US3706303A - Compact heat exchanger with high intensity burner - Google Patents

Compact heat exchanger with high intensity burner Download PDF

Info

Publication number
US3706303A
US3706303A US12000A US3706303DA US3706303A US 3706303 A US3706303 A US 3706303A US 12000 A US12000 A US 12000A US 3706303D A US3706303D A US 3706303DA US 3706303 A US3706303 A US 3706303A
Authority
US
United States
Prior art keywords
temperature
heat exchanger
gases
burner
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12000A
Inventor
William H Hapgood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Application granted granted Critical
Publication of US3706303A publication Critical patent/US3706303A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/06Baffles or deflectors for air or combustion products; Flame shields in fire-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means

Definitions

  • a high intensity burner for burning a carbonaceous fuel in an oxygen containing atmosphere has one or more ports through which the fuel emerges and adjacent which complete combustion of the fuel occurs within a limited combustion region at a temperature above the dissociation temperature of CO
  • a heat exchanger, which is maintained at a temperature [52] 22/356 431/329 below the recombination temperature of CO and 0 is located outside the limits of said combustion region [51] Int. Cl.
  • the defects of the prior art have been eliminated, without sacrificing the compactness of the'structure, by interposing at a critical location between the burner and the heat exchanger, a screen made of a refractory material, such as a refractory metal.
  • the location is selected beyond the point at which complete combustion of the fuel first occurs and sufficiently ahead of the surface of the heat exchanger to-permit complete recombination of any dissociated CO to occur before the hot gases reach such surface.
  • the burner is operated at such high intensity that at the point at which complete combustion is first achieved, the temperature of the burned gases exceeds the dissociation temperature of CO As the hot gases proceed beyond that point they contact the screen which is heated by a combination of conduction from the impacting gases and by radiation from the hot gases in the combustion zone.
  • the temperature of the screen is such that it radiates substantial quantities of energy which is absorbed by surrounding structures, thus dropping the temperature of the screen to below such dissociation but still well within the temperature range in which recombination of CO and 0 occurs.
  • the burned gases are reduced in temperature by the screen so that they likewise drop into the recombination temperature range and do not rise above the CO, dissociation temperature during the passage of such gases to the heat exchanger.
  • FIG. 1 is a vertical sectional view of a heat exchanger structure incorporating this invention.
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1.
  • the burner l as shown in the drawings is a highly efficient, high power burner which may be of the type as described and claimed in the copending application of William H. Hapgood and Donald G. Protopapas, Ser. No. 2,584 filed Jan. 13, 1970, now abandoned.
  • Such burner consists of a cylindrical shell 2, provided with a large number of perforations 3 which serve as ports through which gas to be burned issues.
  • That gas which may be a mixture of air and any carbonaceous combustible material such as natural gas, gasoline, methane, propane or the like, is supplied to the burner through an inlet conduit 4.
  • the air-gas mixture preferably with up to 30 percent excess of air over the stociometric level, is pumped into the conduit 4.
  • Burners of this type are capable of delivering large amounts of heat energy, for example, at a rate in excess of 20,000 BTU per hour for each square inch of burner surface.
  • the velocity of the gas-air mixture as it emerges from the parts 3 may be in excess of I600 cm. per sec.
  • the outer limit of the flame structure of the burner 1 will typically be one quarter inch to about one half inch away from the surface of the burner.
  • the outer limit of the flame structure is that at which combustion of the fuel is first completed. What that distance is, will depend upon the design of the burner and will be a definite characteristic of the burner. The volume between the burner and such characteristic distance will be designated as the characteristic combustion region of the burner in the present specifications and claims.
  • the heat generated by the burning of the fuel supplied to burner 1 is transferred to any convenient type of heat exchange structure such as that designated generally at 5.
  • This consists of a plurality of tubes 6 arranged in a concentric cylindrical array around the burner 1. These tubes 6 connect at their upper ends with a header structure 7 and at their lower end with a header structure 8 provided with inlet and outlet pipes 9 and 10, whereby water to be heated may be passed up and down in serial fashion through the tubes 6.
  • the tubes are embedded in a matrix 1 l consisting of small pellets of steel soldered to each other and to the tubes 6 and filling the space between the tubes.
  • a heat exchange structure of this kind is described in detail and is claimed in my copending application Ser. No. 10,334, filed Feb. ll, I970.
  • the rate at which water is supplied through the heat exchange structure is such that the maximum temperature reached by any part of the structure will be well below the temperature range within which CO will spontaneously combine with O to form CO
  • Such a temperature may be, for example, of the order of several hundred degrees Farenheit and below about 1000F. While a particular type of heat exchanger has been described, it will be understood that any of the well-known types of heat exchangers whose normal temperature of operation is below the recombination temperature range of CO and may be used.
