US3727057A - Infrared detector device with a mosaic of oppositely-poled adjacent elements - Google Patents

Infrared detector device with a mosaic of oppositely-poled adjacent elements Download PDF

Info

Publication number
US3727057A
US3727057A US00202771A US3727057DA US3727057A US 3727057 A US3727057 A US 3727057A US 00202771 A US00202771 A US 00202771A US 3727057D A US3727057D A US 3727057DA US 3727057 A US3727057 A US 3727057A
Authority
US
United States
Prior art keywords
electrodes
detector
elements
detector elements
spaced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00202771A
Inventor
R Higby
M Lauriente
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3727057A publication Critical patent/US3727057A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors

Definitions

  • ABSTRACT An infrared detector device incorporating a checkerboard arrangement of photoconductor detector elements is disclosed. Adjacent elements are oppositely poled, resulting in the cancellation of background signals on any two adjacent elements, thereby providing background discrimination.
  • INFRARED DETECTOR DEVICE WITH A MOSAIC 01F OPPOSITELY-POLEI) ADJACENT ELEMENTS This invention relates to improvements in infrared detectors and more particularly to an improved infrared detector employing the principle of cancellation to break up the image plane into a mosaic of point size detector elements polarized in such a manner that any signal induced on any two adjacent elements cancel each other out and thereby provide background discrimination.
  • infrared surveillance systems employing point detectors for mechanically scanning the scenery are limited by the spurious noise induced by background. sources. These sources commonly referred to as scanning or sky noise, are in the form of clouds and intensity gradients as might be found in a sky or terrain background. A differential in energy between two consecutive points along the line of scan constitutes a target in the employment of these systems. Since the existence of energy differential is not unique to real targets, but applies also to background sources, subsequent techniques for discriminating energy differentials is also required.
  • a number of techniques in general use are all characterized by one or more disadvantages or limitations.
  • One technique in use in the prior art depends upon spatial differences between the target and background sources. This is possible because the target appears as a point source, for all intents and purposes, in the image plane of the optical system. Background sources of point size do not emit enough energy to be discernible because they are usually materially cooler than the target. Therefore, background sources must have an extended area in order to emit sufficient energy to be detectable.
  • Pulse width discrimination takes advantage of the difference in the frequency spectra produced by the area difference between the target and background sources when swept over by the scanning aperture.
  • Space filtering utilizes a reticle of alternate opaque and transparent apertures which are essentially of point size. A chopped signal is generated by the radiation from a point source target as it is swept across this reticle disposed in the image plane during scanning. The electronic system is made selective to this chopped signal. Extended area sources do not generate this signal because of an averaging out of the chopping due to an equal number of transparent and opaque apertures in the scan. Thus extended area induced signals are filtered out.
  • the present invention employs a cancellation detector having an array of elemental detector elements arranged along sets of parallel and horizontal orthogonal axes, adjacent elements along each axis being alternately oppositely polarized so as to give responses of opposite polarity when scanned by radiation from a point source. Since any extended area source of radiation can be considered as having an infinite number of point sources, signal cancellation is effective at the edges of an extended source as well as it is throughout the body of the extended source and therefore no false target signals will be generated as the beam sweeps across an extended area source.
  • a primary object of the present invention is to provide anew and improved infrared radiation detector.
  • Another object is to provide a new and improved infrared detector employing cancellation to eliminate signals due to background radiation.
  • Another object is to provide a new and improved infrared detector cell for use in the system in accordance with the present invention.
  • FIG. 1 is a schematic representation of a typical apparatus for scanning an infrared optical aperture over a surveillance area
  • FIG. 2 is a schematic representation of a contemporary system where the aperture is scanned over a checkerboard reticle
  • FIG. 3 is a schematic representation of the spatial relation between an extended background, a target and a detector cell together with the associated signals and circuitry;
  • FIGS. 4 and 5 are views of one embodiment of the invention, FIG. 5 showing the optical portion of the detector apparatus removed from the photoconductive assembly for clarity of illustration;
  • FIG. 6 is a simplified electrical circuit diagram illustrating the operation of the invention.
  • FIGS. 7A, 7B, 7C and 7D are views of a second embodiment of the invention in various stages of assembly
  • FIG. 8 is a sectional view of FIG. 7D on line VIII- VIII and looking in the direction of the arrows;
