US3732821A - Nose ogive for nonlethal projectile - Google Patents

Nose ogive for nonlethal projectile Download PDF

Info

Publication number
US3732821A
US3732821A US00146767A US3732821DA US3732821A US 3732821 A US3732821 A US 3732821A US 00146767 A US00146767 A US 00146767A US 3732821D A US3732821D A US 3732821DA US 3732821 A US3732821 A US 3732821A
Authority
US
United States
Prior art keywords
polymer material
munition
projectile
nose
cellular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00146767A
Inventor
T Royer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Application granted granted Critical
Publication of US3732821A publication Critical patent/US3732821A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/46Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances
    • F42B12/50Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances by dispersion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B8/00Practice or training ammunition
    • F42B8/02Cartridges

Definitions

  • the invention relates broadly to ordnance items fitted with a polymeric impact-attenuating material, which is shape retaining, rigid, nondestructable during firing cycle and trajectory, surrounding the nose and ogive areas to decrease physical injury to people in a mixed group, for example, combatants and noncombatants, fired upon by either tactical or riot control units and subsequently struck with the projectile while in terminal flight.
  • a polymeric impact-attenuating material which is shape retaining, rigid, nondestructable during firing cycle and trajectory, surrounding the nose and ogive areas to decrease physical injury to people in a mixed group, for example, combatants and noncombatants, fired upon by either tactical or riot control units and subsequently struck with the projectile while in terminal flight.
  • the impact force of the projectile is absorbed in the crushable synthetic materials rather than by target personnel.
  • a further object of this invention is that the munition assembly contains a non-lethal chemical agent to cause temporary incapacitation of target personnel.
  • a further object of this invention is that the polymeric impact-attenuating nose unit is applicable to other families of riot control munitions launched into high density population areas.
  • the instant invention results from my investigation for a nonlethal riot control munition which will minimize injury in the event of a direct hit. It is a function of riot control agents to briefly incapacitate an individual and not to cause serious or permanent injury.
  • a projectile fitted with a completely unshielded or exposed crushable material nose for example, a projectile of about 1.60 inch diameter, weighing about 150 grams and traveling at a velocity of about 150 i't/sec. exhibits some unacceptable properties.
  • the crushable material had sufficient crush resistance to almost completely absorb the impact energy when hitting a hard object like a steel plate, said material was so structurally firm that it would not crush when it struck a simulated human head; when using a weaker crushable material the crush resistance was reduced to where it would collapse on contacting a simulated head, the crushable material was too weak to absorb sufficient energy to reduce the projectiles velocity to practically zero by the time complete crushing had taken place. Any forward momentum of the projectile after complete crushing of the nose results in a peak force when the solid projectile is stopped almost instantaneously.
  • a partially enclosed nose unit illustrated in FIG. 2 performed almost as well, for the same reasons, as the completely shielded unit, FIG. 1.
  • Test data indicate a peak contact pressure of over 26,000 psi for a projectile fitted with a nylon nose.
  • a projectile of the same configuration, weight and velocity replacing the nylon nose with the crushable impact attenuating nose unit according'to this invention had a peak contact pressure of about 240 psi.
  • FIG. 1 is an axial section through a munition assembly embodying a completely encapsulated synthetic impact-attenuating nose unit.
  • FIG. 2 is an alternate design of a partially enclosed nose unit. 1
  • the synthetic resins employed in preparing the impact-attenuating nose unit in accordance with the present invention is directed to a flexible non-foam polyurethane, elastomer, covering rigid or high density foam polyurethane.
  • Processes of preparing foam or cellular and non-foamed polyurethanes are well established in the art and involve the general reaction of a polyisocyanate with compounds containing reactive hydrogens in the presence of a reaction catalyst.
  • Typical hydrogen containing compounds include polyesters, castor oils, glycols, amines, carboxylic acids and water.
  • the catalyst can be tertiary amines, triethylamine, antimony compounds, antimony caprylate.
  • the foaming of the polymer is prepared by adding foaming or blowing agents such as carbon dioxide generated when water reacts with isocyanate or by using volatile agents such as fluorocarbon 11 or methylene chloride which is vaporized by the exothermic heat of the polyoli'socyanate.
  • foaming or blowing agents such as carbon dioxide generated when water reacts with isocyanate or by using volatile agents such as fluorocarbon 11 or methylene chloride which is vaporized by the exothermic heat of the polyoli'socyanate.
  • Rigid or high density foams are generally produced by utilizing lower molecular weight polyols with a high degree of branching.
  • the foamed polyurethanes include Uralane 1,723 (Furane Plastics Incorporated) or high density polyurethane foams disclosed in U. S. Pat. No. 3,400,085 of Kujawa et al.
  • the Uralane is a general purpose polyurethane foaming resin system with material characteristics of 2-3 minutes work life and variable densities of 6 and 20 pounds per cubic foot.
  • Uralane l723-6A resin By thoroughly mixing 100 parts by weight of Uralane l723-6A resin and 90 parts by weight of Uralane 1723-68 curing agent using a high speed blade with maximum blending and shear action, stirring rapidly for 20 to 40 seconds and pour. Foaming will commence in approximately 2'to 3 minutes at 70 F.
  • Physical properties are as follows: (a) density of foam average 6 pounds/cubic foot (actual density will depend upon the amount of confinement at the time the material is foamed) with test method ASTMD- 1622; (b) compressive strength 130 psi (at 5 percent deflection) with test method ASTMD-l62l; (c) tensile strength 225 psi with test method ASTMD-638j and (cl) water adsorption (1 week at 100 percent R.H.) 3.0 percent with test method ASTMD-570.
  • the curing cycle of approximately 30 minutes is required to obtain a tack free firm product; when used in molds, post cure for 45 minutes; full strengths are obtained in 24 to 48 hours when cured at 75 F.
  • Kujawa, U.S. Pat. No. 3,400,085 discloses the preparation of polyurethane foam having a density in a range of about 4 to 30 pounds per cubic foot is prepared by mixing a hydroxyl-containing polymer having a hydroxyl number between about 25 to 900, and a second ary phosphonate that is non-reactive in the urethane reaction and reacting with a polyaryl-polyisocyanate in the presence of a foaming agent to produce a polyurethane foam having a uniform cell structure.
  • a foamed polyurethane or polystyrene having a density range of 6 to 13.2 pounds/cubic foot gave satisfactory results.
  • the polyurethane elastomers which are stretchable or flexible coverings for the exterior surfaces of a foamed polyurethane nose unit in accordance with this invention are resins of Uralane 8309 or Uralane 5715 (Furane Plastics Incorporated).
  • Uralane 5715 is a two component urethane resin system capable of forming tough, high tear strength elastomeric products and may be poured and cured at'room temperature. This material is formed by mixing 100 parts by weight of Uralane 5715-A and 34 parts by weight of Uralane 57l5-B-40 (black) thoroughly for l to 2 minutes.'To facilitate defoaming, 2 drops of AF-2 anti-foamer are added per pound at the time of mixing.
  • Uralane 5715-A and 34 parts by weight of Uralane 5715-B produce a product having the following physical properties: (a) 48 hours at 75 F with Shore A Hardness of 73/70, with a tensile strength for 300 percent elongation of 1,000 psi, with an ultimate tensile strength of 1,000 psi and with percent elongation of 340 percent; (b) 3 hours at 200 F with Shore A Hardness of 82/81, with a tensile strength for 300 elongation of 2,100 psi, with an ultimate tensile strength of 2,400 psi and with a percent elongation of 360 percent; and (c) 24 hours at 200 F with Shore A Hardness of 84/82, with a tensile strength for 300 percent, elongation of 3,000 psi, with an ultimate tensile strength of 3200 psi and with a percent elongation of 350 percent.
  • Uralane 5715-A and 30 parts by weight Uralane 57l5-B-40 lower cure agent
  • Uralane 57l5-B-40 lower cure agent