  • the temperature of the gas within the characteristic combustion region of the burner will reach a value of about 2800F or greater which is above the temperature at which CO, dissociates into C0 and 0,. Therefore, as the hot gases pass out of the characteristic combustion region, they will include a substantial quantity of CO even though during the combustion process all of the carbon in the gas will have been converted into CD, which is what occurs in a high efficiency, high intensity burner of the type described above.
  • the rate at which loss occured was so slow that, at the normal velocities of the gas in passing from the characteristic combustion region to the heat exchanger, the temperature of the hot gas remained above the recombination temperature of CO and 0 which is about 2500F.
  • the heat exchanger extracted energy from the hot gases so rapidly that the temperature of these gases dropped through the recombination range so rapidly that there was insufficient time for any substantial recombination to occur. This could be considered a quenching action in which any recombination tendency was quenchedby the comparatively low temperature heat exchanger.
  • the foregoing quenching action is eliminated by mounting a perforated or grid-like screen 12 in the space between the burner and the heat exchanger 5.
  • the screen 12 is made of coarse mesh of a retracting metal alloy such as that know as Kanthal" which is chrome-iron-aluminum-molybdnum alloy containing about 65 percent iron, 30 percent chromium, 5 percent aluminum and a trace of molybdenum.
  • Kanthal chrome-iron-aluminum-molybdnum alloy containing about 65 percent iron, 30 percent chromium, 5 percent aluminum and a trace of molybdenum.
  • any refractory material formed into a perforate screen around the burner 1 might be used.
  • ceramic rods could be used as the material of the screen 12.
  • the screen 12 is located just beyond the characteristic combustion region of the burner 2. Where the depth of that region is about one half inch, as in the example given above, the screen 12 may be located about seven eighths inch from the surface of the member 2, while the inner surface of the heat exchanger 5 might be about another seven eighths inch beyond the screen.
  • a convenient location for the screen 12 is about half way between the outer surface of the shell 2 and the inner surface of the heat exchanger 5, provided such location is outside of the characteristic com- 6 to the plate 13 and another block 16 of similar material supported on the lower plate 14.
  • a convenient material for the blocks 15 and 16 is asbestos, which also functions as a sound absorbing material to absorb any undesired noises generated by the passage and burning of the gases through the structure.
  • the block 15 may be supported in place by a plurality of clips 17 welded to the plate 15.
  • the screen ,12 is hung from the block 15 by means of a plurality of hooks 18 extending through the block 15. In this way very little, if any, heat is conducted from the screen 12 by the supporting structure, since it is desirable for the screen 12 to be maintained at a substantially. uniform temperature throughout.
  • the lower end of the screen 12 is stabilized by wires 19 projecting from the bottom of screen 12 and lightly piercing the upper surface of the block 16. It may not be necessary to secure the block 16 to the plate 14 but, if desired, it can be secured in a manner similar to that used for block 15.
  • the screen 12 receives some heat by radiation from the hot'gases-in the characteristic combustion region, but it is heated principally by the hot gases which emerge from that region and pass through the perforations in the screen. As already indicated substantially no heat is lost from the screen 12 by conduction to any adjacent members and so it must lose heat by radiation. Therefore, the temperature of screen 12 rises to a temperature of about. 2500F which is substantially uniform throughout the screen. This is the temperature at which the amount of heat supplied by hot gases equals the heat lost from screen 12 by radiation. Thus, it will be seen that the screen 12 uniformly cools the hot gases by about 300F as they pass through the screen. This is sufficient to drop the temperature of these gases to about 2500F which is within the recombination temperature range for CO and 0,.
  • a burner adapted to burn a carbonaceous fuel, said burner having a characteristic combustion region adjacent said burner, and a heat exchanger adjacent said burner, said heat exchanger being adapted to operate at a temperature below the recombination temperature'of carbon monoxide and oxygen, wherein the improvement comprises: means intermediate said characteristic combustion region and said heat exchanger for extracting heat energy from the combustion products of said'fuel to reduce the temperature of said products to the recombination temperature of carbon monoxide and oxygen, whereby, during operation of said combination, substantially all carbon monoxide and oxygen in said products recombine to form carbon dioxide before, reaching said heat 3.
  • said burner, said refractory member and said heat exchanger are cylindrical in form and concentrically arranged with respect to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A high intensity burner for burning a carbonaceous fuel in an oxygen containing atmosphere has one or more ports through which the fuel emerges and adjacent which complete combustion of the fuel occurs within a limited combustion region at a temperature above the dissociation temperature of CO2. A heat exchanger, which is maintained at a temperature below the recombination temperature of CO and O2, is located outside the limits of said combustion region but sufficiently close to the burner ports so that, at the normal operating velocity of the burned gases these gases would reach the heat exchanger before the temperature of the gases had dropped below the dissociation temperature and into the recombination temperature range, except for the fact that a screen is located between the limits of the combustion region and the heat exchanger, and is heated by the gases, thereby extracting heat from the gases, to a temperature at which it radiates energy, thus reducing the temperature of such gases into the recombination temperature range before they reach the heat exchanger.

