US3685740A - Rocket burner with flame pattern control - Google Patents

Rocket burner with flame pattern control Download PDF

Info

Publication number
US3685740A
US3685740A US872171A US3685740DA US3685740A US 3685740 A US3685740 A US 3685740A US 872171 A US872171 A US 872171A US 3685740D A US3685740D A US 3685740DA US 3685740 A US3685740 A US 3685740A
Authority
US
United States
Prior art keywords
oxygen
fuel
burner
chamber
streams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US872171A
Inventor
Thomas L Shepherd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airco Inc
Original Assignee
Air Reduction Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Reduction Co Inc filed Critical Air Reduction Co Inc
Application granted granted Critical
Publication of US3685740A publication Critical patent/US3685740A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/52Injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air

Definitions

  • chamber axis define a transverselypositioned plane between the burner plate and the chamber exhaust; 56 R f P d the projected longitudinal axes of the fuel ports being l e erences l e substantially parallel to the chamber axis for mixing of UNITED STATES PATENTS oxygen and fuel at and beyond the plane of closest approach, and means for adjusting the longitudinal posig kl l g tion of the burner plate on the chamber axis and 6 en et 9/430 thereby locating the plane of closet approach in rela- 3 61 6 fi i f tion to the chamber exhaust for determining the paty f fl 3,346,190 10/1967 Shepherd .239/1323 0 6 burner Charge ames 3,349,826 10/1967 Poole et al. ..239/400 X 15 Claims, 8 Drawing Figures COOLING WATER PATENTEDMIBZZ I912 3.685740 SHEET 1 0F 4 FIG.
  • the invention concerns burners for space heating, heat working, and the like, and especially burners of the oxygen-fuel type wherein oxygen and fuel respec tively are fed as required to the burner for combustion and projection of heating flames.
  • Control of the physical size and shape, i.e. pattern or configuration, of the burner flames is essential for many applications, such as for example where short, bushy or spreading flames best serve the heating purpose; in other applications, a long slender, needle-type flame may be indicated.
  • a prior art device known as the shell-type" burner utilized the needle valve principle for changingthe flame pattern.
  • the oxygen is fed through.
  • a cylindrical housing or shell and mixed with fuel gas from a feeder that is axially adjustable in the shell 'for'defining an annular nozzle type opening, constituting the adjustable burner passage.
  • the burner also includes a socalled bluff body flame stabilizer and spreader that is in direct contact with the oxygen-fuel flame at the point of mixing.
  • control of the flame pattern of the shell burner is accomplished by axial movement of the central fuel feeder for varying in the manner of needle valve control, the annular passage for directing an oxygen-fuel mixture into the combustion region at the bluff body.
  • rocket burner A more acceptable oxygen-fuel burner now in common use is known as the rocket burner, a typical example being shown by.U.S. Pat. No. 3,135,626 granted I June 2, 1964 to Moen and Shepherd. Briefly, the rocket burner
  • rocket burner comprises a cylindrical combustion chamber open at the discharge end and having a multiport burner plate forming the opposite end of the chamber.
  • Fuel gas and oxygen are separately fed in closely grouped parallel streams through respective ports in the burner plate for mixing and burning in the combustion chamber. Initially, this is accompanied by establishment of low velocity anchoring flames as gases along the peripheries of adjacent fuel and oxygen streams mingle after passing through the burner plate ports.
  • a limited degree of flame pattern control can of course, be achieved by valve regulation of the amounts, pressures and ratios of the oxygen and fuel fed to the burner; also by locating the burner plate selected distances from the burner exhaust, an elongated stiff flame or a comparatively short, fat flame can be produced.
  • regulation of the ox-' ygen and fuel burner input does not provide for flexibility in varying the flame pattern for a given BTU burner output.
  • Location of the burner plate at different distances from the burner exhaust also does not achieve the desired control of flame pattern as the closely grouped parallel gas streams from the conventional burner plate ordinarily start mixing and burning well within the combustion chamber near the burner plate and tend to diverge downstream. Where the burner plate is comparatively close to the exhaust of the combustion chamber, bushy type flames naturally result; however, a widespreadingumbrella-shaped flame is not possible with the conventional rocket burner.
  • the invention therefore is concerned with providing an improved rocket burner having flexible flame pattern control over a wide range for a given BTU burner output.
  • the region of initial gas mixing is determined by interaction of a plurality of the fuel gas streams that flow from the burner plate generally parallel to the longitudinal or central axis of the chamber, with a plurality of oxygen streams that flow angularly from the burner plate so as to converge toward the chamber axis, but in off-set or tangential, non-intersecting relation thereto.
  • the points on the respective converging axes that are closest .to the chamber axis define a plane that is transverse to this axis.
  • the plane herein called the plane of closest approach, is the general locator of the region of gas mixing and primary combustion.
  • a principal object of the invention therefore is to provide an improved oxygen-fuel burner of the rocket burner type with flame pattern control wherein the mixing of oxygen and fuel gas occurs within a region of the combustion chamber remote from the burner plate, and the distance between the mixing region and the chamber exhaust is made variable for varying within a wide range the pattern of the chamber exhaust flames.
  • a further and related object is to provide an improved bumer of the character described above wherein the projected longitudinal axes of the oxygen and fuel ports of the burner plate are angularly related for defining the remotely spaced gas mixing region, and the burner plate is movable relative to the chamber exhaust for varying the location of the mixing region and so controlling the pattern of the exhaust flames.
  • a further object of the invention is to provide an improved bumer of the type described above that achieves efficient use of heat output for variable flame pattern control, that is easily adjustable for a given BTU burner output within a wide range of flame pattern control, and that has low maintenance cost and is free of preignition hazard.
  • FIG. 1 is a perspective view, partly in section, of a rocket type oxygen-fuel burner embodying the invention
  • FIG. 2 is a plan view of the multi-port burner element of the rocket burner shown in FIG. 1;
  • FIG. 3 is a sectional view taken along the line 33 of FIG. 2;
  • FIG. 4 is a diagrammatic view of the burner element and combustion chamber indicating convergence of two oxygen streams toward the chamber axis;
  • FIG. 5 is a diagrammatic plan view indicating the relation of the oxygen streams to the chamber axis at the plane of closest approach along line 5-5 of FIG. 4;
  • FIGS. 6, 7, and 8 are diagrammatic views illustrating respectively, different positions of the burner plate with respect to the combustion chamber exhaust for achieving different patterns of the exhaust flames.
  • the oxygen-fuel rocket burner 10 shown by way of example in FIG. 1, comprises a tubular or cylindrical housing 12 within which a burner element 14 defines one end of a combustion chamber 16.
  • the open end of the housing at 18 defines the opposite or discharge end of the chamber from which heating flames are projected for heat working, space heating, etc.
  • the housing 12 includes a water-cooled jacket 20 that extends throughout the length of the combustion chamber and most of the housing for effective heat dissipation.
  • the burner element 14, herein for convenience termed bumer plate, constitutes in effect a flow divider for separately feeding a plurality of oxygen and fuel-gas streams respectively into the combustion chamber.
  • the burner plate is formed as an apertured disc-like cylinder that is concentrically mounted within the combustion chamber and serves as a partition between the combustion chamber and an elongated plenum chamber 22 for the fuel gas.
  • the plenum chamber extends from the burner plate to the opposite end of the housing where it is connected to a fuel gas supply conduit at 23, that conveniently may be utility natural gas.
  • Certain of the burner plate apertures or ports are centered as at 24 for example, and extend through the burner plate for directly communicating with the fuel gas plenum chamber 22.
  • a plurality of other ports 26 for supplying oxygen to the combustion chamber are arranged in a circle, preferably concentric with the longitudinal axis of the combustion chamber (and burner plate), around the smaller centrally grouped fuel ports 24.
  • Additional fuel ports 28 in the burner plate, also communicating with the fuel chamber 22, are disposed in a circle around the outer peripheral area of the 0xygen ports 26.
  • the central fuel ports 24, shown as 6 in number, and the outer fuel ports 28, also 6 in number, extend transversely through the burner plate; i.e., the axes of the respective ports extend generally parallel to the longitudinal axis of the combustion chamber.
  • the oxygen ports 26, however, are angularly disposed with respect to the chamber axis, the projected longitudinal axes of which converge toward the chamber exhaust in off-set, tangential relation to the chamber axis so as to be in non-intersecting relation therewith. That is, the longitudinal axes of the oxygen ports are inclined toward and skewed somewhat with respect to the chamber axis as indicated in FIG. 2 for establishing the geometric relation described above.
  • the oxygen ports 26 are connected to an oxygen supply through a manifold arrangement that comprises a plurality of tubes 30 interconnecting the corresponding oxygen ports and a header 32.
  • the header in turn, is fed by a conduit 34 that extends longitudinally through the chamber'22 and the housing to the exterior for connection as indicated with a source of pressurized oxygen.
  • the combustion chamber walls as mentioned above are protected from overheating by a water-cooled jacket 20 constituting part of the housing 12 and consisting of concentric tubular walls 36, 38, and 40 that are spaced in the usual manner for defining annular, reverse-flow cooling paths.
  • the cooling path extends from the cooling water inlet 42 through the annular passage 44 defined by walls 38 and 40 to the burner exhaust end, where the flow reverses into the annular passage 46 formed between the walls 36 and 38, and thence to the cooling water outlet 48.
  • the materials of construction for the present burner may conform in general to those used in previous rocket burners; i.e., the burner plate may be made of copper or tellurium copper, and the cylinders of the housing, cooling jacket and combustion chamber made of brass or stainless steel, according to required theraway from the chamber exhaust for in effect changing the length of the combustion chamber, and thereby the pattern of the exhaust flames.
  • the burner plate 14, manifold 30-32, and conduit 34 are integrated as a structural unit for relative movement with respect to the housing 12.
  • the burner plate has a sliding fit with the inner cylinder wall 40 constituting the combustion chamber wall, and the conduit 34 is guided for longitudinal movement by a sealing bushing 50 through the end wall 52 of the housing.
