US3647517A - Impact resistant coatings for cobalt-base superalloys and the like - Google Patents

Impact resistant coatings for cobalt-base superalloys and the like Download PDF

Info

Publication number
US3647517A
US3647517A US48515A US3647517DA US3647517A US 3647517 A US3647517 A US 3647517A US 48515 A US48515 A US 48515A US 3647517D A US3647517D A US 3647517DA US 3647517 A US3647517 A US 3647517A
Authority
US
United States
Prior art keywords
nickel
pack
article
oxygen
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US48515A
Inventor
Thomas Milidantri
Harry W Brill-Edwards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chromalloy Gas Turbine Corp
Original Assignee
Chromalloy American Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chromalloy American Corp filed Critical Chromalloy American Corp
Application granted granted Critical
Publication of US3647517A publication Critical patent/US3647517A/en
Assigned to CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP. reassignment CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHROMALLOY AMERICAN CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/938Vapor deposition or gas diffusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/941Solid state alloying, e.g. diffusion, to disappearance of an original layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • ABSTRACT In the production of impact and oxidation resistant metal coatings on superalloy substrates, e.g., cobalt-base superalloys, by pack cementation, such as a nickel aluminide coating, the improvement wherein nickel is first diffusion coated onto the substrate from a pack containing a small but effective amount of sulfur as a metal transfer agent, following which the nickel coated substrate is then coated with another metal,
  • This invention relates to the pack-nickelizing of heat-resistant metal substrates and, in particular, to a method of producing a hot corrosion resistant metal coating in which the metal substrate is first nickelized to form a diffusion-bonded nickel coating thereon and thereafter aluminized in a separate coating step to provide an improved protective coating containing substantial amounts of nickel aluminide which coating exhibits markedly improved impact ductility.
  • a method has now been found for effecting the transfer of nickel by pack cementation onto superalloy substrates, such as cobalt-base and nickel-base alloys, while avoiding the formation of chromium-containing embrittling phases at the interface.
  • superalloy substrates such as cobalt-base and nickel-base alloys
  • the invention is particularly applicable to cobalt-base superalloys, it is also applicable to the coating of nickel-base alloys containing, for example, percent to 30 percent by weight of chromium where the deposit nickel dilutes the chromium at the interface to inhibit the formation of the aforementioned chromium-containing embrittling phases, such as the chromium carbides, nitrides and the like.
  • Another object is to provide a method of nickelizing the substrate of cobalt-base and nickel-base superalloys preliminary to aluminizing said alloys for the production of hot corrosion resistant coatings based on nickel aluminide which exhibit markedly improved impact ductility.
  • Still another object is to provide a method of nickelizing chromium-containing superalloys whereby to avoid the formation of chromium-containing embrittling phases in the subsequent production of nickel aluminide coating by aluminizing the nickelized superalloys.
  • a further object is to provide a superalloy substrate, e.g., a cobalt-base superalloy, having a ductile impact and hot corrosion resistant coating diffusion bonded thereto.
  • a superalloy substrate e.g., a cobalt-base superalloy
  • the invention resides in a method of producing an impact resistant coating on a superalloy substrate by pack cementation wherein a layer of diffusion-bonded sulfuractivatable transfer metal e.g., nickel, is produced as a first step in the ultimate formation of the impact resistant coating.
  • a layer of diffusion-bonded sulfuractivatable transfer metal e.g., nickel
  • the improvement resides in providing an article of said superalloy having a solute metal, e.g., chromium, whose free energy of formation of the sulfide is higher than that of the transfer metal (e.g., higher then nickel), embedding the'article in a particulate cementation pack consisting essentially of said sulfur-activatable transfer metal mixed with an inert refractory material (e.g., alumina), the bedcontaining a small but effective amount of sulfur for effecting the transfer of said sulfur-activatable metal to the substrate of said article at an elevated diffusion coating temperature, and then heating said pack and the embedded article to an elevated diffusion coating temperature, whereby to effect diffusion coating of that article with the transfer metal, the coating being carried out while maintaining the oxygen in the pack below the partial pressure at which oxidation of sulfur to sulfur dioxide is inhibited.
  • a solute metal e.g., chromium, whose free energy of formation of the sulfide is higher than that of the transfer metal (e.g.
  • the oxygen is maintained at the desired partial pressure by mixing with the pack a small but effective amount of an oxygen-scavenging metal (e.g., titanium) whose free energy of formation of the oxide is at least about 1 15,000 calories per gram atom of oxygen at about 25 C.
  • an oxygen-scavenging metal e.g., titanium
  • the particulate nickelizing pack has a composition ranging by weight from about 5 to 60% nickel, about one-eighth to 1% titanium, about 0.002 to 0.1% of sulfur, and the balance essentially an inert refractory material e.g., such refractory oxides as alumina, magnesia, silica and the like.
  • a particular pack composition is one containing approximately 40% nickel, approximately 0.2% titanium, approximately 0.02% sulfur and the balance essentially aluminum oxide.
  • a typical alloy composition range is one containing by weight about 10 to 30% Cr, up to about 20% of a metal from the group consisting of Mo and W. up to about 10% of a metal from the group consisting of Cb and Ta, up to about 0.5% C, up to about 6.5 percent by weight of a metal from the group consisting of Ti and Al, the total amount of these metals not exceeding about 10%, up to about 20% Co, up to about 2% Mn, up to about 2% Si, up to about 0.1% B, up to about 1% Zr,
  • a typical composition range is one containing by weight about 10 to 30% Cr, up to about 15% Ni, up to about 15% Fe, up to about 5% Cb, up to about 15% W. up to about 5% Ti and/or A1, up to about 1% Zr, up to about 1.5% C, up to about 1 or 2% of Si, up to about 2% Mn and the balance essentially at least about 45% Co.
  • a well-known commercial composition is a cobalt-base alloy referred to by the designation Wl-52 containing by weight about 0.45% C, about 0.25% Mn. about 0.25% Si, about 21% Cr, about 1 1% W. about 2% Cb, about 2% Fe and the balance essentially cobalt.
  • the optimum processing cycle for nickelizing the aforementioned Wl-52 alloy involves the deposition of nickel at about 9,925 F.:25 F., (about 1,0S0 C.il4 C.) by embedding an article of the alloy, e. g., an airfoil section, in a particulate pack containing by weight about 40 percent 200 mesh electrolytic nickel and 60 percent 325 mesh alumina, the mixture containing by weight about three-sixteenth percent of titanium, with the sulfur level ranging from about 0.015 to 0.05 percent.
  • the primary source of the sulfur is the nickel powder. With the foregoing pack, the thickness of nickel coating ranges up to about 0.002 inch.
  • the addition of ly, other oxygen scavengers may be employed so long as the free energy of formation of the oxide is at least about 1 15,000 calories per gram atom of oxygen.
  • the transfer of nickel from compounds as MS, 0,5, and (NHQ S was noted to increase the pack and onto the alloy substrate is adversely affected. the quantity and depth of nickel of transfer.
  • Another method of maintaining the oxygen partial forming the desired coating of nickel while avoiding the pressure to the desirable low level is to sweep out the oxygen deposition of sulfur-rich compounds, except for the formation occluded in the pack by means of a substantially oxygen-free of chromium sulfide at the surface of the substrate which is l 5 inert g such as g n n r y p g. h re i anium is easily removed by glass head honing.
  • the amount of sulfur in the pack whether deliberately may range from about Vs to about 1 percent.
  • a typical pack added, or whether present in the pack materials employed, for processing the alloy Wl-52 is one comprising about 40% e.g., nickel powder and/or the alumina, may range from about nickel pow the P mixture n ining about three-Six- 0.002 to 0.1 percent by weight.
  • teenth percent of titanium and about 0.015 to 0.05% of sulfur The sulfur is consumed in the formation of scale and reacwith the balance essentially inert refractory oxide, e.g., alution with titanium (scavenger) and oxygen.
  • the reaction mina is about of sulfur with chromium in the alloy substrate may result in three-sixteenth to about one-half percent.
  • titanium sulfide Residual oxygen in the pack can react with the sulfurdioxide and with the titanium to form titanium dioxide. The preference and degree to which these reactions occur is dependent upon the relative concentration of the elements in the pack.