  • Uralane 5715-A By mixing parts by weight Uralane 5715-A and 38 parts by weight Uralane 5715-B-40, excessive cure agent produce a product with the following physical properties: (a) 48 hours at room temperature with a Shore A Hardness 69/65, with an ultimate tensile strength 800 psi, and with a percent elongation 400 percent; and (b) 24 hours at 300 F with a Shore A Hardness 86/85, with an ultimate tensile strength 2,300 psi and with a percent elongation 430 percent.
  • non-destructable, castable and foamable materials may be utilized provided they possess similar physical characteristics by not disintegrating during conditions of a firing cycle and terminal flight while maintaining an aeroballistic configuration.
  • the function of the flexible polymeric non-foam elastomer is to confine the polymeric foamed material after impact with the target.
  • a stretchable outer cover is prepared in a shaped male/female mold with the castable polymeric material being inserted into the mold and over-cured, the time and temperature for curing is dependent upon the particular polymeric resin.
  • the male position of the mole is removed leaving a cavity inside the stretchable outer cover which is still in the female portion of the mold.
  • the crushable nose is made by inserting the foamable polymeric material into the cavity of the stretchable outer cover which was previously prepared; the foamable polymer is cured and the complete impactattenuating nose unit is removed from the female mold with the excess foamed polymer removed in order to make a flat surface for attachment to the projectile body.
  • non-lethal chemical compositions which the inventive munition may be fitted are well known to those who are familiar with the art of making riot controlling compositions, for example, irritating or lachrymatory compositions such as a-chloroacetophone and o chlorobenzilidene malononitrile alone or in combination with pyrotechnic constituents blended in accordance with approved military standards are used as munition fills.
  • a spontaneous combustion reaction can occur when an oxidizer, potassium chlorate, and a reducing agent, sugar, are placed in intimate contact.
  • the proportions of each component are expressed in parts by weight unless stated to the contrary.
  • a dry mixture comprising mixing in a receiver containing (1 30.0 i 2.0 potassium chlorate, (2) 40.0 i 2.0 orthochlorobenzilidene malononitrile, (3) 9.0 i 2.0 magnesium carbonate, and (4) 18.0 i 2.0 sugar.
  • a binding solution comprising 8.0 i 1.0 nitrocellulose (cellulose nitrate) and 920i 2.0 acetone with the nitrocellulose equal to 3.0 i 0.2 percent total weight of dry mixture on a solid basis. Additional acetone may be added if necessary to preserve doughlike consistency. in addition to the above riot controlling composition other similar functioning standardized compositions may be utilized as set forth with the specifications of Military Standards 576 and 579.
  • the inventive munition can be ejected from the M79 Launcher which is described in Launcher, Grenade, 40-MM: M79, Headquarters, Department of the Army, June 1966, coupled with the handling, loading and firing as with the HE, high explosive, round from said launcher or other launching means sized for the munition in the military arsenal.
  • the munition may be launched or directed to a desired impact area from a hand-held weapon, shoulder-fired or motorized mounted weapon system.
  • the primer fires and ignites the propellant powder in the propellant chamber; the burning propellant powder simultaneously ignites the pyrotechnic fuze and the projectile begins to travel through the launcher barrel; the fuze at the end of its time delay period, which may vary depending upon the desired lapse of time, ignites a payload of a pyrotechnic mixture comprising an irritant and disseminates the payload; on munition collision, the impact attenuating projectiles nose reduces the impact energy level to a non-physical injury value.
  • numerals 9 and 8 designate the cartridge case and projectile body, respectively.
  • the bottom of the case is provided with a primer 1 which communicates with the interior of the cartridge case 9 through a suitable opening 16 provided in the bottom of the case.
  • the primer is 1 and the propellant burning chamber 3 housing a propellant powder, which is not shown, is arranged in case 9 communicating with opening 16.
  • Rotating band 4 is in a recess on the exterior surface of the case.
  • the base of the projectile body is provided with a rubber diaphragm 14 having an aperture which communicates with a central cavity 6 of the projectile body.
  • Fuze 5 is positioned in cavity 6 through the apertures of diaphragm l4 and ring 17; said ring is bonded to said diaphragm.
  • Ring 17 is a water-repellant polyester film of polyethylene terephthlate, for example, Mylar.
  • the forward portion of the metallic projectile body 8 is provided with a closure plate 13 which is held in place by crimped sections 15.
  • Chemical agent 7 is contiguous with plate 13, ring 17 and surrounding cavity 6.
  • the nose unit comprises an elastomeric flexible non-foam polymeric material 1 1 covering all the exterior surfaces of the foamed polymeric material 10 which is secured with a bonding agent 12 to the closure plate 13.
  • the flexible non-foam polymeric material 11 partially enclosing the foamed polymeric material 10 which is directly exposed to the atmosphere.
  • a conventional fuze may be the one employed in XM-l6 Canister, TM3-l325-232-12, Headquarters, Department of the Army, September 1968.
  • a state of the art propellant composition comprising nitrocellulose 57.75 i 1.50 percent, nitroglycerin 40.00 i 1.50 percent, potassium nitrate 1.50 i 0.50 percent and ethyl centralite.
  • An art recognized primer composition comprising basic lead styphnate 53.0 $2.0 percent, antimony sulfide 10.0 i 1.0 percent, barium nitrate 22.0 i 1.5 percent, aluminum powder atomized 10.0 i 1.0 percent, and tetracen 5.0 i 0.5 percent.
  • the nose unit can be shaped into any configuration in order to achieve desired ballistic properties.
  • the metallic portion of the munition may be fabricated from substances conventionally employed in military hardware, for example, steel, aluminum, magnesium, or alloys.
  • the bonding agents may be epoxy adhesives or other agents for maintaining the adhesion between metal and rubber or synthetic components and between rubber and synthetic components which will be structurally integral under the conditions of use.
  • the rotating bands may be constructed from rubbery material such as Buna N, which is prepared by the polymerization of acrylonitrile with butadiene, Buna N covered with tetrafluoroethylene, or polyurethane rubber impregnated molybdenum disulfide.
  • Buna N which is prepared by the polymerization of acrylonitrile with butadiene, Buna N covered with tetrafluoroethylene, or polyurethane rubber impregnated molybdenum disulfide.
  • the munition assembly may have either a bonded or unbonded projectile body to the cartridge case joints.
  • the cartridge case to projectile body interface may have a slip fit with no bonding.
  • the projectile is bonded to the inner surface of the cartridge utilizing various known adhesives for this purpose as in the standard HE, high explosive, 40 MM cartridge.
  • a munition assembly comprising a cartridge case containing primer and propellant means the improvement in combination therewith composed of a projectile having a cylindrical load bearing housing terminated at one end by a substantially solid coaxially'protruding kinetic energy dissipating substantially ogive shaped nose, said nose composed of solid crushable cellular polymer material circumferentially covered on at least a portion of the longitudinal extent thereof by a flexible polymer material whereby upon impact said flexible polymer material serves to elastically confine the crushed cellular polymer material while contemporaneously allowing for dimensional changes of the nose when conforming to the impact surface.
  • the munition of claim 1 wherein the load is a chemical fill selected from the group consisting of chloroacetophone, O-chlorabenzilidene malononitrile and pyrotechnic mixtures thereof.
  • a munitions projectile for use with munition launching means comprising a payload container having an impact exterior portion composed of a solid mass of kinetic energy dissipating crushable cellular polymer material at least partially enveloped with a of 6 to 13.2 pounds per cubic foot and the flexible polymer is a polyurethane elastomer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A munition assembly comprising a primer, propellant, fuze, chemical agents positioned in a cartridge case and projectile, said projectile fitted with a nondestructable polymeric impactattenuating nose unit, said nose unit is designed to absorb the kinetic energy in the projectile to reducing the lethal potential of the projectile when fired and physically contacting personnel.

