US3758662A - In carbonaceous mold forming dense carbide articles from molten refractory metal contained - Google Patents

In carbonaceous mold forming dense carbide articles from molten refractory metal contained Download PDF

Info

Publication number
US3758662A
US3758662A US00139229A US3758662DA US3758662A US 3758662 A US3758662 A US 3758662A US 00139229 A US00139229 A US 00139229A US 3758662D A US3758662D A US 3758662DA US 3758662 A US3758662 A US 3758662A
Authority
US
United States
Prior art keywords
metal
carbide
mold
temperature
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00139229A
Inventor
J Tobin
L Adelsberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3758662A publication Critical patent/US3758662A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • I V ABSTRACT A fully dense, homogeneous, single phased refractory monocarbide is prepared by heatinga body of a refractory metal such as Ti, Zr, Hf, V, Nb Ta, and alloys of two or more of these metals in a mold of carbonaceous material heating the metal and mold in an inert atmosphere to a temperature above the melting point of the metal but not exceeding the metal carbide-carbon eutectic temperature of the charge for a period of time to cause formation of a full metal carbide body, and cooling to room temperature.
  • a refractory metal such as Ti, Zr, Hf, V, Nb Ta, and alloys of two or more of these metals in a mold of carbonaceous material heating the metal and mold in an inert atmosphere to a temperature above the melting point of the metal but not exceeding the metal carbide-carbon eutectic temperature of the charge for a period of time to cause formation of a full metal carbide body, and cooling to room temperature.
  • This invention relates to a method for makingmem- 1 bers of a fully dense carbide or mixed carbide of certain reactive metals.
  • the invention pertains to carbides of metals of Groups IVB and VB of the Periodic Table, such as TIC, ZrC, VC, V,C, Nb,C, TaC, Ta,C, and mixed carbides of two or more, such as TIC-ZIC, NbC- ZrC, TaC-ZrC, and similar pseudo-binary alloys. These will be designated hereinafter as refractory metal carbides.
  • cemented carbides, hot-pressed carbides, and sintered carbides are characterized by porous, or heterogeneous structure and have been available in limited shapes because they are produced by powder metallurgy techniques, usually employing cobalt or other metal binder, and are limited to what can be produced by grinding or etching of such compacted powdered and sintered bodres. 1
  • fully dense means a carbide member which is substantially at 100 percent of the theoretical density of the carbide and is substantially free from voids or porosity based upon X-ray parameters.
  • Carbides which are not fully dense such as cemented orhot pressed carbides, have a duplex structure'of a metal and metal carbide and have from 1 to 30 percent void volume present as porosity.
  • Sintered metal carbide products produced from powdered metal particles are not sufficiently dense due to entrapped gas in the original charge. Such sintered products also usually contain varying amounts of two carbide bases, causing nonuniform hardness, such as disclosed in U.S. Pat. No. 2,286,672.
  • U.S. Pat. No. l,840,457 discloses a metal carbide of the so-called castable" type in which the stated amount of carbon in the tungsten carbide is only 4 A to 5 percent.
  • the carbides are prepared by melting al-.
  • loying metals and casting immediately to avoid excessive pickup of carbon Complete carburization. is avoided so that the resulting material is duplex or multiplex in structure. This is in contrast with the singlephased, homogeneous carbides of the present invention in which there is a minimum of 6 carbon in the tungsten carbide.
  • U.S. Pat. No. 3,254,955 discloses a method for producing single crystals of tantalum carbide which includes a step of zone melting in the tantalum carbidecarbide eutectic composition region of the tantalumcarbon system. Based upon the experience of the in- I ventors of the present invention upon cooling, the
  • product of that melting step is a carbide that contains up to 50 percent by volume of graphite flakes as an extraneous phase which greatly weakens the carbide.
  • refractory-metal carbides would be of particular inter-- est for such applications because of their high melting points and high physical strength at elevated temperatures and relative inertness in certain corrosive environments.
  • Fully dense and high purity carbides of such refractory and reactive metals would be preferred over prior art cemented carbides and the like which have porous dition, the fully dense refractory metal carbides have greater wear resistance and a smooth surface, which differs from the pitted surfaces of the cold-pressed or porous carbides. For this latter reason the fullydense carbides are particularly useful for a variety of applications such as improved wire dies, lamp bulb filaments, phonograph record needle blanks, crucibles, and high temperature structural materials such as rocket nozzles. Moreover, the method of making fully dense carbides as disclosed herein is conducive to the preparation of large single crystals of the metalcarbides.
  • the present invention comprises the steps of placing a quantityof the reactant Groups W8 and VB metal in a mold composed of a carbonaceous material, heating the metal and mold in an inert atmosphere to a temperature above the melting point of the metal, but below the metal carbide-carbon eutectic temperature, until a full carbide is formed by diffusion of carbon from the carbonaceous material into the metal, cooling to room temperature, and removing the resulting metal carbide member from the mold.
  • the metal to be converted into the single phase metal carbide is charged into the carbon mold cavity preferably as a solid body conforming to the shape of the mold cavity. Excellent results are obtained if the solid metal body is heated to a temperature above its melting point and depending upon solid state diffusion of carbon to convert it to the metal carbide.
  • the metal may be introduced into the mold either as a solid body, or as an assembly of several loose particles or powders of such shape that the mold cavity is essentially completely filled, or as a molten mass, or a preformed compact (which may have been vacuum sintered) conforming to the shape of the mold cavity.
  • any appreciable amount of the powder comprises particles less than 30 mils in diameter, it has been found that in the process of heating the mold and its contents to the melting point of the metal particles below 30 mils carburize substantially to a metal carbide while in the solid state and consequently will not melt at the metal melting temperature. Consequently, any metal particles that are uncarburized do melt and form a mushy mass with the appreciable amount of metal carbide powders, wherein contained gases are trapped and are unable to rise out of the heterogeneous mass. As a consequence the resulting carbide body will be full of voids and multiphase components.
  • FIG. 1 is a vertical sectional view through an induction heating furnace for preparing fully dense carbides
