US3698277A - Analog system of music notation - Google Patents

Analog system of music notation Download PDF

Info

Publication number
US3698277A
US3698277A US640700A US3698277DA US3698277A US 3698277 A US3698277 A US 3698277A US 640700 A US640700 A US 640700A US 3698277D A US3698277D A US 3698277DA US 3698277 A US3698277 A US 3698277A
Authority
US
United States
Prior art keywords
tone
notation
musical
analog
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US640700A
Inventor
Donald P Barra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3698277A publication Critical patent/US3698277A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B15/00Teaching music
    • G09B15/02Boards or like means for providing an indication of notes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10GREPRESENTATION OF MUSIC; RECORDING MUSIC IN NOTATION FORM; ACCESSORIES FOR MUSIC OR MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR, e.g. SUPPORTS
    • G10G1/00Means for the representation of music

Definitions

  • This invention relates generally to musical notation and more particularly to an analog or graphical system of notation in which a sound pattern is essentially recorded by analog visual values which represent the various characteristics of organized sound.
  • Music is a pattern of sounds of varying frequency organized in time.
  • various systems of notation have been devised in which the sounds constituting the pattern are represented in code form or by symbols. These symbols serve to designate the four principal characteristics of musical tones: namely; duration, pitch, intensity and quality.
  • the existing symbolic system of notation is essentially a code or language wherein for example a tone of one duration is identified by a given symbol and a tone of longer duration by a distinctly different symbol. 7
  • Cybernetics is a science based on a comparison of the human nervous system and brain with automatic electromechanical systems or computers.
  • Computers fall into two broad operating classes, the digital and the analog.
  • the digital computer the information fed into the system is converted into a code formed by symbols.
  • the computer is being used to analyze a changing phenomenon such as a varying temperature, different levels of temperature will be converted into discrete binary values formed by plus and minus signs.
  • the varying levels of temperature will be converted into a value which is similar or proportional to these levels. For example, if a temperature goes from one level to a level twice as high, in the digital system one binary code number willrepresent the first level and another binary code number the I second, whereas in an analog system, the magnitude of a voltage representing the first level will increase in degree to double its initial value.
  • the human sensory system is more sensitive physiologically to analog values than to a code or symbols, for to respond to symbols an intellectual decoding process is entailed, whereas the response to analog values is unconscious and direct.
  • a symbolic language is a cultural acquisition, whereas an analog language is universal and independent of cultural conditioning.
  • a significant advantage of the invention is that it not only provides composers and musicians with a more exact form of notation and thereby expresses the composers quantitative and qualitative intentions in more definite terms, but it also affords non-musicians as well as musicians with a vivid sound picture or structural diagram of the composition rather than with abstract symbols whose analysis entails a high order of skill.
  • the traditional grand staff is retained, but the treble and bass staffs are divided by only two spaces with middle C directly between them.
  • Tones are represented by solid bands whose width is such that each band occupies the width of one staff space.
  • the tone band is placed in the staff at a level depending on its pitch and it is given a length proportional to its duration.
  • the loudness or aural intensity of a tone is reflected by the visual intensity or color temperature of the band.
  • tone colors To aid in melodic identification, themes are indicated in different tone colors, whereas the formal element of a composition, such as phrases and double periods, are delineated by vertical lines of different length parallel to the bar lines. Harmony is represented by background colors, the various harmonic functions being indicated by differently colored backgrounds. Tonic lines are drawn over the staff lines to identify tonic pitch, minor keys being shown by lines having a stipled texture, modulations being also represented by the use of color.
  • the notation system makes of record a musical pattern in terms of visual analogs expressed in dimension, color and intensity, rather than by symbols, so that one reading a score while listening to a composition can at the same time follow the shape and character of the music.
  • the reader can watch each musical element separately as well as in interaction, and observe the elements in visual terms as the sounds complement or conflict with one another. He is thereby able to visualize the tonal relationships which constitute the essence of music.
  • FIG. 1 is a musical score using the traditional system i of symbolic notation
  • FIG. 2 shows the same score recorded by the analog system in accordance with the invention
  • FIG. 3 shows a traditional score wherein the symbolic notes represent the duration, pitch and meter of the tones
  • FIG. 4 shows the corresponding score using the invention
  • FIG. 5 shows a traditional score using symbols for thematic analysis, structural divisions and phrasing
  • FIG. 6 shows the corresponding score using the invention'
  • FIG. 7 shows the traditional score using symbols for dynamics
  • FIG. 8 shows the corresponding score using the invention
  • FIG. 9 shows a traditional score with symbols for harmony and tonality
  • FIG. 10 shows the corresponding score using the invention.
  • FIG. 11 is color chart or wheel explanatory of the color principles underlying the invention.
  • FIG. 1 there is shown a small section of a musical composition represented by the standard system of notation.
  • the duration of a tone is the time the sound lasts.
  • Traditional notation signifies the relative duration of tones by a system of symbols, usually employing the ratio 1:2.
  • symbol 10 is a half-note
  • symbol 11 a quarter-note
  • symbol 12 a sixteenth-note. Notes of shorter value are often joined together as shown at 13. Notes can be prolonged by adding a dot thereafter.
  • Symbols for silence, calledrests follow the same ratio system as notes. Thus we have a symbol for a quarter rest, as shown at 14, and an eighth rest as shown at 15.
  • Pitch is sometimes inaccurately referred to as the highness or lowness of a note, but actually it represents its frequency of vibration.
  • Music employs fundamental frequencies of about 16 to 4,186 vibrations per second.