  • Relative movement between the burner plate assembly and the housing can be achieved in any suitable manner; for example, a gear rack 54 that is connected to the conduit, is engaged by a coacting pinion 56- that in turn is manually operated at 58 for moving the conduit (and the burner plate) longitudinally in either direction.
  • FIGS. 2 and 3 for illustrating the specific arrangement of the burner plate ports for directing interacting streams of oxygen and fuel-gas respectively into the combustion chamber.
  • the oxygen port 26a it will be noted that the longitudinal axis 26' thereof is skewed with respect to the center of the burner plate, i.e., the longitudinal axis of the combustion chamber, so that intersection of the port axis 26' with the chamber axis 16 is not-possible.
  • the oxygen port axis 26' intersects with the longitudinal axis of one of the centrally located small fuel ports 24b, hereinafter referred to as primary fuel ports, for ensuring mixing of these two streams.
  • primary fuel ports hereinafter referred to as primary fuel ports
  • FIGS. 4 and 5 which diagrammatically supplement FIGS. 2 and 3, indicate the relationship between the projected longitudinal axes of the oxygen ports and the extension of the chamber axis 16.
  • the burner plate In the partly sectional view of the combustion chamber and burner plate shown by FIG. 4, the burner plate is in a similar position to that shown in FIG. 3.
  • the oxygen streams from the ports 26a and 26d are represented for convenience in illustration, as straight high velocity jets or stream cores 0-l and 0-4, disregarding for the moment any modifying effects of the fuel-gas streams (not shown) from the primary fuel ports 24a and 24d, etc.
  • the axes of the two skewed streams appear in FIG.
  • FIG. 5 taken along this section line shows the skewing angle a of the oxygen streams 0-1 and 0-4 as about 60 in clockwise direction from the initial positions of FIG. 3 as represented by the horizontal or transverse burner plate axis 14'.
  • the other oxygen streams 0-2 and 0-3, etc., are assumed to be skewed uniformly in the same direction as best. shown in FIG. 2.
  • FIG. 6 illustrates schematically this divergence for a given advanced position of the burner plate wherein the combustion chamber is comparatively short.
  • divergence of the oxygen port axes extends beyond the chamber exhaust.
  • the additional or secondary fuel gas ports 28 along the peripheral area of the burner plate are designed to supply the main volume of comparatively low velocity fuel to the combustion chamber.
  • the secondary fuel gas streams form in effect a low velocity gas envelope at the chamber periphery surrounding the oxygen and the primary fuel streams.
  • FIG. 6 the sectional view is intended to indicate the interaction of the oxygen and fuel streams in and beyond the combustion chamber, rather than the precise scalar relationship of the axes in FIGS. 2, 3, and 4. It was found in developing the present invention that a wide spreading, bushy or umbrella type flame for the rocket burner as represented by FIG. 6 is best achieved by using the momentum of high velocity oxygen streams directed in both converging and tangential (or skewed) directions with respect to the combustion chamber axis for locating the plane of closest approach sufficiently near the chamber exhaust that the divergence of the high velocity stream is not confined by the chamber walls.
  • the primary combustion mechanism in the present invention while somewhat similar to that described in the Moen and Shepherd patent above, wherein holding flames for stabilizing the main combustion chamber flames are established in a low velocity region near the discharge side of the burner plate, actually differs materially therefrom by establishing primary combustion for the stabilizing flames in a chamber-centered region amaterial distance from the burner plate.
  • This is achieved by feeding the comparatively small primary supply of fuel gas from the burner ports 24a, 24b, etc., directly into the converging oxygen streams entering the region of closest approach, FIGS. 2 and 6.
  • the respective streams mix and provide as schematically indicated at 25 low velocity holding flames.
  • This region is in a gas mixture zone of relatively low velocity, extending to the enveloping fuel streams F Secondary combustion is therefore effectively stabilized by direct communication with the primary combustion zone.
  • the size and spread of this zone referring to FIG. 5, is readily controlled in the design, according to the convergence and skewing angles of the oxygen port axes.
  • the secondary combustion region i.e., where combustion of the spreading mixed oxygen and fuel gases is completed, extends beyond the chamber exhaust as indicated and is determined generally by the velocity and divergence of the oxygen streams with respect to the chamber exhaust and the amount of fuel gas from the ports 28. It will be seen from FIG. 6 that the main or secondary fuel supply envelope from the ports 28 is traversed by and mixed with the stronger high velocity diverging oxygen streams -1 and 0-4, etc., with consequent spreading or mushrooming of the mixed buming gases beyond the chamber exhaust. Accordingly, a secondary combustion or flame region having the desired wide-spreading umbrella type pattern is established.
  • the degree of flame spread for a given burner plate adjustment can of course be further varied by empirical adjustment of the supply pressures for the oxygen and fuel gas streams. Variation of the oxygen-fuel ratio affects flame spread to the extent that a ratio giving an optimum fuel supply for producing combustible mixtures for the main combustion flame system, results in a larger secondary combustion region.
  • oxygen as used herein generally refers to the preferred use of commercially pure oxygen, it is also intended to include oxygen enriched gases in applications where the higher combustion temperatures obtainable by pure oxygen are not required.
  • FIG. 8 illustrates an intermediate adjustment of the burner plate for obtaining a flame pattern that represents a moderately bushy flame, materially longer than the umbrella type flame of FIG. 6.
  • this flame pattern adjustment the projected longitudinal axes 26' of the oxygen stream cores barely clear the chamber exhaust so that part of the oxygen stream is deflected inwardly by the chamber wall. Accordingly, but part of the oxygen stream energy is available to spread the mixed gases and flame in divergent directions at the exhaust so that a modified bushy flame of moderate length is produced.
  • a wide range of graduated flame pattern control can be achieved by corresponding adjustment of the burner plate (and plane of closest approach) with respect to the chamber exhaust.
  • the invention avoids certain prior art difficulties by the use of aerodynamic flame-holding for establishing an oxygenfuel mixing region remote from any part of the burner plate, thereby isolating the movable burner plate from any contact with flame or combustible oxygen-fuel mixtures.
  • the rocket burner of the invention is flexible in scope of operation; all gaseous, atomizable or vaporizable fuels can be burned at high efficiency without major design changes, and optimum conditions for a given fuel can be obtained by adjustment of design parameters.
  • Basic variable factors of the burner include the burner BTU output that is determined by the amounts of oxygen and fuel supplied, the angle of exhaust flame divergence determined by the position of the burner plate (and the diverging and skewing angles of the oxygen stream cores), and the tum-down ratio. The latter is defined in ten'ns of the full range of burner operation for a stable flame situation.
  • rocket burners of the present invention may have, for example, a turn-down ratio of about 1,000: l that is determined by the burner dimensions, principally the diameters of the respective oxygen and fuel ports, and the angular relation of the port axes to the chamber axis.
  • An oxygen-fuel burner of the rocket-burner type having a combustion chamber wherein a plurality of oxygen and fuel streams are fed into one end of the chamber and the opposite end is open for combustion flame discharge, comprising:
  • An oxygen-fuel burner as specified in claim 2 wherein the oxygen ports are radially spaced from the center of the burner plate, and the projected longitudinal axes thereof are inclined in generally converging, non-intersecting relation to the longitudinal axis of the chamber.
  • ports for the main fuel flow are located along the peripheral portion of the burner plate, and ports for the primary fuel are located centrally of the burner plate in general alignment with the primary combustion region.
  • An oxygen-fuel burner as specified in claim 8 having an adjusted position of the burner plate representing divergence of the oxygen port axes beyond the discharge end of the chamber, wherein a radially expanding flame region is formed for producing short, spreading flames in a generally mushrooming pattern.
  • An oxygen-fuel burner as specified in claim 8 having an adjusted position of the burner plate representing intersection of the diverging axes with the chamber side wall in a comparatively long combustion chamber, wherein confined mixing and interaction of the oxygen and fuel streams produce an elongated, nee dle-type flame discharge from the combustion chamber.
  • An oxygen-fuel burner of the rocket-bumer type having a combustion chamber wherein a plurality of oxygen and fuel streams are fed into one end of the chamber and the opposite end is open for combustion flame discharge, comprising:
  • the diverging oxygen streams beyond the primary combustion region traversing and mixing with the fuel envelope for establishing a secondary combustion region.
  • An oxygen-fuel burner comprising housing means having a discharge end for projecting an oxyfuel flame, a burner element in said housing means, said element including a plurality of fuel gas ports for projecting a plurality of streams of fuel gas from said element, said element further including a plurality of oxygen ports for projecting separate streams of oxygen for converging flow about a longitudinal axis, the respective projected axes of the said oxygen ports being in offset, non-intersecting relation with respect to the longitudinal axis, certain of the fuel gas ports being positioned centrally with respect to the oxygen ports for establishing with said oxygen streams a primary stabilizing combustion region, other of said fuel gas ports being positioned to form a fuel gas envelope surrounding the oxygen streams.
  • a burner as set forth in claim 12 further including means to adjust the position of said burner element relative to the discharge end of the burner.
  • a burner as set forth in claim 12 wherein the longitudinal axis of each certain fuel gas port intersects with the projected axis of a respective oxygen port for insuring mixing of the respective streams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

An oxygen-fuel burner of the rocker burner type comprising a cylindrical combustion chamber having an open discharge end and a burner plate with separate oxygen and fuel ports constituting the opposite end of the chamber; the projected longitudinal axes of the oxygen ports extending in converging directions towards the longitudinal axis of the chamber but in off-set, non-intersecting relation thereto, so that points on the respective axis that most closely approach the chamber axis define a transversely positioned plane between the burner plate and the chamber exhaust; the projected longitudinal axes of the fuel ports being substantially parallel to the chamber axis for mixing of oxygen and fuel at and beyond the plane of closest approach, and means for adjusting the longitudinal position of the burner plate on the chamber axis and thereby locating the plane of closet approach in relation to the chamber exhaust for determining the pattern of the burner discharge flames.