  • the sulfur content of the pack at the lowrange results in a nickel zone in the substrate of about 0.5 mils thick (0.0005 of an inch), with about 2 to 10% nickel diffused into the surface.
  • the lower the sulfur level in the pack over the small but effective range the less is the nickel transfer and the smaller the depth of diffusion.
  • a nickel zone is obtained on the substrate of the alloy containing up to about 20 percent by weight of nickel as determined by microprobe analysis.
  • the parts as removed from the nickelizing pack are covered with light scale which is removed by low-pressure glass bead honing.
  • the scale is composed of distinct-phases of chromium sulfide with entrapped powder from the pack, the chromium sulfide ranging in composition from Cr s to Cr S,,
  • the scale thickness usually averages 0.3 mils, the thickness increasing with sulfur additions and increased nickel transfer.
  • lt is important that the oxygen partial pressure in the pack be maintained below a level at which oxidation ofsulfur is sub stuntiully inhibited.
  • a titanium level of about three-sixteenth percent has been determined to be particularly advantageous in providing improved nickel transfer while minimizing oxidation damage during the nickelizing process cycle.
  • nickelized alloys are then aluminized in a prereacted pack containing by weight 20% Cr, 3% Al, l/4% Nl-LFHF and the balance essentially alumina (-325 mesh) to yield a corrosion resistant coating of substantially improved impact ductility.
  • the 0.002 to 0.0025 inch coating produced comprises nickel-cobalt aluminides containing chromium in solid solution.
  • the substrate is similarly nickelized in a pack containing by weight 20% electrolytic nickel powder (200 mesh), about 0.3% titanium, about 0.02% of sulfur and the balance essentially 325 mesh alumina at a temperature of l,925 F.i25 F., for about 10 hours, following which the surface of the alloy substrate is cleaned by glass bean honing and then aluminized in the aforementioned prereacted puck at l.900F:25 F. for 20 to 30 hours to yield a corrosion resistant nickel amuminide coating (0.0025 to 0.003 inch thick) which is very highly impact and spall resistant.
  • the treatment in the nickel pack causes chromium depletion in the substrate which allows for the formation ofa ductile aluminide coating during the second diffusion bonding.
  • the improved ductility of the coating compared to the more brittle coatings currently used on such alloys is attributed to less chromium-rich phases within the coating and the absence of porosity at the coating substrate interface.
  • the improved impact resistant coating provides a resistance to at least about 17 inch lbs. impact as compared to one-fourth inch lb. impact for the conventionally produced single step aluminide coating.
  • a simple test devised to simulate the stress and temperature environment of actual turbine hardware during engine service comprises a simple bending load test in which the load is applied to a coated test bar which is subjected to an end to end temperature gradient developed by a concentrated oxyacetylene flame which is applied to the center of the test bar and the heat allowed to dissipate to the opposite ends of the bar.
  • Each testpiece is cycled from maximum temperature (e.g., 2,000 P.) to black heat during a 10 minute period.
  • the simple beam load is lifted and dropped three times to reproduce foreign object impact damage during service. Results have shown that the coating produced in accordance with the invention exhibits at least a 3 to 1 improvement over the conventional aluminized coating mentioned hereinabove.
  • chipping and spalling of the coating occurred after 45 cycles, while in the improved coating produced in accordance with the invention, the coating was still intact after 135 cycles.
  • the nickelizing pack may range by weight from about 5 to 60% nickel powder, about A; to 1% titanium, about 0.002 to 0.1% sulfur and the balance an inert refractory material, such as particulate refractory oxides, e.g., A1 MgO, SiO and the like. Examples of other oxygen scavengers are thorium, cerium, yttrium and other rare earth metals.
  • the nickelizing temperature may range from about 1,500 to 2,000 F. for about 5 to 40 hours.
  • a cementation pack which may be employed in the aluminizing step comprises about to 30 percent of a buffering metal (e.g., chromium), about 1 to 5% of aluminum, a small but effective amount of a halide energizer, e.g., one-quarter percent of NH FHF (such as /5 to 1 percent energizer) and the balance a particulate inert refractory material as mentioned hereinabove.
  • the buffering metal aids in controlling the transfer and deposition of the aluminum. Examples of other buffering metals are nickel, iron and cobalt.
  • the pack is mixed and prereacted at an elevated temperatures of, for example, 1,750 to 2,050 F. for about 1 to hours prior to use for coating and the nickelized article then aluminized at a temperature of about 1,750 to 2,050 F. for about 1 to 30 hours.
  • An airfoil section made of an alloy (WI-52) comprising about 0.45% C, about 0.25% Mn, 0.25% Si, about 21% Cr, about 1 1% W. about 2% Cb, about 2% Fe and the balance essentially cobalt is embedded in a nickelizing pack containing by weight about 40% electrolytic nickel powder (-200 mesh), about 0.2% titanium powder, about 0.02% sulfur and the balance essentially alumina (-325 mesh) in a retort.
  • the retort is sealed with low-melting silicate glass composition and the retort then heated in a muffle furnace to a temperature of about l,925 F.t25 F. and held at temperature for about hours.
  • the retort is thereafter cooled to room temperature and the airfoil section cleaned by glass bead honing at low pressure to remove chromium sulfide scale at the surface.
  • a diffused layer of nickel is obtained having an enriched zone of about 0.002 inch thick containing about 20% nickel.
  • the element is similarly embedded in an aluminizing pack containing by weight 20 percent chromium mesh powder) as a buffering agent 3 percent aluminum powder (325 mesh), about one-quarter NH FHF and the balance essentially 325 mesh alumina.
  • the aluminizing was carried out for 20 hours in a sealed retort to produce an extremely ductile mixed nickelcobalt aluminide coating containing chromium in solid solutron.
  • a chromium-containing superalloy article em-- bedding said article in a particulate cementation pack consisting essentially of nickel powder mixed with an inert refractory material, the bed containing a small but effective amount of sulfur for effecting the transfer of said nickel to the substrate of said article at an elevated diffusion coating temperature, and
  • the pack cementation bed has a composition ranging from about 5 to 60% Ni, about A; to 1% Ti, about 0.002 to O. 1% S and the balance essentially the inert refractory material.
  • the nickel-coated article is aluminized by embedding it in a cementation pack containing by weight about 10 to 30% Cr, about 1 to 5% A1, a small but effective amount of a halide energizer and the balance a particulate inert refractory material, said article being then aluminized at a temperature of about l,750 to 2,050 F. for l to 30 hours.
  • the superalloy is selected from the group consisting of cobalt-base alloys containing by weight about 10 to 30% Cr, up to about 15% Ni, up to about 15% Fe, up to about 5% Cb, up to about 15% percent W, up to about 5% Ti and/or Al, up to about 1% Zr, up to about 1.5% C, up to about 1 to 2% Si, up to about 2% Mn and the balance essentially 45% Co; and nickel-base alloys containing by weight about 10 to 30% Cr, up to about 20 p cent of a metal from the group consisting of Mo and W, up to about 10 percent of a metal from the group consisting of Cb and Ta, up to about 0.5% C, up to about 6.5% of a metal from the group consisting of Ti and Al, the total amount of these metals not exceeding about 10%, up to about 20% Co, up to about 2% base superalloy article containing about 10 to 30% Cr, up to about Ni, up to about 15% Fe, up to about 5% Cb
  • a particulate cementation pack consisting essentially of said nickel mixed with an inert refractory material, the bed also containing a small but effective amount of sulfur for effecting transfer of nickel from the pack to the substrate of the article, and then heating said pack and the embedded article to an elevated diffusion coating temperature whereby to effect diffusion coating of said article with nickel, said coating being carried out while maintaining the oxygen in said pack at a partial pressure below which the oxidation of sulfur to sulfur oxide compounds is substantially inhibited.
  • the oxygen is maintained at the desired partial pressure by mixing with said pack a small but effective amount of an oxygen-scavenging metal whose free energy of formation of the oxide is at least about 1 15,000 calories per gram atom of oxygen at about 25 C.
  • the pack cementation bed has a composition ranging from about 5 to 60% Ni, about /s to 1% Ti, about 0.002 to 0.1% and the balance essentially the inert refractory material. 7
  • the nickel-coated article is aluminized by embedding it in a cementation pack containing by weight about 10 to 30% Cr, about 1 to 5% A1, a small but effective amount of a halide energizer and the balance a particulate inert refractory material, the article being then aluminized at a temperature of about l,750 to 2,050 F. for l to 30 hours.