  • FIG. 2 is a zirconium-carbon phase diagram
  • FIG. 3 is a chart showing a parabolic growth constant for carbides of the Groups IVB and VB metals as a function of the reciprocal of temperature (l/TI();
  • FIG. 4 is a photomicrograph of fully dense and homogeneous NbC prepared by the method of this invention.
  • FIG. 5 is a photomicrograph of hot pressed NbC'prepared by a prior known method.
  • the method of the present invention involves the direct reaction under controlled conditions of a refractory and reactive metal suchfor example, as titanium, zirconium, hafnium, vanadium, niobium, and tantalum, or mixtures or alloys of two or more with carbon or graphite within a critical temperature range to form a solid full mono-carbide body. It may be convenient or necessary to shape the metal charged to fit the graphite mold. For example, when preparing a carbide hollow cylinder, a tubular metal charge is conveniently used.
  • a graphite mold or crucible 1 has an inner chamber 2 of any configuration in which a metal charge 3 is placed.
  • a cover 4 for the mold is provided.
  • the cover has an elongated stem 5 with a bore 6 extending therethrough to communicate with the chamber 2 of the mold.
  • the'cover and crucible approximate black body condition within the chamber 2.
  • the assembly is then placed within a quartz container 7 that is filled with a carbonaceous material such as lampblack which completely encloses the mold l and the cover 4 except the upper end of the stem 5.
  • the lampblack provides insulation and thermal stability to the system.
  • the container 7 is mounted on asupport member 8 having a base 9 which rests upon a plate 10.
  • a plate 11 is disposed above the plate 10 where it is held by a quartz tube 12.
  • a number of spaced tiebolts 13 extend between the plates 10 and 11 and are provided with tightening nut 14 at the upper end thereof for holding the plates against the opposite ends'of the tube 12 in an air tight manner.
  • Annular gaskets 15 are provided between ends of the tube 12 and the plates 10 and 11.
  • the assembly is heated by induction coils 16 of conventional construction to a high temperature at which carbon will react with the metal and rapidly diffuse into the metal to form the full carbide.
  • an inert gas such as helium or argon is circulated through the tube 12 at a pressure slightly in excess of one atmosphere.
  • a gas inlet 17 is connected to a central aperture in the plate 10 and communicates with a gas passage 18 in the base member 9 of the support.
  • the inert gas completely fills the interior of the tube 12, the container 7 and the crucible l, and flushes out any existing oxygen or other undesirable gases.
  • a gas seal 19 is provided in the plate 1 l at the upper end of the quartz tube 12 which enables the inert gas to leave the interior of the tube 12 .and prevents back-diffusion of air into the system.
  • the bore of the gas seal 19 and the bore 6 or the stem 5 of the cover 4 are aligned so that temperature readings may be taken of the metal charge 3 from time to time.
  • the upper limit of the temperature at which carburization occurs is the temperature of the metal carbide-carbon eutectic. It has been found that where carburization of the metal occurs above that eutectic temperature the resultant carbide upon cooling to room temperature contains up to 50 percent by volume of graphite flakesas an extraneous phase, thereby greatly weakening the carbide.
  • the sample was quickly heated to the melting point of zirconium (l,857C.), held there for 1 minute, and then heated quickly (approximately 1 minute) to diffusion'temperature of 2,700C. and held at the latter temperature for 60 hours. Thereafter the cylinders were cooled at the rate of l,400C. per minute by cooling the furnace in an inert atmosphere.
  • any othersuitable cooling rate can be employed.
  • the fully densematerials of this invention are characterized by agrain structure typical of single-phase metals with sharply delineatedgrain boundaries and completely lacking in voids, as compared with hot pressed carbides having relatively large areas of voids.
  • the rate of formation of the full carbide, ZrC, from the surface at various temperatures is approximately as follows:
  • noibium carbide, hafnium carbide, and tantalum carbide members were produced. All were single phase bodies. All the other refractory metals and mixtures of two or more can be similarly converted to fully dense carbides.
  • a diamond polishing or grinding wheel may be used to provide a special surface finish or precise dimensions on the resulting metal carbide members.
  • the foregoing method is used to prepare fully dense high purity refractory carbides by the direct reaction of a carbonaceous material and metal from the group of titanium, vanadium, zirconium, hafium, niobium, and tantalum.
  • Various advantages are obtained from the process including the provision of any desired castable shape, preparation of the carbides at hightemperatures thus reducing the carburization time, and the provision of carbides of refractory metals which have high density as well as extra high strengths and exceptionally satisfactory moduli of elasticity.
  • the hardness of these carbides is between that of sapphire and-diamond.
  • the purity is often better than that of the starting metal charge. Oxygen and nitrogen contents of 20 to 40 ppm have been obtained.
  • the refractory metal body may purposely not be entirely converted to the full carbide by interrupting the process after a selected time interval so that there remains an uncarburized central core of the refractory metal.
  • This central metal core can thereafter be etched out or mechanically ground, drilled or otherwise removed, leaving a shell or cylinder of the full carbide.
  • a method of making a fully dense, high purity, homogeneous, single phase, refractory monocarbide comprising the steps of enclosing a metallic charge of at least one constituent selected from the group consisting of the refractory metals Ti, Zr, Hf, V, Nb, Ta, and alloys of two or more of these metals in a mold of carbonaceous material, the charge excluding any metal particlesrhaving size of 30 mils in diameter or less, heating the enclosed charge while in contact with the carbonaceous material and in an inert atmosphere to a temperature in the range above the melting point of the metal charge and below the carbide-carbon eutectic temperature to liquify the charge, maintaining the temperature in this range until all the metal in the charge is converted to metal monocarbide, and cooling the metal monocarbide to room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A fully dense, homogeneous, single phased refractory monocarbide is prepared by heating a body of a refractory metal such as Ti, Zr, Hf, V, Nb Ta, and alloys of two or more of these metals in a mold of carbonaceous material heating the metal and mold in an inert atmosphere to a temperature above the melting point of the metal but not exceeding the metal carbide-carbon eutectic temperature of the charge for a period of time to cause formation of a full metal carbide body, and cooling to room temperature.