Description

United States Patent Shepherd 1 51 Aug. 22, 1972 [54] ROCKET BURNER WITH FLAME 3,387,784 6/1968 Ward, Jr ..239/l32.3 PATTERN CONTROL 3,524,590 8/ 1970 Myskowski ..239/43O X [72] Inventor: 'llclhjomas L. Shepherd, Essex Fells, Primary Examiner uoyd L. King Attorney-Edmund W. Bopp and H. Hume Mathews [73] Assignee: Air Reduction Company, Incorporated, New York, NY. ABSTRACT [22] Filed: Oct. 29, 1969 An oxygen-fuel burner of the rocker burner type comprising a cylindrical combustion chamber having an [211 App! 7 1 1 open discharge end and a burner plate with separate oxygen and fuel ports constituting the opposite end of 52 US. Cl. ..239/400, 239/132.3, 239/424, the chamber; the projected longitudinal axes of the 239 439 oxygen ports extending in converging directions 51 1m. 01. ..B05b 7/10 towards the longitudinal axis of the chamber but in [5 Fi f 239 399 4025 403, 5 432 off-set, non-intersecting relation thereto, so that points 239/400 422 X, 430 X 433 428 1323. on the respective axis that most closely approach the 266/34 1316. chamber axis define a transverselypositioned plane between the burner plate and the chamber exhaust; 56 R f P d the projected longitudinal axes of the fuel ports being l e erences l e substantially parallel to the chamber axis for mixing of UNITED STATES PATENTS oxygen and fuel at and beyond the plane of closest approach, and means for adjusting the longitudinal posig kl l g tion of the burner plate on the chamber axis and 6 en et 9/430 thereby locating the plane of closet approach in rela- 3 61 6 fi i f tion to the chamber exhaust for determining the paty f fl 3,346,190 10/1967 Shepherd .239/1323 0 6 burner Charge ames 3,349,826 10/1967 Poole et al. ..239/400 X 15 Claims, 8 Drawing Figures COOLING WATER PATENTEDMIBZZ I912 3.685740 SHEET 1 0F 4 FIG.
COOL lNG INVENTOR 1 THOMAS L. SHEPHERD ATTORN EY PATENTEDmczz I972 3.685 Q 740 sum 2 or 4 INVENTOR THOMAS SHEPHERD ATTORNEY PATENTEDauczz-mz sum 3 or 4 FIC3.4
FIG. 7
INVENTQR THOMAS -L. SHEPHERD ATTORNEY ROCKET BURNER WITH FLAME PATTERN CONTROL BACKGROUND OF THE INVENTION The invention concerns burners for space heating, heat working, and the like, and especially burners of the oxygen-fuel type wherein oxygen and fuel respec tively are fed as required to the burner for combustion and projection of heating flames. Control of the physical size and shape, i.e. pattern or configuration, of the burner flames is essential for many applications, such as for example where short, bushy or spreading flames best serve the heating purpose; in other applications, a long slender, needle-type flame may be indicated.
Although flame pattern control for oxygen-fuel burners has heretofore been proposed and practiced, it has not been satisfactorily achieved insofar as known, in modern acceptable burner equipment. For example, a prior art device known as the shell-type" burner utilized the needle valve principle for changingthe flame pattern. In this burner the oxygen is fed through. a cylindrical housing or shell and mixed with fuel gas from a feeder that is axially adjustable in the shell 'for'defining an annular nozzle type opening, constituting the adjustable burner passage. The burner also includes a socalled bluff body flame stabilizer and spreader that is in direct contact with the oxygen-fuel flame at the point of mixing. As indicated above, control of the flame pattern of the shell burner is accomplished by axial movement of the central fuel feeder for varying in the manner of needle valve control, the annular passage for directing an oxygen-fuel mixture into the combustion region at the bluff body.
Serious difficulties and disadvantages were encountered in the operation of the shell burner. Premature ignition of the highly combustible oxygen-fuel mixtures within the burner itself created a dangerous explosion hazard; also excessive maintenance was involved due to the difiiculty of properly cooling the burner parts in direct contact with the hot oxygen-fuel flames. For these reasons general use of the shell type oxygen-fuel burner has greatly declined.
A more acceptable oxygen-fuel burner now in common use is known as the rocket burner, a typical example being shown by.U.S. Pat. No. 3,135,626 granted I June 2, 1964 to Moen and Shepherd. Briefly, the
rocket burner comprises a cylindrical combustion chamber open at the discharge end and having a multiport burner plate forming the opposite end of the chamber. Fuel gas and oxygen are separately fed in closely grouped parallel streams through respective ports in the burner plate for mixing and burning in the combustion chamber. Initially, this is accompanied by establishment of low velocity anchoring flames as gases along the peripheries of adjacent fuel and oxygen streams mingle after passing through the burner plate ports.
In the rocket burner, a limited degree of flame pattern control can of course, be achieved by valve regulation of the amounts, pressures and ratios of the oxygen and fuel fed to the burner; also by locating the burner plate selected distances from the burner exhaust, an elongated stiff flame or a comparatively short, fat flame can be produced. However, regulation of the ox-' ygen and fuel burner input does not provide for flexibility in varying the flame pattern for a given BTU burner output. Location of the burner plate at different distances from the burner exhaust also does not achieve the desired control of flame pattern as the closely grouped parallel gas streams from the conventional burner plate ordinarily start mixing and burning well within the combustion chamber near the burner plate and tend to diverge downstream. Where the burner plate is comparatively close to the exhaust of the combustion chamber, bushy type flames naturally result; however, a widespreadingumbrella-shaped flame is not possible with the conventional rocket burner.
The invention therefore is concerned with providing an improved rocket burner having flexible flame pattern control over a wide range for a given BTU burner output.
SUMMARY OE THE INVENTION that initial mixing of the gases for combustion occurs within a region spaced from the burner plate; furthermore for a given BTU output of the burner, this region can be shifted toward or away from the exhaust end of the combustion chamber by corresponding relative longitudinal movement of the burner plate with respect to the combustion chamber for changing throughout a wide range the pattern of the discharge flames.
In a preferred form of the invention, the region of initial gas mixing is determined by interaction of a plurality of the fuel gas streams that flow from the burner plate generally parallel to the longitudinal or central axis of the chamber, with a plurality of oxygen streams that flow angularly from the burner plate so as to converge toward the chamber axis, but in off-set or tangential, non-intersecting relation thereto. Accordingly, the points on the respective converging axes that are closest .to the chamber axis define a plane that is transverse to this axis. The plane, herein called the plane of closest approach, is the general locator of the region of gas mixing and primary combustion.
Since the projected longitudinal axes of the oxygen ports start to diverge beyond the plane of closest approach, the momentum of high velocity oxygen streams tends. to produce bushy, wide-spreading flames where the bumer is adjusted for axes divergence beyond the chamber exhaust; conversely where the adjustment is such that the diverging streams are confined by the chamber walls, an elongated sharp and jet-like high velocity flame is produced. Variation of. the flame discharge pattern within the limits indicated above is achieved in accordance with the invention by relative longitudinal movement between the burner plate and the combustion chamber, and hence variation of the position of the plane of closest approach with respect to the chamber exhaust for controlling divergence of the mixed combustion gases.
A principal object of the invention therefore is to provide an improved oxygen-fuel burner of the rocket burner type with flame pattern control wherein the mixing of oxygen and fuel gas occurs within a region of the combustion chamber remote from the burner plate, and the distance between the mixing region and the chamber exhaust is made variable for varying within a wide range the pattern of the chamber exhaust flames.
A further and related object is to provide an improved bumer of the character described above wherein the projected longitudinal axes of the oxygen and fuel ports of the burner plate are angularly related for defining the remotely spaced gas mixing region, and the burner plate is movable relative to the chamber exhaust for varying the location of the mixing region and so controlling the pattern of the exhaust flames.
A further object of the invention is to provide an improved bumer of the type described above that achieves efficient use of heat output for variable flame pattern control, that is easily adjustable for a given BTU burner output within a wide range of flame pattern control, and that has low maintenance cost and is free of preignition hazard.
Other objects, features and advantages will appear from the following description with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view, partly in section, of a rocket type oxygen-fuel burner embodying the invention;
FIG. 2 is a plan view of the multi-port burner element of the rocket burner shown in FIG. 1;
FIG. 3 is a sectional view taken along the line 33 of FIG. 2;
FIG. 4 is a diagrammatic view of the burner element and combustion chamber indicating convergence of two oxygen streams toward the chamber axis;
FIG. 5 is a diagrammatic plan view indicating the relation of the oxygen streams to the chamber axis at the plane of closest approach along line 5-5 of FIG. 4; and
FIGS. 6, 7, and 8 are diagrammatic views illustrating respectively, different positions of the burner plate with respect to the combustion chamber exhaust for achieving different patterns of the exhaust flames.
DESCRIPTION OF PREFERRED EMBODIMENT The oxygen-fuel rocket burner 10 shown by way of example in FIG. 1, comprises a tubular or cylindrical housing 12 within which a burner element 14 defines one end of a combustion chamber 16. The open end of the housing at 18 defines the opposite or discharge end of the chamber from which heating flames are projected for heat working, space heating, etc. As the combustion chamber is subject to the high temperatures encountered in the operation of oxygen-fuel burners, the housing 12 includes a water-cooled jacket 20 that extends throughout the length of the combustion chamber and most of the housing for effective heat dissipation.
