US3724537A - Heat exchanger with backed thin tubes - Google Patents

Heat exchanger with backed thin tubes Download PDF

Info

Publication number
US3724537A
US3724537A US00184483A US3724537DA US3724537A US 3724537 A US3724537 A US 3724537A US 00184483 A US00184483 A US 00184483A US 3724537D A US3724537D A US 3724537DA US 3724537 A US3724537 A US 3724537A
Authority
US
United States
Prior art keywords
outer tubular
tubes
tube
inner lining
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00184483A
Inventor
H Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3724537A publication Critical patent/US3724537A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • B21D53/085Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal with fins places on zig-zag tubes or parallel tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/187Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding at least one of the parts being non-metallic, e.g. heat-sealing plastic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube

Definitions

  • the liner tubes are pressure-balanced at their tube plate connections and backed by outer structural elements so that the liner tubes may be relatively thin, thus permitting the use of plastics for the liner tubes even though the coefficient of thermal transfer is relatively small. Nevertheless, in this patented. construction the inner tubes are not completely backed and over small areas must withstand considerable pressure and must be made thick enough to withstand such local high pressures without damage.
  • the present invention provides an improved construction in which much thinner tubes can be used by being contour-distorted into intimate contact with all surfaces of the backing supporting thermal exchange elements thus increasing thermal transfer effectiveness and preventing relative displacement even when the tubes are disposed in a vertical position and are subjected to long periods of differential thermal stresses.
  • the invention also embraces a method of assembly in which backing thermal transfer structural elements having tubular collars or sleeves and lateral fins are slipped successively over a bank of tubes, the tubes secured to a tube sheet, and the tubes then expanded by high fluid pressure into intimate contour contact with the collars or sleeves of the structural backing elements and other surrounding backing elements.
  • the collars or sleeves of the structural elements are purposely made with concave enlargements to provide for expansion of the tubes into them to more fully obviate relative axial displacement and achieve the most efficient thermal transfer relationship.
  • these concave contour deformations are formed at the ends of the collars or sleeves, preferably as annular grooves or negative corrugations into which positive corrugations or ribs of the tubes are disposed in final assembly.
  • the grooves are formed by bent flanges on the ends of one backing element resting at the end against bent webs of adjacent backing elements; and in another form the corrugations or grooves are formed entirely on the end portion of one backing element with one side of the corrugation resting on a bent web of an adjacent backing element, thus providing greater radial strength at the joints.
  • FIG. 1 is a longitudinal section of a heat exchanger or thermal transfer construction embodying the present invention but before expansion of the lining tubes, the section being taken on the line l-l of FIG. 2;
  • FIG. 2 is a longitudinal section taken on the line 2-2 of FIG. 1;
  • FIG. 3 is an enlarged section taken on the zone 3-3 of FIG. 1;
  • FIG. 4 is a view like FIG. 3 but showing the final assembly after the liner tubes have been expanded into the contour concavities of the backing elements;
  • FIG. 5 is a view like FIG. 3 but showing a modified embodiment
  • FIG. 6 is a view like FIG. 5 but showing the final assembly after the liner tubes have been expanded into the contour concavities of the backing elements.
  • the invention is illustrated in connection with the use of very thin plastic liner tubes supported by metal tinned backing thermal transfer elements.
  • the preferred plastic is polyethylene (pipe grade, class III, high density, non-oriented, about 34 inch O.D., 0.020 inch thick); but other plastics of various kinds or certain metals like aluminum and other fairly soft metals may be used, the selection depending to some extent on the service and kind of fluids handled.
  • Polypropylene, fluorocarbons, and the like are known types which may be noted.
  • the thermal exchange unit illustrated may be an automobile radiator 10 in which a cooling fluid or liquid such as water is circulated through lining tubes 11 and in which a disposal fluid or gas such as air is circulated over finned thermal transfer tube-backing elements 12 which have collarsor sleeves l3 surrounding the tubes.
  • a cooling fluid or liquid such as water
  • a disposal fluid or gas such as air
  • the particular heat exchange unit illustrated has an open-sided body casing 14, chamber-forming pipe-connected caps or headers 15, and tube sheets 16 secured together in sealed relationship by grooved rim clamp members 17 and tie bolts or screws 18. Corrosionresistant metals are used if the fluids concerned require it.
  • the tube sheets are shown herein, although as shown in U.S. Pat. No. 3,489,209 (FIG. ID) the principles are applicable to heat exchange units having a single tube sheet, suitable means being provided to protect the outer ends of the bent U-shaped tubes.