Description

United States Patent Hapgood COMPACT HEAT EXCHANGER WITH HIGH INTENSITY BURNER Appl. No.: 12 ,000
US. Cl. ..126/1 16 R, 126/92 R, l26/109,
Dec. 19, 1972 I 57 ABSTRACT A high intensity burner for burning a carbonaceous fuel in an oxygen containing atmosphere has one or more ports through which the fuel emerges and adjacent which complete combustion of the fuel occurs within a limited combustion region at a temperature above the dissociation temperature of CO A heat exchanger, which is maintained at a temperature [52] 22/356 431/329 below the recombination temperature of CO and 0 is located outside the limits of said combustion region [51] Int. Cl. 2c92 B but sufficiently close to the burner ports so that, at the [58] held of H 9 normal operating velocity of the burned gases these 126ml 122/356 431/10 3281329 gases would reach the heat exchanger before the temperature of the gases had dropped below the dissocial References Cited tion temperature and into the recombination temperature range, except for the fact that a screen is located UNITED STATES PATENTS between the limits of the combustion region and the 2,789,521 4/1957 Wasp l2/l09 X heat exchanger, and is heated by the gases, thereby 3,246,634 4/1966 Stevens 1...!22/356X extracting heat from the gases, to a temperature at 3,421,824 1/1969 Herbs! which it radiates energy, thus reducing the tempera- 3,3l5,646 4/l967 Witten, .ll' ..l22/367 X ture of uch gases into the recombination temperature range before they reach the heat exchanger.
6 Claims, 2 Drawing Figures 6 l8 I3 l5 l8 6 l 1 I 2% mi 1 i V I 5 j 1I7 i7 i I M 5 il v 3 Illlllllll "HI-M. H.
COMPACT HEAT EXCHANGER WITH HIGH INTENSITY BURNER BACKGROUND OF THE INVENTION 1. Field of the Invention Compact heat exchangers with high intensity burners and with low CO output.
2. Description of the Prior Art A demand has arisen for very compact heat exchanger devices which operate in conjunction with high intensity burners so as to provide the capability of handling large amounts of heat energy within limited spaces. While such high intensity burners can be made to be very efficient, whereby all of the carbon content of the fuel normally supplied to such burners is converted into CO nevertheless, it has been found that if a relatively low temperature heat exchanger is placed too close to the burner the combustion products of the device will contain an undesirably high CO content. If it were attempted to avoid this adverse result by removing the heat exchanger to a greater distance from the burner, compactness of the device would be sacrificed.
SUMMARY OF THE INVENTION In the presentinvention the defects of the prior art have been eliminated, without sacrificing the compactness of the'structure, by interposing at a critical location between the burner and the heat exchanger, a screen made of a refractory material, such as a refractory metal. The location is selected beyond the point at which complete combustion of the fuel first occurs and sufficiently ahead of the surface of the heat exchanger to-permit complete recombination of any dissociated CO to occur before the hot gases reach such surface. The burner is operated at such high intensity that at the point at which complete combustion is first achieved, the temperature of the burned gases exceeds the dissociation temperature of CO As the hot gases proceed beyond that point they contact the screen which is heated by a combination of conduction from the impacting gases and by radiation from the hot gases in the combustion zone. The temperature of the screen is such that it radiates substantial quantities of energy which is absorbed by surrounding structures, thus dropping the temperature of the screen to below such dissociation but still well within the temperature range in which recombination of CO and 0 occurs. The burned gases are reduced in temperature by the screen so that they likewise drop into the recombination temperature range and do not rise above the CO, dissociation temperature during the passage of such gases to the heat exchanger. Once the gases drop into the recombination temperature range, recombination of CO and 0 occurs with extreme rapidity so that the screen may be placed quite close to the heat exchanger without sacrificing the complete recombination of these elements. The heat exchanger itself is maintained at a temperature below said recombination temperature range. Therefore, if the hot gases were permitted to reach the heat exchanger while still containing a substantial amount of C0, the gases would be quenched and the desired recombination would not occur.
BRIEF DESCRIPTION OF THE DRAWINGS In the annexed drawings:
FIG. 1 is a vertical sectional view of a heat exchanger structure incorporating this invention; and
FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1.