The burner element 14, herein for convenience termed bumer plate, constitutes in effect a flow divider for separately feeding a plurality of oxygen and fuel-gas streams respectively into the combustion chamber. In the present example, the burner plate is formed as an apertured disc-like cylinder that is concentrically mounted within the combustion chamber and serves as a partition between the combustion chamber and an elongated plenum chamber 22 for the fuel gas. The plenum chamber extends from the burner plate to the opposite end of the housing where it is connected to a fuel gas supply conduit at 23, that conveniently may be utility natural gas.
Certain of the burner plate apertures or ports are centered as at 24 for example, and extend through the burner plate for directly communicating with the fuel gas plenum chamber 22. A plurality of other ports 26 for supplying oxygen to the combustion chamber are arranged in a circle, preferably concentric with the longitudinal axis of the combustion chamber (and burner plate), around the smaller centrally grouped fuel ports 24. Additional fuel ports 28 in the burner plate, also communicating with the fuel chamber 22, are disposed in a circle around the outer peripheral area of the 0xygen ports 26. The central fuel ports 24, shown as 6 in number, and the outer fuel ports 28, also 6 in number, extend transversely through the burner plate; i.e., the axes of the respective ports extend generally parallel to the longitudinal axis of the combustion chamber. The oxygen ports 26, however, are angularly disposed with respect to the chamber axis, the projected longitudinal axes of which converge toward the chamber exhaust in off-set, tangential relation to the chamber axis so as to be in non-intersecting relation therewith. That is, the longitudinal axes of the oxygen ports are inclined toward and skewed somewhat with respect to the chamber axis as indicated in FIG. 2 for establishing the geometric relation described above.
The oxygen ports 26 are connected to an oxygen supply through a manifold arrangement that comprises a plurality of tubes 30 interconnecting the corresponding oxygen ports and a header 32. The header in turn, is fed by a conduit 34 that extends longitudinally through the chamber'22 and the housing to the exterior for connection as indicated with a source of pressurized oxygen.
It will be apparent that in the apparatus so far described, separate supplies of oxygen and fuel-gas are fed to the corresponding ports in the burner plate, the oxygen from the conduit 34 and manifold to the ports 6, and the fuel-gas from the supply line at 23 and plenum chamber 22 directly to the burner plate ports 24 and 28. Accordingly, the burner plate ports direct as indicated above, separate streams of oxygen and fuelgas respectively into the combustion chamber 16 for mixture beyond the burner plate and subsequent burning as more fully described below.
The combustion chamber walls as mentioned above are protected from overheating by a water-cooled jacket 20 constituting part of the housing 12 and consisting of concentric tubular walls 36, 38, and 40 that are spaced in the usual manner for defining annular, reverse-flow cooling paths. As shown, the cooling path extends from the cooling water inlet 42 through the annular passage 44 defined by walls 38 and 40 to the burner exhaust end, where the flow reverses into the annular passage 46 formed between the walls 36 and 38, and thence to the cooling water outlet 48.
The materials of construction for the present burner may conform in general to those used in previous rocket burners; i.e., the burner plate may be made of copper or tellurium copper, and the cylinders of the housing, cooling jacket and combustion chamber made of brass or stainless steel, according to required theraway from the chamber exhaust for in effect changing the length of the combustion chamber, and thereby the pattern of the exhaust flames. To this end, the burner plate 14, manifold 30-32, and conduit 34 are integrated as a structural unit for relative movement with respect to the housing 12. The burner plate has a sliding fit with the inner cylinder wall 40 constituting the combustion chamber wall, and the conduit 34 is guided for longitudinal movement by a sealing bushing 50 through the end wall 52 of the housing. Relative movement between the burner plate assembly and the housing can be achieved in any suitable manner; for example, a gear rack 54 that is connected to the conduit, is engaged by a coacting pinion 56- that in turn is manually operated at 58 for moving the conduit (and the burner plate) longitudinally in either direction.
Reference is now made to FIGS. 2 and 3 for illustrating the specific arrangement of the burner plate ports for directing interacting streams of oxygen and fuel-gas respectively into the combustion chamber. Taking for example the oxygen port 26a, it will be noted that the longitudinal axis 26' thereof is skewed with respect to the center of the burner plate, i.e., the longitudinal axis of the combustion chamber, so that intersection of the port axis 26' with the chamber axis 16 is not-possible. It will also be noted that the oxygen port axis 26' intersects with the longitudinal axis of one of the centrally located small fuel ports 24b, hereinafter referred to as primary fuel ports, for ensuring mixing of these two streams. Moving clockwise, it will also be seen that the best illustrated in FIG. 2. The oxygen streams from the 6 ports shown in FIG. 2 therefore tend to form a clockwise vortex around the chamber axis at a region remote from the burner plate.
FIGS. 4 and 5 which diagrammatically supplement FIGS. 2 and 3, indicate the relationship between the projected longitudinal axes of the oxygen ports and the extension of the chamber axis 16. In the partly sectional view of the combustion chamber and burner plate shown by FIG. 4, the burner plate is in a similar position to that shown in FIG. 3. The oxygen streams from the ports 26a and 26d are represented for convenience in illustration, as straight high velocity jets or stream cores 0-l and 0-4, disregarding for the moment any modifying effects of the fuel-gas streams (not shown) from the primary fuel ports 24a and 24d, etc. Although the axes of the two skewed streams appear in FIG. 4 to intersect each other and the chamber axis 16' at some point beyond the section line 5-5, their closest approach to the axis actually occurs at the section line. Accordingly, the transverse plane or region determined by the section line 55 is referred to herein as the plane of closest approach." FIG. 5 taken along this section line shows the skewing angle a of the oxygen streams 0-1 and 0-4 as about 60 in clockwise direction from the initial positions of FIG. 3 as represented by the horizontal or transverse burner plate axis 14'. The other oxygen streams 0-2 and 0-3, etc., are assumed to be skewed uniformly in the same direction as best. shown in FIG. 2.
Between the plane of closest approach and the chamber exhaust, the oxygen streams begin to diverge toward the combustion chamber wall. FIG. 6 illustrates schematically this divergence for a given advanced position of the burner plate wherein the combustion chamber is comparatively short. In this example, divergence of the oxygen port axes extends beyond the chamber exhaust.
Returning briefly to FIG. 2, it will be seen that the additional or secondary fuel gas ports 28 along the peripheral area of the burner plate are designed to supply the main volume of comparatively low velocity fuel to the combustion chamber. As the axes of these ports, as in the case of the central or primary fuel-gas ports 24a, 24b, etc., extend generally parallel to the chamber axis, the secondary fuel gas streams form in effect a low velocity gas envelope at the chamber periphery surrounding the oxygen and the primary fuel streams.
In FIG. 6, the sectional view is intended to indicate the interaction of the oxygen and fuel streams in and beyond the combustion chamber, rather than the precise scalar relationship of the axes in FIGS. 2, 3, and 4. It was found in developing the present invention that a wide spreading, bushy or umbrella type flame for the rocket burner as represented by FIG. 6 is best achieved by using the momentum of high velocity oxygen streams directed in both converging and tangential (or skewed) directions with respect to the combustion chamber axis for locating the plane of closest approach sufficiently near the chamber exhaust that the divergence of the high velocity stream is not confined by the chamber walls. By avoiding convergence carried to actual intersection of the oxygen stream axes, as at some common point on the chamber axis, serious problems involving limitation of flame length, combustion chamber cooling, etc., are avoided and the advantages of free gas and flame divergence beyond the plane of closest approach for producing the desired umbrella-type flame are retained.
Referring more specifically to the burner operation, the primary combustion mechanism in the present invention, while somewhat similar to that described in the Moen and Shepherd patent above, wherein holding flames for stabilizing the main combustion chamber flames are established in a low velocity region near the discharge side of the burner plate, actually differs materially therefrom by establishing primary combustion for the stabilizing flames in a chamber-centered region amaterial distance from the burner plate. This is achieved by feeding the comparatively small primary supply of fuel gas from the burner ports 24a, 24b, etc., directly into the converging oxygen streams entering the region of closest approach, FIGS. 2 and 6. As the oxygen and primary fuel streams gradually converge, the respective streams mix and provide as schematically indicated at 25 low velocity holding flames.
This introduction of a comparatively small amount of fuel into the oxygen streams at the plane of closest approach, produces a transversely extending region for the primary and stabilizing combustion. This region is in a gas mixture zone of relatively low velocity, extending to the enveloping fuel streams F Secondary combustion is therefore effectively stabilized by direct communication with the primary combustion zone. The size and spread of this zone, referring to FIG. 5, is readily controlled in the design, according to the convergence and skewing angles of the oxygen port axes. As the diverging oxygen streams from the region of closest approach continue to diverge toward the chamber exhaust and mix with the enveloping main supply of secondary fuel gas from the ports 28, combustion of the mixed gases is ensured by the primary combustion or holding flames at the region of closest approach as indicated in FIG. 6.
The secondary combustion region, i.e., where combustion of the spreading mixed oxygen and fuel gases is completed, extends beyond the chamber exhaust as indicated and is determined generally by the velocity and divergence of the oxygen streams with respect to the chamber exhaust and the amount of fuel gas from the ports 28. It will be seen from FIG. 6 that the main or secondary fuel supply envelope from the ports 28 is traversed by and mixed with the stronger high velocity diverging oxygen streams -1 and 0-4, etc., with consequent spreading or mushrooming of the mixed buming gases beyond the chamber exhaust. Accordingly, a secondary combustion or flame region having the desired wide-spreading umbrella type pattern is established.
