US3596609A - Rapid discharge hopper car door actuator - Google Patents

Rapid discharge hopper car door actuator Download PDF

Info

Publication number
US3596609A
US3596609A US857269A US3596609DA US3596609A US 3596609 A US3596609 A US 3596609A US 857269 A US857269 A US 857269A US 3596609D A US3596609D A US 3596609DA US 3596609 A US3596609 A US 3596609A
Authority
US
United States
Prior art keywords
door
doors
hopper
shaft
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US857269A
Inventor
Robert C Ortner
Norman S Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avondale Industries Inc
Original Assignee
ORTNER FREIGHT CAR Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORTNER FREIGHT CAR Co filed Critical ORTNER FREIGHT CAR Co
Application granted granted Critical
Publication of US3596609A publication Critical patent/US3596609A/en
Assigned to AVONDALE INDUSTRIES, INC., A CORP. OF DE. reassignment AVONDALE INDUSTRIES, INC., A CORP. OF DE. MERGER (SEE DOCUMENT FOR DETAILS). 8-29-85 Assignors: ORTNER FREIGHT CAR COMPANY ETC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D7/00Hopper cars
    • B61D7/14Adaptations of hopper elements to railways
    • B61D7/16Closure elements for discharge openings
    • B61D7/24Opening or closing means
    • B61D7/26Opening or closing means mechanical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32254Lockable at fixed position
    • Y10T403/32426Plural distinct positions
    • Y10T403/32442At least one discrete position
    • Y10T403/32451Step-by-step adjustment
    • Y10T403/32459Retainer extends through aligned recesses

Definitions

  • the hopper doors have portions capable of being flexed inwardly relative to the nor mal plane of the door.
  • the operating means for the doors being capable of fine adjustment so as to efiect flexure of the doors as they swing from their closed to their open positions.
  • the bottom edges of the doors are provided with sealing means which will not obstruct the discharge of material from the hopper car during the unloading process.
  • the invention relates to improvements in railroad freight cars, and more particularly to improvements in freight cars of the type wherein the load is discharged through a plurality of doors in the underside of the car body.
  • Such cars are generally known as hopper cars.
  • Hopper cars of the type described presented further problems in addition to the requirement of manual opening and closing of each hopper door. Often it was difficult to completely discharge the contents of the car, particularly where materials such as pulverized coal, wood chips and the like were being carried, since such loads tended to become compacted by the motion of the car. Furthermore, when exposed to the elements during transit, such loads often became frozen or caked. Under such circumstances simply opening the hopper doors was often not sufficient to discharge the load. Frequently it was necessary for the crews to use picks, shovels, vibrators or car shakers to loosen the material of the load so that it would flow from the chutes. Sometimes, depending upon the load being carried, the crew would build fires under the chutes to loosen the frozen material, but this often resulted in considerable damage to the underside of the car, the airbrake system and the like.
  • hopper cars have been developed the interiors of which are not divided into a plurality of separate chutes. Rather, substantially the entire bottoms of such cars are openable by means of a plurality of cooperating hopper doors. Means have also been provided for automatically opening the hopper doors sequentially or simultaneously, reference being made, by way of example, to U.S. Pat. No. 3,187,684 entitled RAPID DISCHARGE HOPPER CAR, issued June 8, 196$,in the name of Robert C. Ortner.
  • the present invention is directed to the provision of a hopper car having improved means for automatically opening and closing the hopper doors.
  • the hopper doors are of improved construction, characterized by great strength, and yet capable of sufficient double-acting I'Iexure during the dooropening operation to shear loose from the doors any hardened or frozen crust formed by that part of the load adjacent the door.
  • the door'actuating means are capable of fine adjustment so that the actuating means will effect the desired double-acting flexure of the doors.
  • a plurality of hopper doors are arranged in opposing relationship and extend transversely of the hopper car. In another embodiment, a plurality of hopper doors are arranged in opposing relationship and extend longitudinally of the hopper car.
  • FIG. 1 is a semidiagrammatic elevational view, with parts in section, of a hopper car in accordance with the instant invention.
  • FIG. I is a semidiagrammatic plan view of the hopper car of FIG. 1.
  • FIG. 3 is a fragmentary perspective view illustrating the door-actuating mechanism of the present invention.
  • FIG. 4 is a fra mentary cross-sectional view taken along the section line of FIG. 2, showing the center sill of the hopper car of the present invention and a portion of the dooractuating means in the door-closed position.
  • FIG. 5 is similar to FIG. 4 and shows the door-actuating means in the door-open" position.
  • FIG. 6 is a fragmentary longitudinal moss-sectional view of the hopper car of the present invention taken along section line 6-6 of FIG. 2 and showing another portion of the door-actuating means in the "door-closed position.
  • FIG. 7 is a view similar to FIG. 6 but showing the door-actuating mechanism in door-open" position.
  • FIG. 8 is a fragmentary exploded view showing the upper end of a center lever, and the splined adjustment means for the center lever pin.
  • FIG. 9 is an exploded view of the door link illustrating means for adjusting its length.
  • FIG. 10 is an enlarged cross-sectional view taken along the section line 10-10 of FIG. 6.
  • FIG. 11 is an enlarged cross-sectional view taken along the section line 11-11 of FIG. 6.
  • FIG. 12 is an enlarged cross-sectional view taken along the section line 12-12 of FIG. 4.
  • FIG. 13 is an elevational view, with parts in section, of the driving mechanism for the door-actuating means.
  • FIG. 14 is a side elevation of the driving mechanism with parts in cross section.
  • FIG. 15 is an enlarged fragmentary elevational view of the hopper car side showing the means for indicating the positions of the hopper doors.
  • FIG. 16 is an enlarged fragmentary plan view of the locking means for the door-actuating assembly.
  • FIG. 17 is an elevational view of the locking means of FIG. I6.
  • FIG. 18 is an elevational view of a hopper door assembly of the present invention.
  • FIG. 19 is an enlarged cross-sectional view taken along the section line 19-19 ofFlG. 18.
  • FIG. 20 is a fragmentary elevational view of a pair of cooperating hopper doors, illustrating an improved form of door-sealing means.
  • FIG. 21 is similar to FIG. 20 showing yet another form of door-sealing means.
  • FIG. 22 is a view similar to that of FIG. 20 showing an additional door-sealing means.
  • FIG. 23 is a diagrammatic representation of the door-actuating mechanism illustrating the sequential door-opening operation.
  • FIG. 24 is a fragmentary elevational view with parts in cross section showing fluid-actuated cylinder means for imparting movement to the door-actuating beam.
  • FIG. 25 is a diagrammatic representation of one form of fluid-actuated cylinder means.
  • FIG. 26 is a fragmentary, semidiagrammatic elevational view of a hopper car of the type having longitudinally extending hopper doors.
  • FIG. 27 is a cross-sectional view taken along the section line 27-27 of FIG. 26.
  • FIG. 28 is an elevational view of an inner door of the hopper car of FIG. 26.
  • FIG. 29 is an end view of the door of FIG. 26 as seen from the left in FIG. 26.
  • FIG. 30 is an elevational view of an outer door of the hopper car of FIG. 26.
  • FIG. 3 is an end view of the door of FIG. 30 as seen from the right in FIG. 30.
  • FIG. 32 is a fragmentary side elevational view of the door actuating shaft.
  • FIG. 33 is a fragmentary side elevational view of the assembly for rotating the door-actuating shaft.
  • FIG. 34 is a fragmentary end elevational view of the assembly of FIG. 33 as seen from the left in FIG. 33.
  • FIG. 35 is a fragmentary, semidiagrammatic side elevational view of the outer door actuating linkage.
  • FIG. 36 is a fragmentary elevational view of an alternate assembly for rotating the door-actuating shaft of FIG. 32.
  • FIG. 37 is a fragmentary end elevation of the assembly of FIG. 36 as seen from the right in FIG. 36.
  • FIGS. 1 and 2 constitute respectively an elevational and a plan view of a hopper car of the type described, and like parts have been given like index numerals.
  • the hopper car comprises an elongated body generally indicated at l and mounted on conventional trucks 2.
  • the body comprises vertical sides 3 and 4 with inclined end walls and 6, conventionally called slope sheets.
  • the car body is provided with a base framework, comprising elongated side frame members or sidewalls (one of which is shown at 7), a longitudinally extending center frame member or sill 8, and a plurality of additional frame members 9 and extending transversely of the car body from the center sill to the side sills 7.
  • a base framework comprising elongated side frame members or sidewalls (one of which is shown at 7), a longitudinally extending center frame member or sill 8, and a plurality of additional frame members 9 and extending transversely of the car body from the center sill to the side sills 7.
  • the sides 3 and 4 of the car are provided with a plurality of vertical braces generally indicated at II, which extend upwardly from the side sills 7. .
  • the ends of the car body also have vertical brace members generally indicated at 12.
  • the slope sheets 5 and 6 are additionally supported by a plura ity of triangular braces 13 (see FIGS. 1 and 13) extending upwardly from the base frame of the car
  • slope sheets 5 and 6 extend downwardly to pairs of rectangular discharge openings generally indicated at and I6, the pairs of openings being separated by small oppositely slanted slope sheets I7 and 18.
  • Each of the discharge openings 15. 16 is closed by a cooperating pair of hopper doors l9 and 19a.
  • the hopper doors l9 and 194 are split so as to provide room for the passage of the center sill 8, and are supported by the transversely extending sets of frame members 9 and 10.
  • the split doors l9 and 190 are substantially identical. It will be further understood by one skilled in the art that it would be within the scope of this invention to provide the car of FIGS. 1 and 2 with an additional set of cooperating doors comparable to the doors l9 and 19a in replacement of the slope sheets 17 and 18.
  • the center sill 8 may be provided with a hood or cover 20 having inclined wall surfaces tapering outwardly and downwardly from a ridge 20a.
  • the frame elements 9 extending transversely across the openings I5 and 16 may similarly be provided with hoods or covers 21 having inclined wall surfaces tapering downwardly and outwardly from ridges 21a.
  • the hoods or covers 20 and 21 serve not only to break up the load, but also to guide it during the discharge operation.
  • the transversely extending supports 9 and the slope sheets 17 and 18 may be additionally supported by struts generally indicated at 22.
  • the struts extend upwardly and outwardly from the frame membets 9 or the slope sheets 17 and 18 to the car body sides.
  • these struts are tubular in configuration, being of elliptical cross section so as to provide maximum strength and minimum resistance to the discharge flow of the carload.
  • the car body has a plurality of downwardly depending inwardly sloping triangular members 23 which form the outside closure means for cooperating pairs of hopper doors.
  • the triangular members 23 depend from the side frames 7.
  • additional triangular members 24 are provided to form the inside closures for cooperating pairs of hopper doors.
  • the triangular members 24 are suitably supported from the car frame adjacent the center sill, or they may be affixed to the center sill.
  • the transversely extending frame members 9 and I0 differ slightly in configuration. This is due to the fact that the frame members 9 are located at the center of the openings 15 and 16 while the frame members 10 are located at the lowermost edge of the slope sheets, such as the slope sheets 5 and 17 shown in FIG. 6.
  • the frame members 9 are generally U-shaped in cross section, the legs of the U-shaped configuration sloping upwardly and outwardly to provide door hinge mounting surfaces 9a and 9b.