Abstract

In the production of impact and oxidation resistant metal coatings on superalloy substrates, e.g., cobalt-base superalloys, by pack cementation, such as a nickel aluminide coating, the improvement wherein nickel is first diffusion coated onto the substrate from a pack containing a small but effective amount of sulfur as a metal transfer agent, following which the nickel coated substrate is then coated with another metal, such as aluminum.

Description

United States Patent Milidantri et al.
[54] IMPACT RESISTANT COATINGS FOR COBALT-BASE SUPERALLOYS AND THE LIKE Inventors: Thomas Milidantri, Spring Valley; Harry W. Brill-Edwards, New York, both of NY.
Assignee: Chromalloy American Corporation, Orangeburg, N.Y.
Filed: June 22, 1970 Appl. No.: 48,515
US. Cl ..l17/7l M, 29/196.6, 29/197,
106/1, 117/1072 P Int. Cl ..C23c 9/02 FieldofSearch ..117/107.2 P,71M,131;
References Cited UNITED STATES PATENTS Axline..... 17/71 M Mar. 7, 1972 Primary Examiner-Ralph S. Kendall Attorney-Hopgood and Calimafde [5 7] ABSTRACT In the production of impact and oxidation resistant metal coatings on superalloy substrates, e.g., cobalt-base superalloys, by pack cementation, such as a nickel aluminide coating, the improvement wherein nickel is first diffusion coated onto the substrate from a pack containing a small but effective amount of sulfur as a metal transfer agent, following which the nickel coated substrate is then coated with another metal,
such as aluminum.
16 Claims, No Drawings IMPACT RESISTANT COATINGS FOR COBALT-BASE SUPERALLOYS AND THE LIKE This invention relates to the pack-nickelizing of heat-resistant metal substrates and, in particular, to a method of producing a hot corrosion resistant metal coating in which the metal substrate is first nickelized to form a diffusion-bonded nickel coating thereon and thereafter aluminized in a separate coating step to provide an improved protective coating containing substantial amounts of nickel aluminide which coating exhibits markedly improved impact ductility.
Metallurgical developments in recent years have indicated the necessity of high-cobalt and/or high-nickel heat-resistant alloys (sometimes now referred to as super alloys) having desirable physical properties for various high temperature uses, such as, for example, the manufacture of rotor blades and stator vanes for high-temperature gas turbines where operation without failure is desired of the part, such as during prolonged exposure to temperatures well above 1,500 F., and even substantially above the temperature range at which failure or diminution of the strength characteristics may be expected of even high temperature austenitic or nickel chromium steel.
The use of superalloys by themselves with nothing more have not always provided the necessary resistance to hot corrosion damage at such elevated temperatures. Thus, corrosion resistant coatings have been resorted to as one means of further augmenting the resistance of the substrate to high-temperature corrosion, particularly on complex-shaped components used in contemporary jet engines where handling and gauging damage have been known to cause premature failure of protective coatings which tend to be brittle in nature. With regard to cobalt-base superalloys, the most current coatings used in such applications are cobalt aluminides containing dispersions of MC, M C and M C carbides. Coatings of this nature afford good oxidation resistance, but are too brittle for production assembly lines.
An attempt was made to evolve a two-step process for the independent deposition of nickel and aluminum on cobaltbase superalloys by using a nickel-alumina pack (40percent by weight nickel powder and 60percent by weight alumina) containing a halide energizer, e.g., one-quarter percent by weight of ammonium bifluoride. However, such packs were not successful to effect the transfer of nickel in that the energizer vapors tended to attack the component surface in preference to depositing nickel from the pack.
A method has now been found for effecting the transfer of nickel by pack cementation onto superalloy substrates, such as cobalt-base and nickel-base alloys, while avoiding the formation of chromium-containing embrittling phases at the interface. While the invention is particularly applicable to cobalt-base superalloys, it is also applicable to the coating of nickel-base alloys containing, for example, percent to 30 percent by weight of chromium where the deposit nickel dilutes the chromium at the interface to inhibit the formation of the aforementioned chromium-containing embrittling phases, such as the chromium carbides, nitrides and the like.
It is thus the object of the invention to provide a method whereby a high-impact and hot corrosion resistant coating may be produced on superalloys, such as cobalt-base and high-chromium-bearing nickel-base alloys.
Another object is to provide a method of nickelizing the substrate of cobalt-base and nickel-base superalloys preliminary to aluminizing said alloys for the production of hot corrosion resistant coatings based on nickel aluminide which exhibit markedly improved impact ductility.
Still another object is to provide a method of nickelizing chromium-containing superalloys whereby to avoid the formation of chromium-containing embrittling phases in the subsequent production of nickel aluminide coating by aluminizing the nickelized superalloys.
A further object is to provide a superalloy substrate, e.g., a cobalt-base superalloy, having a ductile impact and hot corrosion resistant coating diffusion bonded thereto.
These and other objects will more clearly appear from the following description and the appended claims.
Broadly stated, the invention resides in a method of producing an impact resistant coating on a superalloy substrate by pack cementation wherein a layer of diffusion-bonded sulfuractivatable transfer metal e.g., nickel, is produced as a first step in the ultimate formation of the impact resistant coating. The improvement resides in providing an article of said superalloy having a solute metal, e.g., chromium, whose free energy of formation of the sulfide is higher than that of the transfer metal (e.g., higher then nickel), embedding the'article in a particulate cementation pack consisting essentially of said sulfur-activatable transfer metal mixed with an inert refractory material (e.g., alumina), the bedcontaining a small but effective amount of sulfur for effecting the transfer of said sulfur-activatable metal to the substrate of said article at an elevated diffusion coating temperature, and then heating said pack and the embedded article to an elevated diffusion coating temperature, whereby to effect diffusion coating of that article with the transfer metal, the coating being carried out while maintaining the oxygen in the pack below the partial pressure at which oxidation of sulfur to sulfur dioxide is inhibited.