  • the tube sheets are composite, comprising a strength member 19 of metal and a plastic liner 20 which has nipples 21 fused or otherwise secured and sealed to the ends of the tubes.
  • the collars or sleeves 13 of the thermal-transfer tube-backing elements have straight tubular web portions 13a, intermediate inclined web portions 13b, and terminal inclined web portions 13c.
  • the ends of the web portions of one element abut against the sides of the web portions 13b of the collar of an adjacent element, leaving annular contour concavities, negative corrugations, or grooves 22 between the inclined web portions of the collars.
  • the tubes 11 are of uniform diameter and of a size small enough to permit the collars or sleeves of the thermal transfer backing elements to be readily slipped over them. Finally, as shown in FIG. 4, after full assembly, with the tubes sealed at the tube sheets, the tubes are expanded by applied fluid at sufficient pressure and temperature to form protrusions, positive corrugations, or ribs 11a and fully fill the contour spaces within the encasing structural elements.
  • the liner tubes are not required to take any load at any point and may be made extremely thin so as to provide efficient thermal exchange even though their particular thermal transfer resistance may be rela' tively high.
  • the contour engagement also fully obviates relative movement between tubes and backing elements. Such tendency for relative movement might be caused by gravity if the tubes are disposed in a nonhorizontal position or by the differences in thermal expansion coefficients of plastic tubes and metal backing elements with repeated heating and cooling in use, especially over long periods of time.
  • FIGS. 5 and 6 The embodiment shown in FIGS. 5 and 6 is generally like the first embodiment and the same reference characters are applied to common parts, but the collars or sleeves 13' of the thermal transfer elements 12' have a terminal flange 13d in addition to the web portions 13a, 13b, 13c and this end flange 13d rests on the web 13b of the adjacent collar or sleeve.
  • This provides a somewhat stronger resistance to radial loads and somewhat better joint seal when the parts are forced together in assembly than the first embodiment.
  • a somewhat smoother backing surface is assured for the lining tube in case there may be manufacturing flaws.
  • the tubes are first sealed to a lower tube sheet, or otherwise secured in accurate position in case a single tube sheet is used, then the finned thermal transfer elements have their collars or sleeves slipped down over the tubes, then the upper tube sheet is pressed into position and the tube ends sealed, the intermediate rings being applied when used.
  • the assembly, with headers 15 and body spacer 14 are secured together in sealed relationship by the clamp members 17 and bolts 18. Finally, the tubes are expanded by fluid at sufficient pressure and temperature into the concavities of the structural backing elements.
  • the plastic material is of a suitable type it is strengthened and fiber-oriented by the expansion procedure.
  • a heat exchanger comprising in combination an outer tubular backing structure extending completely in supporting continuity between tube end connections at pressure fluid chambers and having contour concavities along its length and an inner lining tube which is too thin and weak to alone withstand applied internal pressure and having in-situ pressure-formed projections along its length fitting tightly in full heat exchange and backed relationship with the full interior surface of the outer tubular backing structure, the inner lining tube being fully backed throughout its length by the continuous outer tubular backing structure for the complete distance between the tube end connections and pressure chambers to avoid the application of pressure fluid to any portion of the inner lining tube where it is not fully supported by the outer tubular backing structure.
  • the method of making a heat exchange assembly which includes very thin inner lining tubes within an outer tubular backing structure with internal contour concavities disposed between tube end connections at pressure fluid chambers, which comprises: assembling inner lining tubes of uniform diameter within the outer tubular backing structure with the entire length of the inner lining tubes between tube end connections completely backed by the outer tubular structure, and expanding the thin inner lining tubes into the outer tubular backing structure throughout its length to fit into intimate backing and heat exchange relationship therewith and to form contour projections in-situ which fully fill the concavities of the outer tubular backing structure.
  • outer tubular backing structure comprises interfitting collars on finned heat exchange elements which are stacked on the inner lining tubes to form annular grooves at their ends, and in which the inner lining tubes are of plastic material expanded in-situ to fill the outer tubular backing structure and are fused at their ends to a plastic component at and connections in pres- 5 sure-balanced relationship in the pressure fluid chambers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This application discloses a heat exchanger having thin lining tubes, as of plastic or metal, deformed against structural tubular backing and thermal exchange elements to provide extensive effective thermal transfer contact and support with contoured securement between tubes and backing elements which obviates relative displacement and relieves differential thermal change in length and stresses. Also the method of making the assembly.