  • the frame members 10 are also of Ushaped cross sectional configuration, but one leg 10a of the U-shaped configuration is vertically oriented and forms a support for the lower edge of the adjacent slope sheet, while the other leg slants upwardly and outwardly to form a door hinge mounting surface 10b, the leg terminating in a bent over portion forming an additional slope sheet support.
  • FIG. IS a typical hopper door I9 is shown. It will be understood by one skilled in the art that a cooperating hopper door will be substantially identical.
  • the hopper door 19 comprises two closure members 25 and 26 which constitute mirror images of each other and which are joined by an elongated brace. This construction is necessary since the closure members 25 and 26 will lie on either side of the center sill 8.
  • the uppermost edges of the closure members 25 and 26 are provided with hinge means 28.
  • the hinge members 28 coact with cooperating hinge members 29 located on the hinge-supporting surfaces of the frame members 9 and 10.
  • each beam supporting bracket 3! comprises a member 32 permanently affixed to the inside surface of the leg of the center sill and extending perpendicular thereto.
  • the bracket 32 supports a pair of parallel plates 33 and 34.
  • An additional plate 35 is bolted to the plate 34.
  • the plates 33 and 35 constitute side guides for the dooractuating beam.
  • a roller 36 is rotatably mounted to the bracket by means of a pin 37 passing through the plates 33, 34 and 35, and serves as a support for the door-actuating means permitting its sliding motion longitudinally of the center sill.
  • the inside horizontal surface of the center sill is provided with a plurality of spaced downwardly depending V- shaped members 38, serving as top guide members for the door-actuating beam.
  • the upper surface of the door-actuating beam is provided with a rack 39, seen in FIG. 3 and 4.
  • the rack is engaged by that portion of a gear 40 which extends downwardly through a slot 41 in the center sill 8. It will be understood that rotation of the gear 40 will cause longitudinal movement in the door actuating beam, as will be more fully described hereinafter.
  • each door supporting frame member 9 Beneath each door supporting frame member 9 and there is located a shaft extending transversely of the car body.
  • a shaft 42 rotatably supported in suitable bearings 43 affixed to a spaced pair of downwardly depending beams 44 and 440.
  • a shaft 45 supported in suitable bearings 46 on a spaced pair of downwardly depending beams 47 and 47a.
  • the shafts 42 and 45 differ from each other only in length. The reason for this is clearly shown in FIGS. 10 and 11. As seen in H0. 10, the downwardly depending beams 47 and 47a, supporting the shaft 45, are themselves affixed to the frame members 9 and are spaced from the center sill 8. In FIG.
  • Each door lever shaft 42 and 45 is provided with a center lever 48 nonrotatably affixed to th'e lshatt and located beneath the center sill 8.
  • the upper of free end of each center lever 48 is provided with a center lever 5m 49, which will be more fully described hereinafter.
  • the pin 49 is slidably engaged in slots 50 in a pair of elongated elements 51, which pair of elements is hereinafter referred to as a push rod.
  • Each pair of elements, or push rods 51. is pivotally affixed by means of a pin 52 to a push rod fulcrum 53 affixed to the bottom surface ofthe dooractuating beam While the action of the dooractuating means will be fully described hereinafter, particular reference is made to FIG.
  • Door lever means are affixed to the outer ends of the door lever shafts 42 and 45.
  • the door levers 54 affixed to the ends of the door lever shaft 45 are identical and each comprise a long arm 54a and a short arm 54b.
  • the ends of the arms 54a and 54b of the door levers have pivotally affixed to them link elements 55.
  • the link elements 55 will be more fully described hereinafter.
  • the link elements are, in turn, pivotally attached to door fulcrum elements 56
  • the door fulcrum elements 56 are permanently affixed to the closure members 25 and 26 of the hopper doors l9or 190 (see F1618).
  • FIG. 6 the assembly comprising the door lever 54, links 55 and door fulcrums 56 are illustrated in the position they would assume when the hopper doors I!) and are in closed position.
  • the pivot point 57 between the door lever arm 54! and the attached link 55 lies beyond the dead center line ofthis linkage represented by the broken line 58.
  • the pivot point 59 between the door lever arm 54a and the attached link 55 lies beyond dead center of this assembly represented by the broken line 60.
  • the doors l9 and 190 are effectively locked in closed position, and the weight of the hopper doors and the load pressing thereagainst act to maintain the linkage in closed and locked position.
  • a stop 61 depending from the frame member 9 is provided to establish the fully closed posi tion of the door lever.
  • the door lever shafts 42 are located beneath the frame members 10, which in turn, are associated with the ends of the slope sheets. Thus the door lever shafts 42 are intended to operate only one hopper door assembly. To the left in FIG. 6, a door lever shaft 42 is shown, adapted to actuate a hopper door assembly 19 located to the right of the shaft and at the bottom edge of the slope sheet 5 It will be un derstood by one skilled in the art that the same assembly (not shown) will occur at the bottom of the slope sheet 18.
  • the linkage with respect to the shaft 42 is substantially the same as that described with respect to the door lever shaft .5 11nd likiparts have been given like index numeralsv In this instance however, the door levers indicated at 62 have only one arm equivalent to the arms 54a on the door levers 54.
  • the door levers 62 are pivotally attached to links 55, which, in turn, are pivotally connected to door fulcrum members 56. Since the shaft 42 is shorter in length than the door lever shaft 45, it will be understood that the position ofthe door fulcrums 56 on the closure members 25 and 26 of the door 19 will be located as indicated in dotted lines at 560 in FIG. 18. Again, a stop 61 is provided to coact with the door lever 62 to determine its fully closed position. When this linkage is in its fully closed position, the pivot point 59 will be located beyond the dead centerline 60.
  • FIG. 6 To the right in FIG. 6 there is shown a door lever shaft 42 adapted to actuate a single door assembly 19a located to the left of the shaft.
  • This door-actuating assembly is shown lying substantially beneath the lower edge of the slope sheet 17, and it will be understood by one skilled in the art that a similar as sembly will be located beneath the lower edge of the slope sheet 6 Again, the assembly is substantially the same as that described with respect to the shaft 45, and like parts have been given like index numerals.
  • the door levers 63 have arms 63a equivalent to the arms 54a on the door levers 54. The sole purpose of the arms 63a is to cooperate with the stops 6].
  • the door levers 63 are also provided with arms 63b which are pivotally attached to links 55, which, in turn, are pivotally joined to door fulcrums 56.
  • the door fulcrums 56 will be located on the closure members 25 and 26 of the door We in the positions indicated in dotted lines at 56a in FIG. l8 Again, it will be noted that when the door 19a is in its closed and locked position, the pivot point 57 will lie beyond the dead center line 58.
  • FIGS. 4 and 6 wherein the door-actuating mechanism is shown in the doorclosed" position and to FIGS, 5 and 7 wherein the door-actuating mechanism is shown in the "door-open position.
  • the gear 40 is rotated in a counterclockwise direction, its coaction with the rack 39 will cause the d0or-actuating beam to move to the right, the push rods 5i will move the the right along with the door-actuating beam and the center lever pins 49 will ultimately be contacted by the forward ends 500 of the slots 50in the push rods.
  • the center levers 48 will be rotated in a clockwise direction. This, in turn, will cause the shafts 42 and 45 to rotate in a clockwise direction. The clockwise rotation of the shafts 42 and 45 will cause a clockwise rotation of the door levers 54,62 and 63 respectively. It is only necessary to impart sufficient rotation to these door levers to cause the pivot points 57 and 59 to pass beyond their respective dead centerlines S8 and 60. From that point onward, further rotation of the door-actuating assembly will be caused by the weight of the doors l9 and 19a themselves and the weight of the load in the car bearing upon them.
  • the doorac tuating assembly When the fully open position of the hopper door has been reached, the doorac tuating assembly will be in the positions shown in FIGS. and 7v That portion of the rotation of the door levers and door lever shafts imparted by the weight of the doors and the load of the car will cause the center lever pins to travel in the slots 50in the push rods 5] to a position at or near the trailing ends 50b of the slots 50. This is indicated in FIG. 5.
  • the coaction of the parts thus far described not only insures proper opening of the hopper doors without backlash, but also places the door actuating mechanism in proper position for the hopper doorclosing action next described.
  • push rod Sle will actuate the shaft 45 opening hopper doors 1 and g. Hopper doors [1 and r will then be opened through the action of push rod Slh. Finally hopper doors d and it will be opened through the action of push rods Sle and Slf respectively.
  • FIG. 8 is a fragmentary exploded view of the upper end of a center lever 48, showing the adjustable mounting ofthe center lever pin 49.
  • the center lever pin 49 is permanently held in an eccentn'eally located perforation 64 in a splined adjustment means 65.
  • the adjustment means 65 is frictionally held in a suitably configured perforation 66 in the upper end of the center lever 48.
  • the center lever pin can be held in a range of adjusted positions with respect to the center lever
  • This range of positions of the center lever pin permits a fint adjustment of the pin with respect to the slot 50 in a push rod assembly SI. In this way, a given center lever pin in a given push rod slot can be adjusted to be properly contacted by both the forward and trailing ends of the push rod slot insuring proper opening of the hopper doors and proper simultaneous closure of the doors as well.
  • FIGS. 13 and [4 illustrate an exemplary form of operating means for the door-actuating assembly.
  • the operating mechanism comprises coaxial main shaft elements 670 and 67b rotatively mounted in suitable bearings 68 and 69 in the car body sides 3 and 4.
  • the shaft 67a passes through a perforation 70 in one of the triangular braces l3 (see HO. 1) and is connected by means of a universal joint 7i to the input shaft 72 ofa geared reducing means 73.
  • the geared reducing means is suitably supported in a perforation in a second triangular support 130
  • the main shaft clement 67h is connected by means of a universal joint 74 to the input shaft of the reducer 73.
  • the output shaft 75 of the reducer is connected by means of a flexible coupling 75 to an intermediate shaft 77.
  • the intermediate shaft 77 is rotatively mounted in suitable bearing means 78 in the triangular brace member 13 and is provided at its end with a sprocket 79.
  • a third shaft 80 is rotatively mounted in suitable bearing means 81 and 82 affixed to the triangular braces l3 and 13a respectively. That portion of the shaft 80 extending between the braces l3 and 13a bears the gear 40 which coacts with the rack 39 on the door-actuating beam 30 as described above. That end of the shaft 80 which extends beyond the bearing 81 is provided with a sprocket B3.
  • the sprocket '79 on the shaft 77 and the sprocket 83 on the shaft 80 are connected by means of an endless chain 84.
  • the sprockets 79 and 83 and the connecting endless chain 84 may be provided with a cover plate 85 removably affixed to the triangular brace IS.
  • the end 85 of the shaft 670 which extends beyond the car body side 3 is of square cross section, and is provided with a square perforation 87.
  • the end 88 of the main shaft element 67! is of square cross section and provided with a square perforation 89.
  • the hopper doors of the car of the present invention may be operated by an individual crewman located on either side of the car.
  • the end 86 of the shaft element 67a or the end 88 of the shaft element 67b may be engaged by a hand operated or automatic tool adapted to impart rotation thereto.
  • Such tools are well known in the art, and may be provided with a male engagement means adapted to be inserted in the perforation 87 or the