The degree of flame spread for a given burner plate adjustment can of course be further varied by empirical adjustment of the supply pressures for the oxygen and fuel gas streams. Variation of the oxygen-fuel ratio affects flame spread to the extent that a ratio giving an optimum fuel supply for producing combustible mixtures for the main combustion flame system, results in a larger secondary combustion region. Although the term oxygen as used herein generally refers to the preferred use of commercially pure oxygen, it is also intended to include oxygen enriched gases in applications where the higher combustion temperatures obtainable by pure oxygen are not required.
Where the burner plate and plane of closest approach are located as illustrated in FIG. 7, so that the projected diverging axes 26' of the oxygen stream cores intersect the combustion chamber wall, as distinguished from FIG. 6 wherein divergence of the axes beyond the plane of closest approach is not restricted by the chamber wall, mixing and initial secondary combustion of the enveloping fuel streams F, and the oxygen streams 0-1 and 0-4, etc., are confined to a greater extent within the now elongated combustion chamber 16. That is, as the chamber wall is now effective to deflect the oxygen streams generally along and into the enveloping fuel stream, mixing of the oxygen and secondary fuel tends to take place mainly within the combustion chamber. The momentum of the oxygen streams, combined with the chamber pressure incident to secondary combustion, produces a stiff, sharp and elongated flame at the combustion chamber exhaust. It is believed that this effect is due in part to the energy of the deflected oxygen cores, that tend to reconverge, somewhat as a tapering cone, on the chamber axis. Secondary fuel is during this process mixed with the oxygen and carried along toward the central axis of the chamber, where secondary combustion continues as the mixed gases and combustion flames are discharged at high velocity from the burner exhaust to form a long, needle-type flame.
FIG. 8 illustrates an intermediate adjustment of the burner plate for obtaining a flame pattern that represents a moderately bushy flame, materially longer than the umbrella type flame of FIG. 6. In this flame pattern adjustment the projected longitudinal axes 26' of the oxygen stream cores barely clear the chamber exhaust so that part of the oxygen stream is deflected inwardly by the chamber wall. Accordingly, but part of the oxygen stream energy is available to spread the mixed gases and flame in divergent directions at the exhaust so that a modified bushy flame of moderate length is produced. It will be apparent from the descriptions of FIGS. 6-8, that a wide range of graduated flame pattern control can be achieved by corresponding adjustment of the burner plate (and plane of closest approach) with respect to the chamber exhaust.
Summarizing briefly, it will be seen that the invention avoids certain prior art difficulties by the use of aerodynamic flame-holding for establishing an oxygenfuel mixing region remote from any part of the burner plate, thereby isolating the movable burner plate from any contact with flame or combustible oxygen-fuel mixtures.
In practice, the rocket burner of the invention is flexible in scope of operation; all gaseous, atomizable or vaporizable fuels can be burned at high efficiency without major design changes, and optimum conditions for a given fuel can be obtained by adjustment of design parameters. Basic variable factors of the burner include the burner BTU output that is determined by the amounts of oxygen and fuel supplied, the angle of exhaust flame divergence determined by the position of the burner plate (and the diverging and skewing angles of the oxygen stream cores), and the tum-down ratio. The latter is defined in ten'ns of the full range of burner operation for a stable flame situation. This can be quantitatively expressed as a ratio Conventional commercial burners have in general a narrow range within which stable flame operation can be obtained, whereas rocket burners of the present invention may have, for example, a turn-down ratio of about 1,000: l that is determined by the burner dimensions, principally the diameters of the respective oxygen and fuel ports, and the angular relation of the port axes to the chamber axis.
Practical advantages of the invention also include improved flame stability by reason of the low velocity, centered primary combustion region, improved turndown ratio, simplicity of design wherein a flame stabilizing bluff body or the like, in the flame is not needed, and greatly improved safety with practical elimination of preignition and explosion hazard.
Having set forth the invention in what is considered to be the best embodiment thereof, it will be understood that changes may be made in the system and apparatus as above set forth without departing from the spirit of the invention or exceeding the scope thereof as defined in the following claims.
I claim: 1. An oxygen-fuel burner of the rocket-burner type having a combustion chamber wherein a plurality of oxygen and fuel streams are fed into one end of the chamber and the opposite end is open for combustion flame discharge, comprising:
a. means for directing separate streams of fuel into the chamber and toward the discharge end, b. means for directing separate streams of oxygen into the chamber for converging flow, the respective projected axes of the oxygen streams being in off-set, non-intersecting relation to the longitudinal axis of the chamber, 7 means for directing a comparatively small amount of the fuel flow into the converging oxygen flow for establishing a primary stabilizing combustion region, I d. the diverging oxygen flow beyond the primary combustion region traversing and mixing with the main amount'of the fuel flow for establishing a v secondary combustion region,
. and means for varying the traversing. location of the oxygen and fuel with respect to the discharge end of the combustion chamber for controlling the discharge pattern of the secondary combustion flames.
2. An oxygen-fuel burner as specified in claim 1 wherein the oxygen and fuel stream directing means consists of a burner plate having a plurality of ports for the respective streams, and control means produce relative movement between the burner plate and combustion chamber along the longitudinal axis of the chamber for varying the traversing location of the oxygen and fuel.
3. An oxygen-fuel burner as specified in claim 2 wherein the oxygen ports are radially spaced from the center of the burner plate, and the projected longitudinal axes thereof are inclined in generally converging, non-intersecting relation to the longitudinal axis of the chamber.
4. An oxygen-fuel burner as specified in claim 2 wherein ports for the main fuel flow are located along the peripheral portion of the burner plate, and ports for the primary fuel are located centrally of the burner plate in general alignment with the primary combustion region.
5. An oxygen-fuel burner as specified in claim 4 wherein the projected longitudinal axes of the fuel ports are generally parallel to the longitudinal axis of the chamber.
6. An oxygen-fuel burner as specified in claim 3 wherein the projected longitudinal axes of the oxygen ports at the respective points closest to the chamber axis define a transverse plane determining the location of the primary gas mixing zone.
7. An oxygen-fuel burner as specified in claim 2 wherein the main fuel streams form a secondary fuel envelope within the combustion chamber in surrounding relation to the oxygen and primary fuel streams.
8. An oxygen-fuel burner as specified in claim 7 wherein the projected axes of the oxygen ports diverge be ond the rima combustion re ion toward the side wall of the c mbu hon chamber for traversing and mixing with the enveloping fuel flow.
9. An oxygen-fuel burner as specified in claim 8 having an adjusted position of the burner plate representing divergence of the oxygen port axes beyond the discharge end of the chamber, wherein a radially expanding flame region is formed for producing short, spreading flames in a generally mushrooming pattern.
10. An oxygen-fuel burner as specified in claim 8 having an adjusted position of the burner plate representing intersection of the diverging axes with the chamber side wall in a comparatively long combustion chamber, wherein confined mixing and interaction of the oxygen and fuel streams produce an elongated, nee dle-type flame discharge from the combustion chamber.
11. An oxygen-fuel burner of the rocket-bumer type having a combustion chamber wherein a plurality of oxygen and fuel streams are fed into one end of the chamber and the opposite end is open for combustion flame discharge, comprising:
a. means for directing separate streams of oxygen into the chamber for converging flow, the respective projected axes of the oxygen streams being in off-set, non-intersecting relation to the longitudinal axis of the chamber,
. means for directing a portion of the fuel flow into the converging oxygen flow for establishing a primary stabilizing combustion region remote from the feed end of the chamber,
. and means for directing the main portion fuel flow along the chamber wall so as to envelop the oxygen streams and primary combustion region,
. the diverging oxygen streams beyond the primary combustion region traversing and mixing with the fuel envelope for establishing a secondary combustion region.
12. An oxygen-fuel burner comprising housing means having a discharge end for projecting an oxyfuel flame, a burner element in said housing means, said element including a plurality of fuel gas ports for projecting a plurality of streams of fuel gas from said element, said element further including a plurality of oxygen ports for projecting separate streams of oxygen for converging flow about a longitudinal axis, the respective projected axes of the said oxygen ports being in offset, non-intersecting relation with respect to the longitudinal axis, certain of the fuel gas ports being positioned centrally with respect to the oxygen ports for establishing with said oxygen streams a primary stabilizing combustion region, other of said fuel gas ports being positioned to form a fuel gas envelope surrounding the oxygen streams.
13. A burner as set forth in claim 12 further including means to adjust the position of said burner element relative to the discharge end of the burner.
14. A burner as set forth in claim 12 wherein the longitudinal axis of each certain fuel gas port intersects with the projected axis of a respective oxygen port for insuring mixing of the respective streams.
15. A burner as set forth in claim 12 wherein the oxygen ports form a vortex about said longitudinal axis.

