US3716947A - Abrasive blast cleaning system - Google Patents

Abrasive blast cleaning system Download PDF

Info

Publication number
US3716947A
US3716947A US00108417A US3716947DA US3716947A US 3716947 A US3716947 A US 3716947A US 00108417 A US00108417 A US 00108417A US 3716947D A US3716947D A US 3716947DA US 3716947 A US3716947 A US 3716947A
Authority
US
United States
Prior art keywords
blast
set forth
granular material
abrasive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00108417A
Inventor
J Carpenter
J Bowling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangborn Corp
Original Assignee
Carborundum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carborundum Co filed Critical Carborundum Co
Application granted granted Critical
Publication of US3716947A publication Critical patent/US3716947A/en
Assigned to KENNECOTT CORPORATION reassignment KENNECOTT CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE DEC. 31, 1980 NORTH DAKOTA Assignors: BEAR CREEK MINING COMPANY, BEAR TOOTH MINING COMPANY, CARBORUNDUM COMPANY THE, CHASE BRASS & COPPER CO. INCORPORATED, KENNECOTT EXPLORATION, INC., KENNECOTT REFINING CORPORATION, KENNECOTT SALES CORPORATION, OZARK LEAD COMPANY, PLAMBEAU MINING CORPORATION, RIDGE MINING CORPORATION (ALL MERGED INTO)
Assigned to NATIONAL WESTMINSTER BANK USA, A NATIONAL BANKING ASSOCIATION reassignment NATIONAL WESTMINSTER BANK USA, A NATIONAL BANKING ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANGBORN CORPORATION, A CORP. OF DE.
Assigned to PANGBORN CORPORATION reassignment PANGBORN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KENNECOTT CORPORATION
Assigned to MERRILL LYNCH INTERFUNDING INC. reassignment MERRILL LYNCH INTERFUNDING INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANGBORN CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/02Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft
    • B02C13/06Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft with beaters rigidly connected to the rotor
    • B02C13/09Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft with beaters rigidly connected to the rotor and throwing the material against an anvil or impact plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/183Feeding or discharging devices
    • B02C17/1835Discharging devices combined with sorting or separating of material
    • B02C17/184Discharging devices combined with sorting or separating of material with separator arranged in discharge path of crushing zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/18Plants for preparing mould materials