  • the A sounded by an oboe for the preliminary tuning of an orchestra has a frequency of 440 vibrations per second.
  • the pitch difference of an octave results from sounding two tones whose frequencies are in a l to 2 ratio.
  • Pitch is conventionally indicated by the position of notes on a set of five lines called the staff, notes being placed either on the line or in the spaces therebetween. Definite pitches will be presented only by these notes when a clef or key is placed at the head of the staff; the most common being a bass clef, as shown by 17, and a treble clef as shown by 18.
  • a note can be raised a half tone by a symbol called a sharp (note 19) and lowered ness or a crescendo is indicated symbolically by symbol 22 and a decrease or descrescendo by symbol 23.
  • a third concept is based on harmony which is a pattern resulting from simultaneously produced tones.
  • Rhythm is concerned with the accent given a tone, and this may be produced by a change in intensity or a change in texture and tonality.
  • meter deals solely with patterns of duration or time. Metric groups known as measures are indicated by vertical bars. The upper figure in a time signature indicates the number of pulses in a measure, whereas the lower figure gives the relative time value of the unit of notation. Thus the time signature 3/4 indicates a triple meter.
  • the tempo of music is the rate of the musical pulse, and this is indicated by descriptive words, such as Adagio for slow and Allegro for fast.
  • a melody is an organized succession of single tones.
  • the pitch relationship existing between the tones of a melody are summarized by chains of successive tones called scales.
  • the labeling of a scale depends on the name of the tone on which it is based and its internal construction: i.e. the number and position of its half steps.
  • The. major and minor scales areknown as diatonic scales composed of a series of whole steps and salient half steps. But other divisions of the octave are possible, to produce for example a chromatic scale.
  • Tonality is the relationship between the tones of a melody as summarized by its scale and as determined by its basic note to which the melody returns. This focal term is called the tonic. Change in tonality is identified as modulation. Two or more melodies played'simultaneously give rise to polyphony.
  • FIG. 2 shows the traditional notation of FIGJl converted into corresponding analog notation according to the invention. It will be seen that while the grand staff, along with its clef and bar lines has been retained, the treble and bass staffs are separated only two spaces, with middle C placeddirectly between them. Traditional symbols for notes are absent and instead the notes are graphically represented in conjunction with a color which in the drawings are indicated by cross hatching. Thus hundreds of arbitrary symbols are avoided and any score can be reduced to one grand scale.
  • FIG. 2 which includes all musical characteristics, but to FIGS. 3 & 4 which are confined to the characteristics of interest, FIG. 3 showing the traditional notation and FIG. 4 the new technique.
  • each musical tone is represented by a solid tonal band having the width of a staff space. Duration is represented by the proportional length of the tonal band.
  • Duration is represented by the proportional length of the tonal band.
  • Fractions of a whole note are represented by lengths, directly proportioned thereto, not in incremental terms by symbols for half-notes, eight-notes, etc. In symbolic notation, it is not possible exactly to represent the desired duration, and when a note is to be held for a longer interval, a dot is used. But with an analog system, the precise fraction of a whole tone can be represented graphically whether or not it is in a 1:2 ratio. Rests are represented not by symbols but merely by the spaces between successive tone bands.
  • the pitch of the tones is represented by the staff positions, as in traditional notation, inasmuch as this is already an analog; hence the higher the pitch, the higher the staff position.
  • the staff, clefs and accidentals of traditional notation are used, but in place of a time signature, a number indicating the number of beats per measure is placed between the staves (note number 3 in FIG. 4). A square around this number indicates simple time, while a triangle is used to indicate compound time.
  • FIGS. 5 & 6 Dynamic notation in the traditional and new form is shown in FIGS. 5 & 6 respectively. It will be seen in FIG. 6 that in place of the usual symbols, the intensity of the tonal bands are varied. A crescendo is indicated by a darkening tonal band and a diminuendo by a fading tonal band. The climax occurs in measure 4 of FIG. 6 which is darkest.
  • FIGS. 7 8; 8 there is compared the traditional notation for thematic analysis, structural divisions and phrasings in addition to the elements of duration, pitch and meter.
  • the primary theme is identified by the characters p.t, the secondary theme by s.t. and the secondary theme derivation by s.t.der.
  • the primary theme' may use red for the tone bands, while blue is used for the secondary theme.
  • Phrases in blue-gray indicate similarity to the secondary theme which in this case is primarily rhythmic in measures 3 and 4 and rhythmic and melodic in measure 5.
  • Gray tone bands indicate no thematic relationship.
  • Phrasing is indicated by extending the upper and lower outlines of the tone bands. Phrases are indicated by dark vertical lines parallel to the bar lines. These lines are short when indicating short phrases and progressively longer for periods, sections, etc. Thus the structural divisions of a composition, motive, phrase, chain phrases periods, double periods and so on, are represented in accordance with the analog principle.
  • harmony is represented by a background wash and harmonic progression by a succession of colors in the background.
  • Tonic function is indicated by a red background, sub-dominant function by blue and dominant function by orange.
  • a minor chord is indicated by stipling the texture of the color background.
  • the intensity of the color in the background is made to vary in proportion to the degree of harmonic dissonance.
  • consonant chords are represented by color of lightintensity and progressively dissonant chords by a progressively darker background.
  • the flat keys are represented on the blue side of the wheel and the brighter sharp keys on the yellow side. As the keys merge into each other, becoming different spellings for the same sound, the colors merge into green. Thus tonal relationships can be seen at a glance by color analogy, closely related colors pointing to closely related keys. Major and minor colors are represented by the primary colors and tri-tone by the exact opposite colors.

Abstract

A system of musical notation in which the sound pattern constituting a musical composition is recorded essentially in visual forms which represent the duration, pitch, intensity and other significant characteristics of organized sound.