DETAILED DESCRIPTION OF THE INVENTION The burner l as shown in the drawings is a highly efficient, high power burner which may be of the type as described and claimed in the copending application of William H. Hapgood and Donald G. Protopapas, Ser. No. 2,584 filed Jan. 13, 1970, now abandoned. Such burner consists of a cylindrical shell 2, provided with a large number of perforations 3 which serve as ports through which gas to be burned issues. That gas, which may be a mixture of air and any carbonaceous combustible material such as natural gas, gasoline, methane, propane or the like, is supplied to the burner through an inlet conduit 4. By any suitable system, such as that described in said copending l-Iapgood- Protopapas application, the air-gas mixture, preferably with up to 30 percent excess of air over the stociometric level, is pumped into the conduit 4. Burners of this type are capable of delivering large amounts of heat energy, for example, at a rate in excess of 20,000 BTU per hour for each square inch of burner surface. At upper levels of operation, the velocity of the gas-air mixture as it emerges from the parts 3 may be in excess of I600 cm. per sec. Throughout the range of operation of a burner of this type the outer limit of the flame structure of the burner 1 will typically be one quarter inch to about one half inch away from the surface of the burner. Whatever type of burner is used, the outer limit of the flame structure is that at which combustion of the fuel is first completed. What that distance is, will depend upon the design of the burner and will be a definite characteristic of the burner. The volume between the burner and such characteristic distance will be designated as the characteristic combustion region of the burner in the present specifications and claims.
The heat generated by the burning of the fuel supplied to burner 1 is transferred to any convenient type of heat exchange structure such as that designated generally at 5. This consists of a plurality of tubes 6 arranged in a concentric cylindrical array around the burner 1. These tubes 6 connect at their upper ends with a header structure 7 and at their lower end with a header structure 8 provided with inlet and outlet pipes 9 and 10, whereby water to be heated may be passed up and down in serial fashion through the tubes 6. In order to increase the effectiveness and efficiency of the transfer of heat from the hot gases into the water in the tubes 6, the tubes are embedded in a matrix 1 l consisting of small pellets of steel soldered to each other and to the tubes 6 and filling the space between the tubes. The particular details of the matrix 11 and of the header structures 7 and 8 form no part of this invention and will not be described in greater detail herein. A heat exchange structure of this kind is described in detail and is claimed in my copending application Ser. No. 10,334, filed Feb. ll, I970. The rate at which water is supplied through the heat exchange structure is such that the maximum temperature reached by any part of the structure will be well below the temperature range within which CO will spontaneously combine with O to form CO Such a temperature may be, for example, of the order of several hundred degrees Farenheit and below about 1000F. While a particular type of heat exchanger has been described, it will be understood that any of the well-known types of heat exchangers whose normal temperature of operation is below the recombination temperature range of CO and may be used.
With a high intensity burner, such as that described above, the temperature of the gas within the characteristic combustion region of the burner will reach a value of about 2800F or greater which is above the temperature at which CO, dissociates into C0 and 0,. Therefore, as the hot gases pass out of the characteristic combustion region, they will include a substantial quantity of CO even though during the combustion process all of the carbon in the gas will have been converted into CD, which is what occurs in a high efficiency, high intensity burner of the type described above. Heretofore, the only way in which the hot gases could lose energy before coming into contact with the heat exchanger, was by radiation. However, the rate at which loss occured was so slow that, at the normal velocities of the gas in passing from the characteristic combustion region to the heat exchanger, the temperature of the hot gas remained above the recombination temperature of CO and 0 which is about 2500F. At that point, the heat exchanger extracted energy from the hot gases so rapidly that the temperature of these gases dropped through the recombination range so rapidly that there was insufficient time for any substantial recombination to occur. This could be considered a quenching action in which any recombination tendency was quenchedby the comparatively low temperature heat exchanger.