Definitions

  • An abrasive blast cleaning system includes blast means for granulating and scouring the sand removed from a nobake mold whereby the sand is reconditioned for reuse in a subsequent no-bake molding operation.
  • the base binder used in no-bake molding is either an acid base such as a chemical binder with phosphoric acid as the activator or is an oil base.
  • the nobake mold pattern is disposed in a topless frame on, for example a support table with the no-bake ingredients being added to form a cavity corresponding to one portion of the casting and rigidifying rods added thereto. The mold is then inverted and the complementary portion of the no-bake mold is formed thereon so that the resultant composite cavity corresponds to the casting. Suitable gating is of course also provided.
  • the no-bake molding process potentially represents a significant advancement in the foundry art since it offers a number of distinct advantages.
  • the molds are easier to make without requiring a. skilled molder. There is a cleaner environment with less dust and spillage than with green sand molding.
  • the nobake technique is quicker since jolt mechanisms are not required. Simple form boxes or topless frames are merely necessary to shape the mold rather than the conventional heavy flasks.
  • the molds can be handled without breaking apart by providing a grid plate or strapping and thereby the mold with its casting can be moved to a shaker or cleaning process without breaking apart.
  • the mold shell or sand can be removed by blasting and in such case the mold shell and core can be handled to the interior of a blast machine where the sand and dust can be contained and shakeout noise eliminated.
  • the casting finish is thereby improved and casting tolerances can be tightened with the castings matching the pattern.
  • the castings can go directly to numerically controlled machines, thereby obviating the need for rough cuts or manual machines.
  • reclaimed sands with the present systems are not uniform in qualities. In this respect the build-up of fines and/or organics seriously affects the molds using reclaimed sands. Moreover, proposed reclaiming systems require shakers, crushers or Muller type units which are noisy and dusty and also require rather large floor space and head room with high maintenance and capital costs.
  • An object of this invention is to provide an abrasive blasting system which granulates and scours sand obtained from a no-bake molding operation.
  • a further object of this invention is to provide such a system which in a broader form may utilize the concepts herein for functioning as a granulating means, per se.
  • a still further object of this invention is to provide various alternatives for effectively granulating and/or scouring sand or other lump granular material.
  • an abrasive blast cleaning system includes blast means for granulating and scouring the sand removed from a no-bake mold whereby the sand is reconditioned for reuse in a subsequent no-bake molding operation.
  • the sand itself may be initially obtained by blasting abrasive particles against a no-bake mold wherein the sand in lumpy and granular form is conveyed along with spent abrasive, rods, fines and other contaminants toward the granulating and scouring station.
  • the finer materials may undergo a separation operation to remove the finer granular sand from the remainder of the mixture and this granular sand may be dropped ad jacent and impact plate where the grains are struck by abrasive particles to prevent a build-up binder on the sand by removing binder from the grains.
  • the same blast means which prevent a binder build-up is also used to break the lumps into fine granular form and simultaneously to clean the rods in the mixture.
  • the rods also are put into condition for reuse simultanew ously with the granulating and scouring of the sand.
  • FIG. 1 is a side elevation view schematically showing one embodiment of this invention
  • FIG. 2 is a plan view of the embodiment of the invention shown in FIG. 1;
  • FIG. 3 is a cross-sectional view taken through FIG. 2 along the line 3-3;
  • FIG. 3A is a view similar to FIG. 3 showing an alternative conveyor structure
  • FIG. 4 is an elevation view of a portion of a modified blast chamber
  • FIGS. 5 and 6 are views similar to FIG. 3 on an enlarged scale of alternative arrangements of this invention.
  • FIGS. 7-8 are side and end elevation views of yet another embodiment of this invention.
  • FIGS. 9-10 are cross-sectional views in elevation schematically illustrating another embodiment of this invention.
  • FIG. 11 is a plan view in section illustrating a portion of the embodiment shown in FIG. 10;
  • FIG. 12 is a plan view in section similar to FIG. 11 showing still another embodiment of this invention.
  • FIG. 13 is a cross-sectional view in elevation of yet another embodiment of this invention.
  • FIG. 14 is a cross-sectional view taken through FIG. 13 along the line l4-14;
  • FIG. 15 is a cross-sectional view in elevation of still yet another embodiment of this invention.
  • FIG. 16 is a plan view in section of a portion of the embodiment shown in FIG. 15;
  • FIG. 17 is an elevation view partly in section of yet another embodiment of this invention.
  • FIG. 1 shows the abrasive cleaning system 10 in ac cordance with this invention.
  • a nobake mold 1 2 is held in an open frame 14 and conveyed on monorail 16 into blast chamber 18.
  • rigidifying rods 20 as well as a casting 22 are embedded in the sand 24.
  • Means 26 are provided to suspend the casting when the sand is later removed.
  • Blast chamber 18 is provided with a plurality of centrifugal throwing wheels 28 which project abrasive particles against the mold to remove the sand and rods therefrom and thereby clean the then exposed casting in one operation.
  • abrasive particles against the mold to remove the sand and rods therefrom and thereby clean the then exposed casting in one operation.
  • the falling sand, rods, spent abrasive, fines and other contaminants fall through the bottom 30 of chamber 18 and are received on oscillating conveyor 32.
  • the floor of the chamber is made with maximal open area. Ideally chamber 18 would be completely floorless.
  • FIG. 1 spaced I-beams 34 are provided so that the mixture 36 can be received on the oscillating conveyor 32 by falling through the large open area between l-beams 34.
  • FIG. 4' shows an alternative arrangement wherein the floor is made of louvered members 38 thereby advantageously providing a support area which can be walked on but facilitating the discharge of the mixture through the floor.
  • the entire mixture 36 is conveyed on oscillating conveyor 32 until the mixture reaches a portion of the conveyor which includes a screen 40 of appropriate mesh size to permit the fine grain abrasives, fines, and other contaminants to fall into hopper 42 and thence to screw conveyor 44 where it is received by elevator 46 for separation as later described.
  • the remaining portion of mixture 36 which includes lumps, rods, and any other elements which may be carried with the mixture is conveyed to the end of oscillator 32 and drops onto generally perpendicular oscillating conveyor 48 until it reaches the second blast station 50 (FIG. 2).
  • separators 54 are of the air wash type such as described and illustrated in U.S. Pat. No. 3,368,677 the details of which are incorporated herein by reference thereto.
  • the air wash separator 54 subjects the falling mixture to an air curtain supplied for example at inlet 56.
  • a number of skimmer plates 58 are provided in the separating chamber 60 to facilitate a separation of the mixture into individual streams in accordance with their weight.
  • the abrasive particles are heavier than the sand which in turn is heavier than the fines.
  • the abrasive particles fall generally directly downward into discharge conduit 62 while the fine grained sand is slightly diverted and received in discharged conduit 64.
  • Other discharge conduits (not shown) are provided for the fines and other contaminants.
  • the sand in the mixture fed to separators 54 is not always of the desired size of fineness but frequently is in smaller lumps which may be termed pea size.
  • pea size Generally such pea sized lumps are about 3/16 1/4 inch in diameter. Since this pea size sand is heavier than the fine grain size, the pea size sand will also go into conduit 62 with the abrasive particles which are large size metal shot. Accordingly, it is necessary that this sand be separated from the abrasive particles if the sand recovered is to be maximized not only for reuse of the sand but also for reuse of the abrasive particles. Accordingly, the mixture of pea size sand and abrasive particles undergoes a second separation process.
  • This second separation process includes feeding the mixture of abrasive particles and pea size sand through pairs of rollers 66 which may be made of wear resistant polyurethane.
  • rollers 66 which may be made of wear resistant polyurethane.
  • the closely positioned rotating rollers crush the pea size sand into its fine granular form whilev of course permitting the abrasive particles to retain their normal size.
  • This mixture of crushed sand and abrasive particles is then fed into separators 68 which are of the air wash type similar to separators 54 except that only one skimmer plate 70 is necessary since the mixture will be divided into only two streams. It is to be understood, however, that a separator using a plurality of skimmer plates may also be used.
  • the substantially pure abrasive particles are received in spout 72 for reuse by blast wheels 28 by conveyance through pipes 74.
  • the fine grain sand is received in hopper 76 where it mixes with the fine grain flowing from conduits 64 and is conveyed through conduit 78 to the blast station 50.
  • a particular advantage of this invention is the inclusion of blast station 50 which in effect both granulates and scours the sand as is essential for the sand reclamation that would be necessary to render the no-bake molding process economically feasible.
  • about 25 percent of the sand in mixture 36 is in lump size which could for example vary from 1 inch to 10 inches in general diameter.
  • the lumps and core rods are handled through the blast station without damage to any mechanism.
  • the same blast station 50 which granulates and reconditions the sand also simultaneously cleans the rods so that the rods are free of any residual material and thus are in condition for reuse.
  • the arrangement provides these advantages with minimum floor space requirements and is both noise free and dust free within acceptable limits.
  • a conventional centrifugal throwing wheel 80 which uses generally large size metal shot projected at a high flow rate at for example 1200 to 1700 rpm or lower.
  • the metal shot strikes the lumps to granulate them while also knocking the organics off the grains of sand.
  • the sand which had been separated by the separators 54 and 68 is also passed into the blast stream from wheel 80 so that the organic binder is removed from this sand. As shown for example in FIG. 3 the falling sand from conduit 78 drops between the blast stream 82 and a strike plate 84.
  • the mixture of granulated reconditioned sand and abrasive particles are fed to elevator 92 and then to separator 94 which also is of the air wash type previously described including air curtain inlet 96 and skimmer plate 100 in separation chamber 98.
  • the mixture is thereby divided into one stream of abrasive particles which is received in spout 102 and conveyed back to abrasive blast wheel 80 while the stream of reconditioned sand is received in spout 104 and discharged from outlet 106 and into any suitable receptacle (not shown) for reuse.
  • the sand Prior to discharge from outlet 106 the sand may pass through magnetic drum separator 107 to remove the small quantity of metal abrasive that may be mixed in with the otherwise substantially pure sand.
  • FIG. 5 shows an alternative arrangement similar to FIG. 3 wherein the mixture of lumps and rods, etc., is fed from conveyor 108 to oscillating conveyor 110 in a manner similar to the arrangement of FIG. 3.
  • blast wheel 112 uses as its blast particles not only metal shot supplied from conduit 1 14 but also the fine grained sand which is fed by conduit 116 as would be supplied for example from conduit 78.
  • the fine grain sand not only functions to break the lumps 118 but also the impact from the sand helps remove the binder therefrom.
  • Such an arrangement would also permit a simplier separation system since it would not be as critical to completely separate the fine grain sand from the abrasive particles in the mixture received from blast chamber 18.
  • FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor
  • conveying means for the lumpy material to be an oscillating conveyor
  • FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor
  • FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor
  • FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor
  • the lumpy material 86 is conveyed on a belt which is made of mesh form so as to permit the passage of abrasive particles and crushed lumpy material to pass therethrough onto incline 87 and thence into hopper 89 to screw conveyor 90.
  • the conveying means need not have a flat surface such as illustrated in FIGS. 3 and 3A but may take any other suitable form such as for example being in the form of a drum conveyor in accordance with the particular results desired.
  • abrasive blast means may be used in accordance with this invention.