Description

nied States Patent Royer 1 1 May 15, 1973 54 NOSE OGIVE FOR NONLETHAL 3,067,680 12/1962 Lahr ..102 41 x PROJECTILE 3,060,856 10/1962 Dunn ..lO2/4l ,l87 ll 1 4 ..102 41 [75] Inventor: Thurber 349 4i1 26 ......1o2i41 [73] Assignee: The United States of America as 2 12/1966 Rudolph etal- 1 1 4 represented the Secreary 0f the GTCCHICSS Army, Washington, DC. Primary ExaminerRobert F. Stahl [22] May 1971 Attorney-Harry M. Saragovitz, Edward J. Kelly, [21] Appl. No.: 146,767 Herbert Berl&Jacob Ziegler 52 us. c1 ..102/41, 102/927 [57] ABSTRACT [5 1] Int. Cl. A munition assembly omprising a primer propellant [58] Field Of Search ..102/4l, 92.7 f ze chemical agents positioned in a cartridge case and projectile, said projectile fitted with a non- [56] Referemes C'led destructable polymeric impact-attenuating nose unit, UNITED STATES PATENTS said nose nnit is designed to absorb the kinetic energy in the pro ectile to reducmg the lethal potential of the GOSS projectile when fired and ontacting per. 2,096,698 10/1937 Lowy ct al ..102 39 sonnd 9 Claims, 2 Drawing Figures PATENTEDHAY] 5197s 3, 2,
INVENTOR Thurber W. Roy
BY M
W 54% (Mr) 6 ATTORNEYS NOSE OGIVE FOR NONLETHAL PROJECTILE DEDICATORY CLAUSE The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalty thereon.
The invention relates broadly to ordnance items fitted with a polymeric impact-attenuating material, which is shape retaining, rigid, nondestructable during firing cycle and trajectory, surrounding the nose and ogive areas to decrease physical injury to people in a mixed group, for example, combatants and noncombatants, fired upon by either tactical or riot control units and subsequently struck with the projectile while in terminal flight.
All previous devices for establishing clouds of riot control agent were bulk type system, i.e., the agent itself was projected without a container or the agent was contained in a pyrotechnic agent which could cause fires. This method of dissemination precluded the projection of the bulk agent to any great distance. The new device permits longer range and more accurate em- V ployment of the agent into an enclosure without causing physical harm to the inhabitants or damage to the premises.
Previous ordnance items were fabricated with an all metallic exterior.
It is the object of this invention to provide a munition assembly which is equipped with shape retaining, crushable impact-attenuating synthetic materials which are not disintegrating during conditions ofa firing cycle and terminal flight while maintaining an aeroballistic configuration, which would permit direct impact on personnel without serious injury. The impact force of the projectile is absorbed in the crushable synthetic materials rather than by target personnel.
A further object of this invention is that the munition assembly contains a non-lethal chemical agent to cause temporary incapacitation of target personnel.
A further object of this invention is that the polymeric impact-attenuating nose unit is applicable to other families of riot control munitions launched into high density population areas.
The instant invention results from my investigation for a nonlethal riot control munition which will minimize injury in the event of a direct hit. It is a function of riot control agents to briefly incapacitate an individual and not to cause serious or permanent injury.
A projectile fitted with a completely unshielded or exposed crushable material nose, for example, a projectile of about 1.60 inch diameter, weighing about 150 grams and traveling at a velocity of about 150 i't/sec. exhibits some unacceptable properties. When the crushable material had sufficient crush resistance to almost completely absorb the impact energy when hitting a hard object like a steel plate, said material was so structurally firm that it would not crush when it struck a simulated human head; when using a weaker crushable material the crush resistance was reduced to where it would collapse on contacting a simulated head, the crushable material was too weak to absorb sufficient energy to reduce the projectiles velocity to practically zero by the time complete crushing had taken place. Any forward momentum of the projectile after complete crushing of the nose results in a peak force when the solid projectile is stopped almost instantaneously.
By surrounding, shielding or encapsulating'the aforesaid weaker, crushable material, for example, foamed polyurethane, with a non-foam flexible polymeric material, I found the following unexpected and unobvious results: (1) In spite of the fact that the initial crush resistance was not increased appreciably, confinement of the crushable material caused better pulverization and more efficient impact energy absorption as crushing progressed; (2) the encapsulated material mushroomed out, for example, from a diameter of about 1.60 inch to about 2.50 inches diameter contact area, thus reducing pressure in psi (pounds per square inch) applied to any given force by more than 50 percent; and (3) the flexible mushroomed nose unit would better conform to the contours of a human head and thereby reduce local pressure.
A partially enclosed nose unit illustrated in FIG. 2, performed almost as well, for the same reasons, as the completely shielded unit, FIG. 1.
Test data indicate a peak contact pressure of over 26,000 psi for a projectile fitted with a nylon nose. A projectile of the same configuration, weight and velocity replacing the nylon nose with the crushable impact attenuating nose unit according'to this invention had a peak contact pressure of about 240 psi.
FIG. 1 is an axial section through a munition assembly embodying a completely encapsulated synthetic impact-attenuating nose unit.
FIG. 2 is an alternate design of a partially enclosed nose unit. 1
The synthetic resins employed in preparing the impact-attenuating nose unit in accordance with the present invention is directed to a flexible non-foam polyurethane, elastomer, covering rigid or high density foam polyurethane. Processes of preparing foam or cellular and non-foamed polyurethanes are well established in the art and involve the general reaction of a polyisocyanate with compounds containing reactive hydrogens in the presence of a reaction catalyst. Typical hydrogen containing compounds include polyesters, castor oils, glycols, amines, carboxylic acids and water. The catalyst can be tertiary amines, triethylamine, antimony compounds, antimony caprylate. The foaming of the polymer is prepared by adding foaming or blowing agents such as carbon dioxide generated when water reacts with isocyanate or by using volatile agents such as fluorocarbon 11 or methylene chloride which is vaporized by the exothermic heat of the polyoli'socyanate. Rigid or high density foams are generally produced by utilizing lower molecular weight polyols with a high degree of branching.
The foamed polyurethanes include Uralane 1,723 (Furane Plastics Incorporated) or high density polyurethane foams disclosed in U. S. Pat. No. 3,400,085 of Kujawa et al.