Description

United States Patent Barra [451 Oct 17, 1972 [54] ANALOG SYSTEM OF MUSIC 1,355,087 10/1920 Byrne ..283/47 NOTATION ['72 Inventor: Donald P. Barra, 115 East 9th f Street, New York, N 10003 Assistant Examiner-John F. Gonzales Attorney-Michael Ebert [22] Filed: May 23, 1967 [21] Appl. No.: 640,700
U.S. Cl. ..84/483, 84/484, 283/47 Int. Cl. ..Gl0b 15/00 Field of Search ...84/483, 470, 484, 485; 283/47 References Cited UNITED STATES PATENTS 8/1886 I Carpenter et al. .84/ 483 GeA/w Smrr [57] ABSTRACT A system of musical notation in which the sound pattern constituting a musical composition is recorded essentially in visual forms which represent the duration, pitch, intensity and other significant characteristics of organized sound.
1 Claim, 11 Drawing Figures ANA G Nor/q r/o/v PATENTEDommsn 4 3.698.277'
saw 3 OF 5 r3. S. WAD/WQYAL NOTAT/ON Fa Nor:
' ANALOG N07?) 770 F0? DYNAMICS INVENTQR. poly/4L0 x? 54/99 ANALOG SYSTEM OF MUSIC NOTATION This invention relates generally to musical notation and more particularly to an analog or graphical system of notation in which a sound pattern is essentially recorded by analog visual values which represent the various characteristics of organized sound.
Music is a pattern of sounds of varying frequency organized in time. In order to record and communicate musical compositions, various systems of notation have been devised in which the sounds constituting the pattern are represented in code form or by symbols. These symbols serve to designate the four principal characteristics of musical tones: namely; duration, pitch, intensity and quality. The existing symbolic system of notation is essentially a code or language wherein for example a tone of one duration is identified by a given symbol and a tone of longer duration by a distinctly different symbol. 7
Attempts have been made to improve the traditional system of notation, but these have in all instances also involved the use of symbols. Thus in US. Pat. Nos. 1,551,819, 1,483,380 and 1,539,308 conventional symbols have been replaced or simplified by other symbols to facilitate sight reading or for other purposes.
The language of musical symbols can be understood only by those who have carefully acquired the skill to do so. Paradoxically, this language is both complex and inexact, for a simple musical phrase might contain as many as fifty different symbols without however precisely communicating the composers intention. Tonality, modulation and harmony are difficult even for a highly skilled musician to analyze from an orchestra] score. A non-musician, lacking training in musical notation, however responsive he may be to musical sounds, is altogether incapable of reading a score in traditional symbolic notation or of comprehending the shape and character of the composition.
One reason for this difficulty is that a notation system based on symbols involves a translation process for which the reader must be thoroughly trained. The facility to read complex musical scores takes years to acquire. This difficulty can best be appreciated by cybernetic analysis.
Cybernetics is a science based on a comparison of the human nervous system and brain with automatic electromechanical systems or computers. Computers fall into two broad operating classes, the digital and the analog. in the digital computer, the information fed into the system is converted into a code formed by symbols. Thus if the computer is being used to analyze a changing phenomenon such as a varying temperature, different levels of temperature will be converted into discrete binary values formed by plus and minus signs.
in an analog computer, the varying levels of temperature will be converted into a value which is similar or proportional to these levels. For example, if a temperature goes from one level to a level twice as high, in the digital system one binary code number willrepresent the first level and another binary code number the I second, whereas in an analog system, the magnitude of a voltage representing the first level will increase in degree to double its initial value.
The human sensory system is more sensitive physiologically to analog values than to a code or symbols, for to respond to symbols an intellectual decoding process is entailed, whereas the response to analog values is unconscious and direct. Moreover, a symbolic language is a cultural acquisition, whereas an analog language is universal and independent of cultural conditioning.
For example, to express the concept that an object is big or small, different words or symbols for this purpose have been devised and are employed in various parts of the world. These words can give only a rough rather than a precise impression of quality or dimension. Even when the word big is further qualified as being very big or not so big, its meaning remains imprecise. But if the size of an object is conveyed by the spacing between a persons hands, that is by an analog, one can by varying this spacing give a much more exactimpression. This visual analog can be understood by all peoples, regardless of differences in language.
Thus dynamic changes in magnitude or degree may be expressed and more readily understood by a person in termsof changes in light intensity or in color rather than by words or symbols, for the analog meaning of the former is universally and directly sensed in terms of visual images whereas the meaning of symbols must be decoded, and even when understood they provide impressions which are indefinite. The existing system of musical notation, which is essentially symbolic in nature, suffers from this very drawback, and while useful for trained musicians, it constitutesa barrier to musical knowledge in the path of the non-musician.
Accordingly, it is the main object of this invention to provide a novel system of musical notation, which is based on analog representations for the characteristics of sound.
More specifically it is an object of the invention to provide an analog system in which the elements of a musical pattern such as form, harmony, tonality and modulation, are represented graphically, whereby the reader is readily able to read and analyze compositions.
A significant advantage of the invention is that it not only provides composers and musicians with a more exact form of notation and thereby expresses the composers quantitative and qualitative intentions in more definite terms, but it also affords non-musicians as well as musicians with a vivid sound picture or structural diagram of the composition rather than with abstract symbols whose analysis entails a high order of skill.
Briefly stated, in an analog system of musical notation in accordance with the invention, the traditional grand staff is retained, but the treble and bass staffs are divided by only two spaces with middle C directly between them. Tones are represented by solid bands whose width is such that each band occupies the width of one staff space. The tone band is placed in the staff at a level depending on its pitch and it is given a length proportional to its duration. The loudness or aural intensity of a tone is reflected by the visual intensity or color temperature of the band.
To aid in melodic identification, themes are indicated in different tone colors, whereas the formal element of a composition, such as phrases and double periods, are delineated by vertical lines of different length parallel to the bar lines. Harmony is represented by background colors, the various harmonic functions being indicated by differently colored backgrounds. Tonic lines are drawn over the staff lines to identify tonic pitch, minor keys being shown by lines having a stipled texture, modulations being also represented by the use of color.