Description

United States Patent [1 1 Tobin et a1.
[ Sept. 11, 1973 FORMING DENSE CARBIDE ARTICLES FROM MOLTEN REFRACTORY METAL CONTAINED IN CARBONACEOUS MOLD [75] Inventors: Joseph M. Tobin, Pittsburgh, Pa.; Lee M. Adelsberg, Big Flats, NY.
[73] Assignee: Westinghouse Electric Corporation,
Pittsburgh, Pa.
[22] Filed: Apr. 30, 1971 [21] Appl. No.: 139,229
Related Application Data [63] Continuation of Ser. No. 777,948, Oct. 7, 1968, abandoned, which is a continuation-in-part of Ser. No. 513,448, Dec. 13, 1965, abandoned.
[52] US. Cl 264/332, 106/43, 423/440 [51] Int. Cl.. C04b 41/40, C041) 41/44, C04b 35/62 [58] Field of Search 264/29, 332;
[56] References Cited UNITED STATES PATENTS 1l/1968 Corth 148/203 NbC, FULLY DENSE' HOMOGENEOUS 3,219,493 11/1965 Dainis 148/203 3,507,616 4/1970 264/332 3,393,084 7/1968 Haitwlg 264/29 3,254,955 6/1966 Blld et a1. 23/1 Primary Examiner-John H. Miller Attorney F. Shapoe, R. T. Randy et a1.
[57] I V ABSTRACT A fully dense, homogeneous, single phased refractory monocarbide is prepared by heatinga body of a refractory metal such as Ti, Zr, Hf, V, Nb Ta, and alloys of two or more of these metals in a mold of carbonaceous material heating the metal and mold in an inert atmosphere to a temperature above the melting point of the metal but not exceeding the metal carbide-carbon eutectic temperature of the charge for a period of time to cause formation of a full metal carbide body, and cooling to room temperature.
5 Claims, 5 Drawing Figures Patented Sept. 11, 1973 TEMPERATURE C ATOM lC CARBON 3 Sheets-Sheet 2 342o i I00c l LIQUID LIQUID 3200- LIQUID ZrC CARBON 3000- 2890 C t 50C CARBIDE-CARBON EUTECTIC 1 ZrC+C LIQUID ZrC Zr-CARBIDE EUTECTIC p Zr+ZrC O F I I I I O 20 4O 6O 80 I00 FIG.2.
Patented Se t, 11, 1973 3,758,662
3 Sheets-Sheet 5 FIG.4.
ubc, HOT PRESSED INVENTOR Joseph M. Tobin 8 Lee Adelsberg ATTOR NEY FORMING DENSE CARBIDE ARTICLES FROM MOLTEN REFRACTORY METAL CONTAINED IN CARBONACEOUS MOLD CROSS REFERENCE TO RELATED APPLICATION This application is a continuation in part of copending application Ser. No. 777,948, filed Oct. 7, 1968, now abandoned which was a continuation in part of copending application Ser. No. 513,448, filed Dec. l3, 1965, also now abandoned.
BACKGROUND OF THE INVENTION 1. Field of the invention This invention relates to a method for makingmem- 1 bers of a fully dense carbide or mixed carbide of certain reactive metals.
More particularly, the invention pertains to carbides of metals of Groups IVB and VB of the Periodic Table, such as TIC, ZrC, VC, V,C, Nb,C, TaC, Ta,C, and mixed carbides of two or more, such as TIC-ZIC, NbC- ZrC, TaC-ZrC, and similar pseudo-binary alloys. These will be designated hereinafter as refractory metal carbides.
2. Description of the Prior Art Heretofore, fully dense, single phase carbide shapes, such as TiC, WC, ZrC, and VC, having high purity and homogeneous compositions have been unavailable. The term shapes designates a member of specific physical structure or configuration as compared with powders or other minute pieces of irregular configuration. Likewise, fully dense pseudo-binary single'ph'ase alloys, such as TiC-ZrC, have not been available. Commerically, cemented carbides, hot-pressed carbides, and sintered carbides, all produced from powdered carbides, are characterized by porous, or heterogeneous structure and have been available in limited shapes because they are produced by powder metallurgy techniques, usually employing cobalt or other metal binder, and are limited to what can be produced by grinding or etching of such compacted powdered and sintered bodres. 1
The term fully dense means a carbide member which is substantially at 100 percent of the theoretical density of the carbide and is substantially free from voids or porosity based upon X-ray parameters. Carbides which are not fully dense, such as cemented orhot pressed carbides, have a duplex structure'of a metal and metal carbide and have from 1 to 30 percent void volume present as porosity. Sintered metal carbide products produced from powdered metal particles are not sufficiently dense due to entrapped gas in the original charge. Such sintered products also usually contain varying amounts of two carbide bases, causing nonuniform hardness, such as disclosed in U.S. Pat. No. 2,286,672.
U.S. Pat. No. l,840,457.discloses a metal carbide of the so-called castable" type in which the stated amount of carbon in the tungsten carbide is only 4 A to 5 percent. The carbides are prepared by melting al-.
loying metals and casting immediately to avoid excessive pickup of carbon. Complete carburization. is avoided so that the resulting material is duplex or multiplex in structure. This is in contrast with the singlephased, homogeneous carbides of the present invention in which there is a minimum of 6 carbon in the tungsten carbide.
U.S. Pat. No. 3,254,955 discloses a method for producing single crystals of tantalum carbide which includes a step of zone melting in the tantalum carbidecarbide eutectic composition region of the tantalumcarbon system. Based upon the experience of the in- I ventors of the present invention upon cooling, the
product of that melting step is a carbide that contains up to 50 percent by volume of graphite flakes as an extraneous phase which greatly weakens the carbide.
One of the more basic problems limiting the operation of scientific, nuclear, space and other equipment to elevated temperatures not in excess of about 2,000C. is the lack of suitably strong materials. The
refractory-metal carbides would be of particular inter-- est for such applications because of their high melting points and high physical strength at elevated temperatures and relative inertness in certain corrosive environments.
Fully dense and high purity carbides of such refractory and reactive metals would be preferred over prior art cemented carbides and the like which have porous dition, the fully dense refractory metal carbides have greater wear resistance and a smooth surface, which differs from the pitted surfaces of the cold-pressed or porous carbides. For this latter reason the fullydense carbides are particularly useful for a variety of applications such as improved wire dies, lamp bulb filaments, phonograph record needle blanks, crucibles, and high temperature structural materials such as rocket nozzles. Moreover, the method of making fully dense carbides as disclosed herein is conducive to the preparation of large single crystals of the metalcarbides.
' Accordingly, it is an object of this invention to provide methods for making-fully dense shapes of refractory carbides of metals having high strength and improved surfaces and structured properties.
It is another object of this invention to provide fully I the Groups [VB and VB metals which accomplish-the foregoing objects in a simple and effective manner.