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)

Abstract

Door-actuating means for use in a hopper car of the type having a plurality of hopper doors arranged in opposing pairs and swingable between a downwardly depending open position and a closed position wherein their bottom edges meet in abutting relationship. The hopper doors have portions capable of being flexed inwardly relative to the normal plane of the door. The operating means for the doors being capable of fine adjustment so as to effect flexure of the doors as they swing from their closed to their open positions. The bottom edges of the doors are provided with sealing means which will not obstruct the discharge of material from the hopper car during the unloading process.

Description

United States Patent 734.977 761.550 5/1904 Simonton Robert C. Ortner Clnclnnati:
Norman S. Adams, Maderia, both oi, Ohio 857,269
Aug. 13. 1969 Aug. 3, 1971 Ortner Freigli Car Company Cincinnati. Ohio Continuation-impart of application Ser. No. 546,722, May 2, 1966, now abandoned.
Inventors Appl. No. Filed Patented Assignee RAPID DISCHARGE HOPPER CAR DOOR ACTUATOR 29 Claims, 3'7 Drawing Fhs.
References Cited UNITED STATES PATENTS 7/1903 Simonton 105/424 X Primary Examiner-Arthur Lv La Point Assistant ExaminerHoward Beltran AtorneyMelvi11e, Strasser, Foster and Hoffman ABSTRACT: Door-actuating means for use in a hopper car of the type having a plurality of hopper doors arranged in opposing pairs and swingable between a downwardly depending open position and a closed position wherein their bottom edges meet in abutting relationship. The hopper doors have portions capable of being flexed inwardly relative to the nor mal plane of the door. The operating means for the doors being capable of fine adjustment so as to efiect flexure of the doors as they swing from their closed to their open positions. The bottom edges of the doors are provided with sealing means which will not obstruct the discharge of material from the hopper car during the unloading process.
SHEET 03 0F R .1. M i; 0
v RN
ATTORN EYS m R. NM v mm Nv N .D m w 3% L m w Nu N w 8% Q NM NM E Q E Q S R NM Q Q Q Q Mu HM: \J T I y F: Mm s qw mm R Q PATENTEU nus sen PATENTEUAus 3197:
sum 0s or INVENTORS POBEFTC OPT/VF? 2 NORMAN 5. ADAMS,
Y ff) B W h ana rad/h PAIENIEU ms 3 an sum 07 0F Fig. 14
INVENTORS FOBEKTC OATNER c3 NORMAN S ADAMS,
PATENTEUAUB 31971 3596509 SBEEI OBBF 15 w. I I SUPPLY 3- INVENTOR P031597 6' OPTNER d9. NOPMANSADAMS,
BY @WM iwm 4% ATTORNEYS PATENTEB AUG 3 L9H SHEET 10 0F INVENTOR/S ROBERT C.ORTNER a NORMAN s. ADAMS,
yam, d 1 and ATTORNEYS PATENIEU ms 3 I97l WU 11 [1F I63 F1g.27
lNVENTOR/S ROBERT c. ORTNER a NORMAN s. ADAMS,
fii/a ATTORNEYS PATENTEDAUB 31% 3,596,609
SHEEI 1 OF 15 lNVENTOR/S ROBERT C. ORTNER 8| NORMAN S. ADAMS,
ATTORNEYS SHEU 15 0F PATENTED Am; 3m:
Gm m INVENTORJ'S ROBERT C. ORTNER 8| NORMAN S. ADAMS r, '.%adda, k%i ana 6%7/13/(1/1 ATTORNEYS QMN iii RAPID DISCHARGE HOPPER CAR DOOR ACTUATOR CROSS-REFERENCE TO RELATED APPLICATIONS BACKGROUND OF THE INVENTION I. Field of the Invention The invention relates to improvements in railroad freight cars, and more particularly to improvements in freight cars of the type wherein the load is discharged through a plurality of doors in the underside of the car body. Such cars are generally known as hopper cars.
2. Description of the Prior Art Heretofore various forms and arrangements of discharge openings have been proposed by means of which the contents of the car can be discharged. Until recently, the most common type of hopper car in use comprised an elongated body having high vertical sides. The interior of the car body was divided into a number of chutes, having sloping walls which extended across the interior of the car body. Each chute had a substantially triangular cross section, and the lowennost portion of each chute terminated in a single or a cooperating pair of hopper doors. Each hopper door was provided with one of a number of different types of manually operated latch means. For example, it was common to provide each door with a hook-type latch at each side. To unload the car it was necessary for yardmen or crew members to walk along each side of the car and manually release each of the latches, thereby rendering the doors free to be opened by the weight of the carload itself. When the load had been discharged it was then necessary to manually reclose and relatch each of the doors.
Hopper cars of the type described presented further problems in addition to the requirement of manual opening and closing of each hopper door. Often it was difficult to completely discharge the contents of the car, particularly where materials such as pulverized coal, wood chips and the like were being carried, since such loads tended to become compacted by the motion of the car. Furthermore, when exposed to the elements during transit, such loads often became frozen or caked. Under such circumstances simply opening the hopper doors was often not sufficient to discharge the load. Frequently it was necessary for the crews to use picks, shovels, vibrators or car shakers to loosen the material of the load so that it would flow from the chutes. Sometimes, depending upon the load being carried, the crew would build fires under the chutes to loosen the frozen material, but this often resulted in considerable damage to the underside of the car, the airbrake system and the like.
Recently. there has been a growing demand for larger hopper cars of greater capacity. In cars of this type, the abovementioned problems become even more acute.
Steps have been taken to overcome these problems. For example, hopper cars have been developed the interiors of which are not divided into a plurality of separate chutes. Rather, substantially the entire bottoms of such cars are openable by means of a plurality of cooperating hopper doors. Means have also been provided for automatically opening the hopper doors sequentially or simultaneously, reference being made, by way of example, to U.S. Pat. No. 3,187,684 entitled RAPID DISCHARGE HOPPER CAR, issued June 8, 196$,in the name of Robert C. Ortner.
Even in the newer and more advanced types of hopper cars, it has been found that certain conditions still exist which tend to impede the rapid discharge of the load. For example, it has been found that under certain wet and freezing conditions, that portion of the load adjacent the hopper doors will freeze and form a hard frozen layer or crust which will prevent or impede discharge of the car even when the doors are in open position. It has also been found desirable to provide a hopper car with automatic means for opening the hopper doors simultaneously or sequentially and for closing the hopper doors simultaneously, wherein the door-actuating means is capable of fine adjustment not only to insure the proper opening of the doors, but also to insure their proper and simultaneous closing.
SUMMARY OF THE INVENTION The present invention is directed to the provision of a hopper car having improved means for automatically opening and closing the hopper doors. The hopper doors are of improved construction, characterized by great strength, and yet capable of sufficient double-acting I'Iexure during the dooropening operation to shear loose from the doors any hardened or frozen crust formed by that part of the load adjacent the door. The door'actuating means are capable of fine adjustment so that the actuating means will effect the desired double-acting flexure of the doors.
In one embodiment, a plurality of hopper doors are arranged in opposing relationship and extend transversely of the hopper car. In another embodiment, a plurality of hopper doors are arranged in opposing relationship and extend longitudinally of the hopper car.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a semidiagrammatic elevational view, with parts in section, of a hopper car in accordance with the instant invention.
FIG. I is a semidiagrammatic plan view of the hopper car of FIG. 1.
FIG. 3 is a fragmentary perspective view illustrating the door-actuating mechanism of the present invention.
FIG. 4 is a fra mentary cross-sectional view taken along the section line of FIG. 2, showing the center sill of the hopper car of the present invention and a portion of the dooractuating means in the door-closed position.
FIG. 5 is similar to FIG. 4 and shows the door-actuating means in the door-open" position.
FIG. 6 is a fragmentary longitudinal moss-sectional view of the hopper car of the present invention taken along section line 6-6 of FIG. 2 and showing another portion of the door-actuating means in the "door-closed position.
FIG. 7 is a view similar to FIG. 6 but showing the door-actuating mechanism in door-open" position.
FIG. 8 is a fragmentary exploded view showing the upper end of a center lever, and the splined adjustment means for the center lever pin.
FIG. 9 is an exploded view of the door link illustrating means for adjusting its length.
FIG. 10 is an enlarged cross-sectional view taken along the section line 10-10 of FIG. 6.
FIG. 11 is an enlarged cross-sectional view taken along the section line 11-11 of FIG. 6.
FIG. 12 is an enlarged cross-sectional view taken along the section line 12-12 of FIG. 4.
FIG. 13 is an elevational view, with parts in section, of the driving mechanism for the door-actuating means.
FIG. 14 is a side elevation of the driving mechanism with parts in cross section.
FIG. 15 is an enlarged fragmentary elevational view of the hopper car side showing the means for indicating the positions of the hopper doors.
FIG. 16 is an enlarged fragmentary plan view of the locking means for the door-actuating assembly.
FIG. 17 is an elevational view of the locking means of FIG. I6.
FIG. 18 is an elevational view of a hopper door assembly of the present invention.
FIG. 19 is an enlarged cross-sectional view taken along the section line 19-19 ofFlG. 18.
FIG. 20 is a fragmentary elevational view of a pair of cooperating hopper doors, illustrating an improved form of door-sealing means.
FIG. 21 is similar to FIG. 20 showing yet another form of door-sealing means.
FIG. 22 is a view similar to that of FIG. 20 showing an additional door-sealing means.
FIG. 23 is a diagrammatic representation of the door-actuating mechanism illustrating the sequential door-opening operation.
FIG. 24 is a fragmentary elevational view with parts in cross section showing fluid-actuated cylinder means for imparting movement to the door-actuating beam.
FIG. 25 is a diagrammatic representation of one form of fluid-actuated cylinder means.
FIG. 26 is a fragmentary, semidiagrammatic elevational view of a hopper car of the type having longitudinally extending hopper doors.
FIG. 27 is a cross-sectional view taken along the section line 27-27 of FIG. 26.
FIG. 28 is an elevational view of an inner door of the hopper car of FIG. 26.
FIG. 29 is an end view of the door of FIG. 26 as seen from the left in FIG. 26.
FIG. 30 is an elevational view of an outer door of the hopper car of FIG. 26.
FIG. 3] is an end view of the door of FIG. 30 as seen from the right in FIG. 30.
FIG. 32 is a fragmentary side elevational view of the door actuating shaft.
FIG. 33 is a fragmentary side elevational view of the assembly for rotating the door-actuating shaft.
FIG. 34 is a fragmentary end elevational view of the assembly of FIG. 33 as seen from the left in FIG. 33.
FIG. 35 is a fragmentary, semidiagrammatic side elevational view of the outer door actuating linkage.
FIG. 36 is a fragmentary elevational view of an alternate assembly for rotating the door-actuating shaft of FIG. 32.
FIG. 37 is a fragmentary end elevation of the assembly of FIG. 36 as seen from the right in FIG. 36.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The teachings of the present invention may be applied to any suitable form of hopper car. Without constituting a limitation on the present invention, the invention will be described with respect to a hopper car of the type having four pairs of cooperating hopper doors and a center sill extending throughout the length of the car. FIGS. 1 and 2 constitute respectively an elevational and a plan view of a hopper car of the type described, and like parts have been given like index numerals.
The hopper car comprises an elongated body generally indicated at l and mounted on conventional trucks 2. The body comprises vertical sides 3 and 4 with inclined end walls and 6, conventionally called slope sheets.
The car body is provided with a base framework, comprising elongated side frame members or sidewalls (one of which is shown at 7), a longitudinally extending center frame member or sill 8, and a plurality of additional frame members 9 and extending transversely of the car body from the center sill to the side sills 7. It will be understood by one skilled in the art that the ends of the car frame are provided with suitable bracing members, not shown. The sides 3 and 4 of the car are provided with a plurality of vertical braces generally indicated at II, which extend upwardly from the side sills 7. .The ends of the car body also have vertical brace members generally indicated at 12. The slope sheets 5 and 6 are additionally supported by a plura ity of triangular braces 13 (see FIGS. 1 and 13) extending upwardly from the base frame of the car body to the slop sheets. The vertical edges of the triangular braces 13 support a vertical panel or body bolster 14 (see FIGS. 1 and 13).
As is most clearly shown in FIG. 3. the slope sheets 5 and 6 extend downwardly to pairs of rectangular discharge openings generally indicated at and I6, the pairs of openings being separated by small oppositely slanted slope sheets I7 and 18.
Each of the discharge openings 15. 16 is closed by a cooperating pair of hopper doors l9 and 19a. The hopper doors l9 and 194 are split so as to provide room for the passage of the center sill 8, and are supported by the transversely extending sets of frame members 9 and 10. As will be described more fully hereinafter, the split doors l9 and 190 are substantially identical. It will be further understood by one skilled in the art that it would be within the scope of this invention to provide the car of FIGS. 1 and 2 with an additional set of cooperating doors comparable to the doors l9 and 19a in replacement of the slope sheets 17 and 18.
As most clearly shown in FIG. 2, the center sill 8 may be provided with a hood or cover 20 having inclined wall surfaces tapering outwardly and downwardly from a ridge 20a. The frame elements 9 extending transversely across the openings I5 and 16 may similarly be provided with hoods or covers 21 having inclined wall surfaces tapering downwardly and outwardly from ridges 21a. The hoods or covers 20 and 21 serve not only to break up the load, but also to guide it during the discharge operation. As indicated in FIG. 2 the transversely extending supports 9 and the slope sheets 17 and 18 may be additionally supported by struts generally indicated at 22. The struts extend upwardly and outwardly from the frame membets 9 or the slope sheets 17 and 18 to the car body sides. Preferably these struts are tubular in configuration, being of elliptical cross section so as to provide maximum strength and minimum resistance to the discharge flow of the carload.
The car body has a plurality of downwardly depending inwardly sloping triangular members 23 which form the outside closure means for cooperating pairs of hopper doors. The triangular members 23 depend from the side frames 7. Similarly, additional triangular members 24 are provided to form the inside closures for cooperating pairs of hopper doors. The triangular members 24 are suitably supported from the car frame adjacent the center sill, or they may be affixed to the center sill.
Referring to FIG. 6, it will be noted that the transversely extending frame members 9 and I0 differ slightly in configuration. This is due to the fact that the frame members 9 are located at the center of the openings 15 and 16 while the frame members 10 are located at the lowermost edge of the slope sheets, such as the slope sheets 5 and 17 shown in FIG. 6. The frame members 9 are generally U-shaped in cross section, the legs of the U-shaped configuration sloping upwardly and outwardly to provide door hinge mounting surfaces 9a and 9b. The frame members 10 are also of Ushaped cross sectional configuration, but one leg 10a of the U-shaped configuration is vertically oriented and forms a support for the lower edge of the adjacent slope sheet, while the other leg slants upwardly and outwardly to form a door hinge mounting surface 10b, the leg terminating in a bent over portion forming an additional slope sheet support.
Referring to FIG. IS, a typical hopper door I9 is shown. It will be understood by one skilled in the art that a cooperating hopper door will be substantially identical. The hopper door 19 comprises two closure members 25 and 26 which constitute mirror images of each other and which are joined by an elongated brace. This construction is necessary since the closure members 25 and 26 will lie on either side of the center sill 8. The uppermost edges of the closure members 25 and 26 are provided with hinge means 28. As shown in FIG. 6, the hinge members 28 coact with cooperating hinge members 29 located on the hinge-supporting surfaces of the frame members 9 and 10.