  • FIG. 9 is a representation of a greatly enlarged photograph of a third embodiment.
  • FIG. I The general schematic arrangement of the present invention is illustrated in FIG. I wherein any suitable optical system I is adapted to direct infrared radiation on a detector cell 2 which is located in the focal plane of the optical system.
  • the exact type of optical system is immaterial. It is illustrated for convenience as being a single positive lens although as very well understood in the art a reflective type of system could be used.
  • the optical system I and the detector cell 2 are mounted in such a manner that they can be moved in unison.
  • the optical system I may be mounted in any suitable means so that it can oscillate about orthogonal axes for the purpose of providing the necessary scanning motion so that the aperture of the optical system is scanned over the surveillance area.
  • the optical system would be mounted in the necessary manner so that it could oscillate about the vertical axis, the oscillation being indicated by the double pointed arrow 3 in proper time relation with slower oscillation movement about the center of the optical axis indicated at 4. In this manner, the aperture is scanned from side to side as the optical axis is tilted progressively up and down.
  • the operation of the scanning system would be in accordance with conventional practice and constitutes no part of the present invention. The above is mentioned primarily to indicate that the scanning operation of the optical system has the effect of producing the pulsating signal in the present system much in the manner as a light chopper produces a pulsating signal in other systems using the contemporary checkerboard pattern reticle system.
  • FIG. 2 schematically illustrates the disadvantage of contemporary systems using the checkerboard pattern reticle system wherein the radiation from the surveillance area would be scanned across the reticle, which corresponds to the detector cell shown in FIG. 1.
  • a large area background such as a cloud
  • the body of a cloud may be considered to include an infinite number of reflectors spaced very close together so that the amount of energy reflected from the cloud is comparatively high and substantially constant as the cell is swept across the area.
  • the edges of the clouds there is a differential in energy between two consecutive points along the line of scan and this causes the generation of transient signals 7 and 8 which cannot readily be distinguished from a signal from a real target such as that indicated at 9.
  • the scanning system may be the same as that schematically represented in FIG. 1 and the detector cell 2 will be made in accordance with one of the embodiments of the present invention.
  • the point size detector elements of the detector cell 2 are polarized in such a manner that any signal induced on any two adjacent elements cancel each other and therefore only the noise-like signal of low amplitude, such as that indicated at 10, will be developed in the output circuit of the detector cell 2. This is to be compared with the signal 6 of FIG. 2.
  • a point size target 11 will develop an oscillating signal 12 which can be clearly recognized as that coming from a point size target.
  • the detector cell 2 has associated therewith a plurality of light pipes 13 having entrance pupils l4 and exit pupils 16 adjacent to a supporting structure 17 on which are disposed a plurality of radiation sensitive elements 18' and 18".
  • the areas and dimensions of these elements correspond approximately to the areas and dimensions of the exit pupils 16 of the light pipes.
  • the output signals are delivered by the leads 19 and 21.
  • Lead 19 is connected to one side of detector elements 18 and lead 21 is connected to the opposite sides of alternate detector elements 18" of the upper row and to the same corresponding sides of the elements of each of the other transverse rows.
  • lead 19 is connected to alternate sides of adjacent cells arranged in a checkerboard pattern while lead 21 is connected to the other sides of alternate cells in the checkerboard pattern.
  • Lead 22 is connected to the other sides of the remaining alternate elements.
  • a source of direct current biasing voltage such as the battery 23 has its positive terminal connected to lead 22 and its negative terminal connected to the lead 21, which is also connected to ground at 24.
  • lead 19 is common to one side of all of the detector elements and alternate detector elements disposed in vertical and horizontal rows are oppositely polarized.
  • the positively polarized detector elements are designated 18' and the negatively polarized detector elements are designated 18".
  • the output lead 19 will be at a constant potential which will be substantially one-half the potential of the battery 23. If the total illumination on detector elements 18' becomes greater than the total illumination on detector elements 18" so that their conductivity increases, the potential of lead 19 rises toward the positive potential of lead 22 whereas, if the total illumination on detector elements 18" is greater than that on the elements 18 the potential difference between leads 21 and 19 is decreased and, in effect, lead 19 becomes less positive.
  • the amplitude of the voltage on lead 19 alternately varies in positive and negative directions about some average value to provide an output analog signal.
  • the electrode pattern may be laid down on the detector substrate 17 by a photoetching process.