  • One particularly efl'ective blast means is the centrifugal throwing wheel shown and described in U.S. Pat. No. 3,348,339 which includes flared and tilted vanes. Additionally, it is also possible to use multiple throwing wheels at each blast station. Metal shot may advantageously be used as the abrasive particles.
  • FIG. 6 shows another alternative arrangement which maximizes the lump breaking ability of blast wheel 120.
  • the osciallating conveyor 122 is of a particular design in that its upper surface includes steps thereby providing shoulders 124, 126.
  • This arrangement is advantageous since the affect of the left hand portion of blast stream 128 is to drive the lumps back toward the left against the direction of flow imparted by oscillator 122.
  • Shoulder 124 for example, however, acts as a stop to prevent this backward flow and to hold a lump 130 until it is effectively granulated. so that it may fall through the mesh screen 132.
  • the various oscillating conveyors used in the lump breaking stations are trough shaped and are of such a dimension as to confine the moving stream of lumpy sand into an area which has a width no greater than the width of the particularly arranged centrifugal throwing wheel blast stream so that the centrifugal throwing wheel can thoroughly function as a lump breaking means.
  • FIGS. 7-8 show a simplified form of this invention similar to the arrangement shown in FIG. 1.
  • the fine granular sand removed from the no-bake mold in blast chamber 18 does not have a substantial binder build up, it is then possible to convey this fine sand into elevator 134 and thence to separating system 136 without subjecting the fine sand to a scouring operation.
  • the lumps from blast chamber 18 would be crushed at blast station 138 and the crushed lumps would then be conveyed to the same elevator 134 and separating system 136.
  • the arrangement of FIGS. 7-8 eliminates the need for a pair of elevators and separating systems such as shown in FIG. 1.
  • FIG. 9 illustrates another aspect of this invention which maximizes the scouring efficiency thereof.
  • mixture 140 which includes lumps 142 is fed into hopper 144 from any suitable source such as a blast chamber which cleans a casting from a no-bake mold as previously described, or from any other source.
  • the sand may, for example, be supplied from a batch barrel or may be continuously fed.
  • the mixture is fed into blasting station 146 whereby blast wheel 148 breaks the lumps and also subjects the sand in the mixture to a scouring treatment.
  • the embodiment of FIG. 9 differs from previous embodiments in that means are provided to subject the granular sand to a further scouring operation.
  • the bottom of blasting station 146 includes a collecting hopper 150 having an outlet which feeds the granular sand and abrasives into blast wheel 152.
  • Blast wheel 152 is designed to project the thusly fed sand and abrasive particles in a 360 pattern against impact plate 154 mounted on the inner wall of chamber 156.
  • the chamber wall itself may act as the impact plate. It is desirable with such scouring operations to maximize the turbulence of the sand grains which in turn adds to the scouring efficiency.
  • blast wheel 152 would operate at a reduced speed such as 1200 rpm rather than the conventional speed of 2250 rpm.
  • FIGS. -11 show an arrangement similar to FIG. 9 in the inclusion of a-further scouring abrasive blast station 156.
  • the mixture of sand and abrasive particles is discharged onto a flow distribution cone 158 so as to fall between impact plate I 154 and blast wheel 160.
  • Blast wheel 160 which has 360 blast coverage is supplied with abrasive particles through conduit 162 from separator 164 so that the falling stream distributed by cone 158 is struck by the blast particles centrifugal throwing wheel 160, and caused to ricochet against impact plate 154.
  • FIG. 12 illustrates an alternative shape for the flow distribution means.
  • the flow distribution means is in the shape of a pair of inverted plates 159 which are inclined toward each other and meet at their apex to form an inverted V above blast wheel 161. Since the flow distribution plates 159 will merely have two streams flowing therefrom, blast wheel 161 includes an impeller case having two slots so that the blast wheel will thereby project a pair of diametrically opposed blast streams.
  • FIGS. 13-14 show an advantageous arrangement for scouring the sand such as received from the previously described lump breaking station and discharged through spout 166.
  • the discharged particles are fed into centrifugal throwing wheel 168 at blast station 170.
  • an impact or ricochet plate 174 inclined toward the blast wheel.
  • the lower end of plate 174 is joined to a further impact plate 176 in such a manner that the particles are thrown off vanes 172 against plate 174 and ricochet off plate 174 downwardly against plate 176 and back toward the center of the blast station.
  • an additional ricochet plate 178 may be provided to further increase the turbulence.
  • the drive 180 for blast wheel 168 is enclosed in a shielded housing 182 which incorporates suitable power line conduit 184 and vent line 186.
  • FIGS. 15-16 show still another manner of obtaining a high degree of turbulence. As indicated therein the particles are discharged through spout 188 into centrifugal throwing wheel 190.
  • the drive 189 for wheel 190 is housed in casing 191 with a suitable vent line 193 being provided.
  • the impact plates are a plurality of plates or vanes 192 projecting from the interior wall 194 of blast chamber 196.
  • FIG. 17 illustrates yet another ramification of this invention wherein a plurality of blast wheels 198, 200, 202 are stacked atop each other in such a manner that, for example, the particles projected from blast wheel 198 are fed through spout 204 into subsequent blast wheel 200 and then fed through spout 206 into blast wheel 202.
  • Any number of vertically arranged blast wheels may be provided in accordance with the desired degree of scouring.
  • the stacked arrangements may also include suitable vent line 208 and other features with respect to the individual wheels previously described.
  • An abrasive blast treating system for producing granular material from lumpy material created from a mold used to make castings comprising means for removing a casting from a mold and creating a mixture from the mold including granular material and lumpy material, an abrasive blasting station, conveying means for conveying the lumpy material to said abrasive blasting station, abrasive blast means in said blasting station for directing abrasive particles against the lumpy material to break up the material into granular material, and receiving means for receiving the thus produced granular material.
  • a system as set forth in claim 1 including separating means for removing the granular material from said mixture before said blasting station.
  • a system as set forth in claim 2 wherein said casting removing means includes a blast chamber for receiving the mold and further abrasive blast means for directing abrasive particles against the mold.
  • said conveying means includes an oscillating conveyor disposed under said blast chamber, said separating means including a screen deck on said oscillating conveyor to permit the granular material to fall therethrough, collecting means under said screen deck, and a first separating system communicating with said collecting means.
  • said first separating system includes means for removing the granular material from the mixture passed therethrough, an impact plate in said abrasive blasting station, and transporting means for feeding the granular material from said first separating system to said blasting station between said impact plate and said abrasive blast means whereby the abrasive particles from said blast means cause at least some of the granular material to strike against said impact plate.
  • said first separating system includes at least one set of separators comprising a pair of vertically arranged air wash separators, the uppermost of said vertically arranged separators including a spout for discharging a stream of abrasive particles and pea sized lumps of granular material, a pair of crushing rollers between said pair of separators, said spout on said uppermost separator discharging said stream between said rollers whereby the pea size sand may be crushed by said rollers and the resultant mixture of granular material and abrasive particles may be fed to the lowermost of said separators, and means for discharging individual streams of granular material and abrasive particles from said lowermost separator.
  • a system as set forth in claim 9 including means for transporting at least some of the sand discharged from said lowermost separator to said abrasive blast means in said blasting station.
  • said second oscillating conveyor has a top surface with a screen deck to permit the fine granular material to pass therethrough, and at least one step on said top surface of said second oscillating conveyor disposed in the path of the abrasive particles projected from said blast means whereby said step acts as a stop for lumps of material which might otherwise have a tendency to be pushed by said abrasive particles back against the direction of flow imparted by said second oscillating conveyor.
  • a system as set forth in claim 13 wherein said second separating system includes an air wash separator for separating the materials fed thereto into individual streams of granular material and abrasive particles, and a magnetic drum receiving the stream of granular material for removing any abrasive particles which might be therein.
  • a system as set forth in claim 1 including a second blasting station having second blast means therein, said receiving means feeding the granular material to said second blasting station for scouring the sand in the fine granular material.
  • a system as set forth in claim 17 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, and said receiving means feeding the granular material to said second blast means for projection against said impact plate means.
  • said impact plate means comprises a first plate inclined toward said second blast means and disposed in the path of mo tion of the particles projected from said second blast means, and a second plate inclined toward and disposed under said first plate to provide a ricochet surface for the projected particles.
  • a system as set forth in claim 18 wherein said second blast means comprises a plurality of centrifugal wheels vertically arranged atop each other, and feed means between pairs of wheels for feeding the granular material discharged from an upper wheel into its ad-,
  • a system as set forth in claim 17 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, flow distribution means above said second blast means, and said receiving means feeding the granular material to said flow distribution means for discharging the granular material between said impact plate means and said second blast means.
  • An abrasive,blast treating system for producing granular material from lumpy material, said system comprising an abrasive blasting station, conveying means passing through said abrasive blasting station for carrying lumpy material into said blasting station, abrasive blast means in said blasting station for projecting abrasive particles against the lumpy material to break the material into granular material, said conveying means confining the lumpy material in an area having a predetermined width, said abrasive blast means projecting abrasive particles toward said conveying means over an area which completely covers said predetermined width, and collecting means for receiving the granulated material and abrasive particles from said conveying means, an air.wash separator, second conveying means for feeding the granulated material and abrasive particles from said collecting means to said separator, and said separator dividing the granulated material and abrasive particles into individual streams.
  • a system as set forth in claim 25 wherein said conveying means. is an oscillating conveyor having a screen deck.
  • a system as set forth in claim 25 including a second blasting station having second blast means therein, said collecting means feeding the granular material to said second blasting station for scouring the granular material.
  • a system as set forth in claim 28 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, and said receiving means feeding the granular material to said second blast means for projection against said impact plate means.
  • said impact plate means comprises a first plate inclined toward said second blast means and disposed in the path of motion of the particles projected from said second blast means, and a second plate inclined toward and disposed under said first plate to provide a ricochet surface for the projected particles.
  • said second blast means comprises a plurality of centrifugal wheels vertically arranged atop each other, and feed means between pairs of wheels for feeding the granular material discharged from an upper wheel into its adjacent lower wheel.
  • a system as set forth in claim 28 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, flow distribution means above said second blast means, and said collecting means feeding the granular material to said flow distribution means for discharging the fine granular material between said impact plate means and said second blast means.
  • said second blast means include a centrifugal throwing wheel capable of progecting particles over a .360? arc, ution means belng a comcally and said flow distn shaped member disposed over and above said throwing wheel.