Thus the notation system makes of record a musical pattern in terms of visual analogs expressed in dimension, color and intensity, rather than by symbols, so that one reading a score while listening to a composition can at the same time follow the shape and character of the music. The reader can watch each musical element separately as well as in interaction, and observe the elements in visual terms as the sounds complement or conflict with one another. He is thereby able to visualize the tonal relationships which constitute the essence of music.
In this way professional musicians as well as amateurs and those studying music appreciation can quickly learn to read and analyze compositions, including sophisticated modern orchestral works. Students can in a sense actively participate in a performance and recognize when the performers execution deviates from the composers intensions. The analog system of notation not only is of great value in writing music in more exact terms, but it opens up for students and nonmusicians new doors of understanding to the essential nature of musicial composition.
For a better understanding of the invention as well as other objects and further features thereof, reference is made to the following detailed description wherein:
FIG. 1 is a musical score using the traditional system i of symbolic notation;
FIG. 2 shows the same score recorded by the analog system in accordance with the invention;
FIG. 3 shows a traditional score wherein the symbolic notes represent the duration, pitch and meter of the tones;
FIG. 4 shows the corresponding score using the invention;
FIG. 5 shows a traditional score using symbols for thematic analysis, structural divisions and phrasing;
FIG. 6 shows the corresponding score using the invention',
FIG. 7 shows the traditional score using symbols for dynamics;
FIG. 8 shows the corresponding score using the invention,
FIG. 9 shows a traditional score with symbols for harmony and tonality;
FIG. 10 shows the corresponding score using the invention; and
FIG. 11 is color chart or wheel explanatory of the color principles underlying the invention.
Referring now to FIG. 1, there is shown a small section of a musical composition represented by the standard system of notation. In music, we react to four principal characteristics of tones, their duration, pitch, intensity and quality. While these will now beanalyzed individually, in practice they are strongly interdependent.
The duration of a tone is the time the sound lasts. Traditional notation signifies the relative duration of tones by a system of symbols, usually employing the ratio 1:2. Thus in FIG. 1, symbol 10 is a half-note, symbol 11 a quarter-note and symbol 12 a sixteenth-note. Notes of shorter value are often joined together as shown at 13. Notes can be prolonged by adding a dot thereafter. Symbols for silence, calledrests, follow the same ratio system as notes. Thus we have a symbol for a quarter rest, as shown at 14, and an eighth rest as shown at 15.
The legato style of performance in which tones are so closely connected that no audible interruption occurs is indicated by a curved line or slur, as shown at 16.
Pitch is sometimes inaccurately referred to as the highness or lowness of a note, but actually it represents its frequency of vibration. Music employs fundamental frequencies of about 16 to 4,186 vibrations per second. The A sounded by an oboe for the preliminary tuning of an orchestra has a frequency of 440 vibrations per second. The pitch difference of an octave results from sounding two tones whose frequencies are in a l to 2 ratio.
Pitch is conventionally indicated by the position of notes on a set of five lines called the staff, notes being placed either on the line or in the spaces therebetween. Definite pitches will be presented only by these notes when a clef or key is placed at the head of the staff; the most common being a bass clef, as shown by 17, and a treble clef as shown by 18. A note can be raised a half tone by a symbol called a sharp (note 19) and lowered ness or a crescendo is indicated symbolically by symbol 22 and a decrease or descrescendo by symbol 23.
Two fundamental concepts of music arise from the successive arrangement of tones; rymthm and melody. A third concept is based on harmony which is a pattern resulting from simultaneously produced tones. Rhythm is concerned with the accent given a tone, and this may be produced by a change in intensity or a change in texture and tonality. But meter deals solely with patterns of duration or time. Metric groups known as measures are indicated by vertical bars. The upper figure in a time signature indicates the number of pulses in a measure, whereas the lower figure gives the relative time value of the unit of notation. Thus the time signature 3/4 indicates a triple meter. The tempo of music is the rate of the musical pulse, and this is indicated by descriptive words, such as Adagio for slow and Allegro for fast.
A melody is an organized succession of single tones. The pitch relationship existing between the tones of a melody are summarized by chains of successive tones called scales. The labeling of a scale depends on the name of the tone on which it is based and its internal construction: i.e. the number and position of its half steps. Thus we have a major scale with half steps between the third, fourth, seventh, eighth scale degrees and a minor scale where the half steps have a different internal structure. The. major and minor scales areknown as diatonic scales composed of a series of whole steps and salient half steps. But other divisions of the octave are possible, to produce for example a chromatic scale.
Tonality is the relationship between the tones of a melody as summarized by its scale and as determined by its basic note to which the melody returns. This focal term is called the tonic. Change in tonality is identified as modulation. Two or more melodies played'simultaneously give rise to polyphony.
In the foregoing we have not exhausted all of the elements of musical composition. It will be apparent however that regardless of the musical pattern, it is composed of tones whose pitch, duration, intensity and quality and the relationship therebetween in time determine the nature of the composition. These relationships can be highly complex or very simple, and the problem of notation is to provide a language which accurately reflects the intention of the composer over the prior ones which merely gives a rough idea thereof.
FIG. 2 shows the traditional notation of FIGJl converted into corresponding analog notation according to the invention. It will be seen that while the grand staff, along with its clef and bar lines has been retained, the treble and bass staffs are separated only two spaces, with middle C placeddirectly between them. Traditional symbols for notes are absent and instead the notes are graphically represented in conjunction with a color which in the drawings are indicated by cross hatching. Thus hundreds of arbitrary symbols are avoided and any score can be reduced to one grand scale.
In order to demonstrate the analog technique as applied to duration, pitch and meter, apart from all other considerations, we will not at this stage refer to FIG. 2 which includes all musical characteristics, but to FIGS. 3 & 4 which are confined to the characteristics of interest, FIG. 3 showing the traditional notation and FIG. 4 the new technique.