  • the detector elements 18 and 18" may then be laid down in small squares either by photoetching, scribing or some other suitable process.
  • One significant aspect of the apparatus of FIG. 5 is the interleaving of the electrodes such that no crossovers occur and the desired polarity reversals occur at every element.
  • the sensitivity of the detector of FIGS. 4 and 5 is augmented by the integrated light pipes 13 which, as previously mentioned, provides space between the exit pupils 16 for interconnecting the signal electrodes.
  • FIGS. 7A, 7B, 7C and 7D illustrate a second embodiment of the invention.
  • a substrate supporting member 17 of suitable insulating material there is supported two sets of interleaved bias electrodes, the electrodes of one group being electrically connected together and designated 26, 27 and 28 and having a common terminal strip 29 and the electrodes of the other group being designated 31, 32, 33 and 34 and having a common terminal strip 36.
  • the electrodes and terminal strips may be in the form of a gold film plated upon the substrate 17.
  • An insulating film 37 (FIGS. 7B and 7D) is then deposited over the gold film electrodes.
  • the insulating film 37 covers substantially the entire surface of the substrate 17.
  • a common electrode member 38 somewhat in the form of an egg carton separator and having spaced square recesses 39 therein, is then secured in any convenient manner over the insulating film 37.
  • the common electrode member 38 has a terminal strip 41.
  • the square recesses 39 are spaced in a plurality of parallel horizontal and vertical rows in such a manner that substantially the center of each of the square recesses 39 lies over one of the electrodes 26, 27, 28, 31, 32, 33 or 34.
  • a plurality of small holes 42, one in each recess 39, are then etched through the insulating film 37 exposing the common electrode 38 as shown in FIGS. 78, 7C and 7D.
  • a photosensitive film, shown at 43 in FIG. 7D is then laid over the entire assemblage in block fashion.
  • the photoconductive film 43 flows into the recesses 39 and through the holes 42 into contact with the finger electrodes 26, 27, 28, 41, 32, 33 and 34, thus forming photoconductive cells, in general, similar to those of FIG. 1.
  • the terminal strip 41 of the common electrode 38 corresponds to the output lead 19 of FIG. 6.
  • the terminal strips 29 and 36 are connected, respectively, to terminals corresponding to leads 22 and 21, respectively, of FIG. 6 to the positive and negative terminals of a suitable direct current source (not shown) to give a circuit configuration similar to that shown in FIG. 6 and providing a checkerboard pattern of adjacent alin the output circuit as infrared radiation from the target is scanned across the member 43.
  • FIG. 9 a third embodiment of the invention is shown.
  • the detector of FIG. 9 is seen to consist of sets of interleaving hairlike electrodes in contact with a photoconductive film 44.
  • One set of electrodes 46a serves as common biasing electrodes and is connected to a terminal strip 46, corresponding electrically to the lead 19 of FIG. 6.
  • a second set of electrodes 47a are connected to a terminal strip 47, which might correspond electrically to the lead 22 of FIG. 6, while a third set of electrodes 48a are connected to a terminal strip 48.
  • This terminal strip corresponds electrically to lead 21 of FIG. 6.
  • the terminal strip 46 serves as the signal output terminal while the terminal strips 47 and 48 may be connected to the positive and negative terminal of a direct current source, not shown. It will be seen that between each positive and negative electrode there is a biasing electrode 46a. Because of the hairlike size of the electrodes 46a, 47a and 48a and the manner in which they are connected to their terminal strips it is not necessary to use the light pipe arrangement as is used with the two previous embodiments. It should be understood that the electrodes 47a and 48a, which must pass either under or over the terminal strip 46, are insulated therefrom in any suitable manner. The photoconductive film 44 is laid over the electrodes 46a, 47a and 48a in conductive relation therewith thereby forming strip-like detector cells.
  • the invention contemplates the use of filtering circuits, if desired, to filter out undesired extraneous alternating current components of the detector output signal caused either by targets or by background environment.
  • the bias electrode span that is, the distance between the positive and the next adjacent negative electrode is substantially equal to the blur circle of the imaging system.
  • An infrared detector comprising, in combination, an insulating supporting plate member, a plurality of photoconductive detector elements arranged in a plurality of parallel vertical and horizontal rows disposed orthogonally with respect to each other, means for biasing said detector elements said elements being arranged in checkerboard pattern and each being poled so as to develop potential drops of opposite polarity at common output terminals in response to infrared radiation, a plurality of elongated spaced electrodes on said supporting plate member, all of said first plurality of all of said electrodes and said supporting late, said insulating film having a plurality of small apertures therein at spaced intervals corresponding to the centers of said detector elements, each of said apertures lying over an electrode, and a photoconductive film overlying all of said electrodes and apertures and in contact with said electrodes.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