In accordance with this invention the foregoing quenching action is eliminated by mounting a perforated or grid-like screen 12 in the space between the burner and the heat exchanger 5. The screen 12 is made of coarse mesh of a retracting metal alloy such as that know as Kanthal" which is chrome-iron-aluminum-molybdnum alloy containing about 65 percent iron, 30 percent chromium, 5 percent aluminum and a trace of molybdenum. Of course, any refractory material formed into a perforate screen around the burner 1 might be used. For example, ceramic rods could be used as the material of the screen 12.
The screen 12 is located just beyond the characteristic combustion region of the burner 2. Where the depth of that region is about one half inch, as in the example given above, the screen 12 may be located about seven eighths inch from the surface of the member 2, while the inner surface of the heat exchanger 5 might be about another seven eighths inch beyond the screen. Thus, a convenient location for the screen 12 is about half way between the outer surface of the shell 2 and the inner surface of the heat exchanger 5, provided such location is outside of the characteristic com- 6 to the plate 13 and another block 16 of similar material supported on the lower plate 14. A convenient material for the blocks 15 and 16 is asbestos, which also functions as a sound absorbing material to absorb any undesired noises generated by the passage and burning of the gases through the structure. The block 15 may be supported in place by a plurality of clips 17 welded to the plate 15. The screen ,12 is hung from the block 15 by means of a plurality of hooks 18 extending through the block 15. In this way very little, if any, heat is conducted from the screen 12 by the supporting structure, since it is desirable for the screen 12 to be maintained at a substantially. uniform temperature throughout. The lower end of the screen 12 is stabilized by wires 19 projecting from the bottom of screen 12 and lightly piercing the upper surface of the block 16. It may not be necessary to secure the block 16 to the plate 14 but, if desired, it can be secured in a manner similar to that used for block 15.
The screen 12 receives some heat by radiation from the hot'gases-in the characteristic combustion region, but it is heated principally by the hot gases which emerge from that region and pass through the perforations in the screen. As already indicated substantially no heat is lost from the screen 12 by conduction to any adjacent members and so it must lose heat by radiation. Therefore, the temperature of screen 12 rises to a temperature of about. 2500F which is substantially uniform throughout the screen. This is the temperature at which the amount of heat supplied by hot gases equals the heat lost from screen 12 by radiation. Thus, it will be seen that the screen 12 uniformly cools the hot gases by about 300F as they pass through the screen. This is sufficient to drop the temperature of these gases to about 2500F which is within the recombination temperature range for CO and 0,. As a result, any CO in the hot gases rapidly recombines with the O, which was released by the previous dissociation of CO, and within a very short distance beyond the screen 12 all the CO is thus been recombined, so that the hot gases which reach the heat exchanger 5 are virtually free of C0.
By virtue of the present invention, very compact, high power density, highly efficient heat exchanger systems" have been made practicable with no loss in compactness or efficiency and which are virtually free of any CO in their exhaust gases.
What is claimed is:
1. In combination:
a burner adapted to burn a carbonaceous fuel, said burner having a characteristic combustion region adjacent said burner, and a heat exchanger adjacent said burner, said heat exchanger being adapted to operate at a temperature below the recombination temperature'of carbon monoxide and oxygen, wherein the improvement comprises: means intermediate said characteristic combustion region and said heat exchanger for extracting heat energy from the combustion products of said'fuel to reduce the temperature of said products to the recombination temperature of carbon monoxide and oxygen, whereby, during operation of said combination, substantially all carbon monoxide and oxygen in said products recombine to form carbon dioxide before, reaching said heat 3. The combination of claim 1 in which said burner, said refractory member and said heat exchanger are cylindrical in form and concentrically arranged with respect to each other.
4. The combination of claim 1 in which said refractory member is comprised of a refractory metal alloy.
5. The combination of claim 2 in which said refractory member is supported by one or more heat insulating, sound absorbing members supported by the adjacent heat exchange structure.
6. The combination of claim 5 in which said heat insulating members are comprised of asbestos.