in carrying out the pack cementation process, the oxygen is maintained at the desired partial pressure by mixing with the pack a small but effective amount of an oxygen-scavenging metal (e.g., titanium) whose free energy of formation of the oxide is at least about 1 15,000 calories per gram atom of oxygen at about 25 C.
Where nickel is employed as the transfer metal, the particulate nickelizing pack has a composition ranging by weight from about 5 to 60% nickel, about one-eighth to 1% titanium, about 0.002 to 0.1% of sulfur, and the balance essentially an inert refractory material e.g., such refractory oxides as alumina, magnesia, silica and the like. A particular pack composition is one containing approximately 40% nickel, approximately 0.2% titanium, approximately 0.02% sulfur and the balance essentially aluminum oxide. Following the production of the diffusion bonded nickel coating, the substrate of the article is cleaned and the coated surface then aluminized, whereby an impact resistant coating containing nickel aluminide ofimproved ductility is produced.
As stated above, the method is applicable to both nickelbase and cobalt-base superalloys. In the case of nickel-base a1- loys, a typical alloy composition range is one containing by weight about 10 to 30% Cr, up to about 20% of a metal from the group consisting of Mo and W. up to about 10% ofa metal from the group consisting of Cb and Ta, up to about 0.5% C, up to about 6.5 percent by weight of a metal from the group consisting of Ti and Al, the total amount of these metals not exceeding about 10%, up to about 20% Co, up to about 2% Mn, up to about 2% Si, up to about 0.1% B, up to about 1% Zr,
'and the balance at least about 45% nickel.
With regard to the cobalt-base alloys, a typical composition range is one containing by weight about 10 to 30% Cr, up to about 15% Ni, up to about 15% Fe, up to about 5% Cb, up to about 15% W. up to about 5% Ti and/or A1, up to about 1% Zr, up to about 1.5% C, up to about 1 or 2% of Si, up to about 2% Mn and the balance essentially at least about 45% Co.
A well-known commercial composition is a cobalt-base alloy referred to by the designation Wl-52 containing by weight about 0.45% C, about 0.25% Mn. about 0.25% Si, about 21% Cr, about 1 1% W. about 2% Cb, about 2% Fe and the balance essentially cobalt.
The optimum processing cycle for nickelizing the aforementioned Wl-52 alloy involves the deposition of nickel at about 9,925 F.:25 F., (about 1,0S0 C.il4 C.) by embedding an article of the alloy, e. g., an airfoil section, in a particulate pack containing by weight about 40 percent 200 mesh electrolytic nickel and 60 percent 325 mesh alumina, the mixture containing by weight about three-sixteenth percent of titanium, with the sulfur level ranging from about 0.015 to 0.05 percent. The primary source of the sulfur is the nickel powder. With the foregoing pack, the thickness of nickel coating ranges up to about 0.002 inch.
in determining the positive effect of sulfur, or sulfur-containing compounds, as a metal transfer agent, the addition of ly, other oxygen scavengers may be employed so long as the free energy of formation of the oxide is at least about 1 15,000 calories per gram atom of oxygen. As stated above, unless precautions are taken to maintain the oxygen partial pressure small but effective amount of flowers of sulfur and such sulfur 5 in the pack to desirably low levels, the transfer of nickel from compounds as MS, 0,5, and (NHQ S was noted to increase the pack and onto the alloy substrate is adversely affected. the quantity and depth of nickel of transfer. However, the This can occur if too little titanium is in the pack to avoid the presence of too much sulfur may result in extensive attack of formation of sulfur dioxide and even chromium oxide on the the grain boundary carbide phases and the deposition of sulalloy substrate. For example, no titanium in the pack results in fur-compounds in situ. Thus, the term small but effective n0 nickel transfer and severe oxidation of the substrate being amount" is meant to cover that amount of sulfur conducive to coated. Another method of maintaining the oxygen partial forming the desired coating of nickel while avoiding the pressure to the desirable low level is to sweep out the oxygen deposition of sulfur-rich compounds, except for the formation occluded in the pack by means of a substantially oxygen-free of chromium sulfide at the surface of the substrate which is l 5 inert g such as g n n r y p g. h re i anium is easily removed by glass head honing. For advantageous employed as the o yg n ng the m n in the pack results, the amount of sulfur in the pack, whether deliberately may range from about Vs to about 1 percent. A typical pack added, or whether present in the pack materials employed, for processing the alloy Wl-52 is one comprising about 40% e.g., nickel powder and/or the alumina, may range from about nickel pow the P mixture n ining about three-Six- 0.002 to 0.1 percent by weight. teenth percent of titanium and about 0.015 to 0.05% of sulfur The sulfur is consumed in the formation of scale and reacwith the balance essentially inert refractory oxide, e.g., alution with titanium (scavenger) and oxygen. Thus, the reaction mina. A particularly advantageous range of titanium is about of sulfur with chromium in the alloy substrate may result in three-sixteenth to about one-half percent. several kinds of chromium sulfide which form on the surface As illustrative of the various superalloys that can be coated of the article following deposition of the nickel. The reaction in accordance with the invention, the following are given in with titanium in the pack may result in the formation of some Table l by way of example:
TABLE 1 Chemical composition, weight percent Alloy designation C Ma -M 509 0.55-
0.65 SM-302 0.85 AlResist 215 0.35
Udimet 500 l 0.08 Mar-M-4-3 0.15 IN-713 C. 0.12 HastellOX-X... 0.1
lnconei 600 0.04
titanium sulfide. Residual oxygen in the pack can react with the sulfurdioxide and with the titanium to form titanium dioxide. The preference and degree to which these reactions occur is dependent upon the relative concentration of the elements in the pack.