Abstract

An abrasive blast cleaning system includes blast means for granulating and scouring the sand removed from a no-bake mold whereby the sand is reconditioned for reuse in a subsequent nobake molding operation.

Description

United States Patent 1 Carpenter et al.
[ 51 Feb. 20, 1973 [54] ABRASIVE BLAST CLEANING SYSTEM [75] Inventors: James H. Carpenter, Hagerstown, Md.; Joseph E. Bowling, Jr., Waynesboro, Pa.
[73] Assignee: The Carborundum Niagara Falls, NY.
22 Filed: Jan.21, 1971 21 Appl.No.: 108,417
Company,
[52] U.S.Cl. ..51/9,51/13,5l/l4, 241/39 [51] Int. Cl. ..B24c 3/04, B24c 3/14 [58] Field of Search ..51/9, 8,13,14,15, 319, 320; 164/5, 131,344; 241/39 [56] References Cited UNITED STATES PATENTS 554,473 2/1896 Beeg ..51/9
1,954,111 4/1934 Wilks ..51/8
2,225,482 12/1940 Mulvany ..51/9 2,239,714 4/1941 l-lammell ..51/9 2,261,947 11/1941 Banebl et al ..164/5 3,055,150 9/1962 Greenberg et al ..51/14 3,097,450 7/1963 Freeman et al 51/319 X 3,097,451 7/1963 Freeman et a1 51/319 X 3,368,677 2/1968 Bradley ..209/135 2,478,461 8/1949 Connolly ..24l/D1G. 10
FOREIGN PATENTS OR APPLICATIONS 539,527 4/1957 Canada 164/5 Primary ExaminerDonald G. Kelly Attorney-David E. Dougherty and Robert E. Walter [57] ABSTRACT An abrasive blast cleaning system includes blast means for granulating and scouring the sand removed from a nobake mold whereby the sand is reconditioned for reuse in a subsequent no-bake molding operation.
36 Claims, 18 Drawing Figures PATENTED 20 5 SHEET 10F T PATENTED FEBZOIGYS SHEET 2 BF 7 H QQQN PATENTED FEB 2 0 :575
SHEET 3 OF 7 PATENTED FEBZO 9 5 SHEET 0F 7 PATENTED Z 3,716947 SHEETS 0F 7 PATENTED FEBZOIGYS SHEET 70F 7 ABRASIVE BLAST CLEANING SYSTEM BACKGROUND OF INVENTION A recent development in the casting industry is the use of chemical bonded molds. Essentially this practice utilizes quality sand, a chemical binder and a catalyst which are mixed together and hardened into a solid cake at ambient temperatures. Accordingly, baking is not required for such molds and the practice is, therefore, known in the art as no-bake" molding. Generally the base binder used in no-bake molding is either an acid base such as a chemical binder with phosphoric acid as the activator or is an oil base. In practice the nobake mold pattern is disposed in a topless frame on, for example a support table with the no-bake ingredients being added to form a cavity corresponding to one portion of the casting and rigidifying rods added thereto. The mold is then inverted and the complementary portion of the no-bake mold is formed thereon so that the resultant composite cavity corresponds to the casting. Suitable gating is of course also provided. This practice is generally similar to standard foundry techniques but thus differs in at least one major respect, namely, the no-bake molding equipment does not require a heavy flask in which to house the sand when the molten metal is subsequently applied to the cavity. Even the topless frame used initially in the process is not needed during the casting forming step.
The no-bake molding process potentially represents a significant advancement in the foundry art since it offers a number of distinct advantages. For example the molds are easier to make without requiring a. skilled molder. There is a cleaner environment with less dust and spillage than with green sand molding. The nobake technique is quicker since jolt mechanisms are not required. Simple form boxes or topless frames are merely necessary to shape the mold rather than the conventional heavy flasks. The molds can be handled without breaking apart by providing a grid plate or strapping and thereby the mold with its casting can be moved to a shaker or cleaning process without breaking apart. It has been suggested that the mold shell or sand can be removed by blasting and in such case the mold shell and core can be handled to the interior of a blast machine where the sand and dust can be contained and shakeout noise eliminated. Moreover, the casting finish is thereby improved and casting tolerances can be tightened with the castings matching the pattern. The castings can go directly to numerically controlled machines, thereby obviating the need for rough cuts or manual machines.
Despite, the numerous advantages such as indicated above which are possible with no-bake molding, there are a number of serious disadvantages which might cause this process to be unacceptable by the foundry art. These disadvantages include the increased costs for quality grade sand which might cost three or four times more than the cost of green sands. Since quality sand is used this sand must be reclaimed for reuse to make the entire process economically feasible.
Although attempts are being made at reclaiming and reusing the sand, experts cannot agree on the percentage of reclaiming possible with a system nor the qualities needed or obtained by a system. The publication, Foundry, September 1970, pages 83-90, for example, describes one such attempt at sand reclamation. The
reclaimed sands with the present systems, however, are not uniform in qualities. In this respect the build-up of fines and/or organics seriously affects the molds using reclaimed sands. Moreover, proposed reclaiming systems require shakers, crushers or Muller type units which are noisy and dusty and also require rather large floor space and head room with high maintenance and capital costs.
SUMMARY OF INVENTION An object of this invention is to provide an abrasive blasting system which granulates and scours sand obtained from a no-bake molding operation.
A further object of this invention is to provide such a system which in a broader form may utilize the concepts herein for functioning as a granulating means, per se.
A still further object of this invention is to provide various alternatives for effectively granulating and/or scouring sand or other lump granular material.
In accordance with this invention an abrasive blast cleaning system includes blast means for granulating and scouring the sand removed from a no-bake mold whereby the sand is reconditioned for reuse in a subsequent no-bake molding operation.
The sand itself may be initially obtained by blasting abrasive particles against a no-bake mold wherein the sand in lumpy and granular form is conveyed along with spent abrasive, rods, fines and other contaminants toward the granulating and scouring station. The finer materials may undergo a separation operation to remove the finer granular sand from the remainder of the mixture and this granular sand may be dropped ad jacent and impact plate where the grains are struck by abrasive particles to prevent a build-up binder on the sand by removing binder from the grains. The same blast means which prevent a binder build-up is also used to break the lumps into fine granular form and simultaneously to clean the rods in the mixture. Thus the rods also are put into condition for reuse simultanew ously with the granulating and scouring of the sand.
THE DRAWINGS FIG. 1 is a side elevation view schematically showing one embodiment of this invention;
FIG. 2 is a plan view of the embodiment of the invention shown in FIG. 1;
FIG. 3 is a cross-sectional view taken through FIG. 2 along the line 3-3;
FIG. 3A is a view similar to FIG. 3 showing an alternative conveyor structure;
FIG. 4 is an elevation view of a portion of a modified blast chamber;
FIGS. 5 and 6 are views similar to FIG. 3 on an enlarged scale of alternative arrangements of this invention;
FIGS. 7-8 are side and end elevation views of yet another embodiment of this invention;
FIGS. 9-10 are cross-sectional views in elevation schematically illustrating another embodiment of this invention;
FIG. 11 is a plan view in section illustrating a portion of the embodiment shown in FIG. 10;
FIG. 12 is a plan view in section similar to FIG. 11 showing still another embodiment of this invention;
FIG. 13 is a cross-sectional view in elevation of yet another embodiment of this invention;
FIG. 14 is a cross-sectional view taken through FIG. 13 along the line l4-14;
FIG. 15 is a cross-sectional view in elevation of still yet another embodiment of this invention;
FIG. 16 is a plan view in section of a portion of the embodiment shown in FIG. 15; and
FIG. 17 is an elevation view partly in section of yet another embodiment of this invention.
DETAILED DESCRIPTION FIG. 1 shows the abrasive cleaning system 10 in ac cordance with this invention. As indicated therein a nobake mold 1 2 is held in an open frame 14 and conveyed on monorail 16 into blast chamber 18. As is conventional with such no-bake molds rigidifying rods 20 as well as a casting 22 are embedded in the sand 24. Means 26 are provided to suspend the casting when the sand is later removed.
Blast chamber 18 is provided with a plurality of centrifugal throwing wheels 28 which project abrasive particles against the mold to remove the sand and rods therefrom and thereby clean the then exposed casting in one operation. When the sand is removed from the mold it has been found that about percent of the sand is in lump form while the remaining 75 percent is in smallgranular form. The falling sand, rods, spent abrasive, fines and other contaminants fall through the bottom 30 of chamber 18 and are received on oscillating conveyor 32. To facilitate the discharge of this mixture of sand, abrasive, etc., from chamber 18 the floor of the chamber is made with maximal open area. Ideally chamber 18 would be completely floorless. It is generally desired, however, to have some structural members at the bottom of chamber 18 to permit workmen to enter for various purposes. Thus as shown in FIG. 1 spaced I-beams 34 are provided so that the mixture 36 can be received on the oscillating conveyor 32 by falling through the large open area between l-beams 34. FIG. 4'shows an alternative arrangement wherein the floor is made of louvered members 38 thereby advantageously providing a support area which can be walked on but facilitating the discharge of the mixture through the floor.
The entire mixture 36 is conveyed on oscillating conveyor 32 until the mixture reaches a portion of the conveyor which includes a screen 40 of appropriate mesh size to permit the fine grain abrasives, fines, and other contaminants to fall into hopper 42 and thence to screw conveyor 44 where it is received by elevator 46 for separation as later described. The remaining portion of mixture 36 which includes lumps, rods, and any other elements which may be carried with the mixture is conveyed to the end of oscillator 32 and drops onto generally perpendicular oscillating conveyor 48 until it reaches the second blast station 50 (FIG. 2).
In the meantime the mixture in elevator 46 is discharged into screw conveyor 52 and into any suitable number of separators 54. Advantageously, separators 54 are of the air wash type such as described and illustrated in U.S. Pat. No. 3,368,677 the details of which are incorporated herein by reference thereto. In general the air wash separator 54 subjects the falling mixture to an air curtain supplied for example at inlet 56. A number of skimmer plates 58 are provided in the separating chamber 60 to facilitate a separation of the mixture into individual streams in accordance with their weight. In this respect the abrasive particles are heavier than the sand which in turn is heavier than the fines. Thus the abrasive particles fall generally directly downward into discharge conduit 62 while the fine grained sand is slightly diverted and received in discharged conduit 64. Other discharge conduits (not shown) are provided for the fines and other contaminants.
It has been found that the sand in the mixture fed to separators 54 is not always of the desired size of fineness but frequently is in smaller lumps which may be termed pea size. Generally such pea sized lumps are about 3/16 1/4 inch in diameter. Since this pea size sand is heavier than the fine grain size, the pea size sand will also go into conduit 62 with the abrasive particles which are large size metal shot. Accordingly, it is necessary that this sand be separated from the abrasive particles if the sand recovered is to be maximized not only for reuse of the sand but also for reuse of the abrasive particles. Accordingly, the mixture of pea size sand and abrasive particles undergoes a second separation process. This second separation process includes feeding the mixture of abrasive particles and pea size sand through pairs of rollers 66 which may be made of wear resistant polyurethane. The closely positioned rotating rollers crush the pea size sand into its fine granular form whilev of course permitting the abrasive particles to retain their normal size. This mixture of crushed sand and abrasive particles is then fed into separators 68 which are of the air wash type similar to separators 54 except that only one skimmer plate 70 is necessary since the mixture will be divided into only two streams. It is to be understood, however, that a separator using a plurality of skimmer plates may also be used. The substantially pure abrasive particles are received in spout 72 for reuse by blast wheels 28 by conveyance through pipes 74. The fine grain sand is received in hopper 76 where it mixes with the fine grain flowing from conduits 64 and is conveyed through conduit 78 to the blast station 50.