Description

United States Patent 1 Johnson 1 Apr. 3, 1973 [54'] HEAT EXCHANGER WITH BACKED THIN TUBES [76] lnventor: Herbert G. Johnson, 17 North Drexe1 Avenue, Havertown, Pa. 19083 [22] Filed: Sept. 28, 1971 [21] Appl. No.: 184,483
[52] US. Cl ..165/l33, 29/1573 V, 165/151, 165/173, 165/178, 165/182, 264/94, 264/249 [51] Int. Cl. ..F28f1/30, B21c 37/22, B21d 53/02 [58] Field of Search ..165/133,151,182,173,178; 29/1573 V, 523; 264/94, 249
[56] References Cited V UNITED STATES PATENTS 2,458,189 1/1949 Morgan 6/1932 Trane .:.1ss/1s2x 3,602,945 9/1971 Pope et al .264/94 3,489,209 l/1970 Johnson 1,821,702 9/1931 Freeman .......16'5/133 2,450,203 9/1948 Morgan.... ..165/182 3,426,841 2/1969 Johnson ..165/l78 Primary Examiner-Allan D. Herrrnann 57 ABSTRACT This application discloses a heat exchanger having thin lining tubes, as of plastic or metal, deformed against structural tubular backing and thermal exchange elements to provide extensive effective thermal transfer contact and support with contoured securement between tubes and backing elements which obviates relative displacement and relieves differential thermal change in length and stresses, Also the method of making the assembly.
9 Claims, 6 Drawing Figures PATENTEDAPM I975 3.724.537
SHEET 1 [IF 2 Fig.- 2
INVENTOR.
HERBERT G. JOHNSON PATENTEDAPRB ms 3, 724,537
SHEET 2 or 2 INVENTOR.
HERBERT G. JOHNSON HEAT EXCHANGER WITH BACKED THIN TUBES BACKGROUND OF INVENTION In my U.S. Pat. No. 3,426,841 of Feb. 11, 1969 and No. 3,489,209 of Jan. 13, 1970 there are disclosed heat exchanger constructions in which inner corrosion resistant tubes, as of plastic, bathed by one fluid, are arranged in thermal transfer relationship with external structural thermal exchange elements which are bathed by another fluid.
In the patent constructions the liner tubes are pressure-balanced at their tube plate connections and backed by outer structural elements so that the liner tubes may be relatively thin, thus permitting the use of plastics for the liner tubes even though the coefficient of thermal transfer is relatively small. Nevertheless, in this patented. construction the inner tubes are not completely backed and over small areas must withstand considerable pressure and must be made thick enough to withstand such local high pressures without damage.
SUMMARY OF INVENTION The present invention provides an improved construction in which much thinner tubes can be used by being contour-distorted into intimate contact with all surfaces of the backing supporting thermal exchange elements thus increasing thermal transfer effectiveness and preventing relative displacement even when the tubes are disposed in a vertical position and are subjected to long periods of differential thermal stresses.
The invention also embraces a method of assembly in which backing thermal transfer structural elements having tubular collars or sleeves and lateral fins are slipped successively over a bank of tubes, the tubes secured to a tube sheet, and the tubes then expanded by high fluid pressure into intimate contour contact with the collars or sleeves of the structural backing elements and other surrounding backing elements. In the preferred construction the collars or sleeves of the structural elements are purposely made with concave enlargements to provide for expansion of the tubes into them to more fully obviate relative axial displacement and achieve the most efficient thermal transfer relationship. In the formsherein illustrated these concave contour deformations are formed at the ends of the collars or sleeves, preferably as annular grooves or negative corrugations into which positive corrugations or ribs of the tubes are disposed in final assembly. In one form the grooves are formed by bent flanges on the ends of one backing element resting at the end against bent webs of adjacent backing elements; and in another form the corrugations or grooves are formed entirely on the end portion of one backing element with one side of the corrugation resting on a bent web of an adjacent backing element, thus providing greater radial strength at the joints.
DRAWINGS The objects, advantages, and features of novelty of the invention will be apparent from the following description of selected exemplary embodiments thereof, reference being made to the accompanying drawings, wherein:
FIG. 1 is a longitudinal section of a heat exchanger or thermal transfer construction embodying the present invention but before expansion of the lining tubes, the section being taken on the line l-l of FIG. 2;
FIG. 2 is a longitudinal section taken on the line 2-2 of FIG. 1;
FIG. 3 is an enlarged section taken on the zone 3-3 of FIG. 1;
FIG. 4 is a view like FIG. 3 but showing the final assembly after the liner tubes have been expanded into the contour concavities of the backing elements;