ln nickelizing the cobalt alloy identified hereinbefore by the designation Wl-52, the sulfur content of the pack at the lowrange results in a nickel zone in the substrate of about 0.5 mils thick (0.0005 of an inch), with about 2 to 10% nickel diffused into the surface. Generally, the lower the sulfur level in the pack over the small but effective range, the less is the nickel transfer and the smaller the depth of diffusion. Usually, a nickel zone is obtained on the substrate of the alloy containing up to about 20 percent by weight of nickel as determined by microprobe analysis.
In the normal process cycle, the parts as removed from the nickelizing pack are covered with light scale which is removed by low-pressure glass bead honing. The scale is composed of distinct-phases of chromium sulfide with entrapped powder from the pack, the chromium sulfide ranging in composition from Cr s to Cr S,, The scale thickness usually averages 0.3 mils, the thickness increasing with sulfur additions and increased nickel transfer.
lt is important that the oxygen partial pressure in the pack be maintained below a level at which oxidation ofsulfur is sub stuntiully inhibited. A titanium level of about three-sixteenth percent has been determined to be particularly advantageous in providing improved nickel transfer while minimizing oxidation damage during the nickelizing process cycle. Alternative- The SM-302 and AlResist 215 alloys nickelized in a pack composition containing by weight about 40% electrolytic nickel powder (200 mesh), about three-sixteenth percent titanium about 0.03 sulfur and the balance essentially alumina (325 mesh) at a temperature of about 1,925 F.t25 F. for 30 hours resulting in a deposited nickel zone ranging in nickel content from about 20 to 22 percent by weight according to microprobe analysis.
Following the nickelizing of the alloys in Table l, nickelized alloys are then aluminized in a prereacted pack containing by weight 20% Cr, 3% Al, l/4% Nl-LFHF and the balance essentially alumina (-325 mesh) to yield a corrosion resistant coating of substantially improved impact ductility. la the case of the cobalt-base alloys, the 0.002 to 0.0025 inch coating produced comprises nickel-cobalt aluminides containing chromium in solid solution.
In the case of l-lastelloy X (comprising 0.1% C, 22% Cr, 1.5% Co, 9% M0, 0.6% W. 18.5% Fe, 0.5% Mn, 0.5% Si and the balance essentially nickel), the substrate is similarly nickelized in a pack containing by weight 20% electrolytic nickel powder (200 mesh), about 0.3% titanium, about 0.02% of sulfur and the balance essentially 325 mesh alumina at a temperature of l,925 F.i25 F., for about 10 hours, following which the surface of the alloy substrate is cleaned by glass bean honing and then aluminized in the aforementioned prereacted puck at l.900F:25 F. for 20 to 30 hours to yield a corrosion resistant nickel amuminide coating (0.0025 to 0.003 inch thick) which is very highly impact and spall resistant.
The treatment in the nickel pack causes chromium depletion in the substrate which allows for the formation ofa ductile aluminide coating during the second diffusion bonding. Apparently, the improved ductility of the coating compared to the more brittle coatings currently used on such alloys is attributed to less chromium-rich phases within the coating and the absence of porosity at the coating substrate interface.
In the case of the alloy designated Wl-52, the improved impact resistant coating provides a resistance to at least about 17 inch lbs. impact as compared to one-fourth inch lb. impact for the conventionally produced single step aluminide coating.
A simple test devised to simulate the stress and temperature environment of actual turbine hardware during engine service comprises a simple bending load test in which the load is applied to a coated test bar which is subjected to an end to end temperature gradient developed by a concentrated oxyacetylene flame which is applied to the center of the test bar and the heat allowed to dissipate to the opposite ends of the bar. Each testpiece is cycled from maximum temperature (e.g., 2,000 P.) to black heat during a 10 minute period. As the specimen is being cooled, the simple beam load is lifted and dropped three times to reproduce foreign object impact damage during service. Results have shown that the coating produced in accordance with the invention exhibits at least a 3 to 1 improvement over the conventional aluminized coating mentioned hereinabove. With regard to the conventional single step aluminide coating, chipping and spalling of the coating occurred after 45 cycles, while in the improved coating produced in accordance with the invention, the coating was still intact after 135 cycles.
As stated hereinbefore, the nickelizing pack may range by weight from about 5 to 60% nickel powder, about A; to 1% titanium, about 0.002 to 0.1% sulfur and the balance an inert refractory material, such as particulate refractory oxides, e.g., A1 MgO, SiO and the like. Examples of other oxygen scavengers are thorium, cerium, yttrium and other rare earth metals. The nickelizing temperature may range from about 1,500 to 2,000 F. for about 5 to 40 hours.
A cementation pack which may be employed in the aluminizing step comprises about to 30 percent of a buffering metal (e.g., chromium), about 1 to 5% of aluminum, a small but effective amount of a halide energizer, e.g., one-quarter percent of NH FHF (such as /5 to 1 percent energizer) and the balance a particulate inert refractory material as mentioned hereinabove. The buffering metal aids in controlling the transfer and deposition of the aluminum. Examples of other buffering metals are nickel, iron and cobalt. Generally speaking, the pack is mixed and prereacted at an elevated temperatures of, for example, 1,750 to 2,050 F. for about 1 to hours prior to use for coating and the nickelized article then aluminized at a temperature of about 1,750 to 2,050 F. for about 1 to 30 hours.
As illustrative of a preferred embodiment of the invention, the following example is given:
EXAMPLE An airfoil section made of an alloy (WI-52) comprising about 0.45% C, about 0.25% Mn, 0.25% Si, about 21% Cr, about 1 1% W. about 2% Cb, about 2% Fe and the balance essentially cobalt is embedded in a nickelizing pack containing by weight about 40% electrolytic nickel powder (-200 mesh), about 0.2% titanium powder, about 0.02% sulfur and the balance essentially alumina (-325 mesh) in a retort. The retort is sealed with low-melting silicate glass composition and the retort then heated in a muffle furnace to a temperature of about l,925 F.t25 F. and held at temperature for about hours. The retort is thereafter cooled to room temperature and the airfoil section cleaned by glass bead honing at low pressure to remove chromium sulfide scale at the surface. A diffused layer of nickel is obtained having an enriched zone of about 0.002 inch thick containing about 20% nickel.