A particular advantage of this invention is the inclusion of blast station 50 which in effect both granulates and scours the sand as is essential for the sand reclamation that would be necessary to render the no-bake molding process economically feasible. In this respect as previously noted about 25 percent of the sand in mixture 36 is in lump size which could for example vary from 1 inch to 10 inches in general diameter. In accordance with this invention the lumps and core rods are handled through the blast station without damage to any mechanism. Advantageously, the same blast station 50 which granulates and reconditions the sand also simultaneously cleans the rods so that the rods are free of any residual material and thus are in condition for reuse. The arrangement provides these advantages with minimum floor space requirements and is both noise free and dust free within acceptable limits. As previously noted in order to reclaim the sand in a condition for reuse it is necessary not only to granulate the sand back to its normal size but also to scour the sand. By scouring the sand is meant removing the organics or binder material used in the no-bake process. Although it is not completely agreed as to how much binder material may remain on the sand without hampering the reuseability of the sand, it is agreed that a build-up of binder material should be prevented.
The above advantages are achieved at blasting station 50 by the inclusion of a conventional centrifugal throwing wheel 80 which uses generally large size metal shot projected at a high flow rate at for example 1200 to 1700 rpm or lower. The metal shot strikes the lumps to granulate them while also knocking the organics off the grains of sand. Advantageously, the sand which had been separated by the separators 54 and 68 is also passed into the blast stream from wheel 80 so that the organic binder is removed from this sand. As shown for example in FIG. 3 the falling sand from conduit 78 drops between the blast stream 82 and a strike plate 84. In this manner the abrasive particles from a portion of stream 82 hit the falling sand and causes the sand grains to strike each other and to ricochet against the strike plate 84. The resulting impacts effectively remove the organic binder. In the meantime the remaining portion of blast stream 82 granulates and scours the lumps 86 and cleans the rods 20 which are moving on oscillating conveyor 48. A portion of oscillating conveyor 48 is provided with a screen 88 of appropriate mesh size to permit the granulated sand and abrasive particles to fall into hopper 89 to screw conveyor 90. The larger rods, however, continue to flow on oscillator 48 and are ultimately discharged and collected in any suitable receptacle (not shown). Thus the rods are received from blast station 50 in a cleaned condition for reuse.
From screw conveyor 90 the mixture of granulated reconditioned sand and abrasive particles are fed to elevator 92 and then to separator 94 which also is of the air wash type previously described including air curtain inlet 96 and skimmer plate 100 in separation chamber 98. The mixture is thereby divided into one stream of abrasive particles which is received in spout 102 and conveyed back to abrasive blast wheel 80 while the stream of reconditioned sand is received in spout 104 and discharged from outlet 106 and into any suitable receptacle (not shown) for reuse.
Prior to discharge from outlet 106 the sand may pass through magnetic drum separator 107 to remove the small quantity of metal abrasive that may be mixed in with the otherwise substantially pure sand.
FIG. 5 shows an alternative arrangement similar to FIG. 3 wherein the mixture of lumps and rods, etc., is fed from conveyor 108 to oscillating conveyor 110 in a manner similar to the arrangement of FIG. 3. With this arrangement, however, blast wheel 112 uses as its blast particles not only metal shot supplied from conduit 1 14 but also the fine grained sand which is fed by conduit 116 as would be supplied for example from conduit 78. In this manner the fine grain sand not only functions to break the lumps 118 but also the impact from the sand helps remove the binder therefrom. Such an arrangement would also permit a simplier separation system since it would not be as critical to completely separate the fine grain sand from the abrasive particles in the mixture received from blast chamber 18.
Although FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor other types of conveying means are also possible. Thus, for example, as shown in FIG.
3A the lumpy material 86 is conveyed on a belt which is made of mesh form so as to permit the passage of abrasive particles and crushed lumpy material to pass therethrough onto incline 87 and thence into hopper 89 to screw conveyor 90. The conveying means need not have a flat surface such as illustrated in FIGS. 3 and 3A but may take any other suitable form such as for example being in the form of a drum conveyor in accordance with the particular results desired.
As previously indicated many suitable abrasive blast means may be used in accordance with this invention. One particularly efl'ective blast means is the centrifugal throwing wheel shown and described in U.S. Pat. No. 3,348,339 which includes flared and tilted vanes. Additionally, it is also possible to use multiple throwing wheels at each blast station. Metal shot may advantageously be used as the abrasive particles.
FIG. 6 shows another alternative arrangement which maximizes the lump breaking ability of blast wheel 120. As indicated therein the osciallating conveyor 122 is of a particular design in that its upper surface includes steps thereby providing shoulders 124, 126. This arrangement is advantageous since the affect of the left hand portion of blast stream 128 is to drive the lumps back toward the left against the direction of flow imparted by oscillator 122. Shoulder 124, for example, however, acts as a stop to prevent this backward flow and to hold a lump 130 until it is effectively granulated. so that it may fall through the mesh screen 132.
As shown, for example, in FIG. 1 the various oscillating conveyors used in the lump breaking stations are trough shaped and are of such a dimension as to confine the moving stream of lumpy sand into an area which has a width no greater than the width of the particularly arranged centrifugal throwing wheel blast stream so that the centrifugal throwing wheel can thoroughly function as a lump breaking means.
FIGS. 7-8 show a simplified form of this invention similar to the arrangement shown in FIG. 1. With the arrangement of FIGS. 7-8 when the fine granular sand removed from the no-bake mold in blast chamber 18 does not have a substantial binder build up, it is then possible to convey this fine sand into elevator 134 and thence to separating system 136 without subjecting the fine sand to a scouring operation. In the meantime, however, the lumps from blast chamber 18 would be crushed at blast station 138 and the crushed lumps would then be conveyed to the same elevator 134 and separating system 136. In this manner the arrangement of FIGS. 7-8 eliminates the need for a pair of elevators and separating systems such as shown in FIG. 1.
FIG. 9 illustrates another aspect of this invention which maximizes the scouring efficiency thereof. In this respect mixture 140 which includes lumps 142 is fed into hopper 144 from any suitable source such as a blast chamber which cleans a casting from a no-bake mold as previously described, or from any other source. The sand may, for example, be supplied from a batch barrel or may be continuously fed. As previously described, the mixture is fed into blasting station 146 whereby blast wheel 148 breaks the lumps and also subjects the sand in the mixture to a scouring treatment. The embodiment of FIG. 9 differs from previous embodiments in that means are provided to subject the granular sand to a further scouring operation. In this respect the bottom of blasting station 146 includes a collecting hopper 150 having an outlet which feeds the granular sand and abrasives into blast wheel 152. Blast wheel 152 is designed to project the thusly fed sand and abrasive particles in a 360 pattern against impact plate 154 mounted on the inner wall of chamber 156. Obviously, of course, the chamber wall itself may act as the impact plate. It is desirable with such scouring operations to maximize the turbulence of the sand grains which in turn adds to the scouring efficiency. Thus blast wheel 152 would operate at a reduced speed such as 1200 rpm rather than the conventional speed of 2250 rpm.
FIGS. -11 show an arrangement similar to FIG. 9 in the inclusion of a-further scouring abrasive blast station 156. In this arrangement, however, the mixture of sand and abrasive particles is discharged onto a flow distribution cone 158 so as to fall between impact plate I 154 and blast wheel 160. Blast wheel 160 which has 360 blast coverage is supplied with abrasive particles through conduit 162 from separator 164 so that the falling stream distributed by cone 158 is struck by the blast particles centrifugal throwing wheel 160, and caused to ricochet against impact plate 154.
The utilization of flow distribution cone 158 in FIGS. 10-11 is highly beneficial for greater volume production. FIG. 12 illustrates an alternative shape for the flow distribution means. In this respect instead of a cone the flow distribution means is in the shape of a pair of inverted plates 159 which are inclined toward each other and meet at their apex to form an inverted V above blast wheel 161. Since the flow distribution plates 159 will merely have two streams flowing therefrom, blast wheel 161 includes an impeller case having two slots so that the blast wheel will thereby project a pair of diametrically opposed blast streams.
FIGS. 13-14 show an advantageous arrangement for scouring the sand such as received from the previously described lump breaking station and discharged through spout 166. The discharged particles are fed into centrifugal throwing wheel 168 at blast station 170. In line with the vanes 172 of throwing wheel 168 is an impact or ricochet plate 174 inclined toward the blast wheel. The lower end of plate 174 is joined to a further impact plate 176 in such a manner that the particles are thrown off vanes 172 against plate 174 and ricochet off plate 174 downwardly against plate 176 and back toward the center of the blast station. In this manner there is a maximization of the turbulence created in the sand particles to thereby effectively scour these particles. If desired, an additional ricochet plate 178 may be provided to further increase the tur bulence. Advantageously, the drive 180 for blast wheel 168 is enclosed in a shielded housing 182 which incorporates suitable power line conduit 184 and vent line 186.
FIGS. 15-16 show still another manner of obtaining a high degree of turbulence. As indicated therein the particles are discharged through spout 188 into centrifugal throwing wheel 190. The drive 189 for wheel 190 is housed in casing 191 with a suitable vent line 193 being provided. In this embodiment, however, the impact plates are a plurality of plates or vanes 192 projecting from the interior wall 194 of blast chamber 196.
FIG. 17 illustrates yet another ramification of this invention wherein a plurality of blast wheels 198, 200, 202 are stacked atop each other in such a manner that, for example, the particles projected from blast wheel 198 are fed through spout 204 into subsequent blast wheel 200 and then fed through spout 206 into blast wheel 202. Any number of vertically arranged blast wheels may be provided in accordance with the desired degree of scouring. The stacked arrangements may also include suitable vent line 208 and other features with respect to the individual wheels previously described.