FIG. 5 is a view like FIG. 3 but showing a modified embodiment;
FIG. 6 is a view like FIG. 5 but showing the final assembly after the liner tubes have been expanded into the contour concavities of the backing elements.
SPECIFIC DESCRIPTION The invention is illustrated in connection with the use of very thin plastic liner tubes supported by metal tinned backing thermal transfer elements. At present the preferred plastic is polyethylene (pipe grade, class III, high density, non-oriented, about 34 inch O.D., 0.020 inch thick); but other plastics of various kinds or certain metals like aluminum and other fairly soft metals may be used, the selection depending to some extent on the service and kind of fluids handled. Polypropylene, fluorocarbons, and the like are known types which may be noted.
The thermal exchange unit illustrated may be an automobile radiator 10 in which a cooling fluid or liquid such as water is circulated through lining tubes 11 and in which a disposal fluid or gas such as air is circulated over finned thermal transfer tube-backing elements 12 which have collarsor sleeves l3 surrounding the tubes. The direction of air flow is indicated by arrows in FIG. 2.
The particular heat exchange unit illustrated has an open-sided body casing 14, chamber-forming pipe-connected caps or headers 15, and tube sheets 16 secured together in sealed relationship by grooved rim clamp members 17 and tie bolts or screws 18. Corrosionresistant metals are used if the fluids concerned require it.
Two tube sheets are shown herein, although as shown in U.S. Pat. No. 3,489,209 (FIG. ID) the principles are applicable to heat exchange units having a single tube sheet, suitable means being provided to protect the outer ends of the bent U-shaped tubes. The tube sheets are composite, comprising a strength member 19 of metal and a plastic liner 20 which has nipples 21 fused or otherwise secured and sealed to the ends of the tubes.
As shown in FIG. 3, the collars or sleeves 13 of the thermal-transfer tube-backing elements have straight tubular web portions 13a, intermediate inclined web portions 13b, and terminal inclined web portions 13c. The ends of the web portions of one element abut against the sides of the web portions 13b of the collar of an adjacent element, leaving annular contour concavities, negative corrugations, or grooves 22 between the inclined web portions of the collars.
If it is not desired to place the: timed heat transfer elements directly against the tube sheets it is convenient to provide spacer rings 23 between them so that the lining tubes are completely backed by structural elements throughout theirentire length except at their ends which are disposed in a fluid pressure balanced location.
As initially installed, the tubes 11 are of uniform diameter and of a size small enough to permit the collars or sleeves of the thermal transfer backing elements to be readily slipped over them. Finally, as shown in FIG. 4, after full assembly, with the tubes sealed at the tube sheets, the tubes are expanded by applied fluid at sufficient pressure and temperature to form protrusions, positive corrugations, or ribs 11a and fully fill the contour spaces within the encasing structural elements.
In service the liner tubes are not required to take any load at any point and may be made extremely thin so as to provide efficient thermal exchange even though their particular thermal transfer resistance may be rela' tively high. The contour engagement also fully obviates relative movement between tubes and backing elements. Such tendency for relative movement might be caused by gravity if the tubes are disposed in a nonhorizontal position or by the differences in thermal expansion coefficients of plastic tubes and metal backing elements with repeated heating and cooling in use, especially over long periods of time.
The embodiment shown in FIGS. 5 and 6 is generally like the first embodiment and the same reference characters are applied to common parts, but the collars or sleeves 13' of the thermal transfer elements 12' have a terminal flange 13d in addition to the web portions 13a, 13b, 13c and this end flange 13d rests on the web 13b of the adjacent collar or sleeve. This provides a somewhat stronger resistance to radial loads and somewhat better joint seal when the parts are forced together in assembly than the first embodiment. A somewhat smoother backing surface is assured for the lining tube in case there may be manufacturing flaws.