It will be seen in FIG. 4 that each musical tone is represented by a solid tonal band having the width of a staff space. Duration is represented by the proportional length of the tonal band. Thus in 4/4 time, a whole note is held for a full measure and would be represented by 0 in traditional notation. This symbol must be translated by the reader into duration, whereas in the present technique a whole note is represented visually by a tonal band extend-the entire length of a measure, that is from bar line to bar line.
Fractions of a whole note are represented by lengths, directly proportioned thereto, not in incremental terms by symbols for half-notes, eight-notes, etc. In symbolic notation, it is not possible exactly to represent the desired duration, and when a note is to be held for a longer interval, a dot is used. But with an analog system, the precise fraction of a whole tone can be represented graphically whether or not it is in a 1:2 ratio. Rests are represented not by symbols but merely by the spaces between successive tone bands.
The pitch of the tones is represented by the staff positions, as in traditional notation, inasmuch as this is already an analog; hence the higher the pitch, the higher the staff position. The staff, clefs and accidentals of traditional notation are used, but in place of a time signature, a number indicating the number of beats per measure is placed between the staves (note number 3 in FIG. 4). A square around this number indicates simple time, while a triangle is used to indicate compound time.
Dynamics are represented analogously by the proportional intensity of the tonal band. For reasons which will be explained later, the tonal bands are colored, hence changes in the intensity will not be in gradation of gray from white to black but in changes in color intensity or temperature, from a light to dark hue. Thus a light tone band indicates a soft sound, and a dark tone band a loud sound, intermediate values being represented by gradations in color intensity.
Dynamic notation in the traditional and new form is shown in FIGS. 5 & 6 respectively. It will be seen in FIG. 6 that in place of the usual symbols, the intensity of the tonal bands are varied. A crescendo is indicated by a darkening tonal band and a diminuendo by a fading tonal band. The climax occurs in measure 4 of FIG. 6 which is darkest.
In FIGS. 7 8; 8 there is compared the traditional notation for thematic analysis, structural divisions and phrasings in addition to the elements of duration, pitch and meter. In FIG. 7, the primary theme is identified by the characters p.t, the secondary theme by s.t. and the secondary theme derivation by s.t.der.
It will be recognized that it is difficult when using the traditional form of symbolic representation to visually separate the themes, but in FIG. 8 different colors are used for thematic material. These colors are represented in figure by different forms of cross hatching.
Thus the primary theme'may use red for the tone bands, while blue is used for the secondary theme. Phrases in blue-gray ( measures 3, 4 & 5) indicate similarity to the secondary theme which in this case is primarily rhythmic in measures 3 and 4 and rhythmic and melodic in measure 5. Gray tone bands indicate no thematic relationship.
Phrasing is indicated by extending the upper and lower outlines of the tone bands. Phrases are indicated by dark vertical lines parallel to the bar lines. These lines are short when indicating short phrases and progressively longer for periods, sections, etc. Thus the structural divisions of a composition, motive, phrase, chain phrases periods, double periods and so on, are represented in accordance with the analog principle.
The element of harmony and tonality are represented traditionally in FIG. 9 and in the new analog form in FIG. 10. In FIG. 10, harmony is represented by a background wash and harmonic progression by a succession of colors in the background. Tonic function is indicated by a red background, sub-dominant function by blue and dominant function by orange. A minor chord is indicated by stipling the texture of the color background. The intensity of the color in the background is made to vary in proportion to the degree of harmonic dissonance. Hence by analogy, consonant chords are represented by color of lightintensity and progressively dissonant chords by a progressively darker background.
Thus the darkest colors in FIG. were the orange areas representing the most dissonant chords-a dominant 7th in measure 2 and a dominant 9th in measure 5. Tonic lines are drawn lightly through the tonal centers and their color indicates the relationships of modulation.
Other harmonic relationships are also indicated as will now be explained by analogy between the circle of fifths, and the color wheel, as shown in FIG. 11. In this wheel, C is the principle tonal center and is represented by the color red. C therefore is tonic.
The flat keys are represented on the blue side of the wheel and the brighter sharp keys on the yellow side. As the keys merge into each other, becoming different spellings for the same sound, the colors merge into green. Thus tonal relationships can be seen at a glance by color analogy, closely related colors pointing to closely related keys. Major and minor colors are represented by the primary colors and tri-tone by the exact opposite colors.
Returning now to F IG. 2, all of the analog forms are 7 shown combined in a system of notation which supplants the traditional form. For accidentals, a symbol is added. Raised or lowered tones -are indicated by an arrow in the appropriate direction located at the beginning of a tone band. Because of the absence of assorted heads, stems, flags, rests, phrasings, accent marks, dynamic terms and markings, transpositions and other abstract symbols constituting the complex language of traditional notation, one looking at a score in analog notation is able to perceive the internal structure of the music in a visual counterpart which reveals the thematic patterns and the interplay of the harmonic elements and other characteristics of the music.
While there has been shown a preferred technique in accordance with the invention, it will be obvious that many changes may be made therein without departing from the essential spirit of the invention.
Thus even with color absent from the analog system it still provides virtually all of the information presently given by traditional notation. The added use of color communicates to the reader vital musical intelligence far beyond that given by traditional notation. It is intended therefore in the annexed claims to cover the basic analog notation concept as well as the specific forms thereof.
What I claim is:
1. A recording in visual form of a sound pattern whose tones constitute a musical composition having different and concurrent themes, which recording is formed by:
A. converting the sound pattern to produce for each theme, a succession of visible solid tone bands whose lengths are proportional to the duration of the respective tones forming the theme, each band having a visual intensity which along its length is varied in accordance with the aural intensity of the tone indicated thereby,
B. applying the succession of tone bands so produced to a music sheet having a grand staff defined by spaced parallel lines, the bands being placed on the staff at levels depending on their pitch, the width of each band being equal to the space between adjacent lines, and
C. imparting a distinct color to each succession of tone lines whereby the themes may. be distinguished from each other.