The Uralane is a general purpose polyurethane foaming resin system with material characteristics of 2-3 minutes work life and variable densities of 6 and 20 pounds per cubic foot. By thoroughly mixing 100 parts by weight of Uralane l723-6A resin and 90 parts by weight of Uralane 1723-68 curing agent using a high speed blade with maximum blending and shear action, stirring rapidly for 20 to 40 seconds and pour. Foaming will commence in approximately 2'to 3 minutes at 70 F. Physical properties are as follows: (a) density of foam average 6 pounds/cubic foot (actual density will depend upon the amount of confinement at the time the material is foamed) with test method ASTMD- 1622; (b) compressive strength 130 psi (at 5 percent deflection) with test method ASTMD-l62l; (c) tensile strength 225 psi with test method ASTMD-638j and (cl) water adsorption (1 week at 100 percent R.H.) 3.0 percent with test method ASTMD-570. The curing cycle of approximately 30 minutes is required to obtain a tack free firm product; when used in molds, post cure for 45 minutes; full strengths are obtained in 24 to 48 hours when cured at 75 F.
Kujawa, U.S. Pat. No. 3,400,085, discloses the preparation of polyurethane foam having a density in a range of about 4 to 30 pounds per cubic foot is prepared by mixing a hydroxyl-containing polymer having a hydroxyl number between about 25 to 900, and a second ary phosphonate that is non-reactive in the urethane reaction and reacting with a polyaryl-polyisocyanate in the presence of a foaming agent to produce a polyurethane foam having a uniform cell structure.
A foamed polyurethane or polystyrene having a density range of 6 to 13.2 pounds/cubic foot gave satisfactory results.
The polyurethane elastomers which are stretchable or flexible coverings for the exterior surfaces of a foamed polyurethane nose unit in accordance with this invention are resins of Uralane 8309 or Uralane 5715 (Furane Plastics Incorporated). Uralane 5715 is a two component urethane resin system capable of forming tough, high tear strength elastomeric products and may be poured and cured at'room temperature. This material is formed by mixing 100 parts by weight of Uralane 5715-A and 34 parts by weight of Uralane 57l5-B-40 (black) thoroughly for l to 2 minutes.'To facilitate defoaming, 2 drops of AF-2 anti-foamer are added per pound at the time of mixing. For bubble-free castings, use vacuum for 3-5 minutes, before pouring. Pot life is approximately 40-50 minutes. Cure at least three days at room temperature before placing into service; heat cure at 150 F for 23 hours will expedite cure and permit removing of parts from the mold. The typical physical properties: (a) cured density of 1.16 gm/cc; (b) resin viscosity at 75 F of 3,0006,000 cps; (c) mixed viscosity after 10 minutes at 75 F is 4,000-8,000 cps and after 30 minutes at 75 F is 40,000-60,000 cps; (d) cured Durometer A Hardness at 48 hours at room temperature is 70-80 and at 16 hours at room temperature plus 3 hours at 200 F is 75-85; and (e) tear strength cured is 200 lb/in. By mixing 100 parts by weight of Uralane 5715-A and 34 parts by weight of Uralane 5715-B produce a product having the following physical properties: (a) 48 hours at 75 F with Shore A Hardness of 73/70, with a tensile strength for 300 percent elongation of 1,000 psi, with an ultimate tensile strength of 1,000 psi and with percent elongation of 340 percent; (b) 3 hours at 200 F with Shore A Hardness of 82/81, with a tensile strength for 300 elongation of 2,100 psi, with an ultimate tensile strength of 2,400 psi and with a percent elongation of 360 percent; and (c) 24 hours at 200 F with Shore A Hardness of 84/82, with a tensile strength for 300 percent, elongation of 3,000 psi, with an ultimate tensile strength of 3200 psi and with a percent elongation of 350 percent. By mixing 100 parts by weight Uralane 5715-A and 30 parts by weight Uralane 57l5-B-40 (low cure agent) produce a product having the following physical properties: (a) 48 hours at room temperature with Shore A Hardness of 76/74, with an ultimate tensile strength 1,100 psi and with a percent elongation of 300 percent; and (b) 24 hours at 300 F with Shore A Hardness of 88/86, with an ultimate tensile strength of 2,700 psi, and with a percent elongation of 320 percent. By mixing parts by weight Uralane 5715-A and 38 parts by weight Uralane 5715-B-40, excessive cure agent produce a product with the following physical properties: (a) 48 hours at room temperature with a Shore A Hardness 69/65, with an ultimate tensile strength 800 psi, and with a percent elongation 400 percent; and (b) 24 hours at 300 F with a Shore A Hardness 86/85, with an ultimate tensile strength 2,300 psi and with a percent elongation 430 percent.
In addition to the specific synthetic resins described above other non-destructable, castable and foamable materials may be utilized provided they possess similar physical characteristics by not disintegrating during conditions of a firing cycle and terminal flight while maintaining an aeroballistic configuration. The function of the flexible polymeric non-foam elastomer is to confine the polymeric foamed material after impact with the target.
In the fabrication of the impact-attenuating nose unit, a stretchable outer cover is prepared in a shaped male/female mold with the castable polymeric material being inserted into the mold and over-cured, the time and temperature for curing is dependent upon the particular polymeric resin. The male position of the mole is removed leaving a cavity inside the stretchable outer cover which is still in the female portion of the mold. The crushable nose is made by inserting the foamable polymeric material into the cavity of the stretchable outer cover which was previously prepared; the foamable polymer is cured and the complete impactattenuating nose unit is removed from the female mold with the excess foamed polymer removed in order to make a flat surface for attachment to the projectile body.
The non-lethal chemical compositions which the inventive munition may be fitted are well known to those who are familiar with the art of making riot controlling compositions, for example, irritating or lachrymatory compositions such as a-chloroacetophone and o chlorobenzilidene malononitrile alone or in combination with pyrotechnic constituents blended in accordance with approved military standards are used as munition fills.
In preparing the following riot control material comprising a dry mixture and binder solution, the components are placed in the mixing bowl in the order listed since a spontaneous combustion reaction can occur when an oxidizer, potassium chlorate, and a reducing agent, sugar, are placed in intimate contact. The proportions of each component are expressed in parts by weight unless stated to the contrary. A dry mixture comprising mixing in a receiver containing (1 30.0 i 2.0 potassium chlorate, (2) 40.0 i 2.0 orthochlorobenzilidene malononitrile, (3) 9.0 i 2.0 magnesium carbonate, and (4) 18.0 i 2.0 sugar. Add to the dry mixture a binding solution comprising 8.0 i 1.0 nitrocellulose (cellulose nitrate) and 920i 2.0 acetone with the nitrocellulose equal to 3.0 i 0.2 percent total weight of dry mixture on a solid basis. Additional acetone may be added if necessary to preserve doughlike consistency. in addition to the above riot controlling composition other similar functioning standardized compositions may be utilized as set forth with the specifications of Military Standards 576 and 579.