SUMMARY OF THE INVENTION Generally, the present invention comprises the steps of placing a quantityof the reactant Groups W8 and VB metal in a mold composed of a carbonaceous material, heating the metal and mold in an inert atmosphere to a temperature above the melting point of the metal, but below the metal carbide-carbon eutectic temperature, until a full carbide is formed by diffusion of carbon from the carbonaceous material into the metal, cooling to room temperature, and removing the resulting metal carbide member from the mold.
The metal to be converted into the single phase metal carbide is charged into the carbon mold cavity preferably as a solid body conforming to the shape of the mold cavity. Excellent results are obtained if the solid metal body is heated to a temperature above its melting point and depending upon solid state diffusion of carbon to convert it to the metal carbide. The metal may be introduced into the mold either as a solid body, or as an assembly of several loose particles or powders of such shape that the mold cavity is essentially completely filled, or as a molten mass, or a preformed compact (which may have been vacuum sintered) conforming to the shape of the mold cavity.
When metal powders are employed to fill the mold cavity, it is important to exclude fine particles. Ifany appreciable amount of the powder comprises particles less than 30 mils in diameter, it has been found that in the process of heating the mold and its contents to the melting point of the metal particles below 30 mils carburize substantially to a metal carbide while in the solid state and consequently will not melt at the metal melting temperature. Consequently, any metal particles that are uncarburized do melt and form a mushy mass with the appreciable amount of metal carbide powders, wherein contained gases are trapped and are unable to rise out of the heterogeneous mass. As a consequence the resulting carbide body will be full of voids and multiphase components.
According to the present invention fully dense carbide shapes are produced form the pure refractory metal or alloy of a mixture of two or more refractory metals by the following proecedure:
Placing a metallic charge of at least one constituent of the metals Ti, Zr, I-If, V, Nb, Ta, and alloys of two or more thereof in a mold of carbonaceous material, the charge being either in solid or molten forms of the constituent; heating the charge in an inert atmosphere, to a temperature in the range above the melting point of the metal charge and below the metal carbidecarbon eutectic temperature and maintaining the temperature in this range until sufficient carbon has been absorbed to raise the melting point and the charge is fully carburized but without melting the metal carbide; and thereafter cooling, for example, to room temperature, and removing the resulting metal carbide shape from the mold.
BRIEF DESCRIPTION OF THE DRAWING For a better understanding of the invention reference is made to the drawings in which:
FIG. 1 is a vertical sectional view through an induction heating furnace for preparing fully dense carbides;
FIG. 2 is a zirconium-carbon phase diagram;
FIG. 3 is a chart showing a parabolic growth constant for carbides of the Groups IVB and VB metals as a function of the reciprocal of temperature (l/TI();
FIG. 4 is a photomicrograph of fully dense and homogeneous NbC prepared by the method of this invention; and
FIG. 5 is a photomicrograph of hot pressed NbC'prepared by a prior known method.
DESCRIPTION OF THE PREFERRED EMBODIMENT The method of the present invention involves the direct reaction under controlled conditions of a refractory and reactive metal suchfor example, as titanium, zirconium, hafnium, vanadium, niobium, and tantalum, or mixtures or alloys of two or more with carbon or graphite within a critical temperature range to form a solid full mono-carbide body. It may be convenient or necessary to shape the metal charged to fit the graphite mold. For example, when preparing a carbide hollow cylinder, a tubular metal charge is conveniently used.
As shown in FIG. 1, a graphite mold or crucible 1 has an inner chamber 2 of any configuration in which a metal charge 3 is placed. A cover 4 for the mold is provided. The cover has an elongated stem 5 with a bore 6 extending therethrough to communicate with the chamber 2 of the mold. When assembled, the'cover and crucible approximate black body condition within the chamber 2. The assembly is then placed within a quartz container 7 that is filled with a carbonaceous material such as lampblack which completely encloses the mold l and the cover 4 except the upper end of the stem 5.,
The lampblack provides insulation and thermal stability to the system. The container 7 is mounted on asupport member 8 having a base 9 which rests upon a plate 10.
A plate 11 is disposed above the plate 10 where it is held by a quartz tube 12. A number of spaced tiebolts 13 extend between the plates 10 and 11 and are provided with tightening nut 14 at the upper end thereof for holding the plates against the opposite ends'of the tube 12 in an air tight manner. Annular gaskets 15 are provided between ends of the tube 12 and the plates 10 and 11.
1 The assembly is heated by induction coils 16 of conventional construction to a high temperature at which carbon will react with the metal and rapidly diffuse into the metal to form the full carbide.
As shown in FIG. 1 an inert gas such as helium or argon is circulated through the tube 12 at a pressure slightly in excess of one atmosphere. For that purpose a gas inlet 17 is connected to a central aperture in the plate 10 and communicates with a gas passage 18 in the base member 9 of the support. The inert gas completely fills the interior of the tube 12, the container 7 and the crucible l, and flushes out any existing oxygen or other undesirable gases. A gas seal 19 is provided in the plate 1 l at the upper end of the quartz tube 12 which enables the inert gas to leave the interior of the tube 12 .and prevents back-diffusion of air into the system.
The bore of the gas seal 19 and the bore 6 or the stem 5 of the cover 4 are aligned so that temperature readings may be taken of the metal charge 3 from time to time.
After a metal charge such as zirconium is placed in the graphite mold l the system is heated to the desired temperature. The temperature must be high enough to melt the metal, but must be below the carbide-carbon eutectic temperature. Critical temperatures in the various metal-carbon systems for the indicated metals are shown in the table as follows:.
TABLE I Critical Temperatures Cent1grade Melting Metalcarbide Carbide-carbon Element Point Eutectic Temp. Eutectic Temp. Titanium 1668 I645 2760 Zirconium I857 I850 2890 Hafnium 2130 -2200 Peritectic 3180 Vanadium I710 [630 2760 Niobium 2500 2335 3300 Tantalum 2996 2880 3450 The metal-carbide eutectic temperature is for information purposes.