An infrared detector device incorporating a checkerboard arrangement of photoconductor detector elements is disclosed. Adjacent elements are oppositely poled, resulting in the cancellation of background signals on any two adjacent elements, thereby providing background discrimination.

Description

Waited States Patent [191 Higby et a1.
[4 1 Apr. 10, 1973 INFRARED DETECTOR DEVTCE WITH A MOSAIC OF OPPOSITELY-POLED ADJACENT ELEIVIENTS [75] Inventors: Richard F. Higby, Sevema Park; Mike Lauriente, Clarksville, both of Md.
[73] Assignee: Westinghouse Electric Corporation,
East Pittsburgh, Pa.
[22] Filed: June 15, 1962 [21] App1.No.: 202,771
[52] U.S. Cl ..250/83.3 H, 313/66, 313/96,
178/72, 250/209 [51] llnt. Cl ..G01t 1/16 [58] Field of Search ..250/83.3 IR, 213,
250/220, 227, 86.3, 211, 83.3 H, 83.3 HP, 209; 313/65, 66, 96, 95, 65 A, 96; 88/1 R; 178/72; 338/17, 18; 244/1143 [56] References Cited UNITED STATES PATENTS 2,892,949 6/1959 Hardy; ..;..244/14.3
TARGET 3,013,232 12/1961 Lubin .338/17 3,084,301 4/ 1963 Mohan .338/18 2,813,983 11/1957 l-lammar ..250/22O 3,107,302 10/1963 Coleman ..250/83.3 IR 2,953,688 9/1960 Maxwell et al. ....250/83.3 IR 3,106,642 10/1963 Shapiro ....250/83.3 IR 2,979,632 4/1961 MacNeille ..88/1 R 2,500,929 3/1950 Chilowsky ..88/l R 2,948,816 8/1960 Van Santen et a1. ..250/213 2,920,137 l/1960 Garbuny ..178/7.2
Primary ExaminerCar1 D. Quarforth Assistant ExaminerP. A. Nelson Attorney-F. H. Henson, J. L. Wiegreffe and E. P. Klipfel [57] ABSTRACT An infrared detector device incorporating a checkerboard arrangement of photoconductor detector elements is disclosed. Adjacent elements are oppositely poled, resulting in the cancellation of background signals on any two adjacent elements, thereby providing background discrimination.
1 Claim, 12 Drawing Figures PATENTEDAPR] 01915 3,727,
SHEET 1 or 3 EQUIVALENT 2 l l I CIRCUIT PRIOR ART TRANSIENT STEADY DETECTOR (STATE gslGNAL FILTERED SIGNAL CLOUD K A TARGET km k.
WITNESSES INVENTORS 2 & Mike Louriente 0nd T Richard E Higby K ATTONEY PATENTEB APR 1 01975 SHEET 2 HF DIRECTION OF SCAN Fig. 9
INFRARED DETECTOR DEVICE WITH A MOSAIC 01F OPPOSITELY-POLEI) ADJACENT ELEMENTS This invention relates to improvements in infrared detectors and more particularly to an improved infrared detector employing the principle of cancellation to break up the image plane into a mosaic of point size detector elements polarized in such a manner that any signal induced on any two adjacent elements cancel each other out and thereby provide background discrimination.
As will be understood by those skilled in the art, the detection sensitivity of infrared surveillance systems employing point detectors for mechanically scanning the scenery are limited by the spurious noise induced by background. sources. These sources commonly referred to as scanning or sky noise, are in the form of clouds and intensity gradients as might be found in a sky or terrain background. A differential in energy between two consecutive points along the line of scan constitutes a target in the employment of these systems. Since the existence of energy differential is not unique to real targets, but applies also to background sources, subsequent techniques for discriminating energy differentials is also required.
A number of techniques in general use are all characterized by one or more disadvantages or limitations. One technique in use in the prior art depends upon spatial differences between the target and background sources. This is possible because the target appears as a point source, for all intents and purposes, in the image plane of the optical system. Background sources of point size do not emit enough energy to be discernible because they are usually materially cooler than the target. Therefore, background sources must have an extended area in order to emit sufficient energy to be detectable.
This spatial difference is exploited in prior art circuits in two general ways, one of which is called pulse width discrimination and the other is called space filtering. Pulse width discrimination takes advantage of the difference in the frequency spectra produced by the area difference between the target and background sources when swept over by the scanning aperture. Space filtering utilizes a reticle of alternate opaque and transparent apertures which are essentially of point size. A chopped signal is generated by the radiation from a point source target as it is swept across this reticle disposed in the image plane during scanning. The electronic system is made selective to this chopped signal. Extended area sources do not generate this signal because of an averaging out of the chopping due to an equal number of transparent and opaque apertures in the scan. Thus extended area induced signals are filtered out.
Although these techniques may at least partially suppress background noise, they do not eliminate it and thus leave much to be desired. In the contemporary system the reticle is used to break up the image plane into a checkerboard pattern of point size detector ele ments, the alternate ones of which are opaque and transparent. With extended area sources of radiation background, the averaging out of the chopping due to the alternate opaque and transparent apertures provide a low amplitude noise type signal at gives no particular difficulty. However, in such system the edges of such a background area gives rise to transient signals which can be readily mistaken for real target signals and such false signals cannot be readily eliminated. Such a typical contemporary system is illustrated in the drawings and is compared with the operation of the system in accordance with the present invention.
As contrasted to the prior art systems using the reticle type system, the present invention employs a cancellation detector having an array of elemental detector elements arranged along sets of parallel and horizontal orthogonal axes, adjacent elements along each axis being alternately oppositely polarized so as to give responses of opposite polarity when scanned by radiation from a point source. Since any extended area source of radiation can be considered as having an infinite number of point sources, signal cancellation is effective at the edges of an extended source as well as it is throughout the body of the extended source and therefore no false target signals will be generated as the beam sweeps across an extended area source.
Accordingly, a primary object of the present invention is to provide anew and improved infrared radiation detector.
Another object is to provide a new and improved infrared detector employing cancellation to eliminate signals due to background radiation.
Another object is to provide a new and improved infrared detector cell for use in the system in accordance with the present invention.
The above and other objects will become apparent when considered in connection with the accompanying drawings, in which:
FIG. 1 is a schematic representation of a typical apparatus for scanning an infrared optical aperture over a surveillance area;
FIG. 2 is a schematic representation of a contemporary system where the aperture is scanned over a checkerboard reticle;
FIG. 3 is a schematic representation of the spatial relation between an extended background, a target and a detector cell together with the associated signals and circuitry;