Claims (1)

1. A recording in visual form of a sound pattern whose tones constitute a musical composition having different and concurrent themes, which recording is formed by: A. converting the sound pattern to produce for each theme, a succession of visible solid tone bands whose lengths are proportional to the duration of the respective tones forming the theme, each band having a visual intensity which along its length is varied in accordance with the aural intensity of the tone indicated thereby, B. applying the succession of tone bands so produced to a music sheet having a grand staff defined by spaced parallel lines, the bands being placed on the staff at levels depending on their pitch, the width of each band being equal to the space between adjacent lines, and C. imparting a distinct color to each succession of tone lines whereby the themes may be distinguished from each other.
US640700A 1967-05-23 1967-05-23 Analog system of music notation Expired - Lifetime US3698277A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US64070067A 1967-05-23 1967-05-23

Publications (1)

Publication Number Publication Date
US3698277A true US3698277A (en) 1972-10-17

Family

ID=24569352

Family Applications (1)

Application Number Title Priority Date Filing Date
US640700A Expired - Lifetime US3698277A (en) 1967-05-23 1967-05-23 Analog system of music notation

Country Status (1)

Country Link
US (1) US3698277A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466062A1 (en) * 1979-09-24 1981-03-27 Azan Maurice Decoding music onto transparent film - uses two colour system using vertical synchronising marks with interconnecting curved and straight lines
US4603386A (en) * 1983-04-08 1986-07-29 Toppan Printing Co., Ltd. Apparatus and method for inputting musical sheet data into a musical-sheet-printing system
US5549029A (en) * 1993-01-19 1996-08-27 Lepinski; Jerald L. Method for operating a musical instrument
EP0772175A1 (en) * 1995-10-31 1997-05-07 Pozzo di Borgo, Anne-Marie Material for the presentation of music
BE1009745A3 (en) * 1995-10-31 1997-07-01 Pozzo Di Borgo Anne Marie Material for presenting music
US5783764A (en) * 1996-06-04 1998-07-21 Amar; Jean-Claude Pianopics display and associated musical notation
US5998721A (en) * 1993-01-19 1999-12-07 Lepinski; Jerald L. Method for operating a musical instrument
US6169239B1 (en) * 1999-05-20 2001-01-02 Doreen G. Aiardo Method and system for visually coding a musical composition to indicate musical concepts and the level of difficulty of the musical concepts
US6407323B1 (en) 1999-04-22 2002-06-18 Karl Karapetian Notating system for symbolizing data descriptive of composed music
US6411289B1 (en) * 1996-08-07 2002-06-25 Franklin B. Zimmerman Music visualization system utilizing three dimensional graphical representations of musical characteristics
US20020178896A1 (en) * 2001-05-30 2002-12-05 George Michael P. Method and system of studying music theory
US20040007118A1 (en) * 2002-07-09 2004-01-15 Holcombe Jane Ellen Graphic color music notation for students
US20040074376A1 (en) * 2000-04-06 2004-04-22 Rainbow Music Corporation System for playing music having multi-colored musical notation and instruments
US20040182226A1 (en) * 2003-03-05 2004-09-23 Kourosh Dini Simplified system for writing music
US20060156906A1 (en) * 2005-01-18 2006-07-20 Haeker Eric P Method and apparatus for generating visual images based on musical compositions
US20080141849A1 (en) * 2006-12-15 2008-06-19 Johnston James S Music notation system
US20080245212A1 (en) * 2007-04-03 2008-10-09 Lemons Kenneth R Device and method for visualizing musical rhythmic structures
US20080259083A1 (en) * 2007-04-20 2008-10-23 Lemons Kenneth R Calibration of transmission system using tonal visualization components
US20080264240A1 (en) * 2007-04-20 2008-10-30 Lemons Kenneth R Method and apparatus for computer-generated music
US20080264241A1 (en) * 2007-04-20 2008-10-30 Lemons Kenneth R System and method for music composition
US20080264239A1 (en) * 2007-04-20 2008-10-30 Lemons Kenneth R Archiving of environmental sounds using visualization components
US20080271589A1 (en) * 2007-04-19 2008-11-06 Lemons Kenneth R Method and apparatus for editing and mixing sound recordings
US20080274443A1 (en) * 2006-07-12 2008-11-06 Lemons Kenneth R System and method for foreign language processing
US20080275703A1 (en) * 2007-04-20 2008-11-06 Lemons Kenneth R Method and apparatus for identity verification
US20080276791A1 (en) * 2007-04-20 2008-11-13 Lemons Kenneth R Method and apparatus for comparing musical works
US20090266222A1 (en) * 2008-04-24 2009-10-29 Noah Ernest Epstein Notation system for music,displaying pitches in color on a keyboard chart and having rhythmic values indicated by the vertical length of said pitches
US20090266223A1 (en) * 2008-04-27 2009-10-29 Spencer Saburo Tashima Stringed instrument learning and teaching method, music notation system, and corresponding visual aid
US20100186575A1 (en) * 2009-01-26 2010-07-29 Rosen Erik M Methods, systems, products, language and processes to depict music
US7956273B2 (en) 2006-07-12 2011-06-07 Master Key, Llc Apparatus and method for visualizing music and other sounds
US8127231B2 (en) 2007-04-19 2012-02-28 Master Key, Llc System and method for audio equalization
US8491311B2 (en) 2002-09-30 2013-07-23 Mind Research Institute System and method for analysis and feedback of student performance
US20130305909A1 (en) * 2012-05-15 2013-11-21 Chi Leung KWAN Raw sound data organizer
US8697974B1 (en) 2013-05-29 2014-04-15 Luis A. Fajardo Musical notation system
WO2014028788A3 (en) * 2012-08-15 2014-04-24 Learnbalance Co, Ltd. Musical notation systems and methods
US20150325225A1 (en) * 2014-05-07 2015-11-12 Vontage Co., Ltd. Method for musical composition, musical composition program product and musical composition system
USD747769S1 (en) * 2014-09-16 2016-01-19 Raji Sarkis Music board
US9852649B2 (en) 2001-12-13 2017-12-26 Mind Research Institute Method and system for teaching vocabulary
US10304346B2 (en) 2005-09-01 2019-05-28 Mind Research Institute System and method for training with a virtual apparatus
US10755683B1 (en) * 2019-02-02 2020-08-25 Shawn Baltazor Transformation of sound to visual and/or tactile stimuli
USD952036S1 (en) 2019-12-06 2022-05-17 Sonya Wise Music staff

