-02 2016-09-06 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US8697377B2 (en) 2007-10-02 2014-04-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US8822167B2 (en) 2007-10-02 2014-09-02 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11899010B2 (en) 2007-10-02 2024-02-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10634667B2 (en) 2007-10-02 2020-04-28 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US9012163B2 (en) 2007-10-02 2015-04-21 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11366106B2 (en) 2007-10-02 2022-06-21 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10670588B2 (en) 2007-10-02 2020-06-02 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11199538B2 (en) 2007-10-02 2021-12-14 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11061022B2 (en) 2007-10-02 2021-07-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US9285366B2 (en) 2007-10-02 2016-03-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11092593B2 (en) 2007-10-02 2021-08-17 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11137391B2 (en) 2007-10-02 2021-10-05 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US9581588B2 (en) 2007-10-02 2017-02-28 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9588109B2 (en) 2007-10-02 2017-03-07 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11143647B2 (en) 2007-10-02 2021-10-12 Labrador Diagnostics, LLC Modular point-of-care devices, systems, and uses thereof
US8530835B2 (en) * 2009-09-24 2013-09-10 Dietmar Funnemann Imaging energy filter for electrically charged particles and spectroscope having same
US20120261571A1 (en) * 2009-09-24 2012-10-18 Dietmar Funnemann Imaging energy filter for electrically charged particles and spectroscope having same
US11199489B2 (en) 2011-01-20 2021-12-14 Labrador Diagnostics Llc Systems and methods for sample use maximization
US9464981B2 (en) 2011-01-21 2016-10-11 Theranos, Inc. Systems and methods for sample use maximization
US9677993B2 (en) 2011-01-21 2017-06-13 Theranos, Inc. Systems and methods for sample use maximization
US10876956B2 (en) 2011-01-21 2020-12-29 Labrador Diagnostics Llc Systems and methods for sample use maximization
US11644410B2 (en) 2011-01-21 2023-05-09 Labrador Diagnostics Llc Systems and methods for sample use maximization
US10557786B2 (en) 2011-01-21 2020-02-11 Theranos Ip Company, Llc Systems and methods for sample use maximization
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis
US10018643B2 (en) 2011-09-25 2018-07-10 Theranos Ip Company, Llc Systems and methods for multi-analysis
US11009516B2 (en) 2011-09-25 2021-05-18 Labrador Diagnostics Llc Systems and methods for multi-analysis
US10371710B2 (en) 2011-09-25 2019-08-06 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US10518265B2 (en) 2011-09-25 2019-12-31 Theranos Ip Company, Llc Systems and methods for fluid handling
US10534009B2 (en) 2011-09-25 2020-01-14 Theranos Ip Company, Llc Systems and methods for multi-analysis
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
US10557863B2 (en) 2011-09-25 2020-02-11 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10627418B2 (en) 2011-09-25 2020-04-21 Theranos Ip Company, Llc Systems and methods for multi-analysis
US9952240B2 (en) 2011-09-25 2018-04-24 Theranos Ip Company, Llc Systems and methods for multi-analysis
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US9719990B2 (en) 2011-09-25 2017-08-01 Theranos, Inc. Systems and methods for multi-analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US10976330B2 (en) 2011-09-25 2021-04-13 Labrador Diagnostics Llc Fluid handling apparatus and configurations
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US11054432B2 (en) 2011-09-25 2021-07-06 Labrador Diagnostics Llc Systems and methods for multi-purpose analysis
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US11524299B2 (en) 2011-09-25 2022-12-13 Labrador Diagnostics Llc Systems and methods for fluid handling
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9128015B2 (en) 2011-09-25 2015-09-08 Theranos, Inc. Centrifuge configurations
US8435738B2 (en) 2011-09-25 2013-05-07 Theranos, Inc. Systems and methods for multi-analysis
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US9997346B1 (en) 2017-06-30 2018-06-12 Mb Scientific Ab Electron spectrometer
US11133166B2 (en) * 2017-12-15 2021-09-28 Leibniz-Institut Für Festkörper- Und Werkstofffors Momentum-resolving photoelectron spectrometer and method for momentum-resolved photoelectron spectroscopy

Also Published As

Publication number Publication date
GB1332207A (en) 1973-10-03
DE2222339A1 (en) 1972-11-23

Similar Documents

Publication Publication Date Title
US3766381A (en) Apparatus and method of charge-particle spectroscopy for chemical analysis of a sample
EP1150327B1 (en) Multi beam charged particle device
USRE33275E (en) Electron Spectrometer
US3517191A (en) Scanning ion microscope with magnetic sector lens to purify the primary ion beam
US5097126A (en) High resolution electron energy loss spectrometer
JPS6369135A (en) Electronic detector
US2257774A (en) Electronic-optical device
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
US3783280A (en) Method and apparatus for charged particle spectroscopy
US3617739A (en) Ion lens to provide a focused ion, or ion and electron beam at a target, particularly for ion microprobe apparatus
JPH0736321B2 (en) Spectrometer-objective lens system for quantitative potential measurement
US6492644B1 (en) Device and method for energy and angle-resolved electron spectroscopy
KR100443761B1 (en) Charged particle device
GB2328792A (en) A spectrometer and method of spectroscopy for surface analysis
CN112305002A (en) Spectroscopy and imaging system
US5591971A (en) Shielding device for improving measurement accuracy and speed in scanning electron microscopy
US4205226A (en) Auger electron spectroscopy
US4255656A (en) Apparatus for charged particle spectroscopy
US6198095B1 (en) Apparatus and method for imaging a particle beam
US3733483A (en) Electron spectroscopy
US3742214A (en) Apparatus for performing chemical analysis by electron spectroscopy
US9543115B2 (en) Electron microscope
US3374349A (en) Electron probe having a specific shortfocal length magnetic lens and light microscope
US4081674A (en) Ion microprobe analyzer
US3885157A (en) Electron beam image processing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: AEI SCIENTIFIC APPARATUS LIMITED BARTON DOCK ROAD,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ASSOCIATED ELECTRICAL INDUSTRIES LIMITED;REEL/FRAME:004309/0550

Effective date: 19761006

AS Assignment

Owner name: KRATOS LIMITED

Free format text: CHANGE OF NAME;ASSIGNOR:AEI SCIENTIFIC APPARATUS LIMITED;REEL/FRAME:004324/0982

Effective date: 19841003

AS Assignment

Owner name: SPECTROS LIMITED

Free format text: CHANGE OF NAME;ASSIGNOR:KRATOS LIMITED;REEL/FRAME:004439/0840

Effective date: 19850114

AS Assignment

Owner name: KRATOS ANALYTICAL LIMITED,STATELESS

Free format text: CHANGE OF NAME;ASSIGNOR:SPECTROS LIMITED;REEL/FRAME:004808/0116

Effective date: 19871102

Owner name: KRATOS ANALYTICAL LIMITED

Free format text: CHANGE OF NAME;ASSIGNOR:SPECTROS LIMITED;REEL/FRAME:004808/0116

Effective date: 19871102