FIGS. 4 and 5 are views of one embodiment of the invention, FIG. 5 showing the optical portion of the detector apparatus removed from the photoconductive assembly for clarity of illustration;
FIG. 6 is a simplified electrical circuit diagram illustrating the operation of the invention;
FIGS. 7A, 7B, 7C and 7D are views of a second embodiment of the invention in various stages of assembly;
FIG. 8 is a sectional view of FIG. 7D on line VIII- VIII and looking in the direction of the arrows; and,
FIG. 9 is a representation of a greatly enlarged photograph of a third embodiment.
The general schematic arrangement of the present invention is illustrated in FIG. I wherein any suitable optical system I is adapted to direct infrared radiation on a detector cell 2 which is located in the focal plane of the optical system. The exact type of optical system is immaterial. It is illustrated for convenience as being a single positive lens although as very well understood in the art a reflective type of system could be used. The optical system I and the detector cell 2 are mounted in such a manner that they can be moved in unison. The optical system I may be mounted in any suitable means so that it can oscillate about orthogonal axes for the purpose of providing the necessary scanning motion so that the aperture of the optical system is scanned over the surveillance area. In this connection, it should be understood that the optical system would be mounted in the necessary manner so that it could oscillate about the vertical axis, the oscillation being indicated by the double pointed arrow 3 in proper time relation with slower oscillation movement about the center of the optical axis indicated at 4. In this manner, the aperture is scanned from side to side as the optical axis is tilted progressively up and down. The operation of the scanning system would be in accordance with conventional practice and constitutes no part of the present invention. The above is mentioned primarily to indicate that the scanning operation of the optical system has the effect of producing the pulsating signal in the present system much in the manner as a light chopper produces a pulsating signal in other systems using the contemporary checkerboard pattern reticle system.
FIG. 2 schematically illustrates the disadvantage of contemporary systems using the checkerboard pattern reticle system wherein the radiation from the surveillance area would be scanned across the reticle, which corresponds to the detector cell shown in FIG. 1. It will be seen that when a large area background, such as a cloud, is scanned, a noise-like signal illustrated at 6 will be produced at the output of the single detector cell used with the reticle. The body of a cloud may be considered to include an infinite number of reflectors spaced very close together so that the amount of energy reflected from the cloud is comparatively high and substantially constant as the cell is swept across the area. On the other hand, at the edges of the clouds there is a differential in energy between two consecutive points along the line of scan and this causes the generation of transient signals 7 and 8 which cannot readily be distinguished from a signal from a real target such as that indicated at 9.
The advantage of the present invention over the system schematically symbolized in FIG. 2 will be readily apparent from a comparison of the latter figure with FIG. 3. The scanning system may be the same as that schematically represented in FIG. 1 and the detector cell 2 will be made in accordance with one of the embodiments of the present invention. Because of the cancellation technique, hereinafter pointed out in greater detail, the point size detector elements of the detector cell 2 are polarized in such a manner that any signal induced on any two adjacent elements cancel each other and therefore only the noise-like signal of low amplitude, such as that indicated at 10, will be developed in the output circuit of the detector cell 2. This is to be compared with the signal 6 of FIG. 2. On the other hand, a point size target 11 will develop an oscillating signal 12 which can be clearly recognized as that coming from a point size target.
In the first embodiment, shown in FIGS. 4 and 5, the detector cell 2 has associated therewith a plurality of light pipes 13 having entrance pupils l4 and exit pupils 16 adjacent to a supporting structure 17 on which are disposed a plurality of radiation sensitive elements 18' and 18". The areas and dimensions of these elements correspond approximately to the areas and dimensions of the exit pupils 16 of the light pipes. The use of light pipes in infrared detectors is more fully explained in a copending application by Francis J. Keisler and Richard F. Higby entitled High Resolution Radiation Detector, Ser. No. 57,177, filed Sept. 20, 1960 now US. Pat. No. 3,110,816, dated Nov. 12, 1963 and assigned to the assignee of the instant application.
In that copending patent application the advantages to be obtained by the use of light pipes having exit pupils smaller than the entrance pupils is described in detail. Such construction provides concentrations of radiation on the detector elements and also provides space to make the electrical connections. As will appear from the subsequent description, the light pipes shown in FIGS. 4 and 5 are associated with the first and second embodiments of the invention while the third embodiment, illustrated in FIG. 9, does not require the use of these light pipes.
Referring to FIG. 6, it will be noted that the output signals are delivered by the leads 19 and 21. Lead 19 is connected to one side of detector elements 18 and lead 21 is connected to the opposite sides of alternate detector elements 18" of the upper row and to the same corresponding sides of the elements of each of the other transverse rows. In other words, lead 19 is connected to alternate sides of adjacent cells arranged in a checkerboard pattern while lead 21 is connected to the other sides of alternate cells in the checkerboard pattern. Lead 22 is connected to the other sides of the remaining alternate elements. As shown in FIG. 6, a source of direct current biasing voltage, such as the battery 23 has its positive terminal connected to lead 22 and its negative terminal connected to the lead 21, which is also connected to ground at 24. In other words, lead 19 is common to one side of all of the detector elements and alternate detector elements disposed in vertical and horizontal rows are oppositely polarized. The positively polarized detector elements are designated 18' and the negatively polarized detector elements are designated 18".
It will be readily understood that if the elements l8, 18'', which are identical but oppositely polarized photoconductive elements, receive no illumination, or are illuminated uniformly with electromagnetic radiation such as infrared light, the output lead 19 will be at a constant potential which will be substantially one-half the potential of the battery 23. If the total illumination on detector elements 18' becomes greater than the total illumination on detector elements 18" so that their conductivity increases, the potential of lead 19 rises toward the positive potential of lead 22 whereas, if the total illumination on detector elements 18" is greater than that on the elements 18 the potential difference between leads 21 and 19 is decreased and, in effect, lead 19 becomes less positive. In this way, as the elements 18' and 18" are alternately illuminated, such as when being scanned by infrared radiation through a scanning aperture, the amplitude of the voltage on lead 19 alternately varies in positive and negative directions about some average value to provide an output analog signal.