In making the assembly the tubes are first sealed to a lower tube sheet, or otherwise secured in accurate position in case a single tube sheet is used, then the finned thermal transfer elements have their collars or sleeves slipped down over the tubes, then the upper tube sheet is pressed into position and the tube ends sealed, the intermediate rings being applied when used. The assembly, with headers 15 and body spacer 14 are secured together in sealed relationship by the clamp members 17 and bolts 18. Finally, the tubes are expanded by fluid at sufficient pressure and temperature into the concavities of the structural backing elements.
If the plastic material is of a suitable type it is strengthened and fiber-oriented by the expansion procedure.
Insofar as the construction, materials, assembly, and principles of my prior patents are used herein the same considerations and advantages apply. The present improvement makes it feasible to use much thinner lining tubes, to obtain more efficient thermal transfer, to more fully insure against tube rupture in service, and to obviate the possibility of creep or displacement of the tubes relative to the structural backing elements in service.
While certain embodiments of the invention have been disclosed for purposes of illustration, it is to be understood that there may be various embodiments and modifications within the general scope of the invention.
I claim:
l. A heat exchanger, comprising in combination an outer tubular backing structure extending completely in supporting continuity between tube end connections at pressure fluid chambers and having contour concavities along its length and an inner lining tube which is too thin and weak to alone withstand applied internal pressure and having in-situ pressure-formed projections along its length fitting tightly in full heat exchange and backed relationship with the full interior surface of the outer tubular backing structure, the inner lining tube being fully backed throughout its length by the continuous outer tubular backing structure for the complete distance between the tube end connections and pressure chambers to avoid the application of pressure fluid to any portion of the inner lining tube where it is not fully supported by the outer tubular backing structure.
2. A heat exchanger as set forth in claim 1, wherein the concavities in the outer tubular structure comprise annular grooves pre-formed on collars of finned thermal transfer elements stacked on the tube and wherein the inner lining tube is expanded in-situ to fully fill the annular grooves.
3. A heat exchanger as set forth in claim 2, wherein the pre-formed annular grooves are formed by an inclined end flange on one collar abutting an inclined intermediate web of an adjacent collar.
4. A heat exchanger as set forth in claim 2, wherein the pre-formed annular grooves are formed by aninclined web and inclined terminal flange on one collar, the terminal flange lying upon an inclined intermediate web of an adjacent collar.
5. A heat exchanger as set forth in claim 1, wherein the inner lining tube is formed of a plastic with its projections formed in-situ in form-fitting shape in the concavities and all other portions of the outer tubular backing structure.
6. A heat exchanger as set forth in claim 5, in which the plastic is polyethylene.
7. A heat exchanger as set forth in claim 2, wherein a plurality of tubes and outer tubular backing structures therefor are provided and in which the inner tubes are of plastic material and extend through a tube sheet of an end connection and are fused to nipples of a plastic tube sheet liner in pressure-balanced relationship in a pressure fluid chamber on the liner 'side of the tube sheet.
8. The method of making a heat exchange assembly which includes very thin inner lining tubes within an outer tubular backing structure with internal contour concavities disposed between tube end connections at pressure fluid chambers, which comprises: assembling inner lining tubes of uniform diameter within the outer tubular backing structure with the entire length of the inner lining tubes between tube end connections completely backed by the outer tubular structure, and expanding the thin inner lining tubes into the outer tubular backing structure throughout its length to fit into intimate backing and heat exchange relationship therewith and to form contour projections in-situ which fully fill the concavities of the outer tubular backing structure.
9. The method as set forth in claim 8, wherein the outer tubular backing structure comprises interfitting collars on finned heat exchange elements which are stacked on the inner lining tubes to form annular grooves at their ends, and in which the inner lining tubes are of plastic material expanded in-situ to fill the outer tubular backing structure and are fused at their ends to a plastic component at and connections in pres- 5 sure-balanced relationship in the pressure fluid chambers.