The inventive munition can be ejected from the M79 Launcher which is described in Launcher, Grenade, 40-MM: M79, Headquarters, Department of the Army, June 1966, coupled with the handling, loading and firing as with the HE, high explosive, round from said launcher or other launching means sized for the munition in the military arsenal. The munition may be launched or directed to a desired impact area from a hand-held weapon, shoulder-fired or motorized mounted weapon system.
When the firing pin in the launcher strikes the primer in the cartridge, the primer fires and ignites the propellant powder in the propellant chamber; the burning propellant powder simultaneously ignites the pyrotechnic fuze and the projectile begins to travel through the launcher barrel; the fuze at the end of its time delay period, which may vary depending upon the desired lapse of time, ignites a payload of a pyrotechnic mixture comprising an irritant and disseminates the payload; on munition collision, the impact attenuating projectiles nose reduces the impact energy level to a non-physical injury value.
Referring to FIG. 1, numerals 9 and 8 designate the cartridge case and projectile body, respectively. The bottom of the case is provided with a primer 1 which communicates with the interior of the cartridge case 9 through a suitable opening 16 provided in the bottom of the case. The primer is 1 and the propellant burning chamber 3 housing a propellant powder, which is not shown, is arranged in case 9 communicating with opening 16. Rotating band 4 is in a recess on the exterior surface of the case. The base of the projectile body is provided with a rubber diaphragm 14 having an aperture which communicates with a central cavity 6 of the projectile body. Fuze 5 is positioned in cavity 6 through the apertures of diaphragm l4 and ring 17; said ring is bonded to said diaphragm. Ring 17 is a water-repellant polyester film of polyethylene terephthlate, for example, Mylar. The forward portion of the metallic projectile body 8 is provided with a closure plate 13 which is held in place by crimped sections 15. Chemical agent 7 is contiguous with plate 13, ring 17 and surrounding cavity 6. The nose unit comprises an elastomeric flexible non-foam polymeric material 1 1 covering all the exterior surfaces of the foamed polymeric material 10 which is secured with a bonding agent 12 to the closure plate 13.
In FIG. 2, the flexible non-foam polymeric material 11 partially enclosing the foamed polymeric material 10 which is directly exposed to the atmosphere.
A conventional fuze may be the one employed in XM-l6 Canister, TM3-l325-232-12, Headquarters, Department of the Army, September 1968. A state of the art propellant composition comprising nitrocellulose 57.75 i 1.50 percent, nitroglycerin 40.00 i 1.50 percent, potassium nitrate 1.50 i 0.50 percent and ethyl centralite. An art recognized primer composition comprising basic lead styphnate 53.0 $2.0 percent, antimony sulfide 10.0 i 1.0 percent, barium nitrate 22.0 i 1.5 percent, aluminum powder atomized 10.0 i 1.0 percent, and tetracen 5.0 i 0.5 percent.
It is also within the contemplation of this invention to utilize other functional internal conventional elements employed in ordnance items with my inventive impactattenuating unit, for example, primers, propellants, and fuzes functioning with time (delay), proximity, command, rotational spin with the exception that a nose impact fuze should not be used with any advantage since it would defeat the purpose of the impact-attenuating unit.
The nose unit can be shaped into any configuration in order to achieve desired ballistic properties.
The metallic portion of the munition may be fabricated from substances conventionally employed in military hardware, for example, steel, aluminum, magnesium, or alloys.
The bonding agents may be epoxy adhesives or other agents for maintaining the adhesion between metal and rubber or synthetic components and between rubber and synthetic components which will be structurally integral under the conditions of use.
The rotating bands may be constructed from rubbery material such as Buna N, which is prepared by the polymerization of acrylonitrile with butadiene, Buna N covered with tetrafluoroethylene, or polyurethane rubber impregnated molybdenum disulfide.
The munition assembly may have either a bonded or unbonded projectile body to the cartridge case joints. The cartridge case to projectile body interface may have a slip fit with no bonding. In employing a bonding agent, the projectile is bonded to the inner surface of the cartridge utilizing various known adhesives for this purpose as in the standard HE, high explosive, 40 MM cartridge.
The advantages of this invention are in greater safety and in wider sphere of usefulness for riot controlling devices.
I claim 1. In a munition assembly comprising a cartridge case containing primer and propellant means the improvement in combination therewith composed of a projectile having a cylindrical load bearing housing terminated at one end by a substantially solid coaxially'protruding kinetic energy dissipating substantially ogive shaped nose, said nose composed of solid crushable cellular polymer material circumferentially covered on at least a portion of the longitudinal extent thereof by a flexible polymer material whereby upon impact said flexible polymer material serves to elastically confine the crushed cellular polymer material while contemporaneously allowing for dimensional changes of the nose when conforming to the impact surface.
2. The munition of claim 1 wherein the load is a chemical fill selected from the group consisting of chloroacetophone, O-chlorabenzilidene malononitrile and pyrotechnic mixtures thereof.
3. The munition of claim 2 wherein the load includes a fuse means.
4. The munition of claim I wherein the cellular poly- I mer material is foamed polyurethane having a density of between 6-l3.6 pounds per cubic foot.
5. The munition of claim 4 wherein the flexible polymer is a non-foam polyurethane elastomer.
6. The munition of claim I wherein the flexible polymer completely covers the projectile exterior com-' posed of the crushable cellular polymer material.
7. A munitions projectile for use with munition launching means comprising a payload container having an impact exterior portion composed of a solid mass of kinetic energy dissipating crushable cellular polymer material at least partially enveloped with a of 6 to 13.2 pounds per cubic foot and the flexible polymer is a polyurethane elastomer.
9. The invention of claim 7 wherein the flexible polymer material completely envelopes the exterior portion of the container defined by the said mass of crushable cellular material.