The hopper door actuating means is most clearly shown in FIGS. 3, 4 and 6. The center sill 8 of the car body frame is of U-shaped cross section with downwardly depending legs. A door-actuating beam 30 is slidably mounted within the center sill. For purposes of illustration. the door-actuating beam is shown as an l-beam. The inside surface of one of the legs 01 the center sill bears a plurality of beam-supporting brackets generally indicated at 3]. As best seen in FIG. 12, each beam supporting bracket 3! comprises a member 32 permanently affixed to the inside surface of the leg of the center sill and extending perpendicular thereto. The bracket 32 supports a pair of parallel plates 33 and 34. An additional plate 35 is bolted to the plate 34. The plates 33 and 35 constitute side guides for the dooractuating beam. A roller 36 is rotatably mounted to the bracket by means of a pin 37 passing through the plates 33, 34 and 35, and serves as a support for the door-actuating means permitting its sliding motion longitudinally of the center sill. The inside horizontal surface of the center sill is provided with a plurality of spaced downwardly depending V- shaped members 38, serving as top guide members for the door-actuating beam.
At one end the upper surface of the door-actuating beam is provided with a rack 39, seen in FIG. 3 and 4. The rack is engaged by that portion of a gear 40 which extends downwardly through a slot 41 in the center sill 8. It will be understood that rotation of the gear 40 will cause longitudinal movement in the door actuating beam, as will be more fully described hereinafter.
Beneath each door supporting frame member 9 and there is located a shaft extending transversely of the car body. Thus. beneath each frame member 10 there is located a shaft 42 rotatably supported in suitable bearings 43 affixed to a spaced pair of downwardly depending beams 44 and 440. Similarly, beneath each door supporting frame member 9 there is located a shaft 45 supported in suitable bearings 46 on a spaced pair of downwardly depending beams 47 and 47a. The shafts 42 and 45 differ from each other only in length. The reason for this is clearly shown in FIGS. 10 and 11. As seen in H0. 10, the downwardly depending beams 47 and 47a, supporting the shaft 45, are themselves affixed to the frame members 9 and are spaced from the center sill 8. In FIG. ll, on the other hand, it will be noted that the downwardly depending beams 44 and 44a, supporting the shaft 42, do not depend from the frame member it), but rather from the center sill 8 itself. Thus, the door lever shafts 42 are shorter than the door lever shafts 45.
Each door lever shaft 42 and 45 is provided with a center lever 48 nonrotatably affixed to th'e lshatt and located beneath the center sill 8. The upper of free end of each center lever 48 is provided with a center lever 5m 49, which will be more fully described hereinafter. The pin 49 is slidably engaged in slots 50 in a pair of elongated elements 51, which pair of elements is hereinafter referred to as a push rod. Each pair of elements, or push rods 51. is pivotally affixed by means of a pin 52 to a push rod fulcrum 53 affixed to the bottom surface ofthe dooractuating beam While the action of the dooractuating means will be fully described hereinafter, particular reference is made to FIG. 4 wherein it will be clear that if the gear is rotated in a cottnterclockwise direction, causing the door-actuating beam 30 to move to the right, the center lever pin 49 of each center lever 48 will be engaged by the forward end 500 of the slot 50 of each push rod, causing the center levers 48 to rotate in a clockwise direction. This inturn will cause each of the shafts 42 and to rotate in a clockwise direction. Similarly, if the gear 40 is rotated in a clockwise direction, the door-actuating beam 30 will move to the left, and the center lever pins 49 will be engaged by the tail end b of each of the slots 50 in the push rods 51, causing a counterclockwise rotation of the center levers 48 and the shafts 42 and 45.
Door lever means are affixed to the outer ends of the door lever shafts 42 and 45. As is most clearly shown in FIGS. 3 and 6, the door levers 54 affixed to the ends of the door lever shaft 45 are identical and each comprise a long arm 54a and a short arm 54b. The ends of the arms 54a and 54b of the door levers have pivotally affixed to them link elements 55. The link elements 55 will be more fully described hereinafter. The link elements are, in turn, pivotally attached to door fulcrum elements 56 The door fulcrum elements 56 are permanently affixed to the closure members 25 and 26 of the hopper doors l9or 190 (see F1618).
In FIG. 6 the assembly comprising the door lever 54, links 55 and door fulcrums 56 are illustrated in the position they would assume when the hopper doors I!) and are in closed position. In this position, it will be noted that the pivot point 57 between the door lever arm 54!) and the attached link 55 lies beyond the dead center line ofthis linkage represented by the broken line 58. Similarly, the pivot point 59 between the door lever arm 54a and the attached link 55 lies beyond dead center of this assembly represented by the broken line 60. Thus, the doors l9 and 190 are effectively locked in closed position, and the weight of the hopper doors and the load pressing thereagainst act to maintain the linkage in closed and locked position. Preferably a stop 61 depending from the frame member 9 is provided to establish the fully closed posi tion of the door lever.
As indicated above, the door lever shafts 42 are located beneath the frame members 10, which in turn, are associated with the ends of the slope sheets. Thus the door lever shafts 42 are intended to operate only one hopper door assembly. To the left in FIG. 6, a door lever shaft 42 is shown, adapted to actuate a hopper door assembly 19 located to the right of the shaft and at the bottom edge of the slope sheet 5 It will be un derstood by one skilled in the art that the same assembly (not shown) will occur at the bottom of the slope sheet 18. The linkage with respect to the shaft 42 is substantially the same as that described with respect to the door lever shaft .5 11nd likiparts have been given like index numeralsv In this instance however, the door levers indicated at 62 have only one arm equivalent to the arms 54a on the door levers 54. The door levers 62 are pivotally attached to links 55, which, in turn, are pivotally connected to door fulcrum members 56. Since the shaft 42 is shorter in length than the door lever shaft 45, it will be understood that the position ofthe door fulcrums 56 on the closure members 25 and 26 of the door 19 will be located as indicated in dotted lines at 560 in FIG. 18. Again, a stop 61 is provided to coact with the door lever 62 to determine its fully closed position. When this linkage is in its fully closed position, the pivot point 59 will be located beyond the dead centerline 60.
To the right in FIG. 6 there is shown a door lever shaft 42 adapted to actuate a single door assembly 19a located to the left of the shaft. This door-actuating assembly is shown lying substantially beneath the lower edge of the slope sheet 17, and it will be understood by one skilled in the art that a similar as sembly will be located beneath the lower edge of the slope sheet 6 Again, the assembly is substantially the same as that described with respect to the shaft 45, and like parts have been given like index numerals. [n this instance the door levers 63 have arms 63a equivalent to the arms 54a on the door levers 54. The sole purpose of the arms 63a is to cooperate with the stops 6]. The door levers 63 are also provided with arms 63b which are pivotally attached to links 55, which, in turn, are pivotally joined to door fulcrums 56. The door fulcrums 56 will be located on the closure members 25 and 26 of the door We in the positions indicated in dotted lines at 56a in FIG. l8 Again, it will be noted that when the door 19a is in its closed and locked position, the pivot point 57 will lie beyond the dead center line 58.
The operation of the door-actuating mechanism may be described as follows, Reference is made to FIGS. 4 and 6 wherein the door-actuating mechanism is shown in the doorclosed" position and to FIGS, 5 and 7 wherein the door-actuating mechanism is shown in the "door-open position. Starting with the parts in the positions illustrated in FlGS. 4 and 6, if the gear 40 is rotated in a counterclockwise direction, its coaction with the rack 39 will cause the d0or-actuating beam to move to the right, the push rods 5i will move the the right along with the door-actuating beam and the center lever pins 49 will ultimately be contacted by the forward ends 500 of the slots 50in the push rods. As the center lever pins 49 are so contacted, the center levers 48 will be rotated in a clockwise direction. This, in turn, will cause the shafts 42 and 45 to rotate in a clockwise direction. The clockwise rotation of the shafts 42 and 45 will cause a clockwise rotation of the door levers 54,62 and 63 respectively. It is only necessary to impart sufficient rotation to these door levers to cause the pivot points 57 and 59 to pass beyond their respective dead centerlines S8 and 60. From that point onward, further rotation of the door-actuating assembly will be caused by the weight of the doors l9 and 19a themselves and the weight of the load in the car bearing upon them. When the fully open position of the hopper door has been reached, the doorac tuating assembly will be in the positions shown in FIGS. and 7v That portion of the rotation of the door levers and door lever shafts imparted by the weight of the doors and the load of the car will cause the center lever pins to travel in the slots 50in the push rods 5] to a position at or near the trailing ends 50b of the slots 50. This is indicated in FIG. 5. The coaction of the parts thus far described not only insures proper opening of the hopper doors without backlash, but also places the door actuating mechanism in proper position for the hopper doorclosing action next described.
Referring particularly to FIGS. 5 and 7, it will be understood that clockwise rotation of the gear 40, coacting with the rack 39, will cause the door-actuating beam to move to the left. As the beam 30 moves to the left, the center lever pins 49 will be approached and ultimately contacted by the trailing h ends 50b of the push rod slots 50. This, in turn, will cause counterclockwise rotation of the center levers 48, the door lever shafts 42 and 4S, and the door levers S4, 62 and 6.. respectively. The counterclockwise rotation of the door levers to the position where the pivot points 57 and 59 have passed their respective dead center lines 58 and 60, will cause the hopper doors l9 and 19a to assume a fully closed position as shown in FIG. 7. As described above, since the pivot points have gone beyond dead center, the weight of the hopper doors themselves and any additional load they may bear will tend to hold the doors in closed and locked position.
It will be understood by one skilled in the art that if the push rod fulcrums 53 are properly located on the door-actuating beam, and if the forward ends 500 and trailing ends 50b of the push rod slots 50 all occupy the same relative positions with respect to their coacting center lever pins, all of the hopper doors l9 and [90 will open simultaneously and will close simultaneously. This is true because the same amount of travel of the door-actuating beam will cause all of the center lever pins to be contacted by the forward ends of the push rod slots simultaneously during the door-opening operation, and all of the center lever pins to be contacted simultaneously by the trailing ends 50b of the push rod slots during the door-closing operations. lf, however, the relative positions of the trailing ends of the push rod slots with respect to their cooperating center lever pins is the same, but the position of the forward end 50a of each push rod slot 50 is at a relatively greater distance from the cooperating center lever pin, the doors will close simultaneously, but will open sequentially.
lt has been found in practice that it takes approximately the same amount of force exerted on the beam 30 to rotate two of the shafts 42 (each controlling a single door) as it does to rotate one of the shafts (controlling two doors). Thus, by providing push rods 51 having slots of varying lengths, it is possible to cause a sequential opening of the doors, whereby the shafts 45 and pairs of shafts 42 are opened sequentially. Such an arrangement enables the entire door actuating mechanism to be made less expensively, of lighter construc' tion, and of longer life. This type of arrangement is diagram matically illustrated in FIG. 23. ln this figure the shafts 42 and 45, the center levers 48, the center lever pins 49, the push rod fulcrums 53 and the actuating beam 30 are shown. The push rods are indicated at Sla through 51f. The hopper doors are diagrammatically indicated at a through It. The trailing ends of the slots in all of the push rods occupy the same relative position with respect to the center lever pins 49 so that movement of the actuating beam in the direction of the arrow A will cause a simultaneous counterclockwise rotation of the shafts 42 and 45 and hence a simultaneous closing of all of the hopper doors a through h. The length of the slots in the push rods 51a and 51d will be such that their forward ends will contact their respective center lever pins simultaneously and before any of the remaining center lever pins are contacted by their respective push rods. In a similar fashion the push rod Sle will have a slot ofsuch length that its forward end will contact its center lever pin next. Contact of the center lever pin by the forward slot end of push rod 5 lb will follow. Push rods 5 It and 51f will be adapted to actuate their center levers last Thus, as the actuating beam 30 moves in the direction of the arrow B, shaft 42 operatively connected to push rods 51a and Sld will be turned and hopper doors a and e will open. Next,
push rod Sle will actuate the shaft 45 opening hopper doors 1 and g. Hopper doors [1 and r will then be opened through the action of push rod Slh. Finally hopper doors d and it will be opened through the action of push rods Sle and Slf respectively.
FIG. 8 is a fragmentary exploded view of the upper end of a center lever 48, showing the adjustable mounting ofthe center lever pin 49. The center lever pin 49 is permanently held in an eccentn'eally located perforation 64 in a splined adjustment means 65. The adjustment means 65 is frictionally held in a suitably configured perforation 66 in the upper end of the center lever 48. By suitably orienting the ad ustment means 65 In the perforation 66, the center lever pin can be held in a range of adjusted positions with respect to the center lever This range of positions of the center lever pin permits a fint adjustment of the pin with respect to the slot 50 in a push rod assembly SI. In this way, a given center lever pin in a given push rod slot can be adjusted to be properly contacted by both the forward and trailing ends of the push rod slot insuring proper opening of the hopper doors and proper simultaneous closure of the doors as well.
FIGS. 13 and [4 illustrate an exemplary form of operating means for the door-actuating assembly. The operating mechanism comprises coaxial main shaft elements 670 and 67b rotatively mounted in suitable bearings 68 and 69 in the car body sides 3 and 4. The shaft 67a passes through a perforation 70 in one of the triangular braces l3 (see HO. 1) and is connected by means of a universal joint 7i to the input shaft 72 ofa geared reducing means 73. The geared reducing means is suitably supported in a perforation in a second triangular support 130 The main shaft clement 67h is connected by means of a universal joint 74 to the input shaft of the reducer 73. The output shaft 75 of the reducer is connected by means of a flexible coupling 75 to an intermediate shaft 77. The intermediate shaft 77 is rotatively mounted in suitable bearing means 78 in the triangular brace member 13 and is provided at its end with a sprocket 79. A third shaft 80 is rotatively mounted in suitable bearing means 81 and 82 affixed to the triangular braces l3 and 13a respectively. That portion of the shaft 80 extending between the braces l3 and 13a bears the gear 40 which coacts with the rack 39 on the door-actuating beam 30 as described above. That end of the shaft 80 which extends beyond the bearing 81 is provided with a sprocket B3. The sprocket '79 on the shaft 77 and the sprocket 83 on the shaft 80 are connected by means of an endless chain 84. The sprockets 79 and 83 and the connecting endless chain 84 may be provided with a cover plate 85 removably affixed to the triangular brace IS.
The end 85 of the shaft 670 which extends beyond the car body side 3 is of square cross section, and is provided with a square perforation 87. Similarly, the end 88 of the main shaft element 67!; is of square cross section and provided with a square perforation 89.
It will be obvious to one skilled in the art that the hopper doors of the car of the present invention may be operated by an individual crewman located on either side of the car. The end 86 of the shaft element 67a or the end 88 of the shaft element 67b may be engaged by a hand operated or automatic tool adapted to impart rotation thereto. Such tools are well known in the art, and may be provided with a male engagement means adapted to be inserted in the perforation 87 or the