In manufacturing the detector of the present, the electrode pattern may be laid down on the detector substrate 17 by a photoetching process. The detector elements 18 and 18" may then be laid down in small squares either by photoetching, scribing or some other suitable process. One significant aspect of the apparatus of FIG. 5 is the interleaving of the electrodes such that no crossovers occur and the desired polarity reversals occur at every element. The sensitivity of the detector of FIGS. 4 and 5 is augmented by the integrated light pipes 13 which, as previously mentioned, provides space between the exit pupils 16 for interconnecting the signal electrodes.
Particular reference is made now to FIGS. 7A, 7B, 7C and 7D, which together illustrate a second embodiment of the invention. Upon a substrate supporting member 17 of suitable insulating material there is supported two sets of interleaved bias electrodes, the electrodes of one group being electrically connected together and designated 26, 27 and 28 and having a common terminal strip 29 and the electrodes of the other group being designated 31, 32, 33 and 34 and having a common terminal strip 36. The electrodes and terminal strips may be in the form of a gold film plated upon the substrate 17. An insulating film 37 (FIGS. 7B and 7D) is then deposited over the gold film electrodes. The insulating film 37 covers substantially the entire surface of the substrate 17. A common electrode member 38 somewhat in the form of an egg carton separator and having spaced square recesses 39 therein, is then secured in any convenient manner over the insulating film 37. The common electrode member 38 has a terminal strip 41. As will be noted the square recesses 39 are spaced in a plurality of parallel horizontal and vertical rows in such a manner that substantially the center of each of the square recesses 39 lies over one of the electrodes 26, 27, 28, 31, 32, 33 or 34. A plurality of small holes 42, one in each recess 39, are then etched through the insulating film 37 exposing the common electrode 38 as shown in FIGS. 78, 7C and 7D. A photosensitive film, shown at 43 in FIG. 7D is then laid over the entire assemblage in block fashion. The photoconductive film 43 flows into the recesses 39 and through the holes 42 into contact with the finger electrodes 26, 27, 28, 41, 32, 33 and 34, thus forming photoconductive cells, in general, similar to those of FIG. 1. The terminal strip 41 of the common electrode 38 corresponds to the output lead 19 of FIG. 6. The terminal strips 29 and 36 are connected, respectively, to terminals corresponding to leads 22 and 21, respectively, of FIG. 6 to the positive and negative terminals of a suitable direct current source (not shown) to give a circuit configuration similar to that shown in FIG. 6 and providing a checkerboard pattern of adjacent alin the output circuit as infrared radiation from the target is scanned across the member 43.
Particular reference is made now to FIG. 9 in which a third embodiment of the invention is shown. The detector of FIG. 9 is seen to consist of sets of interleaving hairlike electrodes in contact with a photoconductive film 44. One set of electrodes 46a serves as common biasing electrodes and is connected to a terminal strip 46, corresponding electrically to the lead 19 of FIG. 6. A second set of electrodes 47a are connected to a terminal strip 47, which might correspond electrically to the lead 22 of FIG. 6, while a third set of electrodes 48a are connected to a terminal strip 48. This terminal strip corresponds electrically to lead 21 of FIG. 6. Similar to the previous embodiments, the terminal strip 46 serves as the signal output terminal while the terminal strips 47 and 48 may be connected to the positive and negative terminal of a direct current source, not shown. It will be seen that between each positive and negative electrode there is a biasing electrode 46a. Because of the hairlike size of the electrodes 46a, 47a and 48a and the manner in which they are connected to their terminal strips it is not necessary to use the light pipe arrangement as is used with the two previous embodiments. It should be understood that the electrodes 47a and 48a, which must pass either under or over the terminal strip 46, are insulated therefrom in any suitable manner. The photoconductive film 44 is laid over the electrodes 46a, 47a and 48a in conductive relation therewith thereby forming strip-like detector cells. It will be seen that as these strip-like cells are scanned as the infrared radiation from a point target moves across the cells the alternately positively and negatively biased electrodes will be successively illuminated with the result that an alternating current signal, having a frequency determined by the rate of movement, is produced. On the other hand, since the spacing between adjacent positive and negative electrodes is substantially equal to that of the diameter of the blur circle of the optical system, background radiation such as that from a cloud, will illuminate two or more cells simultaneously thereby producing potentials which tend to cancel out and thereby produce no substantial output signal.
The invention contemplates the use of filtering circuits, if desired, to filter out undesired extraneous alternating current components of the detector output signal caused either by targets or by background environment.
In FIG. 3 preferably the bias electrode span, that is, the distance between the positive and the next adjacent negative electrode is substantially equal to the blur circle of the imaging system.
Whereas the invention has been shown and described with respect to some embodiments thereof which give satisfactory results it should be understood that changes may be made and the equivalent substituted without departing from the spirit and scope of the invention.
We claim as our invention:
1. An infrared detector comprising, in combination, an insulating supporting plate member, a plurality of photoconductive detector elements arranged in a plurality of parallel vertical and horizontal rows disposed orthogonally with respect to each other, means for biasing said detector elements said elements being arranged in checkerboard pattern and each being poled so as to develop potential drops of opposite polarity at common output terminals in response to infrared radiation, a plurality of elongated spaced electrodes on said supporting plate member, all of said first plurality of all of said electrodes and said supporting late, said insulating film having a plurality of small apertures therein at spaced intervals corresponding to the centers of said detector elements, each of said apertures lying over an electrode, and a photoconductive film overlying all of said electrodes and apertures and in contact with said electrodes.