Claims (15)

1. An oxygen-fuel burner of the rocket-burner type having a combustion chamber wherein a plurality of oxygen and fuel streams are fed into one end of the chamber and the opposite end is open for combustion flame discharge, comprising: a. means for directing separate streams of fuel into the chamber and toward the discharge end, b. means for directing separate streams of oxygen into the chamber for converging flow, the respective projected axes of the oxygen streams being in off-set, non-intersecting relation to the longitudinal axis of the chamber, c. means for directing a comparatively small amount of the fuel flow into the converging oxygen flow for establishing a primary stabilizing combustion region, d. the diverging oxygen flow beyond the primary combustion region traversing and mixing with the main amount of the fuel flow for establishing a secondary combustion region, e. and means for varying the traversing location of the oxygen and fuel with respect to the discharge end of the combustion chamber for controlling the discharge pattern of the secondary combustion flames.
2. An oxygen-fuel burner as specified in claim 1 wherein the oxygen and fuel stream directing means consists of a burner plate having a plurality of ports for the respective streams, and control means produce relative movement between the burner plate and combustion chamber along the longitudinal axis of the chamber for varying the traversing location of the oxygen and fuel.
3. An oxygen-fuel burner as specified in claim 2 wherein the oxygen ports are radially spaced from the center of the burner plate, and the projected longitudinal axes thereof are inclined in generally converging, non-intersecting relation to the longitudinal axis of the chamber.
4. An oxygen-fuel burner as specified in claim 2 wherein ports for the main fuel flow are located along the peripheral portion of the burner plate, and ports for the primary fuel are located centrally of the burner plate in general alignment with the primary combustion region.
5. An oxygen-fuel burner as specified in claim 4 wherein the projected longitudinal axes of the fuel ports are generally parallel to the longitudinal axis of the chamber.
6. An oxygen-fuel burner as specified in claim 3 wherein the projected longitudinal axes of the oxygen ports at the respective points closest to the chamber axis define a transverse plane determining the location of the primary gas mixing zone.
7. An oxygen-fuel burner as specified in claim 2 wherein the main fuel streams form a secondary fuel envelope within the combustion chamber in surrounding relation to the oxygen and primary fuel streams.
8. An oxygen-fuel burner as specified in claim 7 wherein the projected axes of the oxygen ports diverge beyond the primary combustion region toward the side wall of the combustion chamber for traversing and mixing with the enveloping fuel flow.
9. An oxygen-fuel burner as specified in claim 8 having an adjusted position of the burner plate representing divergence of the oxygen port axes beyond the discharge end of the chamber, wherein a radially expanding flame region is formed for producing short, spreading flames in a generally mushrooming pattern.
10. An oxygen-fuel burner as specified in claim 8 having an adjusted position of the burner plate representing intersection oF the diverging axes with the chamber side wall in a comparatively long combustion chamber, wherein confined mixing and interaction of the oxygen and fuel streams produce an elongated, needle-type flame discharge from the combustion chamber.
11. An oxygen-fuel burner of the rocket-burner type having a combustion chamber wherein a plurality of oxygen and fuel streams are fed into one end of the chamber and the opposite end is open for combustion flame discharge, comprising: a. means for directing separate streams of oxygen into the chamber for converging flow, the respective projected axes of the oxygen streams being in off-set, non-intersecting relation to the longitudinal axis of the chamber, b. means for directing a portion of the fuel flow into the converging oxygen flow for establishing a primary stabilizing combustion region remote from the feed end of the chamber, c. and means for directing the main portion of fuel flow along the chamber wall so as to envelop the oxygen streams and primary combustion region, d. the diverging oxygen streams beyond the primary combustion region traversing and mixing with the fuel envelope for establishing a secondary combustion region.
12. An oxygen-fuel burner comprising housing means having a discharge end for projecting an oxy-fuel flame, a burner element in said housing means, said element including a plurality of fuel gas ports for projecting a plurality of streams of fuel gas from said element, said element further including a plurality of oxygen ports for projecting separate streams of oxygen for converging flow about a longitudinal axis, the respective projected axes of the said oxygen ports being in off-set, non-intersecting relation with respect to the longitudinal axis, certain of the fuel gas ports being positioned centrally with respect to the oxygen ports for establishing with said oxygen streams a primary stabilizing combustion region, other of said fuel gas ports being positioned to form a fuel gas envelope surrounding the oxygen streams.
13. A burner as set forth in claim 12, further including means to adjust the position of said burner element relative to the discharge end of the burner.
14. A burner as set forth in claim 12, wherein the longitudinal axis of each certain fuel gas port intersects with the projected axis of a respective oxygen port for insuring mixing of the respective streams.
15. A burner as set forth in claim 12, wherein the oxygen ports form a vortex about said longitudinal axis.
US872171A 1969-10-29 1969-10-29 Rocket burner with flame pattern control Expired - Lifetime US3685740A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87217169A 1969-10-29 1969-10-29

Publications (1)

Publication Number Publication Date
US3685740A true US3685740A (en) 1972-08-22

Family

ID=25358989

Family Applications (1)

Application Number Title Priority Date Filing Date
US872171A Expired - Lifetime US3685740A (en) 1969-10-29 1969-10-29 Rocket burner with flame pattern control

Country Status (1)

Country Link
US (1) US3685740A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856457A (en) * 1972-12-29 1974-12-24 Air Prod & Chem Burner of the oxy-fuel type
US3897198A (en) * 1972-04-17 1975-07-29 Radiation Ltd Gaseous fuel burners
US3915626A (en) * 1974-04-22 1975-10-28 Air Prod & Chem Oxy-oil burner
US4065265A (en) * 1976-06-11 1977-12-27 Ashland Oil, Inc. Apparatus for producing carbon black
US4453913A (en) * 1982-05-21 1984-06-12 The Cadre Corporation Recuperative burner
US4494923A (en) * 1982-08-25 1985-01-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Oxy-fuel burners
US4886447A (en) * 1988-05-16 1989-12-12 Goss, Inc. Burner assembly
US5104310A (en) * 1986-11-24 1992-04-14 Aga Aktiebolag Method for reducing the flame temperature of a burner and burner intended therefor
US5299929A (en) * 1993-02-26 1994-04-05 The Boc Group, Inc. Fuel burner apparatus and method employing divergent flow nozzle
US5615833A (en) * 1994-12-21 1997-04-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude External mixing type burner
EP0823593A2 (en) 1996-08-05 1998-02-11 The BOC Group plc Low emission swirl burner
US5799877A (en) * 1996-01-03 1998-09-01 Exxon Research And Engineering Company Fluid distribution across a particulate bed
US5803725A (en) * 1997-06-13 1998-09-08 Horn; Wallace E. Triple-mix surface-mix burner
EP0823592A3 (en) * 1996-08-05 1998-11-11 The BOC Group plc Oxygen-fuel burner
EP0877202A2 (en) 1997-05-07 1998-11-11 The BOC Group plc Oxy/Oil swirl burner
US6142765A (en) * 1995-09-07 2000-11-07 Vost-Alpine Industrieanlagenbau Gmbh Process for burning fuel
US6176702B1 (en) * 1999-04-07 2001-01-23 Combustion Tec Simple remotely tuned solid core fuel jet, low NOx fuel gas burner
WO2003014620A1 (en) * 2001-08-06 2003-02-20 Southwest Research Institute Method and apparatus for testing catalytic converter durability
WO2003081136A1 (en) * 2002-03-22 2003-10-02 Danieli & C. Officine Meccaniche S.P.A. Burner
US20040007056A1 (en) * 2001-08-06 2004-01-15 Webb Cynthia C. Method for testing catalytic converter durability
US20040028588A1 (en) * 2001-08-06 2004-02-12 Webb Cynthia C. Method for accelerated aging of catalytic converters incorporating injection of volatilized lubricant
US20040025580A1 (en) * 2002-08-06 2004-02-12 Webb Cynthia C. Method for accelerated aging of catalytic converters incorporating engine cold start simulation
US20040103662A1 (en) * 2002-12-03 2004-06-03 Kaplan Howard Jay Cooling of liquid fuel components to eliminate coking
EP1482143A2 (en) * 2001-08-06 2004-12-01 Southwest Research Institute Method and apparatus for testing catalytic converter durability
US20040237636A1 (en) * 2002-08-06 2004-12-02 Southwest Research Institute Method for drive cycle simulation using non-engine based test system
US20050042763A1 (en) * 2002-08-06 2005-02-24 Southwest Research Institute Testing using diesel exhaust produced by a non-engine based test system
US20050039524A1 (en) * 2002-08-06 2005-02-24 Southwest Research Institute Testing using a non-engine based test system and exhaust product comprising alternative fuel exhaust
US20050050950A1 (en) * 2002-08-06 2005-03-10 Southwest Research Institute Component evaluations using non-engine based test system
US20050081525A1 (en) * 2002-12-03 2005-04-21 Kaplan Howard J. Cooling of liquid fuel components to eliminate coking
US20060278100A1 (en) * 2005-06-14 2006-12-14 Aga Ab Seal for burners
US20070289290A1 (en) * 2001-08-06 2007-12-20 Bartley Gordon J J System and method for producing diesel exhaust for testing diesel engine aftertreatment devices
US20070295032A1 (en) * 2002-05-28 2007-12-27 Scott Garrett L Method and apparatus for lubricating molten glass forming molds
US20070298356A1 (en) * 2006-06-22 2007-12-27 Aga Ab Method and burner for burning with oxygen
FR2927148A1 (en) * 2008-02-05 2009-08-07 Saint Gobain COMBUSTION PROCESS AND GASEOUS FUEL INJECTOR WITH LOW PRESSURE PERIPHERAL JETS CONVERTING TO A HIGH PRESSURE CENTRAL JET WITH LOW NOX EMISSION.
US20090286190A1 (en) * 2008-05-19 2009-11-19 Browning James A Method and apparatus for combusting fuel employing vortex stabilization
US20100068667A1 (en) * 2006-11-29 2010-03-18 Ib Ohlsen Demountable burner
US20100162708A1 (en) * 2008-12-30 2010-07-01 General Electric Company Methods, apparatus and/or systems relating to fuel delivery systems for industrial machinery
US20100237173A1 (en) * 2009-03-18 2010-09-23 General Electric Company Fuel injector gassifer nozzle having adjustable annulus
CN101874760A (en) * 2009-04-30 2010-11-03 尼普洛株式会社 Method for producing a medical glass container
CN101900341A (en) * 2010-08-13 2010-12-01 施芜 Fuel burner nozzle for radiant tube
CN101206029B (en) * 2006-12-21 2010-12-08 中国科学院工程热物理研究所 Nozzle for minisize gas-turbine combustor
US20110207066A1 (en) * 2006-03-27 2011-08-25 John Zink Company, Llc Flare apparatus
US20130269576A1 (en) * 2010-11-18 2013-10-17 Linde Aktiengesellschaft Burner with adjustable flue gas recirculation
US20140170573A1 (en) * 2012-12-19 2014-06-19 Neil G. SIMPSON BURNER UTILIZING OXYGEN LANCE FOR FLAME CONTROL AND NOx REDUCTION
US8827176B2 (en) * 2012-07-05 2014-09-09 James A. Browning HVOF torch with fuel surrounding oxidizer
WO2015017050A1 (en) * 2013-07-30 2015-02-05 Owens-Brockway Glass Container Inc. Selective color striking of color-strikable articles
US20150072294A1 (en) * 2013-09-06 2015-03-12 Honeywell International Inc. Gaseous fuel-oxygen burner
CN106524153A (en) * 2016-11-28 2017-03-22 北京水木星源环保科技有限公司 Grading fuel gas low-nitrogen burner
CN106524154A (en) * 2016-11-28 2017-03-22 北京水木星源环保科技有限公司 Gas-graded low-NOx burner
CN106524152A (en) * 2016-11-28 2017-03-22 北京水木星源环保科技有限公司 Graded gas low-nitrogen burner
US20180231245A1 (en) * 2017-02-13 2018-08-16 Vysoke Uceni Technicke V Brne Burner head for low calorific fuels