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466062A1 (en) * 1979-09-24 1981-03-27 Azan Maurice Decoding music onto transparent film - uses two colour system using vertical synchronising marks with interconnecting curved and straight lines
US4603386A (en) * 1983-04-08 1986-07-29 Toppan Printing Co., Ltd. Apparatus and method for inputting musical sheet data into a musical-sheet-printing system
US5998721A (en) * 1993-01-19 1999-12-07 Lepinski; Jerald L. Method for operating a musical instrument
US5549029A (en) * 1993-01-19 1996-08-27 Lepinski; Jerald L. Method for operating a musical instrument
EP0772175A1 (en) * 1995-10-31 1997-05-07 Pozzo di Borgo, Anne-Marie Material for the presentation of music
BE1009755A4 (en) * 1995-10-31 1997-07-01 Pozzo Di Borgo Anne Marie Equipment for presentation of music.
BE1009745A3 (en) * 1995-10-31 1997-07-01 Pozzo Di Borgo Anne Marie Material for presenting music
US5783764A (en) * 1996-06-04 1998-07-21 Amar; Jean-Claude Pianopics display and associated musical notation
US6411289B1 (en) * 1996-08-07 2002-06-25 Franklin B. Zimmerman Music visualization system utilizing three dimensional graphical representations of musical characteristics
US6407323B1 (en) 1999-04-22 2002-06-18 Karl Karapetian Notating system for symbolizing data descriptive of composed music
US6169239B1 (en) * 1999-05-20 2001-01-02 Doreen G. Aiardo Method and system for visually coding a musical composition to indicate musical concepts and the level of difficulty of the musical concepts
US6831220B2 (en) 2000-04-06 2004-12-14 Rainbow Music Corporation System for playing music having multi-colored musical notation and instruments
US20040074376A1 (en) * 2000-04-06 2004-04-22 Rainbow Music Corporation System for playing music having multi-colored musical notation and instruments
US20020178896A1 (en) * 2001-05-30 2002-12-05 George Michael P. Method and system of studying music theory
US6841724B2 (en) * 2001-05-30 2005-01-11 Michael P. George Method and system of studying music theory
US9852649B2 (en) 2001-12-13 2017-12-26 Mind Research Institute Method and system for teaching vocabulary
US6987220B2 (en) * 2002-07-09 2006-01-17 Jane Ellen Holcombe Graphic color music notation for students
US20040007118A1 (en) * 2002-07-09 2004-01-15 Holcombe Jane Ellen Graphic color music notation for students
US8491311B2 (en) 2002-09-30 2013-07-23 Mind Research Institute System and method for analysis and feedback of student performance
US20040182226A1 (en) * 2003-03-05 2004-09-23 Kourosh Dini Simplified system for writing music
US20060156906A1 (en) * 2005-01-18 2006-07-20 Haeker Eric P Method and apparatus for generating visual images based on musical compositions
US7589727B2 (en) 2005-01-18 2009-09-15 Haeker Eric P Method and apparatus for generating visual images based on musical compositions
US10304346B2 (en) 2005-09-01 2019-05-28 Mind Research Institute System and method for training with a virtual apparatus
US7956273B2 (en) 2006-07-12 2011-06-07 Master Key, Llc Apparatus and method for visualizing music and other sounds
US8843377B2 (en) 2006-07-12 2014-09-23 Master Key, Llc System and method for foreign language processing
US20110214555A1 (en) * 2006-07-12 2011-09-08 Lemons Kenneth R Apparatus and Method for Visualizing Music and Other Sounds
US20080274443A1 (en) * 2006-07-12 2008-11-06 Lemons Kenneth R System and method for foreign language processing
US20080141849A1 (en) * 2006-12-15 2008-06-19 Johnston James S Music notation system
US20100251875A1 (en) * 2006-12-15 2010-10-07 Johnston James S Music notation system
US7982115B2 (en) * 2006-12-15 2011-07-19 Johnston James S Music notation system
US7767895B2 (en) * 2006-12-15 2010-08-03 Johnston James S Music notation system
US7589269B2 (en) * 2007-04-03 2009-09-15 Master Key, Llc Device and method for visualizing musical rhythmic structures
US20080245212A1 (en) * 2007-04-03 2008-10-09 Lemons Kenneth R Device and method for visualizing musical rhythmic structures
US20080271589A1 (en) * 2007-04-19 2008-11-06 Lemons Kenneth R Method and apparatus for editing and mixing sound recordings
US8127231B2 (en) 2007-04-19 2012-02-28 Master Key, Llc System and method for audio equalization
US7994409B2 (en) 2007-04-19 2011-08-09 Master Key, Llc Method and apparatus for editing and mixing sound recordings
US8073701B2 (en) 2007-04-20 2011-12-06 Master Key, Llc Method and apparatus for identity verification using visual representation of a spoken word
US20080276791A1 (en) * 2007-04-20 2008-11-13 Lemons Kenneth R Method and apparatus for comparing musical works
US7935877B2 (en) 2007-04-20 2011-05-03 Master Key, Llc System and method for music composition
US7947888B2 (en) 2007-04-20 2011-05-24 Master Key, Llc Method and apparatus for computer-generated music
US20080275703A1 (en) * 2007-04-20 2008-11-06 Lemons Kenneth R Method and apparatus for identity verification
US7960637B2 (en) 2007-04-20 2011-06-14 Master Key, Llc Archiving of environmental sounds using visualization components
US20080259083A1 (en) * 2007-04-20 2008-10-23 Lemons Kenneth R Calibration of transmission system using tonal visualization components
US20080264240A1 (en) * 2007-04-20 2008-10-30 Lemons Kenneth R Method and apparatus for computer-generated music
US20080264239A1 (en) * 2007-04-20 2008-10-30 Lemons Kenneth R Archiving of environmental sounds using visualization components
US8018459B2 (en) 2007-04-20 2011-09-13 Master Key, Llc Calibration of transmission system using tonal visualization components
US7932455B2 (en) 2007-04-20 2011-04-26 Master Key, Llc Method and apparatus for comparing musical works
US20080264241A1 (en) * 2007-04-20 2008-10-30 Lemons Kenneth R System and method for music composition
US20090266222A1 (en) * 2008-04-24 2009-10-29 Noah Ernest Epstein Notation system for music,displaying pitches in color on a keyboard chart and having rhythmic values indicated by the vertical length of said pitches
US20090266223A1 (en) * 2008-04-27 2009-10-29 Spencer Saburo Tashima Stringed instrument learning and teaching method, music notation system, and corresponding visual aid
US7897862B2 (en) * 2008-04-27 2011-03-01 Spencer Saburo Tashima Stringed instrument learning and teaching method, music notation system, and corresponding visual aid
US20100186575A1 (en) * 2009-01-26 2010-07-29 Rosen Erik M Methods, systems, products, language and processes to depict music
US20130305909A1 (en) * 2012-05-15 2013-11-21 Chi Leung KWAN Raw sound data organizer
US9098679B2 (en) * 2012-05-15 2015-08-04 Chi Leung KWAN Raw sound data organizer
WO2014028788A3 (en) * 2012-08-15 2014-04-24 Learnbalance Co, Ltd. Musical notation systems and methods
US8697974B1 (en) 2013-05-29 2014-04-15 Luis A. Fajardo Musical notation system
US20150325225A1 (en) * 2014-05-07 2015-11-12 Vontage Co., Ltd. Method for musical composition, musical composition program product and musical composition system
US9508331B2 (en) * 2014-05-07 2016-11-29 Vontage Co., Ltd. Compositional method, compositional program product and compositional system
USD747769S1 (en) * 2014-09-16 2016-01-19 Raji Sarkis Music board
US10755683B1 (en) * 2019-02-02 2020-08-25 Shawn Baltazor Transformation of sound to visual and/or tactile stimuli
USD952036S1 (en) 2019-12-06 2022-05-17 Sonya Wise Music staff