Claims (1)

1. An infrared detector comprising, in combination, an insulating supporting plate member, a plurality of photoconductive detector elements arranged in a plurality of parallel vertical and horizontal rows disposed orthogonally with respect to each other, means for biasing said detector elements said elements being arranged in checkerboard pattern and each being poled so as to develop potential drops of opposite polarity at common output terminals in response to infrared radiation, a plurality of elongated spaced electrodes on said supporting plate member, all of said first plurality of spaced electrodes being electrically connected together to a first terminal, a second plurality of spaced elongated electrodes mounted on said supporting plate member, all of said second plurality of electrodes being electrically connected to a second terminal, said first and second plurality of electrodes being in interleaved relation, all of said electrodes being disposed at an angle of 45* with respect to said horizontal and vertical rows, means forming an insulating film disposed over all of said electrodes and said supporting late, said insulating film having a plurality of small apertures therein at spaced intervals corresponding to the centers of said detector elements, each of said apertures lying over an electrode, and a photoconductive film overlying all of said electrodes and apertures and in contact with said electrodes.
US00202771A 1962-06-15 1962-06-15 Infrared detector device with a mosaic of oppositely-poled adjacent elements Expired - Lifetime US3727057A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20277162A 1962-06-15 1962-06-15

Publications (1)

Publication Number Publication Date
US3727057A true US3727057A (en) 1973-04-10

Family

ID=22751192

Family Applications (1)

Application Number Title Priority Date Filing Date
US00202771A Expired - Lifetime US3727057A (en) 1962-06-15 1962-06-15 Infrared detector device with a mosaic of oppositely-poled adjacent elements

Country Status (1)

Country Link
US (1) US3727057A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824392A (en) * 1972-04-24 1974-07-16 Pak Const Ab Detector to indicate burning or glowing particles
US3842274A (en) * 1973-11-15 1974-10-15 Us Navy Photoconductively activated gated, infrared charge coupled imaging device (pagirccd)
US3852714A (en) * 1972-06-22 1974-12-03 Eocom Corp Adaptive imaging system
US3873836A (en) * 1974-04-19 1975-03-25 Us Navy Charge coupled radiation detector imaging system
USRE29082E (en) * 1971-12-20 1976-12-14 Barnes Engineering Company Intrusion detector
US4015117A (en) * 1975-08-28 1977-03-29 Opcon, Inc. Unbiased modulated photo sensing systems
US4634859A (en) * 1984-04-02 1987-01-06 Northern Illinois Gas Company Optical encoder with two photosensors
EP0336152A1 (en) * 1988-03-28 1989-10-11 Hughes Danbury Optical Systems, Inc. Optical direction of arrival sensor
FR2726080A1 (en) * 1994-10-25 1996-04-26 Electricfil OPTOELECTRONIC SENSOR FOR MEASURING THE INTENSITY AND DIRECTION OF THE IMPACT OF A LIGHT BEAM
US6180945B1 (en) 1984-08-31 2001-01-30 Lockheed Martin Corporation Dual spiral photoconductive detector
US20070138380A1 (en) * 2005-12-16 2007-06-21 Adkisson James W Funneled light pipe for pixel sensors
US20170374261A1 (en) * 2009-06-03 2017-12-28 Flir Systems, Inc. Smart surveillance camera systems and methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500929A (en) * 1946-07-12 1950-03-21 Chilowsky Constantin Means for reproducing television images
US2813983A (en) * 1955-08-24 1957-11-19 Louise B Hammar Size discriminating radiation detector
US2892949A (en) * 1952-12-17 1959-06-30 Rene J Hardy Electronic spotting device, applicable in particular, for the guiding of rockets and other high speed appliances
US2920137A (en) * 1957-03-15 1960-01-05 Garbuny Max Apparatus for reducing spurious signals in thermal image converters
US2948816A (en) * 1956-05-16 1960-08-09 Philips Corp Solid state image intensifier
US2953688A (en) * 1957-06-06 1960-09-20 Westinghouse Electric Corp Radiant energy detector and magnetic space filter for use therein
US2979632A (en) * 1958-11-06 1961-04-11 American Optical Corp Fiber optical components and method of manufacture
US3013232A (en) * 1957-12-16 1961-12-12 Hupp Corp Control of response curves for photoelectric cells
US3084301A (en) * 1960-03-28 1963-04-02 Jr William L Mohan Scanning apparatus
US3106642A (en) * 1959-01-29 1963-10-08 Acf Ind Inc Infrared search and tracking system comprising a plurality of detectors
US3107302A (en) * 1959-09-25 1963-10-15 Westinghouse Electric Corp Two color background elimination detector