Claims (9)

1. A heat exchanger, comprising in combination an outer tubular backing structure extending completely in supporting continuity between tube end connections at pressure fluid chambers and having contour concavities along its length and an inner lining tube which is too thin and weak to alone withstand applied internal pressure and having in-situ pressure-formed projections along its length fitting tightly in full heat exchange and backed relationship with the full interior surface of the outer tubular backing structure, the inner lining tube being fully backed throughout its length by the continuous outer tubular backing structure for the complete distance between the tube end connections and pressure chambers to avoid the application of pressure fluid to any portion of the inner lining tube where it is not fully supported by the outer tubular backing structure.
2. A heat exchanger as set forth in claim 1, wherein the concavities in the outer tubular structure comprise annular grooves pre-formed on collars of finned thermal transfer elements stacked on the tube and wherein the inner lining tube is expanded in-situ to fully fill the annular grooves.
3. A heat exchanger as set forth in claim 2, wherein the pre-formed annular gRooves are formed by an inclined end flange on one collar abutting an inclined intermediate web of an adjacent collar.
4. A heat exchanger as set forth in claim 2, wherein the pre-formed annular grooves are formed by an inclined web and inclined terminal flange on one collar, the terminal flange lying upon an inclined intermediate web of an adjacent collar.
5. A heat exchanger as set forth in claim 1, wherein the inner lining tube is formed of a plastic with its projections formed in-situ in form-fitting shape in the concavities and all other portions of the outer tubular backing structure.
6. A heat exchanger as set forth in claim 5, in which the plastic is polyethylene.
7. A heat exchanger as set forth in claim 2, wherein a plurality of tubes and outer tubular backing structures therefor are provided and in which the inner tubes are of plastic material and extend through a tube sheet of an end connection and are fused to nipples of a plastic tube sheet liner in pressure-balanced relationship in a pressure fluid chamber on the liner side of the tube sheet.
8. The method of making a heat exchange assembly which includes very thin inner lining tubes within an outer tubular backing structure with internal contour concavities disposed between tube end connections at pressure fluid chambers, which comprises: assembling inner lining tubes of uniform diameter within the outer tubular backing structure with the entire length of the inner lining tubes between tube end connections completely backed by the outer tubular structure, and expanding the thin inner lining tubes into the outer tubular backing structure throughout its length to fit into intimate backing and heat exchange relationship therewith and to form contour projections in-situ which fully fill the concavities of the outer tubular backing structure.
9. The method as set forth in claim 8, wherein the outer tubular backing structure comprises interfitting collars on finned heat exchange elements which are stacked on the inner lining tubes to form annular grooves at their ends, and in which the inner lining tubes are of plastic material expanded in-situ to fill the outer tubular backing structure and are fused at their ends to a plastic component at end connections in pressure-balanced relationship in the pressure fluid chambers.
US00184483A 1971-09-28 1971-09-28 Heat exchanger with backed thin tubes Expired - Lifetime US3724537A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18448371A 1971-09-28 1971-09-28