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093157A (en) * 1960-12-02 1963-06-11 Adrien J Aitken Metering and mixing apparatus
US3224679A (en) * 1962-06-26 1965-12-21 Shell Oil Co Combustion device for hydrocarbon fuel
US3339616A (en) * 1965-06-03 1967-09-05 Chemetron Corp Apparatus for combustion of fuels and burner therefor
US3346190A (en) * 1964-07-23 1967-10-10 Nat Steel Corp Apparatus and method for supplying gas to a high-temperature process
US3349826A (en) * 1965-06-09 1967-10-31 Babcock & Wilcox Co Combination oil and gas burner
US3387784A (en) * 1966-10-27 1968-06-11 Chemetron Corp Burner for fluid fuels
US3524590A (en) * 1968-04-01 1970-08-18 Gen Electric Nozzle for a pyrolytic coating and deposition process
US3565345A (en) * 1968-07-11 1971-02-23 Texas Instruments Inc Production of an article of high purity metal oxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093157A (en) * 1960-12-02 1963-06-11 Adrien J Aitken Metering and mixing apparatus
US3224679A (en) * 1962-06-26 1965-12-21 Shell Oil Co Combustion device for hydrocarbon fuel
US3346190A (en) * 1964-07-23 1967-10-10 Nat Steel Corp Apparatus and method for supplying gas to a high-temperature process
US3339616A (en) * 1965-06-03 1967-09-05 Chemetron Corp Apparatus for combustion of fuels and burner therefor
US3349826A (en) * 1965-06-09 1967-10-31 Babcock & Wilcox Co Combination oil and gas burner
US3387784A (en) * 1966-10-27 1968-06-11 Chemetron Corp Burner for fluid fuels
US3524590A (en) * 1968-04-01 1970-08-18 Gen Electric Nozzle for a pyrolytic coating and deposition process
US3565345A (en) * 1968-07-11 1971-02-23 Texas Instruments Inc Production of an article of high purity metal oxide