It is to be understood that although the concepts of this invention have been described with particular reference to sand reclamation for the no-bake mold system, the concepts may be equally applied to other arrangements. Thus, for example the utilization of a blast wheel or, in fact, of any suitable blast particles projecting means (such as nozzles) in the manner described may be incorporated as a lump breaker, per se, whenever it is desired to granulate material.
This application incorporates by reference thereto, the subject matter disclosed in copending applications Ser. No. 85,645, filed Oct. 30, 1970 in the name of Russell L. Rowe and Ser. No. 89,185, filed Nov. 13, 1970 in the name of Joseph E. Bowling, Jr.
What is claimed is:
1. An abrasive blast treating system for producing granular material from lumpy material created from a mold used to make castings comprising means for removing a casting from a mold and creating a mixture from the mold including granular material and lumpy material, an abrasive blasting station, conveying means for conveying the lumpy material to said abrasive blasting station, abrasive blast means in said blasting station for directing abrasive particles against the lumpy material to break up the material into granular material, and receiving means for receiving the thus produced granular material.
2. A system as set forth in claim 1 including separating means for removing the granular material from said mixture before said blasting station.
3. A system as set forth in claim 2 wherein said casting removing means includes a blast chamber for receiving the mold and further abrasive blast means for directing abrasive particles against the mold.
4. A system as set forth in claim 3 wherein said blast chamber has a louvered floor to facilitate the discharge of the mixture therefrom.
5. A system as set forth in claim 3 wherein said blast chamber has a substantially open floor formed by spaced beams having substantially open areas therebetween.
6. A system as set forth in claim 3 wherein said conveying means includes an oscillating conveyor disposed under said blast chamber, said separating means including a screen deck on said oscillating conveyor to permit the granular material to fall therethrough, collecting means under said screen deck, and a first separating system communicating with said collecting means.
7. A system as set forth in claim 6 wherein the mixture includes abrasive particles and rods, said conveying means further including a second oscillating conveyor for receiving the lumpy material and the rods in said mixture which do not pass through said screen deck of the first oscillating conveyor, said second oscillating conveyor passing through said abrasive blasting station whereby the lumpy material and the rods thereon are subjected to the blast action from said abrasive blast means therein to granulate the lumpy material and to simultaneously clean the rods, said second oscillating conveyor including a screen deck in said blasting station to permit the granulated lumpy material to pass therethrough, second collecting means under said screen deck of said second oscillating conveyor, and a second separation system communicating with said second collecting means.
8. A system as set forth in claim 7 wherein said first separating system includes means for removing the granular material from the mixture passed therethrough, an impact plate in said abrasive blasting station, and transporting means for feeding the granular material from said first separating system to said blasting station between said impact plate and said abrasive blast means whereby the abrasive particles from said blast means cause at least some of the granular material to strike against said impact plate.
9. A system as set forth in claim 8 wherein said first separating system includes at least one set of separators comprising a pair of vertically arranged air wash separators, the uppermost of said vertically arranged separators including a spout for discharging a stream of abrasive particles and pea sized lumps of granular material, a pair of crushing rollers between said pair of separators, said spout on said uppermost separator discharging said stream between said rollers whereby the pea size sand may be crushed by said rollers and the resultant mixture of granular material and abrasive particles may be fed to the lowermost of said separators, and means for discharging individual streams of granular material and abrasive particles from said lowermost separator.
10. A system as set forth in claim 9 including means for transporting at least some of the sand discharged from said lowermost separator to said abrasive blast means in said blasting station.
11. A system as set forth in claim 9 wherein said second oscillating conveyor has a top surface with a screen deck to permit the fine granular material to pass therethrough, and at least one step on said top surface of said second oscillating conveyor disposed in the path of the abrasive particles projected from said blast means whereby said step acts as a stop for lumps of material which might otherwise have a tendency to be pushed by said abrasive particles back against the direction of flow imparted by said second oscillating conveyor.
12. A system as set forth in claim 9 wherein said abrasive blast means in said blasting station comprises a centrifugal throwing wheel.
13. A system as set forth in claim 12 wherein transporting means are disposed between said second separating system and said throwing wheel for feeding abrasive particles from said second separating system to said throwing wheel.
14. A system as set forth in claim 13 wherein said second separating system includes an air wash separator for separating the materials fed thereto into individual streams of granular material and abrasive particles, and a magnetic drum receiving the stream of granular material for removing any abrasive particles which might be therein.
'15. A system as set forth in claim 13 wherein said removing means comprises a plurality of centrifugal throwingwheels in said blast chamber, means for feeding abrasive particles from said first separating system to said plurality of-centrifugal throwing wheels, said first separating system further including a common hopper for receiving the streams of granular material discharged by each separator therein- 16. A system as set forth in claim 3 including a separating system, means for supplying the finer grained material received from said blast chamber to said separating system, and means for supplying the thus produced granular material received in said receiving means to said same separating system.
17. A system as set forth in claim 1 including a second blasting station having second blast means therein, said receiving means feeding the granular material to said second blasting station for scouring the sand in the fine granular material.
18. A system as set forth in claim 17 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, and said receiving means feeding the granular material to said second blast means for projection against said impact plate means.
19. A system as set forth in claim 18 wherein said impact plate means comprises a first plate inclined toward said second blast means and disposed in the path of mo tion of the particles projected from said second blast means, and a second plate inclined toward and disposed under said first plate to provide a ricochet surface for the projected particles.
20. A system as set forth in claim 18 wherein said impact plate means includes a plurality of inclined vanes extending toward said second blast means.
21. A system as set forth in claim 18 wherein said second blast means comprises a plurality of centrifugal wheels vertically arranged atop each other, and feed means between pairs of wheels for feeding the granular material discharged from an upper wheel into its ad-,
jacent lower wheel.
22. A system as set forth in claim 17 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, flow distribution means above said second blast means, and said receiving means feeding the granular material to said flow distribution means for discharging the granular material between said impact plate means and said second blast means.
23. A system as set forth in claim 22 wherein said second blast means includes a centrifugal throwing wheel capable of projecting particles over a 360 arc, and said flow distribution means being a conically shaped member disposed over and above said throwing wheel.
24. A system as set forth in claim 22 wherein said second blast means includes a centrifugal throwing wheel capable of projecting a pair of oppositely disposed blast streams, and said flow distribution means being an inverted V-shaped member disposed over and above said throwing wheel.
25. An abrasive,blast treating system for producing granular material from lumpy material, said system comprising an abrasive blasting station, conveying means passing through said abrasive blasting station for carrying lumpy material into said blasting station, abrasive blast means in said blasting station for projecting abrasive particles against the lumpy material to break the material into granular material, said conveying means confining the lumpy material in an area having a predetermined width, said abrasive blast means projecting abrasive particles toward said conveying means over an area which completely covers said predetermined width, and collecting means for receiving the granulated material and abrasive particles from said conveying means, an air.wash separator, second conveying means for feeding the granulated material and abrasive particles from said collecting means to said separator, and said separator dividing the granulated material and abrasive particles into individual streams.
26. A system as set forth in claim 25 wherein said conveying means. is an oscillating conveyor having a screen deck.
27. A system as set forth in claim 26 wherein said blast means is a centrifugal throwing wheel, and said screen deck having at least one step disposed in the path of abrasive particles projected from said throwing wheel whereby said step acts as a stop to prevent lumpy material from moving against the direction of motion imparted by said oscillating conveyor.
28. A system as set forth in claim 25 including a second blasting station having second blast means therein, said collecting means feeding the granular material to said second blasting station for scouring the granular material.
29. A system as set forth in claim 28 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, and said receiving means feeding the granular material to said second blast means for projection against said impact plate means.
30. A system as set forth in claim 29 wherein said impact plate means comprises a first plate inclined toward said second blast means and disposed in the path of motion of the particles projected from said second blast means, and a second plate inclined toward and disposed under said first plate to provide a ricochet surface for the projected particles.
31. A system as set forth in claim 29 wherein said impact plate means includes a plurality of inclined vanes extending toward said second blast means.
32. A system as set forth in claim 29 wherein said second blast means comprises a plurality of centrifugal wheels vertically arranged atop each other, and feed means between pairs of wheels for feeding the granular material discharged from an upper wheel into its adjacent lower wheel. a
33. A system as set forth in claim 28 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, flow distribution means above said second blast means, and said collecting means feeding the granular material to said flow distribution means for discharging the fine granular material between said impact plate means and said second blast means.
.34. A system as set forth in claim 33 wherein said second blast means include a centrifugal throwing wheel capable of progecting particles over a .360? arc, ution means belng a comcally and said flow distn shaped member disposed over and above said throwing wheel.
35. A system as set forth in claim 33 wherein said second blast means includes a centrifugal throwing wheel capable of projecting a pair of oppositely disposed blast streams, and said flow distribution means being an inverted V-shaped member disposed over and above said throwing wheel.
36. A system as set forth in claim 29 wherein said second blast means includes a centrifugal throwing wheel capable of projecting particles over a 360 arc.