Claims (5)

  1. 2. The combination of claim 1 in which the heat exchanger structure presents heat conductive members adjacent said refractory member and said refractory member is substantially insulated against any high heat conductivity paths between it and all adjacent heat conductive members, whereby said refractory member during operation is heated by said products to a temperature at which it loses heat substantially solely by radiation.
  2. 3. The combination of claim 1 in which said burner, said refractory member and said heat exchanger are cylindrical in form and concentrically arranged with respect to each other.
  3. 4. The combination of claim 1 in which said refractory member is comprised of a refractory metal alloy.
  4. 5. The combination of claim 2 in which said refractory member is supported by one or more heat insulating, sound absorbing members supported by the adjacent heat exchange structure.
  5. 6. The combination of claim 5 in which said heat insulating members are comprised of asbestos.
US12000A 1970-02-17 1970-02-17 Compact heat exchanger with high intensity burner Expired - Lifetime US3706303A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1200070A 1970-02-17 1970-02-17

Publications (1)

Publication Number Publication Date
US3706303A true US3706303A (en) 1972-12-19

Family

ID=21752908

Family Applications (1)

Application Number Title Priority Date Filing Date
US12000A Expired - Lifetime US3706303A (en) 1970-02-17 1970-02-17 Compact heat exchanger with high intensity burner

Country Status (8)

Country Link
US (1) US3706303A (en)
BE (1) BE762773A (en)
CH (1) CH540464A (en)
DE (1) DE2105791A1 (en)
FR (1) FR2078326A5 (en)
GB (1) GB1314098A (en)
IE (1) IE34774B1 (en)
NL (1) NL7017230A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789805A (en) * 1972-05-17 1974-02-05 Massachusetts Inst Technology Burner and heat exchanger
US3880235A (en) * 1969-12-30 1975-04-29 Sun Oil Co Delaware Method and apparatus for igniting well heaters
US4135487A (en) * 1975-08-29 1979-01-23 Amana Refrigeration, Inc. Heat exchange control system
DE2925793A1 (en) * 1978-06-26 1980-01-10 Boston Gas Prod BOILER SYSTEM
US4776320A (en) * 1985-07-31 1988-10-11 Carrier Corporation Device for inhibiting NOx formation by a combustion system
US4904179A (en) * 1985-08-20 1990-02-27 Carrier Corporation Low NOx primary zone radiant screen device
US20100095945A1 (en) * 2007-03-09 2010-04-22 Steve Manning Dual fuel vent free gas heater
US8057219B1 (en) 2007-03-09 2011-11-15 Coprecitec, S.L. Dual fuel vent free gas heater
US8118590B1 (en) 2007-03-09 2012-02-21 Coprecitec, S.L. Dual fuel vent free gas heater
US8403661B2 (en) 2007-03-09 2013-03-26 Coprecitec, S.L. Dual fuel heater
US8899971B2 (en) 2010-08-20 2014-12-02 Coprecitec, S.L. Dual fuel gas heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2505993A1 (en) * 1981-05-14 1982-11-19 Sdecc COOLING DEVICE FOR THE COVER OF A CYLINDRICAL COMBUSTION CHAMBER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789521A (en) * 1955-10-31 1957-04-23 Edward J Wasp Fluid heaters
US3246634A (en) * 1964-08-17 1966-04-19 Norbert J Stevens Direct fired heater for heating liquefied gases
US3315646A (en) * 1965-01-22 1967-04-25 American Radiator & Standard Boiler
US3421824A (en) * 1967-06-01 1969-01-14 Exxon Research Engineering Co Method of burning industrial fuels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789521A (en) * 1955-10-31 1957-04-23 Edward J Wasp Fluid heaters
US3246634A (en) * 1964-08-17 1966-04-19 Norbert J Stevens Direct fired heater for heating liquefied gases
US3315646A (en) * 1965-01-22 1967-04-25 American Radiator & Standard Boiler
US3421824A (en) * 1967-06-01 1969-01-14 Exxon Research Engineering Co Method of burning industrial fuels