Claims (9)

1. In a munition assembly comprising a cartridge case containing primer and propellant means the improvement in combination therewith composed of a projectile having a cylindrical load bearing housing terminated at one end by a substantially solid coaxially protruding kinetic energy dissipating substantially ogive shaped nose, said nose composed of solid crushable cellular polymer material circumferentially covered on at least a portion of the longitudinal extent thereof by a flexible polymer material whereby upon impact said flexible polymer material serves to elastically confine the crushed cellular polymer material while contemporaneously allowing for dimensional changes of the nose when conforming to the impact surface.
2. The munition of claim 1 wherein the load is a chemical fill selected from the group consisting of chloroacetophone, O-chlorabenzilidene malononitrile and pyrotechnic mixtures thereof.
3. The munition of claim 2 wherein the load includes a fuse means.
4. The munition of claim 1 wherein the cellular polymer material is foamed polyurethane having a density of between 6-13.6 pounds per cubic foot.
5. The munition of claim 4 wherein the flexible polymer is a non-foam polyurethane elastomer.
6. The munition of claim 1 wherein the flexible polymer completely covers the projectile exterior composed of the crushable cellular polymer material.
7. A munitions projectile for use with munition launching means comprising a payload container having an impact exterior portion composed of a solid mass of kinetic energy dissipating crushable cellular polymer material at least partially enveloped with a flexible covering of polymer material, whereby upon impact the major portion of the kinetic energy is absorbed by the crushing action on the cellular material while contemporaneously the crushed mass is elastically confined by the flexible covering of polymer material as said mass conforms to the impact surface.
8. The invention of claim 7 wherein the cellular polymer material is foamed polyurethane having a density of 6 to 13.2 pounds per cubic foot and the flexible polymer is a polyurethane elastomer.
9. The invention of claim 7 wherein the flexible polymer material completely envelopes the exterior portion of the container defined by the said mass of crushable cellular material.
US00146767A 1971-05-25 1971-05-25 Nose ogive for nonlethal projectile Expired - Lifetime US3732821A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14676771A 1971-05-25 1971-05-25

Publications (1)

Publication Number Publication Date
US3732821A true US3732821A (en) 1973-05-15

Family

ID=22518925

Family Applications (1)

Application Number Title Priority Date Filing Date
US00146767A Expired - Lifetime US3732821A (en) 1971-05-25 1971-05-25 Nose ogive for nonlethal projectile

Country Status (1)

Country Link
US (1) US3732821A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791303A (en) * 1973-02-22 1974-02-12 Aai Corp Deterrent ammunition
US3982489A (en) * 1972-11-29 1976-09-28 Abraham Flatau Kinetic energy ring projectile
US4008665A (en) * 1973-09-06 1977-02-22 Dynamit Nobel Aktiengesellschaft Training ammunition
EP0044643A1 (en) * 1980-07-18 1982-01-27 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Training ammunition
GB2192258A (en) * 1986-05-20 1988-01-06 Thomas Jago Non-lethal ammunition
US4909152A (en) * 1987-08-08 1990-03-20 Mauser-Werke Oberndorf Gmbh Cartridge for the expulsion of liquids under pressure
US5080018A (en) * 1989-08-07 1992-01-14 Mauser-Werke Oberndorf Gmbh Cartridge for expelling fluids under pressure
EP0488911A2 (en) * 1990-11-30 1992-06-03 Verney Carron S.A. Projectile for big calibre guns
US5151558A (en) * 1990-09-21 1992-09-29 Diehl Gmbh & Co. Ammunition possessing a supporting member constituted from a foam material
US5206445A (en) * 1990-07-16 1993-04-27 Comley Jack W Projection devices
WO1994029667A2 (en) * 1993-06-09 1994-12-22 Richmond Electronics And Engineering International Limited Gun and projectile for riot control
US5652407A (en) * 1996-02-13 1997-07-29 Academy Of Applied Science Non-lethal ammunition and method
US5691501A (en) * 1996-07-08 1997-11-25 The United States Of America As Represented By The Secretary Of The Army Long-range nonlethal bullet
US5698815A (en) * 1995-12-15 1997-12-16 Ragner; Gary Dean Stun bullets
US5962806A (en) * 1996-11-12 1999-10-05 Jaycor Non-lethal projectile for delivering an electric shock to a living target
US20050066849A1 (en) * 2003-09-29 2005-03-31 Kapeles John A. Frangible non-lethal projectile
US20050155511A1 (en) * 2003-12-29 2005-07-21 Neil Keegstra Extended range less lethal projectile
EP1605226A1 (en) * 2004-06-11 2005-12-14 Saab Ab An impact cartridge unit for military exercise
US20060011090A1 (en) * 2004-04-09 2006-01-19 Pepperball Technologies, Inc., A Delaware Corporation Primer launched projectile systems
US7013810B1 (en) * 1999-05-24 2006-03-21 Richard Ian Brydges-Price Projectile for delivery of a tranquilliser
WO2006111719A1 (en) * 2005-04-16 2006-10-26 The Secretary Of State For Defence Non lethal projectile
US20070289475A1 (en) * 2006-06-16 2007-12-20 Kapeles John A Non-lethal munitions having densified materials
US20080017179A1 (en) * 2004-05-12 2008-01-24 Pepperball Technologies, Inc. Compressed Gas Cartridge Puncture Apparatus
US20080178728A1 (en) * 2007-01-25 2008-07-31 Kapeles John A Frangible non-lethal projectile
US20090071459A1 (en) * 2007-09-18 2009-03-19 Pepperball Technologies, Inc. Systems, methods and apparatus for use in distributing irritant powder
US20090266262A1 (en) * 2003-02-10 2009-10-29 Pepperball Technologies, Inc. Stabilized non-lethal projectile systems
US20100071578A1 (en) * 2008-04-09 2010-03-25 Nexter Munitions Large calibre ammunition loaded via rear
US20120247359A1 (en) * 2011-03-31 2012-10-04 Michael Brunn Multiple Output And Effect Grenade
US8316769B2 (en) 2008-07-02 2012-11-27 Safariland, Llc Single piece non-lethal projectile
US9052174B2 (en) 2007-08-31 2015-06-09 Ra Brands, L.L.C. Tipped projectiles
US9157715B1 (en) 2014-05-14 2015-10-13 General Dynamics Ordnance and Tactical Systems—Canada Inc. Polymer marking projectile with integrated metallic sealing ring
US9322625B1 (en) 2011-10-24 2016-04-26 F. Richard Langner Systems and methods for launching water from a disrupter cannon
RU2622421C1 (en) * 2016-04-15 2017-06-15 Акционерное общество "Федеральный научно-производственный центр "Научно-исследовательский институт прикладной химии" Bullet for non-lethal small weapons
RU178344U1 (en) * 2018-01-10 2018-03-30 Акционерное общество "Федеральный научно-производственный центр "Научно-исследовательский институт прикладной химии" FIREWORKS
US20180156587A1 (en) * 2015-06-05 2018-06-07 Securinov Sa Kinetic and/or incapacitating projectile having high energy absorption
US20180224252A1 (en) * 2016-03-09 2018-08-09 Msato, Llc Pellet Shaped Marking Round for Air Rifles and Pistols
US10845172B2 (en) 2017-08-24 2020-11-24 Nostromo, Llc Mid-body marking projectile
US11287236B1 (en) * 2020-11-04 2022-03-29 Frank Dindl Training cartridge with day/night/thermal visible signature