Claims (36)

1. An abrasive blast treating system for producing granular material from lumpy material created from a mold used to make castings comprising means for removing a casting from a mold and creating a mixture from the mold including granular material and lumpy material, an abrasive blasting station, conveying means for conveying the lumpy material to said abrasive blasting station, abrasive blast means in said blasting station for directing abrasive particles against the lumpy material to break up the material into granular material, and receiving means for receiving the thus produced granular material.
1. An abrasive blast treating system for producing granular material from lumpy material created from a mold used to make castings comprising means for removing a casting from a mold and creating a mixture from the mold including granular material and lumpy material, an abrasive blasting station, conveying means for conveying the lumpy material to said abrasive blasting station, abrasive blast means in said blasting station for directing abrasive particles against the lumpy material to break up the material into granular material, and receiving means for receiving the thus produced granular material.
2. A system as set forth in claim 1 including separating means for removing the granular material from said mixture before said blasting station.
3. A system as set forth in claim 2 wherein said casting removing means includes a blast chamber for receiving the mold and further abrasive blast means for directing abrasive particles against the mold.
4. A system as set forth in claim 3 wherein said blast chamber has a louvered floor to facilitate the discharge of the mixture therefrom.
5. A system as set forth in claim 3 wherein said blast chamber has a substantially open floor formed by spaced beams having substantially open areas therebetween.
6. A system as set forth in claim 3 wherein said conveying means includes an oscillating conveyor disposed under said blast chamber, said separating means including a screen deck on said oscillating conveyor to permit the granular material to fall therethrough, collecting means under said screen deck, and a first separating system communicating with said collecting means.
7. A system as set forth in claim 6 wherein the mixture includes abrasive particles and rods, said conveying means further including a second oscillating conveyor for receiving the lumpy material and the rods in said mixture which do not pass through said screen deck of the first oscillating conveyor, said second oscillating conveyor passing through said abrasivE blasting station whereby the lumpy material and the rods thereon are subjected to the blast action from said abrasive blast means therein to granulate the lumpy material and to simultaneously clean the rods, said second oscillating conveyor including a screen deck in said blasting station to permit the granulated lumpy material to pass therethrough, second collecting means under said screen deck of said second oscillating conveyor, and a second separation system communicating with said second collecting means.
8. A system as set forth in claim 7 wherein said first separating system includes means for removing the granular material from the mixture passed therethrough, an impact plate in said abrasive blasting station, and transporting means for feeding the granular material from said first separating system to said blasting station between said impact plate and said abrasive blast means whereby the abrasive particles from said blast means cause at least some of the granular material to strike against said impact plate.
9. A system as set forth in claim 8 wherein said first separating system includes at least one set of separators comprising a pair of vertically arranged air wash separators, the uppermost of said vertically arranged separators including a spout for discharging a stream of abrasive particles and pea sized lumps of granular material, a pair of crushing rollers between said pair of separators, said spout on said uppermost separator discharging said stream between said rollers whereby the pea size sand may be crushed by said rollers and the resultant mixture of granular material and abrasive particles may be fed to the lowermost of said separators, and means for discharging individual streams of granular material and abrasive particles from said lowermost separator.
10. A system as set forth in claim 9 including means for transporting at least some of the sand discharged from said lowermost separator to said abrasive blast means in said blasting station.
11. A system as set forth in claim 9 wherein said second oscillating conveyor has a top surface with a screen deck to permit the fine granular material to pass therethrough, and at least one step on said top surface of said second oscillating conveyor disposed in the path of the abrasive particles projected from said blast means whereby said step acts as a stop for lumps of material which might otherwise have a tendency to be pushed by said abrasive particles back against the direction of flow imparted by said second oscillating conveyor.
12. A system as set forth in claim 9 wherein said abrasive blast means in said blasting station comprises a centrifugal throwing wheel.
13. A system as set forth in claim 12 wherein transporting means are disposed between said second separating system and said throwing wheel for feeding abrasive particles from said second separating system to said throwing wheel.
14. A system as set forth in claim 13 wherein said second separating system includes an air wash separator for separating the materials fed thereto into individual streams of granular material and abrasive particles, and a magnetic drum receiving the stream of granular material for removing any abrasive particles which might be therein.
15. A system as set forth in claim 13 wherein said removing means comprises a plurality of centrifugal throwing wheels in said blast chamber, means for feeding abrasive particles from said first separating system to said plurality of centrifugal throwing wheels, said first separating system further including a common hopper for receiving the streams of granular material discharged by each separator therein.
16. A system as set forth in claim 3 including a separating system, means for supplying the finer grained material received from said blast chamber to said separating system, and means for supplying the thus produced granular material received in said receiving means to said same separating system.
17. A system as set forth in claim 1 including a second blastiNg station having second blast means therein, said receiving means feeding the granular material to said second blasting station for scouring the sand in the fine granular material.
18. A system as set forth in claim 17 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, and said receiving means feeding the granular material to said second blast means for projection against said impact plate means.
19. A system as set forth in claim 18 wherein said impact plate means comprises a first plate inclined toward said second blast means and disposed in the path of motion of the particles projected from said second blast means, and a second plate inclined toward and disposed under said first plate to provide a ricochet surface for the projected particles.
20. A system as set forth in claim 18 wherein said impact plate means includes a plurality of inclined vanes extending toward said second blast means.
21. A system as set forth in claim 18 wherein said second blast means comprises a plurality of centrifugal wheels vertically arranged atop each other, and feed means between pairs of wheels for feeding the granular material discharged from an upper wheel into its adjacent lower wheel.
22. A system as set forth in claim 17 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, flow distribution means above said second blast means, and said receiving means feeding the granular material to said flow distribution means for discharging the granular material between said impact plate means and said second blast means.
23. A system as set forth in claim 22 wherein said second blast means includes a centrifugal throwing wheel capable of projecting particles over a 360* arc, and said flow distribution means being a conically shaped member disposed over and above said throwing wheel.
24. A system as set forth in claim 22 wherein said second blast means includes a centrifugal throwing wheel capable of projecting a pair of oppositely disposed blast streams, and said flow distribution means being an inverted V-shaped member disposed over and above said throwing wheel.
25. An abrasive blast treating system for producing granular material from lumpy material, said system comprising an abrasive blasting station, conveying means passing through said abrasive blasting station for carrying lumpy material into said blasting station, abrasive blast means in said blasting station for projecting abrasive particles against the lumpy material to break the material into granular material, said conveying means confining the lumpy material in an area having a predetermined width, said abrasive blast means projecting abrasive particles toward said conveying means over an area which completely covers said predetermined width, and collecting means for receiving the granulated material and abrasive particles from said conveying means, an air wash separator, second conveying means for feeding the granulated material and abrasive particles from said collecting means to said separator, and said separator dividing the granulated material and abrasive particles into individual streams.
26. A system as set forth in claim 25 wherein said conveying means is an oscillating conveyor having a screen deck.
27. A system as set forth in claim 26 wherein said blast means is a centrifugal throwing wheel, and said screen deck having at least one step disposed in the path of abrasive particles projected from said throwing wheel whereby said step acts as a stop to prevent lumpy material from moving against the direction of motion imparted by said oscillating conveyor.
28. A system as set forth in claim 25 including a second blasting station having second blast means therein, said collecting means feeding the granular material to said second blasting station for scouring the granular material.
29. A system as set forth in claim 28 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, and said receiving means feeding the granular material to said second blast means for projection against said impact plate means.
30. A system as set forth in claim 29 wherein said impact plate means comprises a first plate inclined toward said second blast means and disposed in the path of motion of the particles projected from said second blast means, and a second plate inclined toward and disposed under said first plate to provide a ricochet surface for the projected particles.
31. A system as set forth in claim 29 wherein said impact plate means includes a plurality of inclined vanes extending toward said second blast means.
32. A system as set forth in claim 29 wherein said second blast means comprises a plurality of centrifugal wheels vertically arranged atop each other, and feed means between pairs of wheels for feeding the granular material discharged from an upper wheel into its adjacent lower wheel.
33. A system as set forth in claim 28 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, flow distribution means above said second blast means, and said collecting means feeding the granular material to said flow distribution means for discharging the fine granular material between said impact plate means and said second blast means.
34. A system as set forth in claim 33 wherein said second blast means include a centrifugal throwing wheel capable of projecting particles over a 360* arc, and said flow distribution means being a conically shaped member disposed over and above said throwing wheel.
35. A system as set forth in claim 33 wherein said second blast means includes a centrifugal throwing wheel capable of projecting a pair of oppositely disposed blast streams, and said flow distribution means being an inverted V-shaped member disposed over and above said throwing wheel.
US00108417A 1971-01-21 1971-01-21 Abrasive blast cleaning system Expired - Lifetime US3716947A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10841771A 1971-01-21 1971-01-21

Publications (1)

Publication Number Publication Date
US3716947A true US3716947A (en) 1973-02-20

Family

ID=22322065

Family Applications (1)

Application Number Title Priority Date Filing Date
US00108417A Expired - Lifetime US3716947A (en) 1971-01-21 1971-01-21 Abrasive blast cleaning system

Country Status (13)

Country Link
US (1) US3716947A (en)
JP (2) JPS583781B2 (en)
AU (1) AU464058B2 (en)
BR (1) BR7200302D0 (en)
CA (1) CA943767A (en)
CH (1) CH552421A (en)
DE (1) DE2202311C2 (en)
ES (1) ES399092A1 (en)
FR (1) FR2122568B1 (en)
GB (2) GB1385721A (en)
IT (1) IT948256B (en)
SE (1) SE400206B (en)
ZA (1) ZA72404B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769752A (en) * 1970-11-11 1973-11-06 Blastmaster Co Tekology Ltd Apparatus for shot blasting work members
US3848815A (en) * 1972-05-17 1974-11-19 Carborundum Co Granulating apparatus
US4092942A (en) * 1977-07-05 1978-06-06 Magster Company Mobile shot blasting apparatus for shot blasting the bottom of a ship or the like
US4138067A (en) * 1976-04-07 1979-02-06 Rene Planiol Centrifugal vacuum impact pulverizing mills
US4164103A (en) * 1976-11-02 1979-08-14 Messer Griesheim Gmbh Device for deburring workpieces
US4523988A (en) * 1983-08-18 1985-06-18 Apache Equipment, Inc. Apparatus and method for producing virgin and/or reclaiming used abrasives
US4941295A (en) * 1989-04-12 1990-07-17 Pangborn Corporation Abrasive elevating apparatus for blast machines and method of using
US5386668A (en) * 1992-05-15 1995-02-07 Bmd Badische Maschinenfabrik Durlach Gmbh Blasting plant having blast wheels above and below for blasting elongated workpieces
US20030143929A1 (en) * 2000-05-26 2003-07-31 Schmidt Thomas Tygesen Method and system for cleaning workpieces by wet blasting
US20120108147A1 (en) * 2010-11-02 2012-05-03 Ronald Benson Removable airwash cartridge or cassette for grit drying system
US20150107030A1 (en) * 2013-10-22 2015-04-23 Nike, Inc. Buffing Expanded Foam Items
CN106670981A (en) * 2017-03-01 2017-05-17 中国石油集团济柴动力总厂再制造中心 Sand blasting and shot blasting integrated device for remanufacturing of engine parts
US9884404B2 (en) 2013-10-22 2018-02-06 Nike, Inc. Buffing expanded foam items
US10420275B2 (en) * 2013-10-08 2019-09-24 Syngenta Participations Ag Planter exhaust air removing apparatus and method of use thereof
CN113118422A (en) * 2021-04-25 2021-07-16 象山县共青铸造厂 Automatic sand shakeout equipment of sand casting