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880235A (en) * 1969-12-30 1975-04-29 Sun Oil Co Delaware Method and apparatus for igniting well heaters
US3789805A (en) * 1972-05-17 1974-02-05 Massachusetts Inst Technology Burner and heat exchanger
US4135487A (en) * 1975-08-29 1979-01-23 Amana Refrigeration, Inc. Heat exchange control system
DE2925793A1 (en) * 1978-06-26 1980-01-10 Boston Gas Prod BOILER SYSTEM
US4776320A (en) * 1985-07-31 1988-10-11 Carrier Corporation Device for inhibiting NOx formation by a combustion system
US4904179A (en) * 1985-08-20 1990-02-27 Carrier Corporation Low NOx primary zone radiant screen device
US20100095945A1 (en) * 2007-03-09 2010-04-22 Steve Manning Dual fuel vent free gas heater
US7766006B1 (en) 2007-03-09 2010-08-03 Coprecitec, S.L. Dual fuel vent free gas heater
US8057219B1 (en) 2007-03-09 2011-11-15 Coprecitec, S.L. Dual fuel vent free gas heater
US8061347B2 (en) 2007-03-09 2011-11-22 Coprecitec, S.L. Dual fuel vent free gas heater
US8118590B1 (en) 2007-03-09 2012-02-21 Coprecitec, S.L. Dual fuel vent free gas heater
US8403661B2 (en) 2007-03-09 2013-03-26 Coprecitec, S.L. Dual fuel heater
US8777609B2 (en) 2007-03-09 2014-07-15 Coprecitec, S.L. Dual fuel heater
USRE46308E1 (en) 2007-03-09 2017-02-14 Coprecitec, S.L. Dual fuel heater
US8899971B2 (en) 2010-08-20 2014-12-02 Coprecitec, S.L. Dual fuel gas heater

Also Published As

Publication number Publication date
NL7017230A (en) 1971-08-19
GB1314098A (en) 1973-04-18
IE34774L (en) 1971-08-17
FR2078326A5 (en) 1971-11-05
BE762773A (en) 1971-07-16
IE34774B1 (en) 1975-08-06
CH540464A (en) 1973-08-15
DE2105791A1 (en) 1971-09-02

Similar Documents

Publication Publication Date Title
US3706303A (en) Compact heat exchanger with high intensity burner
US3816595A (en) Method and apparatus for removing nitrogen oxides from a gas stream
KR100510560B1 (en) Microcombustion heater having heating surface which emits radiant heat
EP2348934B1 (en) Parallel tube burner with improved cooling and reduced size
US3561902A (en) Radiant burner
WO2016107383A1 (en) Porous medium burner with stacked bed structure
US4904179A (en) Low NOx primary zone radiant screen device
GB1421814A (en) Radiant burners
GB2222671A (en) Control of fuel supply to gas fire
US3312269A (en) Infra-red radiant heater and grid therefor
US3563211A (en) Gas-fired boilers or the like
US2102152A (en) Premixing device for fluid fuel burners
US3501098A (en) Gas burner for rotary dryer drum
US2087031A (en) Ingition apparatus for closed-system fluid-combustible burners
WO1982001931A1 (en) Central heating boiler with a second burner
US4257391A (en) Stepped concentric fire grate
US3312268A (en) Burner elements
ES302187A1 (en) Radiant heating apparatus
US3266480A (en) Warm air furnace
US4232634A (en) High efficiency hot water boiler
CN112179138A (en) High-efficiency low NOXCombustion heating furnace discharging porous medium
FI73813C (en) PANO FOER FOERBRAENNING AV FAST BRAENSLE.
US3357471A (en) High temperature generating high intensity burners
RU2226647C2 (en) Radiation gas burner
US2806783A (en) Method and apparatus for reducing metal oxides