The charge is maintained within this temperature until the metal is completely carburiZedJThe reaction time required for complete carburization is determined by the size of the sample and the growth rate of the carbidereaction product. Curves for the parabolic growth constants as a function of reciprocal temperaturefor some monocarbides are shown in FIG. 3.
In accordance with thisinvention the upper limit of the temperature at which carburization occurs is the temperature of the metal carbide-carbon eutectic. It has been found that where carburization of the metal occurs above that eutectic temperature the resultant carbide upon cooling to room temperature contains up to 50 percent by volume of graphite flakesas an extraneous phase, thereby greatly weakening the carbide.
The followinge example illustrates the practice of the invention:
, EXAMPLE The reaction between liquid zirconium and graphite at temperature substantially above 1,850C. but below 2,890C. and preferably, between 2,000C. and 2,800C. produced a fully dense reaction product, which formed between the graphite and the metal at such temperatures. In this process, a cylinder of zirco-' nium metal (99.99 Zr) was placed in a /4 inch inside diameter graphite crucible (99.9% C.)-s'uch as shown in the schematic drawing of the apparatus of FIG. 1. The sample was heated by induction with a 5 KW-450 kc power source. Temperature measurements were taken with a two-color pyrometer which was sighted into the crucible by reflection from an overhead surface reflecting mirror through the seal 19 and the bore 6 of the stem 5.
Temperatures inside the crucible were also compared with against the Zr-ZrC eutectic (l850C.) and the Nb-Nb C eutectic (2,335C.) temperatures.- The temperature was controlled by automatically adjusting the power input and variations of less than 5C. were obtained during the carburization run.
After the system was purged with inert gas the sample was quickly heated to the melting point of zirconium (l,857C.), held there for 1 minute, and then heated quickly (approximately 1 minute) to diffusion'temperature of 2,700C. and held at the latter temperature for 60 hours. Thereafter the cylinders were cooled at the rate of l,400C. per minute by cooling the furnace in an inert atmosphere. However, any othersuitable cooling rate can be employed.
Under the microscope the fully densematerials of this invention are characterized by agrain structure typical of single-phase metals with sharply delineatedgrain boundaries and completely lacking in voids, as compared with hot pressed carbides having relatively large areas of voids. v
The rate of formation of the full carbide, ZrC, from the surface at various temperatures is approximately as follows:
6 TEMPERATURE C CENTIMETER PER MINUTE Samples of theZrC so produced were examined metallographically under the microscope. The products are homogeneous, fully dense materials characterized by a grain-structure typical of single-phase metals with sharply delineated grain boundaries and with no voids.
In a similar manner noibium carbide, hafnium carbide, and tantalum carbide members were produced. All were single phase bodies. All the other refractory metals and mixtures of two or more can be similarly converted to fully dense carbides.
Also an alloy of 90% Nb and 10% U (depleted) in the form of a cylinder 94 inch in diameter with a central aperture of about xi; inch was also fully carburized in this way.- In the same manner disks of niobium-zirconium (50'percent by weight of each) are converted to the carbides.
In a similar manner a compact of particles of the capacitory metal, of over 30 microns is prepared and placed in a graphite mold and carburized according to this example.
A diamond polishing or grinding wheel may be used to provide a special surface finish or precise dimensions on the resulting metal carbide members.
The foregoing method is used to prepare fully dense high purity refractory carbides by the direct reaction of a carbonaceous material and metal from the group of titanium, vanadium, zirconium, hafium, niobium, and tantalum. Various advantages are obtained from the process including the provision of any desired castable shape, preparation of the carbides at hightemperatures thus reducing the carburization time, and the provision of carbides of refractory metals which have high density as well as extra high strengths and exceptionally satisfactory moduli of elasticity. The hardness of these carbides is between that of sapphire and-diamond. The purity is often better than that of the starting metal charge. Oxygen and nitrogen contents of 20 to 40 ppm have been obtained.
The densitiesand lattice parameters of six high stoichiometric' fully dense carbides prepared in accordance with these examples are listed in. Table II:
TABLE II Density and Lattice Parameters of Carbides Prepared as Fully-Dense Carbides Parameter A (A) Density (gJcm) 4.330 g 4 9o TiC ZIC 4.700 6.64 HfC 4.641 12.7 VC 4.160 5.81 NbC 4.469 7.80 TaC 4.57
predetermined rate, that in some cases the refractory metal body may purposely not be entirely converted to the full carbide by interrupting the process after a selected time interval so that there remains an uncarburized central core of the refractory metal. This central metal core can thereafter be etched out or mechanically ground, drilled or otherwise removed, leaving a shell or cylinder of the full carbide.
It is understood that the above specification and drawings are exemplary of technically and economically feasible methods for producing high density and high purity carbides of refractory metals which were heretofore unattainable, Moreover, it is understood that the specific examples disclosed pertains to both pure monocarbides and pseudo-binary alloy carbides.
We claim as our invention:
1. A method of making a fully dense, high purity, homogeneous, single phase, refractory monocarbide comprising the steps of enclosing a metallic charge of at least one constituent selected from the group consisting of the refractory metals Ti, Zr, Hf, V, Nb, Ta, and alloys of two or more of these metals in a mold of carbonaceous material, the charge excluding any metal particlesrhaving size of 30 mils in diameter or less, heating the enclosed charge while in contact with the carbonaceous material and in an inert atmosphere to a temperature in the range above the melting point of the metal charge and below the carbide-carbon eutectic temperature to liquify the charge, maintaining the temperature in this range until all the metal in the charge is converted to metal monocarbide, and cooling the metal monocarbide to room temperature.
2. The method of claim 1 in which the metallic charge is liquid metal that is poured into the mold, and in which the charge and mold are held at a temperature above the metal melting point.
3. The method of claim 1 in which the metallic charge is a solid form.
4. The method of claim 3 in which the metallic charge is an assembly of loose metal particles.
5. The method of claim 3 in which the metallic charge is ,a preformed compact conforming to the shape of the mold cavity.