Claims (29)

1. In a hopper car of the type having a bottom comprising at least one discharge opening closed by at least one hopper door hingedly secured to said hopper car and swingable between a closed position and a downwardly depending open position, said hopper door having at least one planar portion capable of being flexed between a normal planar condition and an inwardly distorted position, door-actuating means operative to move said door between said closed and open positions and adapted to impart a double-acting flex to said planar portion from said planar condition to said inwardly distorted condition and back to said planar condition as said door moves from said closed to said open position.
2. For use in a hopper car of the type having a bottom comprising at least one discharge opening closed by a plurality of hopper doors arranged in opposing relationship and hingedly secured at their top edge to door-supporting membErs extending transversely of the hopper car, said doors being swingable between a downwardly depending open position and a closed position in which their bottom edges meet in abutting relationship, said hopper doors each having one planar portion capable of being flexed between a normal planar condition and an inwardly distorted condition, a plurality of door-actuating means operative to move said doors between their open and closed position, each of said door-actuating means comprising a shaft underlying one of said door-supporting members and extending transversely of said hopper car, at least one door lever fixedly secured to said shaft, said door lever having at least one door-actuating arm projecting in the direction of the adjacent hopper door, an adjustable link member pivotally connected at one end to the projecting end of said door lever arm and pivotally connected at its opposite end to said flexible portion of said adjacent hopper door, said door lever being rotatable by said shaft to move the hopper door between its open and closed positions, said door lever arm and said adjustable link pivoting relative to each other through a dead center position and between a door-open position and a beyond dead center door-closed position, said adjustable link being axially adjustable to vary its length so that the length of said link will be sufficient to exert a positive force on said portion of said hopper door effective to flex said portion from said planar condition to said inwardly distorted condition and back to said planar condition as said door lever arm and link move through said dead center position.
3. The structure claimed in claim 2 wherein said link comprises a link stem and a pair of link plates, said link stem having a forward end, a rearward end and sides, the forward end being pivotally affixed to said flexible portion of said hopper door, the rearward end of said stem having a set of teeth on each side thereof, each of said link plates having a forward end, a rearward end, and sides, one of said sides adjacent said forward end having a plurality of teeth, said link plates being removably affixed to the sides of said link stem with said link plate teeth engaging said link stem teeth, the rear ends of said link plates being pivotally connected to said door lever arm.
4. The structure claimed in claim 2 including an actuating beam extending longitudinally of said hopper car, a push rod pivotally connected to said beam, said push rod having an elongated slot therein with a trailing end and a forward end, a center lever having an end nonrotatively affixed to said shaft, the opposite end of said center lever having a pin slidably engaged in said push rod slot, said beam being slidable in one direction longitudinally of said hopper car so as to cause said center lever pin to be engaged by the forward end of said push rod slot to cause said center lever, said shaft and said door lever to move said hopper door from the closed to the open position, said beam being slidable in the opposite direction longitudinally of said car, whereby said center lever pin is engaged by the trailing end of said push rod slot causing said center lever, said shaft and said door lever to rotate in the opposite direction to close said door, said center lever pin being adjustable through a range of positions with respect to the end of the center lever whereby the engagement of the center lever pin by the trailing end and the forward end of said push rod slot may be varied.
5. The structure claimed in claim 4 wherein said center lever pin is eccentrically mounted with respect to a splined adjustment member selectively engageable in a correspondingly configured socket in said center lever.
6. The structure claimed in claim 4 including means for moving said actuating beam, said means including a cylinder, a piston and a piston rod in association with said cylinder, means for connecting said piston rod to said actuating beam, a source of fluid medium under pressure, said piston aNd piston rod being actuated by the introduction of said pressurized fluid medium into said cylinder, and means for controlling the said introduction of said pressurized fluid medium.
7. The structure claimed in claim 4 including means for moving said actuating beam, said means including a drive shaft and gear means operatively connected to said drive shaft and said actuating beam for converting rotary movement of said drive shaft into axial movement of said beam, and releasable means operative to lock said drive shaft against rotation.
8. The structure claimed in claim 7 wherein said drive shaft extends transversely of said hopper car and has an outwardly projecting end configured to receive a shaft-rotating element, and wherein the releasable means for locking said shaft against rotation comprises a lever arm pivotally mounted on said hopper car and movable from an inoperative position to an operative position in which said arm engages the configured end of said shaft.
9. The structure claimed in claim 8 including means operatively connected to said drive means for indicating whether said actuating beam is in the door-open or door-closed position.
10. In a hopper car of the type having sidewalls, end walls and a bottom comprising at least one discharge opening closed by a plurality of hopper doors arranged in opposing relationship and hingedly secured to door-supporting members extending between said sidewalls, certain of said door-supporting members having two doors hingedly affixed thereto, the remaining supporting members having a single door affixed thereto, said doors being swingable between a downwardly depending fully open position and a closed position wherein edge portions of opposing pairs of said doors abut each other and form a seal therebetween, said hopper doors each having at least one planar portion capable of being flexed between its normal planar condition and an inwardly distorted condition, door-actuating means for moving said hopper doors from said open position to said closed position, for locking said doors in said closed position and for releasing said doors from said closed and locked position whereby they will drop to said open position, said door-actuating means comprising a plurality of shafts extending transversely of said hopper car, one of said shafts being located below each of said door-supporting members, a door lever affixed to each end of each of said shafts, each of said door levers, affixed to those of said shafts located beneath said supporting members having two doors hingedly affixed thereto, having two door-actuating arms, each of said door levers affixed to the remaining ones of said shafts having one door-actuating arm, a link pivotally affixed to each of said door-actuating arms and said flexible portion of an adjacent hopper door, said door levers being rotatable by said shafts between a first position wherein said doors are in said closed position and a second position wherein said doors are released, stop means positioned to contact said door levers to establish said first position, said door levers and said attached links having a dead center position, said door levers and said attached links lying to one side of said dead center position when said door levers are in said first position, whereby said hopper doors are biased to said closed position, and to the other side of said dead center position when said door levers are in said second position, whereby said hopper doors are biased to said open position, said door lever arms and said attached links having an effective length when in said dead center position sufficient to cause said flexible portions of said hopper doors to flex from said planar condition to said inwardly distorted condition and back to said planar condition when said door levers are rotated from said first to said second positions, and means for rotating said shafts.
11. The structure claimed in claim 10 including adjustment means for varying the effective combined lengths of said lever arms and Said attached links.
12. The structure claimed in claim 10 wherein said seal-forming edge portion of a first door of each of said opposing pairs is coplanar with said first door, said seal-forming edge portion of a second door of each opposing pair being turned beneath and rearwardly of said second door, said edge portion of said second door overlying and abutting said edge portion of said first door when said first and second doors are in said closed position.
13. The structure claimed in claim 10 including bristle means on said seal forming edges of said opposing pairs of hopper doors, said bristle means of said adjacent edge portions being in interdigitated relationship when said doors are in said closed position, whereby to form said seal.
14. The structure claimed in claim 10 including bristle means affixed to one of said adjacent edge portions of each of said opposing pairs of doors, said bristle means being contacted and distorted by the other of said adjacent edges of each of said pairs of doors when said doors are in said closed position.
15. The structure claimed in claim 10 wherein said means for rotating said shafts comprises an actuating beam extending longitudinally of said hopper car, a plurality of push rods pivotally affixed to said beam, each of said push rods having a slot with a trailing end and a forward end, a plurality of center levers, each of said center levers having an end nonrotatively affixed to one of said shafts, the opposite end of each of said center levers having a pin slidably engaged in one of said push rod slots; said beam being slidable in one direction longitudinally of said car whereby said center lever pins are engaged by the forward ends of said push rod slots causing said center levers, said shaft and said door levers to rotate to said second position, said beam being slidable in an opposite direction longitudinally of said car whereby said center lever pins are engaged by the trailing end of said push rod slots causing said center levers, said shafts and said door levers to rotate to said first position, said center lever pins being adjustable through a range of positions with respect to the ends of their respective center levers whereby the engagement of the center lever pins by the trailing ends and the forward ends of their cooperating push rod slots may be finely adjusted, and means for sliding said beam.
16. The structure claimed in claim 15 wherein each of said links comprises a link stem and a pair of link plates, said link stem having a forward end, a rearward end and sides, the forward end being pivotally affixed to said flexible portion of one of said hopper doors, the rearward end of said stem having a set of teeth on each side thereof, each of said link plates having a forward end, a rearward end, and sides, one of said sides adjacent said forward end having a plurality of teeth, said link plates being removably affixed to the sides of said link stem with said link plate teeth engaging said link stem teeth, whereby the effective length of the link stem can be adjusted to insure said flexure of said flexible portion of said hopper door, said rear ends of said link plates being pivotally affixed to one of said door lever arms.
17. The structure claimed in claim 15 including a splined adjustment member in association with each of said center levers, each of said center levers having a perforation configured to receive said splined adjustment member in a plurality of selected positions, each of said center lever pins being eccentrically mounted with respect to one of said splined adjustment members.
18. The structure claimed in claim 15 including means for sliding said actuating beam in said longitudinal directions, said means comprising a main drive shaft extending transversely of said hopper car and operatively connected to a geared speed reducer means, said speed reducer means having a shaft parallel to said main drive shaft, a first sprocket at one end of said speed reducer shaft, a third shaft paraLlel to said main shaft and said reducer shaft, a second sprocket affixed to said third shaft, said first and second sprockets operatively connected by an endless chain, a gear nonrotatively affixed to said third shaft, a rack affixed to said actuating beam and engaged by said gear, whereby rotation of said main shaft will be transmitted by means of said reducer, reducer shaft, endless chain and said third shaft to said gear, causing longitudinal movement of said beam through the engagement of said gear with said rack.
19. The structure claimed in claim 18 wherein the ends of said main shaft extend through said sidewalls of said hopper car, a fourth shaft extending transversely of said hopper car and in parallel spaced relationship to said main shaft, the ends of said fourth shaft extending through said sides of said hopper car and being rotatively affixed thereto, locking means nonrotatively affixed to each end of said fourth shaft, said locking means and said fourth shaft being rotatable between an unlocking position and a locking position wherein said locking means engage said ends of said main shaft preventing rotation of said main shaft.
20. In a hopper car of the type having sidewalls, end walls and a bottom comprising at least one discharge opening closed by at lest one pair of hopper doors arranged in opposing relationship, said doors being swingable between a downwardly depending open position and a closed position wherein adjacent edge portions of said pair of doors form a seal therebetween, said seal-forming edge portion of a first door of said pair being coplanar with said first door, said seal-forming edge portion of the second door of said pair being turned beneath and rearwardly of said second door, said edge portion of said second door overlying and abutting said edge portion of said first door when said first and second doors are in said closed position.
21. For use in a hopper car of the type having a bottom comprising longitudinally extending frame means extending centrally of and along the sides of said car and at least one discharge opening on each side of said central frame means, at least one inner door and at least one outer door arranged in an opposing pair for each of said discharge openings, said pairs of inner and outer doors extending longitudinally of said hopper car, each of said outer doors being hingedly secured at its top edge to the adjacent one of said side frame means, each of said inner doors being hingedly secured at its top edge to said central frame means, each of said inner and outer doors of said opposed pairs being swingable between a downwardly depending open position and a closed position in which their bottom edges meet in abutting relationship, said inner hopper doors each having at least one planar portion capable of being flexed between a normal planar condition and an inwardly distorted condition, inner door-actuating means operative to move said inner doors between their open and closed positions, outer door-actuating means operatively connected between the outer and inner doors of each opposed pair to move the outer door of each pair between its open and closed positions simultaneously as the inner door of the same pair moves between its open and closed positions, said inner door-actuating means being configured to exert a positive force on said flexible portions of said inner doors to flex said portions from said planar condition to said inwardly distorted condition and back to said planar condition as said inner doors move from their closed to their open positions.
22. The structure claimed in claim 21 wherein edge portions of said opposing pairs of hopper doors abut each other and form a seal therebetween when said doors are in said closed position, said seal-forming edge portion of a first door of each pair being coplanar with said first door, said seal-forming edge portion of the second door of each pair being turned beneath and rearwardly of said second door, said edge portion of said second door overlying and aButting said edge portion of said first door when said first and second doors of each pair are in said closed position.
23. The structure claimed in claim 21 wherein the inner doors for the discharge openings on each side of said central frame means lie opposite each other on each side of said central frame means, said inner door actuating means comprising at least one door actuating shaft underlying said central frame means and extending longitudinally of said hopper car between said inner doors, at least one door lever fixedly secured to said shaft, said door lever having two arms, one of said arms projecting in the direction of said inner door on one side of said central frame means, the other arm projecting in the direction of the inner door on the other side of said central frame means, each of said arms being connected to its adjacent inner door by an adjustable link member, each link member being pivotally connected at one end to the projecting end of its respective door lever arm and pivotally connected at its opposite end to said flexible portion of the adjacent inner hopper door, said door lever being rotatable by said shaft to move the inner hopper doors between their open and closed positions, each of said door lever arms and the adjustable link connected thereto pivoting relative to each other through a dead center position and between a door-open position and a beyond dead center door-closed position, said adjustable links being axially adjustable to vary their length so that their length will be sufficient to exert said positive force on said flexible portion of said hopper door effective to flex said portion from said planar condition to said inwardly distorted condition and back to said planar condition as said door lever arm and link move through said dead center position, and means to rotate said shaft between a position wherein said inner doors are open and a position wherein said inner doors are closed.
24. The structure claimed in claim 23 wherein each of said links comprises a link stem and a pair of link plates said link stem having a forward end, a rearward end and sides, the forward end being pivotally affixed to said flexible portion of said adjacent hopper door, the rearward end of said stem having a set of teeth on each side thereof, each of said link plates having a forward end, a rearward end, and sides, one of said sides adjacent said forward end having a plurality of teeth, said link plates being removably affixed to the sides of said link stem with said link plate teeth engaging said link stem teeth, the rear ends of said link plates being pivotally connected to said respective door lever arm.
25. The structure claimed in claim 23 wherein said means for rotating said door-actuating shaft comprises a cylinder, a piston and piston rod in association with said cylinder, said piston rod being oriented with its axis transverse the axis of said shaft, a source of fluid medium under pressure, said piston and piston rod being movable between extended and retracted positions by the introduction of said pressurized fluid medium into said cylinder, means for controlling said introduction of said pressurized fluid machine, a shaft lever nonrotatively affixed to said shaft, linkage means operatively connecting said shaft lever to said piston rod whereby as said piston rod is moved between said extended and retracted positions, said shaft is rotated between said door open and door closed positions.
26. The structure claimed in claim 23 wherein said means for rotating said door actuating shaft comprises an actuating beam oriented with its axis transverse the axis of said door-actuating shaft, a drive shaft oriented parallel to said beam and transverse said hopper car, gear means operatively connected to said drive shaft and said beam for converting rotary motion of said drive shaft to axial motion of said beam between an extended and a retracted position, a shaft lever nonrotatively affixed to said door-actuating shaft, linkage means operativelY connecting said shaft lever and said beam whereby as said beam is moved between said extended and retracted positions, said door-actuating shaft is rotated between said door-open and door-closed positions.
27. The structure claimed in claim 23 wherein said outer door-actuating means comprises at least one substantially triangular arm for each of said pairs of inner and outer doors, the lowermost corner of said arm being connected to said inner door of a pair, the intermediate corner of said arm being pivotally connected to said central frame means, and the uppermost corner of said arm being connected by an elongated link to the outer door of said last-mentioned pair.
28. In a hopper car of the type having a bottom comprising at least one discharge opening closed by a plurality of hopper doors arranged in opposing relationship and hingedly secured to said hopper car, said hopper doors being swingable between a downwardly depending open position and a closed position wherein edge portions of opposing pairs of said hopper doors abut each other and form a seal therebetween, certain at least of said hopper doors having at least one planar portion capable of being flexed between a normal planar condition and an inwardly distorted position, door actuating means operative to move said doors between said closed and open positions and adapted to impart a double-acting flex to said planar portions from said planar condition to said inwardly distorted condition and back to said planar condition as said doors move from said closed to said open position.
29. The structure claimed in claim 28 wherein said seal-forming edge portion of a first door of each of said opposing pairs is coplanar with said first door, said seal-forming edge portion of a second door of each opposing pair being turned beneath and rearwardly of said second door, said edge portion of said second door overlying and abutting said edge portion of said first door in a line contact when said first and second doors are in said closed position.
US857269A 1969-08-13 1969-08-13 Rapid discharge hopper car door actuator Expired - Lifetime US3596609A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85726969A 1969-08-13 1969-08-13