Following the cleaning of the airfoil element, the element is similarly embedded in an aluminizing pack containing by weight 20 percent chromium mesh powder) as a buffering agent 3 percent aluminum powder (325 mesh), about one-quarter NH FHF and the balance essentially 325 mesh alumina. The aluminizing was carried out for 20 hours in a sealed retort to produce an extremely ductile mixed nickelcobalt aluminide coating containing chromium in solid solutron.
Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention as those skilled in the art will readily understand. Such modifications and variations are considered to be within the purview and scope of the invention and the appended claims.
What is claimed is:
1. In a method of producing a highly impact resistant coating by pack cementation on a substrate ofa heat resistant superalloy article in which nickel is diffused into the substrate as a first step in the ultimate formation of said impact resistant coating, the improvement which comprises,
providing a chromium-containing superalloy article, em-- bedding said article in a particulate cementation pack consisting essentially of nickel powder mixed with an inert refractory material, the bed containing a small but effective amount of sulfur for effecting the transfer of said nickel to the substrate of said article at an elevated diffusion coating temperature, and
then heating said pack and the embedded article to an elevated diffusion coating temperature whereby to effect diffusion coating of said article with nickel, said coating being carried out while maintaining the oxygen in said pack at a partial pressure below which oxidation of sulfur to sulfur oxide compounds is substantially inhibited.
2. The method of claim 1, whereinthe oxygen is maintained at the desired partial pressure by mixing with said pack a small but effective amount of an oxygen-scavenging metal whose free energy of formation of the oxide is at least about 1 15,000 calories per gram atom of oxygen at about 250 C.
3. The method of claim 2, wherein the oxygen-scavenging metal is titanium.
4. The method of claim 3, wherein the pack cementation bed has a composition ranging from about 5 to 60% Ni, about A; to 1% Ti, about 0.002 to O. 1% S and the balance essentially the inert refractory material.
5. The method of claim 4, wherein the bed comprises approximately 40% nickel, approximately 0.2Ti, approximately 0.02% S and the balance essentially aluminum oxide.
6. The method of claim 4, wherein following the production of the diffusion-bonded nickel coating, the substrate of the article is cleaned, and the coated surface then aluminized, whereby a highly impact and spall resistant coating containing nickel aluminide is produced.
7. The method of claim 6, wherein the nickel-coated article is aluminized by embedding it in a cementation pack containing by weight about 10 to 30% Cr, about 1 to 5% A1, a small but effective amount of a halide energizer and the balance a particulate inert refractory material, said article being then aluminized at a temperature of about l,750 to 2,050 F. for l to 30 hours.
8. The method of claim 4, whereinlthe superalloy is selected from the group consisting of cobalt-base alloys containing by weight about 10 to 30% Cr, up to about 15% Ni, up to about 15% Fe, up to about 5% Cb, up to about 15% percent W, up to about 5% Ti and/or Al, up to about 1% Zr, up to about 1.5% C, up to about 1 to 2% Si, up to about 2% Mn and the balance essentially 45% Co; and nickel-base alloys containing by weight about 10 to 30% Cr, up to about 20 p cent of a metal from the group consisting of Mo and W, up to about 10 percent of a metal from the group consisting of Cb and Ta, up to about 0.5% C, up to about 6.5% of a metal from the group consisting of Ti and Al, the total amount of these metals not exceeding about 10%, up to about 20% Co, up to about 2% base superalloy article containing about 10 to 30% Cr, up to about Ni, up to about 15% Fe, up to about 5% Cb, up to about 15% W, up to about 5% Ti and/or A1, up to about 1% Zr, up to about 1.5% percent C, up to about 2% Si, up to about 2% Mn, and the balance essentially at least about 45% cobalt in which a layer of diffusion-bonded nickel is produced as a first step in the ultimate formation of said impact resistant coating, the improvement which comprises,
embedding the article in a particulate cementation pack consisting essentially of said nickel mixed with an inert refractory material, the bed also containing a small but effective amount of sulfur for effecting transfer of nickel from the pack to the substrate of the article, and then heating said pack and the embedded article to an elevated diffusion coating temperature whereby to effect diffusion coating of said article with nickel, said coating being carried out while maintaining the oxygen in said pack at a partial pressure below which the oxidation of sulfur to sulfur oxide compounds is substantially inhibited. 10. The method of claim 9, wherein the oxygen is maintained at the desired partial pressure by mixing with said pack a small but effective amount of an oxygen-scavenging metal whose free energy of formation of the oxide is at least about 1 15,000 calories per gram atom of oxygen at about 25 C.
11. The method ofclaim 10, wherein the oxygen-scavenging metal is titanium.
12. The method of claim 11, wherein the pack cementation bed has a composition ranging from about 5 to 60% Ni, about /s to 1% Ti, about 0.002 to 0.1% and the balance essentially the inert refractory material. 7
13. The method of claim 11, wherein the bed comprises approximately 40% nickel, approximately 0.2% Ti, approximately 0.02% S and the balance essentially aluminum oxide.
14. The method of claim 11, wherein following the production of the diffusion-bonded nickel coating, the substrate of the article is cleaned, and the coated surface then aluminized, whereby a highly impact resistant coating containing nickel aluminide is produced.
15. The method of claim 14, wherein the nickel-coated article is aluminized by embedding it in a cementation pack containing by weight about 10 to 30% Cr, about 1 to 5% A1, a small but effective amount of a halide energizer and the balance a particulate inert refractory material, the article being then aluminized at a temperature of about l,750 to 2,050 F. for l to 30 hours.
16. An article of manufacture produced in accordance with the method of claim 1.