Claims (4)

  1. 2. The method of claim 1 in which the metallic charge is liquid metal that is poured into the mold, and in which the charge and mold are held at a temperature above the metal melting point.
  2. 3. The method of claim 1 in which the metallic charge is a solid form.
  3. 4. The method of claim 3 in which the metallic charge is an assembly of loose metal particles.
  4. 5. The method of claim 3 in which the metallic charge is a preformed compact conforming to the shape of the mold cavity.
US00139229A 1971-04-30 1971-04-30 In carbonaceous mold forming dense carbide articles from molten refractory metal contained Expired - Lifetime US3758662A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13922971A 1971-04-30 1971-04-30

Publications (1)

Publication Number Publication Date
US3758662A true US3758662A (en) 1973-09-11

Family

ID=22485670

Family Applications (1)

Application Number Title Priority Date Filing Date
US00139229A Expired - Lifetime US3758662A (en) 1971-04-30 1971-04-30 In carbonaceous mold forming dense carbide articles from molten refractory metal contained

Country Status (1)

Country Link
US (1) US3758662A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277085A1 (en) * 1987-01-13 1988-08-03 Lanxide Technology Company, Lp. Production of metal carbide articles
EP0322341A2 (en) * 1987-12-23 1989-06-28 Lanxide Technology Company, Lp. A method of producing and modifying the properties of ceramic composite bodies
US4885131A (en) * 1989-01-13 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US4885130A (en) * 1987-07-15 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US4886652A (en) * 1986-10-27 1989-12-12 Osaka Gas Co., Ltd. Production of metal carbides
US4904446A (en) * 1989-01-13 1990-02-27 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4940679A (en) * 1987-07-15 1990-07-10 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5004714A (en) * 1989-01-13 1991-04-02 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5010044A (en) * 1989-01-13 1991-04-23 Lanxide Technology Company, Lp. Process for preparing self-supporting bodies and products produced thereby
US5011063A (en) * 1989-01-13 1991-04-30 Lanxide Technology Company, Lp Method of bonding a ceramic composite body to a second body and articles produced thereby
US5017334A (en) * 1987-07-15 1991-05-21 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5019539A (en) * 1989-01-13 1991-05-28 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
US5082807A (en) * 1987-01-13 1992-01-21 Lanxide Technology Company, Lp Production of metal carbide articles
US5098870A (en) * 1990-07-12 1992-03-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
US5112654A (en) * 1990-06-25 1992-05-12 Lanxide Technology Company, Lp Method for forming a surface coating
US5120684A (en) * 1990-07-12 1992-06-09 Lanxide Technology Company, Lp Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
US5133494A (en) * 1990-07-12 1992-07-28 Lanxide Technology Company, Lp Method for joining ceramic composite bodies and articles formed thereby
US5143870A (en) * 1987-12-23 1992-09-01 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5162098A (en) * 1987-12-23 1992-11-10 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5180697A (en) * 1987-07-15 1993-01-19 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5187128A (en) * 1989-01-13 1993-02-16 Lanxide Technology Company, Lp Process for preparing self-supporting bodies
US5203488A (en) * 1990-07-12 1993-04-20 Lanxide Technology Company, Lp Method for joining ceramic composite bodies and articles formed thereby
US5232040A (en) * 1990-07-12 1993-08-03 Lanxide Technology Company, Lp Method for reducing metal content of self-supporting composite bodies and articles formed thereby
US5238883A (en) * 1989-01-13 1993-08-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5250324A (en) * 1990-06-25 1993-10-05 Lanxide Technology Company, L.P. Method for forming a surface coating using powdered solid oxidants and parent metals
US5254509A (en) * 1987-01-13 1993-10-19 Lanxide Technology Company, Lp Production of metal carbide articles
US5264401A (en) * 1990-07-12 1993-11-23 Lanxide Technology Company, Lp Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
US5275982A (en) * 1989-01-13 1994-01-04 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5288670A (en) * 1990-12-10 1994-02-22 Lanxide Technology Company, Lp Process for preparing self-supporting ceramic composite bodies and bodies produced thereby
US5296417A (en) * 1987-07-15 1994-03-22 Lanxide Technology Company, Lp Self-supporting bodies
US5298051A (en) * 1987-12-23 1994-03-29 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5299621A (en) * 1989-01-13 1994-04-05 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
US5372178A (en) * 1989-01-13 1994-12-13 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
US5400947A (en) * 1990-07-12 1995-03-28 Lanxide Technology Company, Lp Joining methods for ceramic composite bodies
US5435966A (en) * 1991-07-12 1995-07-25 Lanxide Technology Company, Lp Reduced metal content ceramic composite bodies
US5500182A (en) * 1991-07-12 1996-03-19 Lanxide Technology Company, Lp Ceramic composite bodies with increased metal content
US5614308A (en) * 1989-01-13 1997-03-25 Lanxide Technology Company, Lp Macrocomposite bodies
WO1999015705A1 (en) * 1997-09-19 1999-04-01 Treibacher Schleifmittel Ag Hard material titanium carbide based alloy, method for the production and use thereof
US6699450B2 (en) * 1999-01-08 2004-03-02 Redunndant Materials, Inc. Carbide material by electromagnetic processing
WO2007138768A1 (en) * 2006-05-26 2007-12-06 Nippon Mining & Metals Co., Ltd. Zirconium crucible for analytical sample melting, method of preparing analytical sample and method of analysis
US20090053112A1 (en) * 2007-08-20 2009-02-26 Nippon Mining & Metals Co., Ltd. Zirconium Crucible
US20100167407A1 (en) * 2006-02-22 2010-07-01 Nippon Mining & Metals Co., Ltd. Nickel Crucible for Melting Analytical Sample, Method of Preparing Analytical Sample and Method of Analysis
US10167555B2 (en) 2014-08-18 2019-01-01 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
US20190184453A1 (en) * 2014-09-08 2019-06-20 Ishifuku Metal Industry Co., Ltd. Method for producing platinum group metal or platinum group-based alloy
US10796827B2 (en) * 2017-12-12 2020-10-06 National Tsing Hua University Cermets for magnetic sensors
US11499230B2 (en) 2014-08-18 2022-11-15 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
EP3946778A4 (en) * 2019-01-08 2024-01-10 Nordic Elements Ab A niobium carbide-containing product