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897198A (en) * 1972-04-17 1975-07-29 Radiation Ltd Gaseous fuel burners
US3856457A (en) * 1972-12-29 1974-12-24 Air Prod & Chem Burner of the oxy-fuel type
US3915626A (en) * 1974-04-22 1975-10-28 Air Prod & Chem Oxy-oil burner
US4065265A (en) * 1976-06-11 1977-12-27 Ashland Oil, Inc. Apparatus for producing carbon black
US4453913A (en) * 1982-05-21 1984-06-12 The Cadre Corporation Recuperative burner
US4494923A (en) * 1982-08-25 1985-01-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Oxy-fuel burners
US5104310A (en) * 1986-11-24 1992-04-14 Aga Aktiebolag Method for reducing the flame temperature of a burner and burner intended therefor
US4886447A (en) * 1988-05-16 1989-12-12 Goss, Inc. Burner assembly
US5299929A (en) * 1993-02-26 1994-04-05 The Boc Group, Inc. Fuel burner apparatus and method employing divergent flow nozzle
EP0612958A2 (en) * 1993-02-26 1994-08-31 The Boc Group, Inc. Fuel burner apparatus and method employing divergent flow nozzle
EP0612958A3 (en) * 1993-02-26 1994-10-26 Boc Group Inc Fuel burner apparatus and method employing divergent flow nozzle.
AU673871B2 (en) * 1993-02-26 1996-11-28 Boc Group, Inc., The Fuel burner apparatus and method employing divergent flow nozzle
US5615833A (en) * 1994-12-21 1997-04-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude External mixing type burner
US6142765A (en) * 1995-09-07 2000-11-07 Vost-Alpine Industrieanlagenbau Gmbh Process for burning fuel
US5799877A (en) * 1996-01-03 1998-09-01 Exxon Research And Engineering Company Fluid distribution across a particulate bed
EP0823593A2 (en) 1996-08-05 1998-02-11 The BOC Group plc Low emission swirl burner
EP0823593A3 (en) * 1996-08-05 1998-11-04 The BOC Group plc Low emission swirl burner
EP0823592A3 (en) * 1996-08-05 1998-11-11 The BOC Group plc Oxygen-fuel burner
US5882184A (en) * 1996-08-05 1999-03-16 The Boc Group Plc Low emission swirl burner
EP0877202A2 (en) 1997-05-07 1998-11-11 The BOC Group plc Oxy/Oil swirl burner
EP0877202A3 (en) * 1997-05-07 1999-06-23 The BOC Group plc Oxy/Oil swirl burner
US5944507A (en) * 1997-05-07 1999-08-31 The Boc Group Plc Oxy/oil swirl burner
US5803725A (en) * 1997-06-13 1998-09-08 Horn; Wallace E. Triple-mix surface-mix burner
US6176702B1 (en) * 1999-04-07 2001-01-23 Combustion Tec Simple remotely tuned solid core fuel jet, low NOx fuel gas burner
US20040028588A1 (en) * 2001-08-06 2004-02-12 Webb Cynthia C. Method for accelerated aging of catalytic converters incorporating injection of volatilized lubricant
US7277801B2 (en) 2001-08-06 2007-10-02 Southwest Research Institute Method for testing catalytic converter durability
US20040007056A1 (en) * 2001-08-06 2004-01-15 Webb Cynthia C. Method for testing catalytic converter durability
US20070289290A1 (en) * 2001-08-06 2007-12-20 Bartley Gordon J J System and method for producing diesel exhaust for testing diesel engine aftertreatment devices
US20070283749A1 (en) * 2001-08-06 2007-12-13 Southwest Research Institute System and method for burner-based accelerated aging of emissions control device, with engine cycle having cold start and warm up modes
US7741127B2 (en) 2001-08-06 2010-06-22 Southwest Research Institute Method for producing diesel exhaust with particulate material for testing diesel engine aftertreatment devices
EP1482143A2 (en) * 2001-08-06 2004-12-01 Southwest Research Institute Method and apparatus for testing catalytic converter durability
US7347086B2 (en) 2001-08-06 2008-03-25 Southwest Research Institute System and method for burner-based accelerated aging of emissions control device, with engine cycle having cold start and warm up modes
US7175422B2 (en) 2001-08-06 2007-02-13 Southwest Research Institute Method for accelerated aging of catalytic converters incorporating injection of volatilized lubricant
US20080070169A1 (en) * 2001-08-06 2008-03-20 Ingalls Melvin N Method and apparatus for testing catalytic converter durability
US7140874B2 (en) 2001-08-06 2006-11-28 Southwest Research Institute Method and apparatus for testing catalytic converter durability
US7625201B2 (en) 2001-08-06 2009-12-01 Southwest Research Institute Method and apparatus for testing catalytic converter durability
WO2003014620A1 (en) * 2001-08-06 2003-02-20 Southwest Research Institute Method and apparatus for testing catalytic converter durability
US20060201239A1 (en) * 2001-08-06 2006-09-14 Webb Cynthia C Method for Testing Catalytic Converter Durability
EP1482143A3 (en) * 2001-08-06 2006-07-05 Southwest Research Institute Method and apparatus for testing catalytic converter durability
US20050173566A1 (en) * 2002-03-22 2005-08-11 Fabio Vecchiet Burner
US7004408B2 (en) 2002-03-22 2006-02-28 Danieli & C. Officine Meccaniche S.P.A. Burner
WO2003081136A1 (en) * 2002-03-22 2003-10-02 Danieli & C. Officine Meccaniche S.P.A. Burner
US20070295032A1 (en) * 2002-05-28 2007-12-27 Scott Garrett L Method and apparatus for lubricating molten glass forming molds
US6983645B2 (en) 2002-08-06 2006-01-10 Southwest Research Institute Method for accelerated aging of catalytic converters incorporating engine cold start simulation
US7412335B2 (en) 2002-08-06 2008-08-12 Southwest Research Institute Component evaluations using non-engine based test system
US20050050950A1 (en) * 2002-08-06 2005-03-10 Southwest Research Institute Component evaluations using non-engine based test system
US20050039524A1 (en) * 2002-08-06 2005-02-24 Southwest Research Institute Testing using a non-engine based test system and exhaust product comprising alternative fuel exhaust
US20050042763A1 (en) * 2002-08-06 2005-02-24 Southwest Research Institute Testing using diesel exhaust produced by a non-engine based test system
US7212926B2 (en) 2002-08-06 2007-05-01 Southwest Research Institute Testing using a non-engine based test system and exhaust product comprising alternative fuel exhaust
US20040237636A1 (en) * 2002-08-06 2004-12-02 Southwest Research Institute Method for drive cycle simulation using non-engine based test system
US7299137B2 (en) 2002-08-06 2007-11-20 Southwest Research Institute Method for drive cycle simulation using non-engine based test system
US20040025580A1 (en) * 2002-08-06 2004-02-12 Webb Cynthia C. Method for accelerated aging of catalytic converters incorporating engine cold start simulation
US7117675B2 (en) 2002-12-03 2006-10-10 General Electric Company Cooling of liquid fuel components to eliminate coking
US6918255B2 (en) * 2002-12-03 2005-07-19 General Electric Company Cooling of liquid fuel components to eliminate coking
US20040103662A1 (en) * 2002-12-03 2004-06-03 Kaplan Howard Jay Cooling of liquid fuel components to eliminate coking
US20050081525A1 (en) * 2002-12-03 2005-04-21 Kaplan Howard J. Cooling of liquid fuel components to eliminate coking
WO2006020731A1 (en) * 2004-08-12 2006-02-23 Soutwest Research Institute Testing using diesel exhaust produced by a non-engine based test system
US20060278100A1 (en) * 2005-06-14 2006-12-14 Aga Ab Seal for burners
US20110207066A1 (en) * 2006-03-27 2011-08-25 John Zink Company, Llc Flare apparatus
US20070298356A1 (en) * 2006-06-22 2007-12-27 Aga Ab Method and burner for burning with oxygen
US8057221B2 (en) * 2006-06-22 2011-11-15 Aga Ab Method and burner for burning with oxygen
US20100068667A1 (en) * 2006-11-29 2010-03-18 Ib Ohlsen Demountable burner
US8206149B2 (en) * 2006-11-29 2012-06-26 Flsmidth A/S Demountable burner
CN101206029B (en) * 2006-12-21 2010-12-08 中国科学院工程热物理研究所 Nozzle for minisize gas-turbine combustor
FR2927148A1 (en) * 2008-02-05 2009-08-07 Saint Gobain COMBUSTION PROCESS AND GASEOUS FUEL INJECTOR WITH LOW PRESSURE PERIPHERAL JETS CONVERTING TO A HIGH PRESSURE CENTRAL JET WITH LOW NOX EMISSION.
EA017499B1 (en) * 2008-02-05 2012-12-28 Сэн-Гобэн Гласс Франс LOW-NOx GAS INJECTOR
WO2009101326A3 (en) * 2008-02-05 2010-07-01 Saint-Gobain Glass France Low-nox gas injector
CN101939590B (en) * 2008-02-05 2012-10-10 法国圣戈班玻璃厂 Low NOx gas injector
US20110061642A1 (en) * 2008-02-05 2011-03-17 Saint-Gobain Glass France Low-nox gas injector
WO2009101326A2 (en) * 2008-02-05 2009-08-20 Saint-Gobain Glass France Low-nox gas injector
US20090286190A1 (en) * 2008-05-19 2009-11-19 Browning James A Method and apparatus for combusting fuel employing vortex stabilization
US7628606B1 (en) * 2008-05-19 2009-12-08 Browning James A Method and apparatus for combusting fuel employing vortex stabilization
US8316875B2 (en) * 2008-12-30 2012-11-27 General Electric Company Methods, apparatus and/or systems relating to fuel delivery systems for industrial machinery
US20100162708A1 (en) * 2008-12-30 2010-07-01 General Electric Company Methods, apparatus and/or systems relating to fuel delivery systems for industrial machinery
US20100237173A1 (en) * 2009-03-18 2010-09-23 General Electric Company Fuel injector gassifer nozzle having adjustable annulus
US8104695B2 (en) * 2009-03-18 2012-01-31 General Electric Company Fuel injector gassifer nozzle having adjustable annulus
CN101874760B (en) * 2009-04-30 2014-10-29 尼普洛株式会社 method for producing a medical glass container
CN101874760A (en) * 2009-04-30 2010-11-03 尼普洛株式会社 Method for producing a medical glass container
CN101900341A (en) * 2010-08-13 2010-12-01 施芜 Fuel burner nozzle for radiant tube
US20130269576A1 (en) * 2010-11-18 2013-10-17 Linde Aktiengesellschaft Burner with adjustable flue gas recirculation
US8827176B2 (en) * 2012-07-05 2014-09-09 James A. Browning HVOF torch with fuel surrounding oxidizer
US20140170573A1 (en) * 2012-12-19 2014-06-19 Neil G. SIMPSON BURNER UTILIZING OXYGEN LANCE FOR FLAME CONTROL AND NOx REDUCTION
US9782796B2 (en) 2013-07-30 2017-10-10 Owens-Brockway Glass Container Inc. Selective color striking of color-strikable articles
WO2015017050A1 (en) * 2013-07-30 2015-02-05 Owens-Brockway Glass Container Inc. Selective color striking of color-strikable articles
US10328459B2 (en) 2013-07-30 2019-06-25 Owens-Brockway Glass Container Inc. Selective color striking of color-strikable articles
US20150072294A1 (en) * 2013-09-06 2015-03-12 Honeywell International Inc. Gaseous fuel-oxygen burner
US9677758B2 (en) * 2013-09-06 2017-06-13 Honeywell International Inc. Gaseous fuel-oxygen burner
CN106524152A (en) * 2016-11-28 2017-03-22 北京水木星源环保科技有限公司 Graded gas low-nitrogen burner
CN106524154A (en) * 2016-11-28 2017-03-22 北京水木星源环保科技有限公司 Gas-graded low-NOx burner
CN106524153A (en) * 2016-11-28 2017-03-22 北京水木星源环保科技有限公司 Grading fuel gas low-nitrogen burner
US20180231245A1 (en) * 2017-02-13 2018-08-16 Vysoke Uceni Technicke V Brne Burner head for low calorific fuels

Similar Documents

Publication Publication Date Title
US3685740A (en) Rocket burner with flame pattern control
US3693875A (en) Rocket burner with flame pattern control
US3180395A (en) Liquid and gaseous fuel burner assembly producing a fan-shaped flame
US3748087A (en) Burner apparatus and method for flame propagation control
GB1273364A (en) Combustion device for gaseous fuel
US3663154A (en) Blow torch burner
JPH01502212A (en) Gas combustion method and gas burner with axial jet and dissipating jet
US4744748A (en) Multiple burner torch tip
GB1319361A (en) Portable gas fuelled cooking device
GB1425367A (en) Flat-flame burner utilising heavy liquids fuels
GB1120326A (en) Method and burner for producing flame jet
US2652890A (en) Internally fired gas burner
US3816061A (en) Fuel mixing chamber for heating torches
US2480658A (en) Gravity-fed gas burner
US3425782A (en) Gas burner
US3617161A (en) Gas burners
US1879916A (en) Gas burner
US1794869A (en) Gas burner
US1938852A (en) Burner
US2759473A (en) Radiant tube gas burner
US4342552A (en) Oil burner
GB2072317B (en) Burner
JPS57188909A (en) Low nox burner excellent in combustibility
US3947231A (en) Pilot light system for lighting a main burner for heating high velocity high pressure turbulent air
GB1320631A (en) Burner with swirl means for fuel and combustion air