Publications (1)

Publication Number Publication Date
US3596609A true US3596609A (en) 1971-08-03

Family

ID=25325599

Family Applications (1)

Application Number Title Priority Date Filing Date
US857269A Expired - Lifetime US3596609A (en) 1969-08-13 1969-08-13 Rapid discharge hopper car door actuator

Country Status (2)

Country Link
US (1) US3596609A (en)
JP (1) JPS5233362B1 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776142A (en) * 1972-08-02 1973-12-04 Ortner Freight Car Co Spring loaded railway car hopper car door
US3805708A (en) * 1972-05-19 1974-04-23 Pullman Inc Railway car hopper door operating mechanism
US4284011A (en) * 1980-03-10 1981-08-18 Ortner Freight Car Company Restraint assembly for the hopper door actuator of a rapid discharging railroad hopper car
FR2494199A1 (en) * 1980-11-20 1982-05-21 Ortner Freight Car Co DEVICE FOR ACTUATING AND LOCKING HOPPER DOORS OF RAILWAY WAGON
US4361096A (en) * 1978-10-06 1982-11-30 Ortner Freight Car Company Railway hopper car door seal
US4508037A (en) * 1982-05-24 1985-04-02 Pullman Standard, Inc. Door lever adjusting device for hopper car doors
US4545446A (en) * 1983-05-11 1985-10-08 Kabushiki Kaisha Ishida Koki Seisakusho Hopper in combinatorial weighing apparatus
US4606277A (en) * 1984-11-30 1986-08-19 Ortner Freight Car Company Actuating and locking apparatus for longitudinal hopper doors of a railroad hopper car
US4628825A (en) * 1984-06-27 1986-12-16 American Autogate Corporation Sliding gate actuating mechanism
US4688488A (en) * 1985-11-19 1987-08-25 Avondale Industries, Inc. Automatic actuating and locking apparatus for the hopper doors of a railroad hopper car
US4741274A (en) * 1986-03-27 1988-05-03 Trinity Industries Hopper door operating mechanism
US4766820A (en) * 1987-06-03 1988-08-30 Thrall Car Manufacturing Company Hopper car with automatic discharge door mechanism
US4843974A (en) * 1987-06-03 1989-07-04 Thrall Car Manufacturing Company Hopper car with automatic discharge door mechanism
US5144895A (en) * 1990-10-31 1992-09-08 Differential Steel Car Company Hopper door apparatus for a railway car
US5199612A (en) * 1991-05-23 1993-04-06 Raque Food Systems, Inc. Traveling bucket with dispensing outlet closure mechanism
US5263421A (en) * 1991-10-07 1993-11-23 Energy Resources & Logistics, Inc. Coal fly-ash railway hopper car with 70 degree minimum slope and end sheet angle and longitudinal dual purpose loading hatch
US6405658B1 (en) * 1999-06-01 2002-06-18 Jac Patent Company Manual discharge door operating system for a hopper railcar
US20040149163A1 (en) * 2003-02-03 2004-08-05 Taylor Fred J. Manual railroad hopper car door actuating mechanism
US20040244638A1 (en) * 2003-06-09 2004-12-09 Taylor Fred J. Railroad hopper car transverse door actuating mechanism
US20050092202A1 (en) * 2003-10-30 2005-05-05 Taylor Fred J. Railroad hopper car longitudinal door actuating mechanism
US20070175357A1 (en) * 2006-01-24 2007-08-02 Freightcar America, Inc. Hopper railcar with automatic individual door system
US20080066642A1 (en) * 2006-09-08 2008-03-20 National Steel Car Limited Rail road hopper car fittings and method of operation
US20100132588A1 (en) * 2008-12-03 2010-06-03 Robert Bosch Gmbh Control valve assembly for load carrying vehicles
US20100219148A1 (en) * 2009-09-11 2010-09-02 National Steel Car Limited Railroad gondola car structure and mechanism therefor
AU2008202713B2 (en) * 2002-03-28 2011-04-14 China International Marine Containers (Group) Co. Limited Wagon Bottom Door Release Arrangement
CN102398607A (en) * 2011-11-29 2012-04-04 太原轨道交通装备有限责任公司 Sealing structure for bottom door of hopper wagon
CN102431564A (en) * 2011-10-20 2012-05-02 齐齐哈尔轨道交通装备有限责任公司 Bottom door device and hopper car
CN103465918A (en) * 2013-09-23 2013-12-25 南车长江车辆有限公司 Labyrinth sealed bottom door and hopper vehicle
US8915193B2 (en) 2013-03-15 2014-12-23 National Steel Car Limited Railroad car and door mechanism therefor
US9120492B2 (en) 2008-12-03 2015-09-01 Aventics Corporation Control valve assembly for load carrying vehicles
US9346473B1 (en) * 2014-11-05 2016-05-24 Herzog Railroad Services, Inc. Material transport and distribution consist with controlled gated hopper cars and conveyor systems
US9358988B2 (en) 2013-12-12 2016-06-07 Aero Transportation Products, Inc. Automatic hopper car gate opening and closing system
US9511929B2 (en) 2011-12-21 2016-12-06 Oren Technologies, Llc Proppant storage vessel and assembly thereof
USRE46334E1 (en) 2012-07-23 2017-03-07 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9617066B2 (en) 2011-12-21 2017-04-11 Oren Technologies, Llc Method of delivering, transporting, and storing proppant for delivery and use at a well site
US9624030B2 (en) 2014-06-13 2017-04-18 Oren Technologies, Llc Cradle for proppant container having tapered box guides
USRE46381E1 (en) 2012-11-02 2017-05-02 Oren Technologies, Llc Proppant vessel base
US9670752B2 (en) 2014-09-15 2017-06-06 Oren Technologies, Llc System and method for delivering proppant to a blender
US9676554B2 (en) 2014-09-15 2017-06-13 Oren Technologies, Llc System and method for delivering proppant to a blender
US9718610B2 (en) 2012-07-23 2017-08-01 Oren Technologies, Llc Proppant discharge system having a container and the process for providing proppant to a well site
US9758081B2 (en) 2012-07-23 2017-09-12 Oren Technologies, Llc Trailer-mounted proppant delivery system
US9758082B2 (en) 2013-04-12 2017-09-12 Proppant Express Solutions, Llc Intermodal storage and transportation container
USRE46576E1 (en) 2013-05-17 2017-10-24 Oren Technologies, Llc Trailer for proppant containers
US9796319B1 (en) 2013-04-01 2017-10-24 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
USRE46590E1 (en) 2013-05-17 2017-10-31 Oren Technologies, Llc Train car for proppant containers
US9809381B2 (en) 2012-07-23 2017-11-07 Oren Technologies, Llc Apparatus for the transport and storage of proppant
USRE46613E1 (en) 2012-11-02 2017-11-28 Oren Technologies, Llc Proppant vessel
US9845210B2 (en) 2016-01-06 2017-12-19 Oren Technologies, Llc Conveyor with integrated dust collector system
USRE46645E1 (en) 2013-04-05 2017-12-26 Oren Technologies, Llc Trailer for proppant containers
US9862551B2 (en) 2012-07-23 2018-01-09 Oren Technologies, Llc Methods and systems to transfer proppant for fracking with reduced risk of production and release of silica dust at a well site
US9914464B1 (en) * 2017-11-08 2018-03-13 Vertex Railcar Corporation Railroad hopper car with bottom discharge doors having angled seals and actuating assemblies
USRE47162E1 (en) 2012-11-02 2018-12-18 Oren Technologies, Llc Proppant vessel
USD847489S1 (en) 2012-09-24 2019-05-07 Sandbox Logistics, Llc Proppant container
US10518828B2 (en) 2016-06-03 2019-12-31 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
US10618744B2 (en) 2016-09-07 2020-04-14 Proppant Express Solutions, Llc Box support frame for use with T-belt conveyor
US11268301B2 (en) 2017-04-27 2022-03-08 Reinhard Matye Automatic hatch for bulk material containers
US11873160B1 (en) 2014-07-24 2024-01-16 Sandbox Enterprises, Llc Systems and methods for remotely controlling proppant discharge system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US734977A (en) * 1902-08-15 1903-07-28 Glenn E Simonton Dumping box-car.
US761550A (en) * 1903-03-12 1904-05-31 Glenn E Simonton Combination stock, coal, and coke car.
US776149A (en) * 1903-06-02 1904-11-29 Glenn E Simonton Coal, ore, or ballast car.
US996473A (en) * 1910-12-06 1911-06-27 John W Estes Eccentrically-mounted bearing for stub-axles.
US1019872A (en) * 1910-10-17 1912-03-12 Chicago Railway Equipment Co Adjustable brake-rod.
US1571557A (en) * 1923-07-05 1926-02-02 Deere & Co Shaft adjustment
US1652677A (en) * 1926-11-24 1927-12-13 William F Mccoy Slack adjuster
US2602402A (en) * 1947-12-23 1952-07-08 Sanford Invest Co Mine car sealing device
US2778319A (en) * 1951-10-12 1957-01-22 Entpr Railway Equipment Co Hopper discharge outlet
US3137247A (en) * 1961-08-04 1964-06-16 Magor Car Corp Operating mechanism for doors on hopper type cars
US3187684A (en) * 1961-03-06 1965-06-08 Ortner Freight Car Co Rapid discharge hopper car
US3234892A (en) * 1963-01-28 1966-02-15 Lunde Brothers Inc Gable-bottom car door operating apparatus
US3262401A (en) * 1962-07-17 1966-07-26 Entpr Railway Equipment Co Drop bottom railway car
US3316857A (en) * 1964-04-21 1967-05-02 Unitcast Corp Motor actuated closure mechanism for railway hopper cars
US3339500A (en) * 1964-11-23 1967-09-05 Continental Transp Appliances Overcenter toggle latch overlapping hopper doors
US3368081A (en) * 1965-02-12 1968-02-06 Pickands Mather & Co Automatic trackside car door position recorder