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886652A (en) * 1986-10-27 1989-12-12 Osaka Gas Co., Ltd. Production of metal carbides
AU601539B2 (en) * 1987-01-13 1990-09-13 Lanxide Corporation Production of metal carbide articles
EP0277085A1 (en) * 1987-01-13 1988-08-03 Lanxide Technology Company, Lp. Production of metal carbide articles
US4891338A (en) * 1987-01-13 1990-01-02 Lanxide Technology Company, Lp Production of metal carbide articles
US5254509A (en) * 1987-01-13 1993-10-19 Lanxide Technology Company, Lp Production of metal carbide articles
JPH0692732A (en) * 1987-01-13 1994-04-05 Lanxide Technol Co Lp Self-retaining ceramic composite
JP2645180B2 (en) 1987-01-13 1997-08-25 ランキサイド テクノロジー カンパニー エル ピー Self-holding ceramic composite
US5082807A (en) * 1987-01-13 1992-01-21 Lanxide Technology Company, Lp Production of metal carbide articles
US4885130A (en) * 1987-07-15 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5296417A (en) * 1987-07-15 1994-03-22 Lanxide Technology Company, Lp Self-supporting bodies
US4940679A (en) * 1987-07-15 1990-07-10 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5017334A (en) * 1987-07-15 1991-05-21 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5180697A (en) * 1987-07-15 1993-01-19 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
EP0322341A3 (en) * 1987-12-23 1990-08-01 Lanxide Technology Company,Lp A method of producing and modifying the properties of ceramic composite bodies
US5437833A (en) * 1987-12-23 1995-08-01 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
EP0322341A2 (en) * 1987-12-23 1989-06-28 Lanxide Technology Company, Lp. A method of producing and modifying the properties of ceramic composite bodies
US5298051A (en) * 1987-12-23 1994-03-29 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5162098A (en) * 1987-12-23 1992-11-10 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5143870A (en) * 1987-12-23 1992-09-01 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5372178A (en) * 1989-01-13 1994-12-13 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
US5238883A (en) * 1989-01-13 1993-08-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5296419A (en) * 1989-01-13 1994-03-22 Lanxide Technology Company, Lp Self-supporting composite bodies
US5004714A (en) * 1989-01-13 1991-04-02 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5187128A (en) * 1989-01-13 1993-02-16 Lanxide Technology Company, Lp Process for preparing self-supporting bodies
US5019539A (en) * 1989-01-13 1991-05-28 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
US5010044A (en) * 1989-01-13 1991-04-23 Lanxide Technology Company, Lp. Process for preparing self-supporting bodies and products produced thereby
US5614308A (en) * 1989-01-13 1997-03-25 Lanxide Technology Company, Lp Macrocomposite bodies
US5011063A (en) * 1989-01-13 1991-04-30 Lanxide Technology Company, Lp Method of bonding a ceramic composite body to a second body and articles produced thereby
US4904446A (en) * 1989-01-13 1990-02-27 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4885131A (en) * 1989-01-13 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5275982A (en) * 1989-01-13 1994-01-04 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5299621A (en) * 1989-01-13 1994-04-05 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
US5250324A (en) * 1990-06-25 1993-10-05 Lanxide Technology Company, L.P. Method for forming a surface coating using powdered solid oxidants and parent metals
US5112654A (en) * 1990-06-25 1992-05-12 Lanxide Technology Company, Lp Method for forming a surface coating
US5264401A (en) * 1990-07-12 1993-11-23 Lanxide Technology Company, Lp Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
US5120684A (en) * 1990-07-12 1992-06-09 Lanxide Technology Company, Lp Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
US5232040A (en) * 1990-07-12 1993-08-03 Lanxide Technology Company, Lp Method for reducing metal content of self-supporting composite bodies and articles formed thereby
US5203488A (en) * 1990-07-12 1993-04-20 Lanxide Technology Company, Lp Method for joining ceramic composite bodies and articles formed thereby
US5400947A (en) * 1990-07-12 1995-03-28 Lanxide Technology Company, Lp Joining methods for ceramic composite bodies
US5098870A (en) * 1990-07-12 1992-03-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
US5133494A (en) * 1990-07-12 1992-07-28 Lanxide Technology Company, Lp Method for joining ceramic composite bodies and articles formed thereby
US5288670A (en) * 1990-12-10 1994-02-22 Lanxide Technology Company, Lp Process for preparing self-supporting ceramic composite bodies and bodies produced thereby
US5500182A (en) * 1991-07-12 1996-03-19 Lanxide Technology Company, Lp Ceramic composite bodies with increased metal content
US5435966A (en) * 1991-07-12 1995-07-25 Lanxide Technology Company, Lp Reduced metal content ceramic composite bodies
WO1999015705A1 (en) * 1997-09-19 1999-04-01 Treibacher Schleifmittel Ag Hard material titanium carbide based alloy, method for the production and use thereof
US6699450B2 (en) * 1999-01-08 2004-03-02 Redunndant Materials, Inc. Carbide material by electromagnetic processing
US7892843B2 (en) 2006-02-22 2011-02-22 Jx Nippon Mining & Metals Corporation Nickel crucible for melting analytical sample, method of preparing analytical sample and method of analysis
US20100167407A1 (en) * 2006-02-22 2010-07-01 Nippon Mining & Metals Co., Ltd. Nickel Crucible for Melting Analytical Sample, Method of Preparing Analytical Sample and Method of Analysis
JPWO2007138768A1 (en) * 2006-05-26 2009-10-01 日鉱金属株式会社 Zirconium crucible for melting analysis sample, method for preparing analysis sample and analysis method
JP4968649B2 (en) * 2006-05-26 2012-07-04 Jx日鉱日石金属株式会社 Zirconium crucible for melting analysis sample, method for preparing analysis sample and analysis method
US20090104082A1 (en) * 2006-05-26 2009-04-23 Nippon Mining & Metals Co., Ltd. Zirconium Crucible for Melting Analytical Sample, Method of Preparing Analytical Sample and Method of Analysis
WO2007138768A1 (en) * 2006-05-26 2007-12-06 Nippon Mining & Metals Co., Ltd. Zirconium crucible for analytical sample melting, method of preparing analytical sample and method of analysis
US7927879B2 (en) 2006-05-26 2011-04-19 Jx Nippon Mining & Metals Corporation Zirconium crucible for melting analytical sample, method of preparing analytical sample and method of analysis
JP2011090010A (en) * 2006-05-26 2011-05-06 Jx Nippon Mining & Metals Corp Zirconium crucible for melting analytical sample, method of preparing analytical sample, and method of analysis
US8449845B2 (en) 2007-08-20 2013-05-28 Jx Nippon Mining & Metals Corporation Zirconium crucible
US20090053112A1 (en) * 2007-08-20 2009-02-26 Nippon Mining & Metals Co., Ltd. Zirconium Crucible
US10167555B2 (en) 2014-08-18 2019-01-01 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
US10683574B2 (en) 2014-08-18 2020-06-16 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
US10947622B2 (en) 2014-08-18 2021-03-16 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
US11499230B2 (en) 2014-08-18 2022-11-15 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
US20190184453A1 (en) * 2014-09-08 2019-06-20 Ishifuku Metal Industry Co., Ltd. Method for producing platinum group metal or platinum group-based alloy
US10796827B2 (en) * 2017-12-12 2020-10-06 National Tsing Hua University Cermets for magnetic sensors
EP3946778A4 (en) * 2019-01-08 2024-01-10 Nordic Elements Ab A niobium carbide-containing product