Publications (1)

Publication Number Publication Date
US3724537A true US3724537A (en) 1973-04-03

Family

ID=22677068

Family Applications (1)

Application Number Title Priority Date Filing Date
US00184483A Expired - Lifetime US3724537A (en) 1971-09-28 1971-09-28 Heat exchanger with backed thin tubes

Country Status (1)

Country Link
US (1) US3724537A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993126A (en) * 1973-07-27 1976-11-23 Delanair Limited Heat exchanger
US4083093A (en) * 1975-08-08 1978-04-11 Chertok Burton Z Multiple material solar panel and method and apparatus for manufacturing the same
US4337824A (en) * 1980-10-24 1982-07-06 Amtrol Double wall heat exchanger
US4427034A (en) 1980-05-23 1984-01-24 Sumitomo Light Metal Industries, Ltd. Coating composition for protecting inner surface of tubes in heat exchangers
US4546819A (en) * 1984-02-10 1985-10-15 Amtrol Inc. Double wall heat exchanger
US4681085A (en) * 1985-08-01 1987-07-21 Raytheon Company High condensing recuperative furnace
US4726353A (en) * 1985-08-01 1988-02-23 Raytheon Company High condensing recuperative furnace
US5107926A (en) * 1990-04-03 1992-04-28 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
US5152339A (en) * 1990-04-03 1992-10-06 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
US5257699A (en) * 1991-11-18 1993-11-02 Mill Services And Manufacturing, Inc. Disc screen construction
US5660230A (en) * 1995-09-27 1997-08-26 Inter-City Products Corporation (Usa) Heat exchanger fin with efficient material utilization
US6070655A (en) * 1996-06-07 2000-06-06 Valmet Corporation Heat exchanger
US6397939B1 (en) * 2000-12-13 2002-06-04 Modine Manufacturing Company Tube for use in serpentine fin heat exchangers
US6513587B2 (en) * 1999-05-20 2003-02-04 Carrier Corporation Fin collar and method of manufacturing
US20030127216A1 (en) * 2001-06-06 2003-07-10 Tetsuya Yamamoto Heat exchanger and method for manufacturing the same
US20030196783A1 (en) * 2002-03-01 2003-10-23 Ti Group Automotive Systems, Llc Refrigeration evaporator
US6644392B2 (en) * 2001-07-05 2003-11-11 Modine Manufacturing Company Heat exchanger and a method of manufacturing a heat exchanger
US20060201666A1 (en) * 2005-03-08 2006-09-14 Denso Corporation Heat exchanger
US20070131390A1 (en) * 2005-12-09 2007-06-14 Kuo-Hsin Chen Heat dissipating module and method of fabricating the same
US20070251683A1 (en) * 2006-04-28 2007-11-01 Valeo, Inc. Heat exchanger assemblies having hybrid tanks
US20100116467A1 (en) * 2008-11-12 2010-05-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US20110088884A1 (en) * 2008-03-31 2011-04-21 Luis Amaya Header Plate And Heat Exchanger Comprising Same
US20120240920A1 (en) * 2011-03-24 2012-09-27 Rhodes Richard O Polymer manifold and polymer heat exchanger
US20140262156A1 (en) * 2013-03-15 2014-09-18 Lucien Y. Bronicki Fin configuration for air cooled heat exchanger tubes
US20140305621A1 (en) * 2011-05-20 2014-10-16 Gerd Gaiser Multiplate heat exchanger
FR3035957A1 (en) * 2015-05-06 2016-11-11 Graphite Tech Asia Ltd BLOCK FORMING IMPROVED HEAT EXCHANGER MODULE IN COMPOSITE MATERIAL THAT CAN BE INTEGRATED WITH A HEAT EXCHANGER
CN110260702A (en) * 2018-03-12 2019-09-20 日立江森自控空调有限公司 Air conditioner and heat exchanger
US11338352B2 (en) * 2020-07-29 2022-05-24 Rheem Manufacturing Company Pressure expansion methods for heat exchanger manufacturing
US20220282936A1 (en) * 2021-03-03 2022-09-08 Rheem Manufacturing Company Finned tube heat exchangers and methods for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1821702A (en) * 1926-12-24 1931-09-01 B F Sturtevant Co Conductor for heat exchange apparatus
US1865051A (en) * 1930-11-08 1932-06-28 Reuben N Trane Radiator
US2450203A (en) * 1945-12-29 1948-09-28 Warren Webster & Co Radiator fin construction
US2458189A (en) * 1945-07-18 1949-01-04 Warren Webster & Co Method of expanding tubing by freezing liquid therein
US3426841A (en) * 1966-05-18 1969-02-11 Herbert G Johnson Heat exchangers having plastic components
US3489209A (en) * 1968-12-23 1970-01-13 Herbert G Johnson Heat exchanger having plastic and metal components
US3602945A (en) * 1969-07-16 1971-09-07 Dore Co John L Apparatus for making a plastic expansion joint