Similar Documents

Publication Publication Date Title
US3698277A (en) Analog system of music notation
Longuet-Higgins Review Lecture The perception of music
Redfield Music: a science and an art
Brinkmann Late Idyll: The Second Symphony of Johannes Brahms
Friedmann Ear training for twentieth-century music
Abraham et al. Suggested methods for the transcription of exotic music
Lussy Musical Expression: Accents, Nuances, and Tempo, in vocal and instrumental music
Vai Vaideology: Basic Music Theory for Guitar Players
Cooper The basic guide to how to read music
Marx General Musical Instruction
Hilliard A theoretical analysis of the symphonies of Aaron Copland
Newell Writing for Singers in the Sixties (With Original Composition) the Graduate Manual
RU2137205C1 (en) Method for musical education using chromatic scale
Kim A study of selected preludes of Alexander Scriabin
Horwood The Basis of Music
Ohlsson PAUL HINDEMITH'S MUSIC FOR FLUTE: ANALYSES OF SOLO WORKS AND STYLISTIC AND FORMAL CONSIDERATIONS OF CHAMBER WORKS.
Longy-Miquelle Principles of Musical Theory
Sutton The elements of the theory of music
Rush THE HARPSICHORD CONCERTOS OF JOHANN SCHOBERT (GERMANY)
Diller First theory book
Tweedy Manual of Harmonic Technic based on the Practice of JS Bach
Vanderkoy A survey of the choral music of Halsey Stevens
Ysac A STUDY, ANALYSIS AND PERFORMANCE OF THE TWO SETS OF PIANO SOLO VARIATIONS BY SERGEI RACHMANINOFF: 1. VARIATIONS ON A THEME OF CHOPIN OP. 22. 2. VARIATIONS ON A THEME OF CORELLI OP. 42
Knight A COMPARATIVE STUDY OF COMPOSITIONAL TECHNIQUES EMPLOYED IN INSTRUCTIONAL MATERIALS AND TWENTIETH-CENTURY SOLOS FOR THE CLARINET.
Logsdon An annotated bibliography of selected pedagogical materials for the saxophone published between 1969-1992