Similar Documents

Publication Publication Date Title
US3758662A (en) In carbonaceous mold forming dense carbide articles from molten refractory metal contained
US4891338A (en) Production of metal carbide articles
US4040849A (en) Polycrystalline silicon articles by sintering
US3108887A (en) Refractory articles and method of making same
US4241135A (en) Polycrystalline diamond body/silicon carbide substrate composite
US4124401A (en) Polycrystalline diamond body
US4127416A (en) Method of producing a ceramic product
US4171339A (en) Process for preparing a polycrystalline diamond body/silicon carbide substrate composite
CA1076611A (en) Si3n4 formed by nitridation of sintered silicon compact containing boron
US5993545A (en) Crucible for growing single crystals, process for making the same and use of the same
US4173614A (en) Process for preparing a polycrystalline diamond body/silicon nitride substrate composite
US4237085A (en) Method of producing a high density silicon carbide product
US5401694A (en) Production of metal carbide articles
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
US4234661A (en) Polycrystalline diamond body/silicon nitride substrate composite
CA1093589A (en) Si.sub.3n.sub.4 formed by nitridation of sintered silicon compact
US4209478A (en) Method of sintering ceramics
US3535132A (en) Titanium carbide molten metal barrier and method of production
US3914371A (en) Method for preparing boron-carbide articles
US5585313A (en) Ceramic composite material with high heat-resistant property
US4719077A (en) Method for the preparation of an alloy of nickel and titanium
US3352951A (en) Method for induction sintering refractory carbide articles
US4539141A (en) Microcomposite of metal carbide and ceramic particles
US5261941A (en) High strength and density tungsten-uranium alloys
US2996783A (en) Method of shaping sic by vaporization and condensation