Claims (15)

  1. 2. The method of claim 1, wherein the oxygen is maintained at the desired partial pressure by mixing with said pack a small but effective amount of an oxygen-scavenging metal whose free energy of formation of the oxide is at least about 115,000 calories per gram atom of oxygen at about 250* C.
  2. 3. The method of claim 2, wherein the oxygen-scavenging metal is titanium.
  3. 4. The method of claim 3, wherein the pack cementation bed has a composition ranging from about 5 to 60% Ni, about 1/8 to 1% Ti, about 0.002 to 0.1% S and the balance essentially the inert refractory material.
  4. 5. The method of claim 4, wherein the bed comprises approximately 40% nickel, approximately 0.2Ti, approximately 0.02% S and the balance essentially aluminum oxide.
  5. 6. The method of claim 4, wherein following the production of the diffusion-bonded nickel coating, the substrate of the article is cleaned, and the coated surface then aluminized, whereby a highly impact and spall resistant coating containing nickel aluminide is produced.
  6. 7. The method of claim 6, wherein the nickel-coated article is aluminized by embedding it in a cementation pack containing by weight about 10 to 30% Cr, about 1 to 5% Al, a small but effective amount of a halide energizer and the balance a particulate inert refractory material, said article being then aluminized at a temperature of about 1,750* to 2,050* F. for 1 to 30 hours.
  7. 8. The method of claim 4, wherein the superalloy is selected from the group consisting of cobalt-base alloys containing by weight about 10 to 30% Cr, up to about 15% Ni, up to about 15% Fe, up to about 5% Cb, up to about 15% percent W, up to about 5% Ti and/or Al, up to about 1% Zr, up to about 1.5% C, up to about 1 to 2% Si, up to about 2% Mn and the balance essentially 45% Co; and nickel-base alloys containing by weight about 10 to 30% Cr, up to about 20 percent of a metal from the group consisting of Mo and W, up to about 10 percent of a metal from the group consisting of Cb and Ta, up to about 0.5% C, up to about 6.5% of a metal from the group consisting of Ti and Al, the total amount of these metals not exceeding about 10%, up to about 20% Co, up to about 2% Mn, up to about 2% Si, up to about 0.1% B, up to about 1% Zr and the balance at least about 45% nickel.
  8. 9. In a method of producing a highly impact and spall resistant coating by pack cementation on a substrate of a cobalt-base superalloy article containing about 10 to 30% Cr, up to about 15% Ni, up to about 15% Fe, up to about 5% Cb, up to about 15% W, up to about 5% Ti and/or A1, up to about 1% Zr, up to about 1.5% percent C, up to about 2% Si, up to about 2% Mn, and the balance essentially at least about 45% cobalt in which a layer of diffusion-bonded nickel is produced as a first step in the ultimate formation of said impact resistant coating, the improvement which comprises, embedding the article in a particulate cementation pack consisting essentially of said nickel mixed with an inert refractory material, the bed also containing a small but effective amount of sulfur for effecting transfer of nickel from the pack to the substrate of the article, and then heating said pack and the embedded article to an elevated diffusion coating temperature whereby to effect diffusion coating of said article with nickel, said coating being carried out while maintaining the oxygen in said pack at a partial pressure below which the oxidation of sulfur to sulfur oxide compounds is substantially inhibited.
  9. 10. The method of claim 9, wherein the oxygen is maintained at the desired partial pressure by mixing with said pack a small but effective amount of an oxygen-scavenging metal whose free energy of formation of the oxide is at least about 115, 000 calories per gram atom of oxygen at about 25* C.
  10. 11. The method of claim 10, wherein the oxygen-scavenging metal is titanium.
  11. 12. The method of claim 11, wherein the pack cementation bed has a composition ranging from about 5 to 60% Ni, about 1/8 to 1% Ti, about 0.002 to 0.1% and the balance essentially the inert refractory material.
  12. 13. The method of claim 11, wherein the bed comprises approximately 40% nickel, approximately 0.2% Ti, approximately 0.02% S and the balance essentially aluminum oxide.
  13. 14. The method of claim 11, wherein following the production of the diffusion-bonded nickel coating, the substrAte of the article is cleaned, and the coated surface then aluminized, whereby a highly impact resistant coating containing nickel aluminide is produced.
  14. 15. The method of claim 14, wherein the nickel-coated article is aluminized by embedding it in a cementation pack containing by weight about 10 to 30% Cr, about 1 to 5% A1, a small but effective amount of a halide energizer and the balance a particulate inert refractory material, the article being then aluminized at a temperature of about 1,750* to 2,050* F. for 1 to 30 hours.
  15. 16. An article of manufacture produced in accordance with the method of claim 1.
US48515A 1970-06-22 1970-06-22 Impact resistant coatings for cobalt-base superalloys and the like Expired - Lifetime US3647517A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4851570A 1970-06-22 1970-06-22