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1819090A (en) * 1930-04-07 1931-08-18 Byron C Goss Gas containing projectile or long range tear gas shell
US2096698A (en) * 1935-02-20 1937-10-19 Fed Lab Inc Gas dispersing projectile
US3060856A (en) * 1959-03-02 1962-10-30 Plastic Training Products Comp Practice round of ammunition
US3067680A (en) * 1957-12-13 1962-12-11 Robert G Lahr Toy cartridges and toy projectiles therefor
US3156187A (en) * 1962-04-16 1964-11-10 Energa Rifle-grenades
US3245349A (en) * 1964-04-14 1966-04-12 Kerr Raymond William Safety type bullets
US3289585A (en) * 1964-04-23 1966-12-06 Dynamit Nobel Ag Shell construction
US3604355A (en) * 1969-02-05 1971-09-14 Us Navy Propellant-loaded cartridge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1819090A (en) * 1930-04-07 1931-08-18 Byron C Goss Gas containing projectile or long range tear gas shell
US2096698A (en) * 1935-02-20 1937-10-19 Fed Lab Inc Gas dispersing projectile
US3067680A (en) * 1957-12-13 1962-12-11 Robert G Lahr Toy cartridges and toy projectiles therefor
US3060856A (en) * 1959-03-02 1962-10-30 Plastic Training Products Comp Practice round of ammunition
US3156187A (en) * 1962-04-16 1964-11-10 Energa Rifle-grenades
US3245349A (en) * 1964-04-14 1966-04-12 Kerr Raymond William Safety type bullets
US3289585A (en) * 1964-04-23 1966-12-06 Dynamit Nobel Ag Shell construction
US3604355A (en) * 1969-02-05 1971-09-14 Us Navy Propellant-loaded cartridge