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881664A (en) * 1973-01-31 1975-05-06 Carborundum Co Wear plate in an apparatus for conditioning a granular material
NZ198307A (en) * 1981-09-08 1986-04-11 Barmac Ass Ltd Vertical impact pulveriser:secondary mineral feed stream surrounds thrown primary feed
DE4109993A1 (en) * 1991-03-27 1992-10-01 Klein Alb Gmbh Co Kg METHOD FOR REGENERATING PUMP FROM COATED GRAIN, IN PARTICULAR FROM FOUNDRY SAND
CN112252720B (en) * 2020-10-28 2021-12-10 安徽东乔市政建设有限公司 Building templates washing unit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US554473A (en) * 1896-02-11 Hans beeg
US1954111A (en) * 1932-04-29 1934-04-10 Wilks Joe Machine for abrading concrete surfaces
US2225482A (en) * 1937-03-24 1940-12-17 Harry A Mulvany Cleaning machine
US2239714A (en) * 1937-01-29 1941-04-29 American Foundry Equip Co Apparatus for abrasively treating metal objects
US2261947A (en) * 1940-07-27 1941-11-11 August J Barnebl Foundry practice
US2478461A (en) * 1946-03-16 1949-08-09 Nichols Eng & Res Corp Apparatus and method for treating foundry sand
CA539527A (en) * 1957-04-16 Allis-Chalmers Manufacturing Company Method of burning carbon from sand in fluid solids suspension
US3055150A (en) * 1959-07-20 1962-09-25 Elmer H Greenberg Metal-plate-treating method and apparatus
US3097450A (en) * 1963-07-16 Rough cleaning and finish cleaning machine and method
US3097451A (en) * 1963-07-16 Blast machine system and method
US3368677A (en) * 1964-09-08 1968-02-13 Pangborn Corp Abrasive separator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL102398C (en) * 1900-01-01
US2887826A (en) * 1957-10-30 1959-05-26 Auto Specialties Mfg Co Shot blast machine
US3087451A (en) * 1960-03-01 1963-04-30 Edward F Chandler Reaction automotor
US3445966A (en) * 1966-06-30 1969-05-27 Pangborn Corp Abrasive blasting apparatus
FR1535793A (en) * 1966-07-20 1968-08-09 Badische Maschf Gmbh Cast iron deburring machine with jet turbines
US3540156A (en) * 1967-12-13 1970-11-17 Wheelabrator Corp Machine for cleaning sand castings and recovery of components

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US554473A (en) * 1896-02-11 Hans beeg
CA539527A (en) * 1957-04-16 Allis-Chalmers Manufacturing Company Method of burning carbon from sand in fluid solids suspension
US3097450A (en) * 1963-07-16 Rough cleaning and finish cleaning machine and method
US3097451A (en) * 1963-07-16 Blast machine system and method
US1954111A (en) * 1932-04-29 1934-04-10 Wilks Joe Machine for abrading concrete surfaces
US2239714A (en) * 1937-01-29 1941-04-29 American Foundry Equip Co Apparatus for abrasively treating metal objects
US2225482A (en) * 1937-03-24 1940-12-17 Harry A Mulvany Cleaning machine
US2261947A (en) * 1940-07-27 1941-11-11 August J Barnebl Foundry practice
US2478461A (en) * 1946-03-16 1949-08-09 Nichols Eng & Res Corp Apparatus and method for treating foundry sand
US3055150A (en) * 1959-07-20 1962-09-25 Elmer H Greenberg Metal-plate-treating method and apparatus
US3368677A (en) * 1964-09-08 1968-02-13 Pangborn Corp Abrasive separator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769752A (en) * 1970-11-11 1973-11-06 Blastmaster Co Tekology Ltd Apparatus for shot blasting work members
US3848815A (en) * 1972-05-17 1974-11-19 Carborundum Co Granulating apparatus
US4138067A (en) * 1976-04-07 1979-02-06 Rene Planiol Centrifugal vacuum impact pulverizing mills
US4164103A (en) * 1976-11-02 1979-08-14 Messer Griesheim Gmbh Device for deburring workpieces
US4092942A (en) * 1977-07-05 1978-06-06 Magster Company Mobile shot blasting apparatus for shot blasting the bottom of a ship or the like
US4523988A (en) * 1983-08-18 1985-06-18 Apache Equipment, Inc. Apparatus and method for producing virgin and/or reclaiming used abrasives
US4941295A (en) * 1989-04-12 1990-07-17 Pangborn Corporation Abrasive elevating apparatus for blast machines and method of using
US5386668A (en) * 1992-05-15 1995-02-07 Bmd Badische Maschinenfabrik Durlach Gmbh Blasting plant having blast wheels above and below for blasting elongated workpieces
US20030143929A1 (en) * 2000-05-26 2003-07-31 Schmidt Thomas Tygesen Method and system for cleaning workpieces by wet blasting
US6688946B2 (en) * 2000-05-26 2004-02-10 Thomas Tygesen Schmidt Method and system for cleaning workpieces by wet blasting
US20120108147A1 (en) * 2010-11-02 2012-05-03 Ronald Benson Removable airwash cartridge or cassette for grit drying system
US10420275B2 (en) * 2013-10-08 2019-09-24 Syngenta Participations Ag Planter exhaust air removing apparatus and method of use thereof
US20150107030A1 (en) * 2013-10-22 2015-04-23 Nike, Inc. Buffing Expanded Foam Items
US9789584B2 (en) * 2013-10-22 2017-10-17 Nike, Inc. Buffing expanded foam items
US9884404B2 (en) 2013-10-22 2018-02-06 Nike, Inc. Buffing expanded foam items
CN106670981A (en) * 2017-03-01 2017-05-17 中国石油集团济柴动力总厂再制造中心 Sand blasting and shot blasting integrated device for remanufacturing of engine parts
CN113118422A (en) * 2021-04-25 2021-07-16 象山县共青铸造厂 Automatic sand shakeout equipment of sand casting
CN113118422B (en) * 2021-04-25 2022-07-19 象山县共青铸造厂 Automatic sand shakeout equipment of sand casting

Also Published As

Publication number Publication date
JPS5782437U (en) 1982-05-21
JPS583781B2 (en) 1983-01-22
SE400206B (en) 1978-03-20
AU3804672A (en) 1973-07-26
GB1385721A (en) 1975-02-26
JPS55100845A (en) 1980-08-01
IT948256B (en) 1973-05-30
GB1385722A (en) 1975-02-26
DE2202311A1 (en) 1972-08-03
ZA72404B (en) 1972-12-27
BR7200302D0 (en) 1973-05-03
FR2122568A1 (en) 1972-09-01
CA943767A (en) 1974-03-19
ES399092A1 (en) 1975-06-16
AU464058B2 (en) 1975-08-14
CH552421A (en) 1974-08-15
DE2202311C2 (en) 1982-07-29
FR2122568B1 (en) 1976-10-29

Similar Documents

Publication Publication Date Title
US3716947A (en) Abrasive blast cleaning system
KR101875970B1 (en) Rotary tumbler and metal reclaimer
US2707314A (en) Method of reclaiming granular material
US3934374A (en) Sand reclamation system
JP3991179B2 (en) Foundry sand recycling equipment
US3694964A (en) Abrasive blast cleaning system
US3782643A (en) Apparatus for conditioning a granular material
CN110586855A (en) Method for recycling waste sand from sand mold casting
US6691765B2 (en) Products for the manufacture of molds and cores used in metal casting and a method for their manufacture and recycle from crushed rock
US3848815A (en) Granulating apparatus
US3829029A (en) Abrasive blast cleaning system
US3881664A (en) Wear plate in an apparatus for conditioning a granular material
US3312403A (en) Machine and process for reclaiming foundry sand
US3542299A (en) Foundry sand recovery methods
US3081954A (en) Method and apparatus for recovering reusable metallics from steel making slag and refuse
WO2011064930A1 (en) Ore grinding device and method for producing recycled aggregate
US3690066A (en) Abrasive blast cleaning system
US3958764A (en) Granulating apparatus
JP3314315B2 (en) Casting sand refining classifier
US2922585A (en) Treating used submerged arc welding flux
US3764078A (en) Apparatus for regenerating foundry sand
US5217170A (en) Method for both cooling and pneumatically scrubbing a calcined, particulate material
CN210334226U (en) Molding sand regeneration tower for planing and milling castings
CN109834043A (en) A kind of antiquated sand recycling assembly line
US3770218A (en) Apparatus for granulating molded sand

Legal Events

Date Code Title Description
AS Assignment

Owner name: KENNECOTT CORPORATION

Free format text: MERGER;ASSIGNORS:BEAR CREEK MINING COMPANY;BEAR TOOTH MINING COMPANY;CARBORUNDUM COMPANY THE;AND OTHERS;REEL/FRAME:003961/0672

Effective date: 19801230

AS Assignment

Owner name: NATIONAL WESTMINSTER BANK USA, 592 FIFTH AVENUE, N

Free format text: SECURITY INTEREST;ASSIGNOR:PANGBORN CORPORATION, A CORP. OF DE.;REEL/FRAME:004576/0188

Effective date: 19860724

AS Assignment

Owner name: PANGBORN CORPORATION, PANGBORN BLVD., HAGERSTOWN,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KENNECOTT CORPORATION;REEL/FRAME:004614/0421

Effective date: 19860725

AS Assignment

Owner name: MERRILL LYNCH INTERFUNDING INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:PANGBORN CORPORATION;REEL/FRAME:005237/0297

Effective date: 19891211