Publications (1)

Publication Number Publication Date
US3647517A true US3647517A (en) 1972-03-07

Family

ID=21954994

Family Applications (1)

Application Number Title Priority Date Filing Date
US48515A Expired - Lifetime US3647517A (en) 1970-06-22 1970-06-22 Impact resistant coatings for cobalt-base superalloys and the like

Country Status (10)

Country Link
US (1) US3647517A (en)
JP (1) JPS5036624B1 (en)
BE (1) BE768488A (en)
CH (1) CH549099A (en)
FR (1) FR2096395B1 (en)
GB (1) GB1307785A (en)
IL (1) IL36129A (en)
LU (1) LU63354A1 (en)
NL (1) NL160338C (en)
SE (1) SE364529B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849865A (en) * 1972-10-16 1974-11-26 Nasa Method of protecting the surface of a substrate
US3953647A (en) * 1973-10-05 1976-04-27 United Technologies Corporation Graphite fiber reinforced metal matrix composite
US4071659A (en) * 1975-11-13 1978-01-31 Texas Instruments Incorporated Solar absorption surface panel
US4142023A (en) * 1975-12-16 1979-02-27 United Technologies Corporation Method for forming a single-phase nickel aluminide coating on a nickel-base superalloy substrate
US4190493A (en) * 1975-02-26 1980-02-26 Sulzer Brothers Limited Coated structural component for a high temperature nuclear reactor
US4346137A (en) * 1979-12-19 1982-08-24 United Technologies Corporation High temperature fatigue oxidation resistant coating on superalloy substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2732923A1 (en) * 1977-07-21 1979-01-25 Friedrichsfeld Gmbh JOINT PROSTHESIS MADE OF NON-METALLIC MATERIALS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2300400A (en) * 1940-06-26 1942-11-03 Metallizing Engineering Compan Heat corrosion resistant metallic material
US3096160A (en) * 1961-06-19 1963-07-02 Union Carbide Corp Vapor diffusion coating process
US3141744A (en) * 1961-06-19 1964-07-21 Dwight E Couch Wear-resistant nickel-aluminum coatings
US3257230A (en) * 1964-03-24 1966-06-21 Chromalloy American Corp Diffusion coating for metals
FR1553233A (en) * 1967-01-31 1969-01-10
US3544348A (en) * 1968-10-25 1970-12-01 United Aircraft Corp Overhaul process for aluminide coated gas turbine engine components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2300400A (en) * 1940-06-26 1942-11-03 Metallizing Engineering Compan Heat corrosion resistant metallic material
US3096160A (en) * 1961-06-19 1963-07-02 Union Carbide Corp Vapor diffusion coating process
US3141744A (en) * 1961-06-19 1964-07-21 Dwight E Couch Wear-resistant nickel-aluminum coatings
US3257230A (en) * 1964-03-24 1966-06-21 Chromalloy American Corp Diffusion coating for metals
FR1553233A (en) * 1967-01-31 1969-01-10
US3544348A (en) * 1968-10-25 1970-12-01 United Aircraft Corp Overhaul process for aluminide coated gas turbine engine components

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849865A (en) * 1972-10-16 1974-11-26 Nasa Method of protecting the surface of a substrate
US3953647A (en) * 1973-10-05 1976-04-27 United Technologies Corporation Graphite fiber reinforced metal matrix composite
US4190493A (en) * 1975-02-26 1980-02-26 Sulzer Brothers Limited Coated structural component for a high temperature nuclear reactor
US4071659A (en) * 1975-11-13 1978-01-31 Texas Instruments Incorporated Solar absorption surface panel
US4142023A (en) * 1975-12-16 1979-02-27 United Technologies Corporation Method for forming a single-phase nickel aluminide coating on a nickel-base superalloy substrate
US4346137A (en) * 1979-12-19 1982-08-24 United Technologies Corporation High temperature fatigue oxidation resistant coating on superalloy substrate

Also Published As

Publication number Publication date
DE2107372A1 (en) 1972-01-05
SE364529B (en) 1974-02-25
DE2107372B2 (en) 1975-11-27
IL36129A (en) 1974-03-14
BE768488A (en) 1971-11-03
NL160338C (en) 1979-10-15
FR2096395A1 (en) 1972-02-18
CH549099A (en) 1974-05-15
LU63354A1 (en) 1971-09-20
FR2096395B1 (en) 1974-05-31
JPS5036624B1 (en) 1975-11-26
IL36129A0 (en) 1971-04-28
GB1307785A (en) 1973-02-21
NL160338B (en) 1979-05-15
NL7104691A (en) 1971-12-24

Similar Documents

Publication Publication Date Title
US3999956A (en) Platinum-rhodium-containing high temperature alloy coating
US4080486A (en) Coating system for superalloys
Mevrel et al. Pack cementation processes
US3754903A (en) High temperature oxidation resistant coating alloy
EP0267143B1 (en) Method for applying aluminide coatings to superalloys
US4124737A (en) High temperature wear resistant coating composition
US3676085A (en) Cobalt base coating for the superalloys
US4005989A (en) Coated superalloy article
US3540878A (en) Metallic surface treatment material
US3667985A (en) Metallic surface treatment method
USRE31339E (en) Process for producing elevated temperature corrosion resistant metal articles
Lindblad A review of the behavior of aluminide-coated superalloys
JPS6246628B2 (en)
JPS5837145A (en) Coating composition
US4024294A (en) Protective coatings for superalloys
JPS6136061B2 (en)
US4142023A (en) Method for forming a single-phase nickel aluminide coating on a nickel-base superalloy substrate
US3837901A (en) Diffusion-coating of nickel-base superalloy articles
JPH01257A (en) Oxidation-resistant and high-temperature corrosion-resistant nickel-based alloy coating materials and composite products using the same
GB2039963A (en) Mult-layer high temperature corosion-protective coating
JPH0676669B2 (en) High temperature protective layer material
US3647517A (en) Impact resistant coatings for cobalt-base superalloys and the like
EP0131536B1 (en) Chromium boron surfaced nickel-iron base alloys
US6673709B2 (en) Formation of an aluminide coating, incorporating a reactive element, on a metal substrate
US3953193A (en) Coating powder mixture

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP., N

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635

Effective date: 19880311

Owner name: CHROMALLOY GAS TURBINE CORPORATION, BLAISDELL ROAD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635

Effective date: 19880311