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500929A (en) * 1946-07-12 1950-03-21 Chilowsky Constantin Means for reproducing television images
US2892949A (en) * 1952-12-17 1959-06-30 Rene J Hardy Electronic spotting device, applicable in particular, for the guiding of rockets and other high speed appliances
US2813983A (en) * 1955-08-24 1957-11-19 Louise B Hammar Size discriminating radiation detector
US2948816A (en) * 1956-05-16 1960-08-09 Philips Corp Solid state image intensifier
US2920137A (en) * 1957-03-15 1960-01-05 Garbuny Max Apparatus for reducing spurious signals in thermal image converters
US2953688A (en) * 1957-06-06 1960-09-20 Westinghouse Electric Corp Radiant energy detector and magnetic space filter for use therein
US3013232A (en) * 1957-12-16 1961-12-12 Hupp Corp Control of response curves for photoelectric cells
US2979632A (en) * 1958-11-06 1961-04-11 American Optical Corp Fiber optical components and method of manufacture
US3106642A (en) * 1959-01-29 1963-10-08 Acf Ind Inc Infrared search and tracking system comprising a plurality of detectors
US3107302A (en) * 1959-09-25 1963-10-15 Westinghouse Electric Corp Two color background elimination detector
US3084301A (en) * 1960-03-28 1963-04-02 Jr William L Mohan Scanning apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29082E (en) * 1971-12-20 1976-12-14 Barnes Engineering Company Intrusion detector
US3824392A (en) * 1972-04-24 1974-07-16 Pak Const Ab Detector to indicate burning or glowing particles
US3852714A (en) * 1972-06-22 1974-12-03 Eocom Corp Adaptive imaging system
US3842274A (en) * 1973-11-15 1974-10-15 Us Navy Photoconductively activated gated, infrared charge coupled imaging device (pagirccd)
US3873836A (en) * 1974-04-19 1975-03-25 Us Navy Charge coupled radiation detector imaging system
US4015117A (en) * 1975-08-28 1977-03-29 Opcon, Inc. Unbiased modulated photo sensing systems
US4634859A (en) * 1984-04-02 1987-01-06 Northern Illinois Gas Company Optical encoder with two photosensors
US6180945B1 (en) 1984-08-31 2001-01-30 Lockheed Martin Corporation Dual spiral photoconductive detector
EP0336152A1 (en) * 1988-03-28 1989-10-11 Hughes Danbury Optical Systems, Inc. Optical direction of arrival sensor
FR2726080A1 (en) * 1994-10-25 1996-04-26 Electricfil OPTOELECTRONIC SENSOR FOR MEASURING THE INTENSITY AND DIRECTION OF THE IMPACT OF A LIGHT BEAM
EP0709692A1 (en) * 1994-10-25 1996-05-01 CSEM, Centre Suisse d'Electronique et de Microtechnique S.A. Optoelectronic sensor for measuring the intensity and the direction of incidence of a light beam
US20070138380A1 (en) * 2005-12-16 2007-06-21 Adkisson James W Funneled light pipe for pixel sensors
US7524694B2 (en) 2005-12-16 2009-04-28 International Business Machines Corporation Funneled light pipe for pixel sensors
US20170374261A1 (en) * 2009-06-03 2017-12-28 Flir Systems, Inc. Smart surveillance camera systems and methods
US10970556B2 (en) * 2009-06-03 2021-04-06 Flir Systems, Inc. Smart surveillance camera systems and methods

Similar Documents

Publication Publication Date Title
US3353022A (en) Infrared search system comprising means for differentiating between target and background radiation
US3727057A (en) Infrared detector device with a mosaic of oppositely-poled adjacent elements
US4874939A (en) Method and apparatus for detecting position/variance of input light using linear and quadratic outputs
EP0191527B1 (en) Infra-red radiation detector devices
US3886489A (en) Ultrasonic image converter and system
US3110816A (en) High resolution light pipe radiation detector
US2473893A (en) Object detecting and indicating device
US4005443A (en) Scanning device and method for automatic focusing
US3107302A (en) Two color background elimination detector
US3488508A (en) Solid state image sensor panel
US2813983A (en) Size discriminating radiation detector
US3381133A (en) Scanning device for tracker using concentric photosensitive surfaces cooperating with oscillated image
US2953688A (en) Radiant energy detector and magnetic space filter for use therein
US5332893A (en) Imaging system and device having a simplified electrode design
US3084301A (en) Scanning apparatus
US3508068A (en) Optical strip mapping system
US3748485A (en) Optical-to-electrical signal transducer apparatus
US3437815A (en) Solid state scanning arrangement for determining location of a light spot on a panel
US3801821A (en) Large field flash sensor
JP2523948B2 (en) Pyroelectric infrared detector
US3978512A (en) Semiconductor device for converting a radiation pattern into electric signals
US4225887A (en) Optical image acousto-electric reading device
US5315100A (en) Photoelectric conversion apparatus for detecting movement of object with spatial filter electrode
US3838276A (en) Phototransistor array having reduced crosstalk
US3518443A (en) System for detecting small light sources in presence of large ones using plurality of detectors