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1821702A (en) * 1926-12-24 1931-09-01 B F Sturtevant Co Conductor for heat exchange apparatus
US1865051A (en) * 1930-11-08 1932-06-28 Reuben N Trane Radiator
US2458189A (en) * 1945-07-18 1949-01-04 Warren Webster & Co Method of expanding tubing by freezing liquid therein
US2450203A (en) * 1945-12-29 1948-09-28 Warren Webster & Co Radiator fin construction
US3426841A (en) * 1966-05-18 1969-02-11 Herbert G Johnson Heat exchangers having plastic components
US3489209A (en) * 1968-12-23 1970-01-13 Herbert G Johnson Heat exchanger having plastic and metal components
US3602945A (en) * 1969-07-16 1971-09-07 Dore Co John L Apparatus for making a plastic expansion joint

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993126A (en) * 1973-07-27 1976-11-23 Delanair Limited Heat exchanger
US4083093A (en) * 1975-08-08 1978-04-11 Chertok Burton Z Multiple material solar panel and method and apparatus for manufacturing the same
US4427034A (en) 1980-05-23 1984-01-24 Sumitomo Light Metal Industries, Ltd. Coating composition for protecting inner surface of tubes in heat exchangers
US4337824A (en) * 1980-10-24 1982-07-06 Amtrol Double wall heat exchanger
US4546819A (en) * 1984-02-10 1985-10-15 Amtrol Inc. Double wall heat exchanger
US4681085A (en) * 1985-08-01 1987-07-21 Raytheon Company High condensing recuperative furnace
US4726353A (en) * 1985-08-01 1988-02-23 Raytheon Company High condensing recuperative furnace
US5152339A (en) * 1990-04-03 1992-10-06 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
US5107926A (en) * 1990-04-03 1992-04-28 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
US5257699A (en) * 1991-11-18 1993-11-02 Mill Services And Manufacturing, Inc. Disc screen construction
US5660230A (en) * 1995-09-27 1997-08-26 Inter-City Products Corporation (Usa) Heat exchanger fin with efficient material utilization
US6070655A (en) * 1996-06-07 2000-06-06 Valmet Corporation Heat exchanger
US6513587B2 (en) * 1999-05-20 2003-02-04 Carrier Corporation Fin collar and method of manufacturing
EP1054226B1 (en) 1999-05-20 2017-10-25 Carrier Corporation Improved fin collar and method of manufacturing
US6397939B1 (en) * 2000-12-13 2002-06-04 Modine Manufacturing Company Tube for use in serpentine fin heat exchangers
US20030127216A1 (en) * 2001-06-06 2003-07-10 Tetsuya Yamamoto Heat exchanger and method for manufacturing the same
US6772831B2 (en) * 2001-06-06 2004-08-10 Denso Corporation Heat exchanger and method for manufacturing the same
US6644392B2 (en) * 2001-07-05 2003-11-11 Modine Manufacturing Company Heat exchanger and a method of manufacturing a heat exchanger
US7028764B2 (en) * 2002-03-01 2006-04-18 Ti Group Automotives Systems, Llc Refrigeration evaporator
US20030196783A1 (en) * 2002-03-01 2003-10-23 Ti Group Automotive Systems, Llc Refrigeration evaporator
US7207377B2 (en) * 2005-03-08 2007-04-24 Denso Corporation Heat exchanger
US20060201666A1 (en) * 2005-03-08 2006-09-14 Denso Corporation Heat exchanger
US20070131390A1 (en) * 2005-12-09 2007-06-14 Kuo-Hsin Chen Heat dissipating module and method of fabricating the same
US20070251683A1 (en) * 2006-04-28 2007-11-01 Valeo, Inc. Heat exchanger assemblies having hybrid tanks
US20080093061A1 (en) * 2006-04-28 2008-04-24 Sameer Desai Heat exchanger assemblies having hybrid tanks
US9016357B2 (en) * 2008-03-31 2015-04-28 Valeo Systemes Thermiques Header plate and heat exchanger comprising same
US20110088884A1 (en) * 2008-03-31 2011-04-21 Luis Amaya Header Plate And Heat Exchanger Comprising Same
US20100116467A1 (en) * 2008-11-12 2010-05-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US8573285B2 (en) * 2011-03-24 2013-11-05 Richard O. Rhodes Polymer manifold and polymer heat exchanger
US20120240920A1 (en) * 2011-03-24 2012-09-27 Rhodes Richard O Polymer manifold and polymer heat exchanger
US20140305621A1 (en) * 2011-05-20 2014-10-16 Gerd Gaiser Multiplate heat exchanger
US20140262156A1 (en) * 2013-03-15 2014-09-18 Lucien Y. Bronicki Fin configuration for air cooled heat exchanger tubes
US9360258B2 (en) * 2013-03-15 2016-06-07 Ormat Technologies, Inc. Fin configuration for air cooled heat exchanger tubes
FR3035957A1 (en) * 2015-05-06 2016-11-11 Graphite Tech Asia Ltd BLOCK FORMING IMPROVED HEAT EXCHANGER MODULE IN COMPOSITE MATERIAL THAT CAN BE INTEGRATED WITH A HEAT EXCHANGER
CN110260702A (en) * 2018-03-12 2019-09-20 日立江森自控空调有限公司 Air conditioner and heat exchanger
US11338352B2 (en) * 2020-07-29 2022-05-24 Rheem Manufacturing Company Pressure expansion methods for heat exchanger manufacturing
US20220282936A1 (en) * 2021-03-03 2022-09-08 Rheem Manufacturing Company Finned tube heat exchangers and methods for manufacturing same
US11835306B2 (en) * 2021-03-03 2023-12-05 Rheem Manufacturing Company Finned tube heat exchangers and methods for manufacturing same

Similar Documents

Publication Publication Date Title
US3724537A (en) Heat exchanger with backed thin tubes
US3467180A (en) Method of making a composite heat-exchanger tube
US3489209A (en) Heat exchanger having plastic and metal components
EP0237164B2 (en) Method of making a heat exchanger
US5575066A (en) Method of manufacturing freezing cylinders for ice cream making machines
US3857151A (en) Method of making a radiator core
US3471178A (en) Tube sheet connector having flexible adhesive sealing means
EP0037214B1 (en) Method of lining inner wall surfaces of hollow articles
US2969956A (en) Pipe joint for heat exchange devices
US3027142A (en) Heat exchanger
US2695182A (en) Jacketed pipe assembly
US4529034A (en) Heat exchanger having a header plate
AU596145B2 (en) Heat exchanger & method to produce same
EP0561514B1 (en) Method of making a pipe connection
US3182720A (en) Heat exchange apparatus
US5538261A (en) Mechanical heat-exchange tube sealing system
US4598667A (en) Cooled tube wall for metallurgical furnace
US2880018A (en) Glassed tube sheet seal
US3159213A (en) Refrigerating apparatus
US2832613A (en) Autogenous welded laminated expansion joint for conduits
US5052477A (en) Pipe for coolant condenser
JPH0474099B2 (en)
US3324895A (en) Corrugated tubes
US1898713A (en) Heat exchange device and method of making the same
US20020074111A1 (en) Heat exchanger, in particular for swimming pools