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982489A (en) * 1972-11-29 1976-09-28 Abraham Flatau Kinetic energy ring projectile
US3791303A (en) * 1973-02-22 1974-02-12 Aai Corp Deterrent ammunition
US4008665A (en) * 1973-09-06 1977-02-22 Dynamit Nobel Aktiengesellschaft Training ammunition
EP0044643A1 (en) * 1980-07-18 1982-01-27 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Training ammunition
US4455942A (en) * 1980-07-18 1984-06-26 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Training ammunition
GB2192258B (en) * 1986-05-20 1989-12-13 Thomas Jago Ammunition for firearms.
GB2192258A (en) * 1986-05-20 1988-01-06 Thomas Jago Non-lethal ammunition
US4909152A (en) * 1987-08-08 1990-03-20 Mauser-Werke Oberndorf Gmbh Cartridge for the expulsion of liquids under pressure
US5080018A (en) * 1989-08-07 1992-01-14 Mauser-Werke Oberndorf Gmbh Cartridge for expelling fluids under pressure
US5206445A (en) * 1990-07-16 1993-04-27 Comley Jack W Projection devices
US5151558A (en) * 1990-09-21 1992-09-29 Diehl Gmbh & Co. Ammunition possessing a supporting member constituted from a foam material
EP0488911A2 (en) * 1990-11-30 1992-06-03 Verney Carron S.A. Projectile for big calibre guns
EP0488911A3 (en) * 1990-11-30 1992-11-25 Verney Carron S.A. Projectile for big calibre guns
WO1994029667A3 (en) * 1993-06-09 1994-12-22 Richmond Electr & Eng Int Ltd Gun and projectile for riot control
WO1994029667A2 (en) * 1993-06-09 1994-12-22 Richmond Electronics And Engineering International Limited Gun and projectile for riot control
US5698815A (en) * 1995-12-15 1997-12-16 Ragner; Gary Dean Stun bullets
US5652407A (en) * 1996-02-13 1997-07-29 Academy Of Applied Science Non-lethal ammunition and method
US5691501A (en) * 1996-07-08 1997-11-25 The United States Of America As Represented By The Secretary Of The Army Long-range nonlethal bullet
US5962806A (en) * 1996-11-12 1999-10-05 Jaycor Non-lethal projectile for delivering an electric shock to a living target
US7013810B1 (en) * 1999-05-24 2006-03-21 Richard Ian Brydges-Price Projectile for delivery of a tranquilliser
US20090266262A1 (en) * 2003-02-10 2009-10-29 Pepperball Technologies, Inc. Stabilized non-lethal projectile systems
US20050066849A1 (en) * 2003-09-29 2005-03-31 Kapeles John A. Frangible non-lethal projectile
US20090101038A1 (en) * 2003-09-29 2009-04-23 Kapeles John A Frangible non-lethal projectile
US20050155511A1 (en) * 2003-12-29 2005-07-21 Neil Keegstra Extended range less lethal projectile
US7350465B2 (en) * 2003-12-29 2008-04-01 Neil Keegstra Extended range less lethal projectile
US20060011090A1 (en) * 2004-04-09 2006-01-19 Pepperball Technologies, Inc., A Delaware Corporation Primer launched projectile systems
US20080017179A1 (en) * 2004-05-12 2008-01-24 Pepperball Technologies, Inc. Compressed Gas Cartridge Puncture Apparatus
WO2005121692A1 (en) * 2004-06-11 2005-12-22 Saab Ab An impact cartridge unit for military exercise
US20070245920A1 (en) * 2004-06-11 2007-10-25 Saab Ab Impact Cartridge Unit for Military Exercise
US7617778B2 (en) 2004-06-11 2009-11-17 Saab Ab Impact cartridge unit for military exercise
EP1605226A1 (en) * 2004-06-11 2005-12-14 Saab Ab An impact cartridge unit for military exercise
GB2439023A (en) * 2005-04-16 2007-12-12 Secr Defence Non lethal projectile
WO2006111719A1 (en) * 2005-04-16 2006-10-26 The Secretary Of State For Defence Non lethal projectile
WO2008020857A3 (en) * 2006-06-16 2008-10-30 Defense Tech Corp America Non-lethal munitions having densified materials
WO2008020857A2 (en) * 2006-06-16 2008-02-21 Defense Technology Corporation Of America Non-lethal munitions having densified materials
US20070289475A1 (en) * 2006-06-16 2007-12-20 Kapeles John A Non-lethal munitions having densified materials
US20100078844A1 (en) * 2006-06-16 2010-04-01 Defense Technology Corporation Of America Non-lethal munitions having densified materials
US20080178728A1 (en) * 2007-01-25 2008-07-31 Kapeles John A Frangible non-lethal projectile
US9052174B2 (en) 2007-08-31 2015-06-09 Ra Brands, L.L.C. Tipped projectiles
US20090071459A1 (en) * 2007-09-18 2009-03-19 Pepperball Technologies, Inc. Systems, methods and apparatus for use in distributing irritant powder
US7752974B2 (en) 2007-09-18 2010-07-13 Pepperball Technologies, Inc. Systems, methods and apparatus for use in distributing irritant powder
US20100071578A1 (en) * 2008-04-09 2010-03-25 Nexter Munitions Large calibre ammunition loaded via rear
US8015923B2 (en) * 2008-04-09 2011-09-13 Nexter Munitions Large calibre ammunition loaded via rear
US8316769B2 (en) 2008-07-02 2012-11-27 Safariland, Llc Single piece non-lethal projectile
US8365668B2 (en) * 2011-03-31 2013-02-05 Michael Brunn Multiple output and effect grenade
US20120247359A1 (en) * 2011-03-31 2012-10-04 Michael Brunn Multiple Output And Effect Grenade
US8720341B2 (en) 2011-03-31 2014-05-13 Michael Brunn Multiple output and effect grenade
US9322625B1 (en) 2011-10-24 2016-04-26 F. Richard Langner Systems and methods for launching water from a disrupter cannon
EP3143365A4 (en) * 2014-05-14 2017-12-27 General Dynamics Ordnance and Tactical Systems - Canada, Inc. Polymer marking projectile with integrated metallic sealing ring
WO2015172240A1 (en) * 2014-05-14 2015-11-19 General Dynamics, Ots - Canada, Inc. Polymer marking projectile with integrated metallic sealing ring
US9157715B1 (en) 2014-05-14 2015-10-13 General Dynamics Ordnance and Tactical Systems—Canada Inc. Polymer marking projectile with integrated metallic sealing ring
US20180156587A1 (en) * 2015-06-05 2018-06-07 Securinov Sa Kinetic and/or incapacitating projectile having high energy absorption
US10527394B2 (en) * 2015-06-05 2020-01-07 Securinov Sa Kinetic and/or incapacitating projectile having high energy absorption
US20180224252A1 (en) * 2016-03-09 2018-08-09 Msato, Llc Pellet Shaped Marking Round for Air Rifles and Pistols
US11209254B2 (en) * 2016-03-09 2021-12-28 Msato, Llc Pellet shaped marking round for air rifles and pistols
RU2622421C1 (en) * 2016-04-15 2017-06-15 Акционерное общество "Федеральный научно-производственный центр "Научно-исследовательский институт прикладной химии" Bullet for non-lethal small weapons
US10845172B2 (en) 2017-08-24 2020-11-24 Nostromo, Llc Mid-body marking projectile
RU178344U1 (en) * 2018-01-10 2018-03-30 Акционерное общество "Федеральный научно-производственный центр "Научно-исследовательский институт прикладной химии" FIREWORKS
US11287236B1 (en) * 2020-11-04 2022-03-29 Frank Dindl Training cartridge with day/night/thermal visible signature

Similar Documents

Publication Publication Date Title
US3732821A (en) Nose ogive for nonlethal projectile
US8671841B2 (en) Kinetic munition or projectile with controlled, non-lethal effects
ES2212497T3 (en) NON-LETAL PROJECT FOR FIREARM, MATERIAL AND MANUFACTURING PROCEDURE OF SUCH PROJECTILE.
US3865035A (en) Multi-use munition
US3754507A (en) Penetrator projectile
US7404358B2 (en) Smoke producing mortar cartridge
US6615737B2 (en) Safety igniter for a pyrotechnic munition component capable of being subjected to slow cook off
US4657607A (en) Process for the solvent-free manufacture of compound pyrotechnic products containing a thermosetting binder and products thus obtained
RU99125764A (en) NON-KILLING THROWBAR FOR FIRING WEAPONS
US3951068A (en) Incendiary device
US5712511A (en) Preparation of fine particulate CL-20
US5547526A (en) Pressable explosive granular product and pressed explosive charge
US4438700A (en) White smoke spotting composition for training ammunition
US4063508A (en) Munition dispersion by interstitial propelling charges
US3513043A (en) Composite solid propellants containing a perfluoroethylene resin,metal and a fluoroelastomer
US4394197A (en) Cook-off resistant booster explosive
US3486453A (en) Combustible primer for caseless ammunition
US4923535A (en) Polymer binding of particulate materials
US3724381A (en) Tear gas element
US4534810A (en) Red phosphorous smoke producing composition
KR20180055762A (en) Propelling Charge System for Artillery Shells
US3236704A (en) Propellant composition
US3626851A (en) Telescoped caseless ammunition having a gas barrier within the propellant charge
US3726225A (en) Plastic bonded smoke
CA2053501A1 (en) Low vulnerability element for explosive ordnance comprising a multicomposition explosive charge and process for obtaining a blast effet