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US734977A (en) * 1902-08-15 1903-07-28 Glenn E Simonton Dumping box-car.
US761550A (en) * 1903-03-12 1904-05-31 Glenn E Simonton Combination stock, coal, and coke car.
US776149A (en) * 1903-06-02 1904-11-29 Glenn E Simonton Coal, ore, or ballast car.
US1019872A (en) * 1910-10-17 1912-03-12 Chicago Railway Equipment Co Adjustable brake-rod.
US996473A (en) * 1910-12-06 1911-06-27 John W Estes Eccentrically-mounted bearing for stub-axles.
US1571557A (en) * 1923-07-05 1926-02-02 Deere & Co Shaft adjustment
US1652677A (en) * 1926-11-24 1927-12-13 William F Mccoy Slack adjuster
US2602402A (en) * 1947-12-23 1952-07-08 Sanford Invest Co Mine car sealing device
US2778319A (en) * 1951-10-12 1957-01-22 Entpr Railway Equipment Co Hopper discharge outlet
US3187684A (en) * 1961-03-06 1965-06-08 Ortner Freight Car Co Rapid discharge hopper car
US3137247A (en) * 1961-08-04 1964-06-16 Magor Car Corp Operating mechanism for doors on hopper type cars
US3262401A (en) * 1962-07-17 1966-07-26 Entpr Railway Equipment Co Drop bottom railway car
US3234892A (en) * 1963-01-28 1966-02-15 Lunde Brothers Inc Gable-bottom car door operating apparatus
US3316857A (en) * 1964-04-21 1967-05-02 Unitcast Corp Motor actuated closure mechanism for railway hopper cars
US3339500A (en) * 1964-11-23 1967-09-05 Continental Transp Appliances Overcenter toggle latch overlapping hopper doors
US3368081A (en) * 1965-02-12 1968-02-06 Pickands Mather & Co Automatic trackside car door position recorder

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805708A (en) * 1972-05-19 1974-04-23 Pullman Inc Railway car hopper door operating mechanism
US3776142A (en) * 1972-08-02 1973-12-04 Ortner Freight Car Co Spring loaded railway car hopper car door
DE2358079A1 (en) * 1972-08-02 1975-05-28 Ortner Freight Car Co SPRING-LOADED DOOR STOP AND DOOR LOCKING DEVICE FOR AN EMPTYING GATE OF A RAILWAY FUNNEL
US4361096A (en) * 1978-10-06 1982-11-30 Ortner Freight Car Company Railway hopper car door seal
US4284011A (en) * 1980-03-10 1981-08-18 Ortner Freight Car Company Restraint assembly for the hopper door actuator of a rapid discharging railroad hopper car
FR2494199A1 (en) * 1980-11-20 1982-05-21 Ortner Freight Car Co DEVICE FOR ACTUATING AND LOCKING HOPPER DOORS OF RAILWAY WAGON
DE3128010A1 (en) * 1980-11-20 1982-07-01 Ortner Freight Car Co., 45150 Milford, Ohio "OPERATING DEVICE FOR FUNNEL LOCKING DOORS ON RAILWAY FUNNEL CART"
US4366757A (en) * 1980-11-20 1983-01-04 Ortner Freight Car Company Actuating and locking means for the hopper doors of a railroad hopper car
US4508037A (en) * 1982-05-24 1985-04-02 Pullman Standard, Inc. Door lever adjusting device for hopper car doors
US4545446A (en) * 1983-05-11 1985-10-08 Kabushiki Kaisha Ishida Koki Seisakusho Hopper in combinatorial weighing apparatus
US4628825A (en) * 1984-06-27 1986-12-16 American Autogate Corporation Sliding gate actuating mechanism
US4606277A (en) * 1984-11-30 1986-08-19 Ortner Freight Car Company Actuating and locking apparatus for longitudinal hopper doors of a railroad hopper car
US4688488A (en) * 1985-11-19 1987-08-25 Avondale Industries, Inc. Automatic actuating and locking apparatus for the hopper doors of a railroad hopper car
US4741274A (en) * 1986-03-27 1988-05-03 Trinity Industries Hopper door operating mechanism
US4766820A (en) * 1987-06-03 1988-08-30 Thrall Car Manufacturing Company Hopper car with automatic discharge door mechanism
US4843974A (en) * 1987-06-03 1989-07-04 Thrall Car Manufacturing Company Hopper car with automatic discharge door mechanism
US5144895A (en) * 1990-10-31 1992-09-08 Differential Steel Car Company Hopper door apparatus for a railway car
US5199612A (en) * 1991-05-23 1993-04-06 Raque Food Systems, Inc. Traveling bucket with dispensing outlet closure mechanism
US5263421A (en) * 1991-10-07 1993-11-23 Energy Resources & Logistics, Inc. Coal fly-ash railway hopper car with 70 degree minimum slope and end sheet angle and longitudinal dual purpose loading hatch
US6405658B1 (en) * 1999-06-01 2002-06-18 Jac Patent Company Manual discharge door operating system for a hopper railcar
AU2008202713B2 (en) * 2002-03-28 2011-04-14 China International Marine Containers (Group) Co. Limited Wagon Bottom Door Release Arrangement
US20040149163A1 (en) * 2003-02-03 2004-08-05 Taylor Fred J. Manual railroad hopper car door actuating mechanism
US6955127B2 (en) 2003-02-03 2005-10-18 Taylor Fred J Manual railroad hopper car door actuating mechanism
US20040244638A1 (en) * 2003-06-09 2004-12-09 Taylor Fred J. Railroad hopper car transverse door actuating mechanism
US7080599B2 (en) 2003-06-09 2006-07-25 Taylor Fred J Railroad hopper car transverse door actuating mechanism
US20050092202A1 (en) * 2003-10-30 2005-05-05 Taylor Fred J. Railroad hopper car longitudinal door actuating mechanism
US6955126B2 (en) 2003-10-30 2005-10-18 Taylor Fred J Railroad hopper car longitudinal door actuating mechanism
US20070175357A1 (en) * 2006-01-24 2007-08-02 Freightcar America, Inc. Hopper railcar with automatic individual door system
US7832340B2 (en) 2006-01-24 2010-11-16 Freightcar America, Inc. Hopper railcar with automatic individual door system
US20100132587A1 (en) * 2006-09-08 2010-06-03 National Steel Car Limited Rail road hopper car ridge fittings
US8065964B2 (en) 2006-09-08 2011-11-29 National Steel Car Limited Rail road hopper car ridge fittings
US10214224B2 (en) 2006-09-08 2019-02-26 National Steel Car Limited Rail road hopper car
US9272717B2 (en) 2006-09-08 2016-03-01 National Steel Car Limited Rail road hopper car ridge fittings
US7703397B2 (en) 2006-09-08 2010-04-27 National Steel Car Limited Rail road hopper car fittings and method of operation
US20100319570A1 (en) * 2006-09-08 2010-12-23 National Steel Car Limited Rail road hopper car structure
US8622004B2 (en) * 2006-09-08 2014-01-07 National Steel Car Limited Rail road hopper car ridge fittings
US20080066642A1 (en) * 2006-09-08 2008-03-20 National Steel Car Limited Rail road hopper car fittings and method of operation
US20120199041A2 (en) * 2006-09-08 2012-08-09 National Steel Car Limited Rail road hopper car ridge fittings
US8047140B2 (en) 2006-09-08 2011-11-01 National Steel Car Limited Rail road hopper car structure
US20100132588A1 (en) * 2008-12-03 2010-06-03 Robert Bosch Gmbh Control valve assembly for load carrying vehicles
US7980269B2 (en) 2008-12-03 2011-07-19 Robert Bosch Gmbh Control valve assembly for load carrying vehicles
US9120492B2 (en) 2008-12-03 2015-09-01 Aventics Corporation Control valve assembly for load carrying vehicles
US8267120B2 (en) 2008-12-03 2012-09-18 Robert Bosch Gmbh Control valve assembly for load carrying vehicles
US20100219148A1 (en) * 2009-09-11 2010-09-02 National Steel Car Limited Railroad gondola car structure and mechanism therefor
US8132515B2 (en) 2009-09-11 2012-03-13 National Steel Car Limited Railroad gondola car structure and mechanism therefor
US8166892B2 (en) 2009-09-11 2012-05-01 National Steel Car Limited Railroad gondola car structure and mechanism therefor
US20110041724A1 (en) * 2009-09-11 2011-02-24 National Steel Car Limited Railroad gondola car structure and mechanism therefor
US8141726B2 (en) 2009-09-11 2012-03-27 National Steel Car Limited Railroad gondola car structure and mechanism therefor
US20100251922A1 (en) * 2009-09-11 2010-10-07 National Steel Car Limited Railroad gondola car structure and mechanism therefor
US10562702B2 (en) 2011-09-23 2020-02-18 Sandbox Logistics, Llc Systems and methods for bulk material storage and/or transport
US10538381B2 (en) 2011-09-23 2020-01-21 Sandbox Logistics, Llc Systems and methods for bulk material storage and/or transport
CN102431564B (en) * 2011-10-20 2013-12-25 齐齐哈尔轨道交通装备有限责任公司 Bottom door device and hopper car
CN102431564A (en) * 2011-10-20 2012-05-02 齐齐哈尔轨道交通装备有限责任公司 Bottom door device and hopper car
CN102398607A (en) * 2011-11-29 2012-04-04 太原轨道交通装备有限责任公司 Sealing structure for bottom door of hopper wagon
CN102398607B (en) * 2011-11-29 2014-09-03 太原轨道交通装备有限责任公司 Sealing structure for bottom door of hopper wagon
US10703587B2 (en) 2011-12-21 2020-07-07 Oren Technologies, Llc Method of delivering, transporting, and storing proppant for delivery and use at a well site
US9932181B2 (en) 2011-12-21 2018-04-03 Oren Technologies, Llc Method of delivering, transporting, and storing proppant for delivery and use at a well site
US9511929B2 (en) 2011-12-21 2016-12-06 Oren Technologies, Llc Proppant storage vessel and assembly thereof
US9527664B2 (en) 2011-12-21 2016-12-27 Oren Technologies, Llc Proppant storage vessel and assembly thereof
US9914602B2 (en) 2011-12-21 2018-03-13 Oren Technologies, Llc Methods of storing and moving proppant at location adjacent rail line
US9617066B2 (en) 2011-12-21 2017-04-11 Oren Technologies, Llc Method of delivering, transporting, and storing proppant for delivery and use at a well site
US9682815B2 (en) 2011-12-21 2017-06-20 Oren Technologies, Llc Methods of storing and moving proppant at location adjacent rail line
US9643774B2 (en) 2011-12-21 2017-05-09 Oren Technologies, Llc Proppant storage vessel and assembly thereof
US9656799B2 (en) 2012-07-23 2017-05-23 Oren Technologies, Llc Method of delivering, storing, unloading, and using proppant at a well site
US10661980B2 (en) 2012-07-23 2020-05-26 Oren Technologies, Llc Method of delivering, storing, unloading, and using proppant at a well site
US10814767B2 (en) 2012-07-23 2020-10-27 Oren Technologies, Llc Trailer-mounted proppant delivery system
US9669993B2 (en) 2012-07-23 2017-06-06 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US10787312B2 (en) 2012-07-23 2020-09-29 Oren Technologies, Llc Apparatus for the transport and storage of proppant
US10745194B2 (en) 2012-07-23 2020-08-18 Oren Technologies, Llc Cradle for proppant container having tapered box guides and associated methods
US9694970B2 (en) 2012-07-23 2017-07-04 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9701463B2 (en) 2012-07-23 2017-07-11 Oren Technologies, Llc Method of delivering, storing, unloading, and using proppant at a well site
US9718610B2 (en) 2012-07-23 2017-08-01 Oren Technologies, Llc Proppant discharge system having a container and the process for providing proppant to a well site
US9718609B2 (en) 2012-07-23 2017-08-01 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9725234B2 (en) 2012-07-23 2017-08-08 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9725233B2 (en) 2012-07-23 2017-08-08 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9738439B2 (en) 2012-07-23 2017-08-22 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US10239436B2 (en) 2012-07-23 2019-03-26 Oren Technologies, Llc Trailer-mounted proppant delivery system
US9758081B2 (en) 2012-07-23 2017-09-12 Oren Technologies, Llc Trailer-mounted proppant delivery system
US10662006B2 (en) 2012-07-23 2020-05-26 Oren Technologies, Llc Proppant discharge system having a container and the process for providing proppant to a well site
US9771224B2 (en) 2012-07-23 2017-09-26 Oren Technologies, Llc Support apparatus for moving proppant from a container in a proppant discharge system
US9969564B2 (en) 2012-07-23 2018-05-15 Oren Technologies, Llc Methods and systems to transfer proppant for fracking with reduced risk of production and release of silica dust at a well site
USRE46334E1 (en) 2012-07-23 2017-03-07 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US10661981B2 (en) 2012-07-23 2020-05-26 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9809381B2 (en) 2012-07-23 2017-11-07 Oren Technologies, Llc Apparatus for the transport and storage of proppant
US9815620B2 (en) 2012-07-23 2017-11-14 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US10464741B2 (en) 2012-07-23 2019-11-05 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9834373B2 (en) 2012-07-23 2017-12-05 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US10569953B2 (en) 2012-07-23 2020-02-25 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9862551B2 (en) 2012-07-23 2018-01-09 Oren Technologies, Llc Methods and systems to transfer proppant for fracking with reduced risk of production and release of silica dust at a well site
USD847489S1 (en) 2012-09-24 2019-05-07 Sandbox Logistics, Llc Proppant container
USRE46613E1 (en) 2012-11-02 2017-11-28 Oren Technologies, Llc Proppant vessel
USRE46381E1 (en) 2012-11-02 2017-05-02 Oren Technologies, Llc Proppant vessel base
USRE46531E1 (en) 2012-11-02 2017-09-05 Oren Technologies, Llc Proppant vessel base
USRE47162E1 (en) 2012-11-02 2018-12-18 Oren Technologies, Llc Proppant vessel
US8967053B2 (en) 2013-03-15 2015-03-03 National Steel Car Limited Railroad hopper car and door mechanism therefor
US8915193B2 (en) 2013-03-15 2014-12-23 National Steel Car Limited Railroad car and door mechanism therefor
US10023206B2 (en) 2013-03-15 2018-07-17 National Steel Car Limited Railroad hopper car and door mechanism therefor
US9796319B1 (en) 2013-04-01 2017-10-24 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
US10059246B1 (en) 2013-04-01 2018-08-28 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
USRE46645E1 (en) 2013-04-05 2017-12-26 Oren Technologies, Llc Trailer for proppant containers
US9758082B2 (en) 2013-04-12 2017-09-12 Proppant Express Solutions, Llc Intermodal storage and transportation container
US10118529B2 (en) 2013-04-12 2018-11-06 Proppant Express Solutions, Llc Intermodal storage and transportation container
USRE46576E1 (en) 2013-05-17 2017-10-24 Oren Technologies, Llc Trailer for proppant containers
USRE46590E1 (en) 2013-05-17 2017-10-31 Oren Technologies, Llc Train car for proppant containers
CN103465918A (en) * 2013-09-23 2013-12-25 南车长江车辆有限公司 Labyrinth sealed bottom door and hopper vehicle
US9358988B2 (en) 2013-12-12 2016-06-07 Aero Transportation Products, Inc. Automatic hopper car gate opening and closing system
US9624030B2 (en) 2014-06-13 2017-04-18 Oren Technologies, Llc Cradle for proppant container having tapered box guides
US9840366B2 (en) 2014-06-13 2017-12-12 Oren Technologies, Llc Cradle for proppant container having tapered box guides
US11873160B1 (en) 2014-07-24 2024-01-16 Sandbox Enterprises, Llc Systems and methods for remotely controlling proppant discharge system
US10179703B2 (en) 2014-09-15 2019-01-15 Oren Technologies, Llc System and method for delivering proppant to a blender
US9670752B2 (en) 2014-09-15 2017-06-06 Oren Technologies, Llc System and method for delivering proppant to a blender
US10399789B2 (en) 2014-09-15 2019-09-03 Oren Technologies, Llc System and method for delivering proppant to a blender
US9676554B2 (en) 2014-09-15 2017-06-13 Oren Technologies, Llc System and method for delivering proppant to a blender
US9988215B2 (en) 2014-09-15 2018-06-05 Oren Technologies, Llc System and method for delivering proppant to a blender
US9346473B1 (en) * 2014-11-05 2016-05-24 Herzog Railroad Services, Inc. Material transport and distribution consist with controlled gated hopper cars and conveyor systems
US9963308B2 (en) 2016-01-06 2018-05-08 Oren Technologies, Llc Conveyor with integrated dust collector system
US9919882B2 (en) 2016-01-06 2018-03-20 Oren Technologies, Llc Conveyor with integrated dust collector system
US9845210B2 (en) 2016-01-06 2017-12-19 Oren Technologies, Llc Conveyor with integrated dust collector system
US11414282B2 (en) 2016-01-06 2022-08-16 Sandbox Enterprises, Llc System for conveying proppant to a fracking site hopper
US9932183B2 (en) 2016-01-06 2018-04-03 Oren Technologies, Llc Conveyor with integrated dust collector system
US10926967B2 (en) 2016-01-06 2021-02-23 Sandbox Enterprises, Llc Conveyor with integrated dust collector system
US10035668B2 (en) 2016-01-06 2018-07-31 Oren Technologies, Llc Conveyor with integrated dust collector system
US9902576B1 (en) * 2016-01-06 2018-02-27 Oren Technologies, Llc Conveyor with integrated dust collector system
US10065816B2 (en) 2016-01-06 2018-09-04 Oren Technologies, Llc Conveyor with integrated dust collector system
US9868598B2 (en) 2016-01-06 2018-01-16 Oren Technologies, Llc Conveyor with integrated dust collector system
US10518828B2 (en) 2016-06-03 2019-12-31 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
US10618744B2 (en) 2016-09-07 2020-04-14 Proppant Express Solutions, Llc Box support frame for use with T-belt conveyor
US11268301B2 (en) 2017-04-27 2022-03-08 Reinhard Matye Automatic hatch for bulk material containers
US10029706B1 (en) 2017-11-08 2018-07-24 Vertex Railcar Corporation Method for actuating discharge doors of railroad hopper cars
US9914464B1 (en) * 2017-11-08 2018-03-13 Vertex Railcar Corporation Railroad hopper car with bottom discharge doors having angled seals and actuating assemblies

Also Published As

Publication number Publication date
JPS5233362B1 (en) 1977-08-27

Similar Documents

Publication Publication Date Title
US3596609A (en) Rapid discharge hopper car door actuator
US3187684A (en) Rapid discharge hopper car
US5249531A (en) Railraod hopper car door actuating mechanism
US4222334A (en) Hopper discharge door operating mechanism
US3408956A (en) Pneumatic motor actuated railway car discharge doors
US11731668B2 (en) Hopper car double doors
US6405658B1 (en) Manual discharge door operating system for a hopper railcar
US3633515A (en) Door-operating mechanism
US3868913A (en) Hopper vehicle
US6955126B2 (en) Railroad hopper car longitudinal door actuating mechanism
US3717110A (en) Motor actuated hopper doors
US3183852A (en) Discharge outlet assembly for hopper car
US3717109A (en) Motor actuated hopper door
US3256836A (en) Hopper doors operating assembly
US3307495A (en) Railway car
US20060272541A1 (en) Railroad hopper car door actuating mechanism
US2079392A (en) Dump car
US3650221A (en) Hopper car closure actuating mechanism
US4236458A (en) Door locking and actuating mechanism for hopper car
US3540382A (en) Motor actuated hopper car doors
US938976A (en) Dump-car.
US2835208A (en) Ballast car door operating mechanism
US3773194A (en) Discharge door operating mechanism
US4280778A (en) Hopper car door operating mechanism
US3540605A (en) Operating mechanism for vehicle discharge means

Legal Events

Date Code Title Description
AS Assignment

Owner name: AVONDALE INDUSTRIES, INC., A CORP. OF DE.

Free format text: MERGER;ASSIGNOR:ORTNER FREIGHT CAR COMPANY ETC;REEL/FRAME:004592/0366

Effective date: 19850826