US3595343A - Control system for lift trucks - Google Patents

Control system for lift trucks Download PDF

Info

Publication number
US3595343A
US3595343A US791354*A US3595343DA US3595343A US 3595343 A US3595343 A US 3595343A US 3595343D A US3595343D A US 3595343DA US 3595343 A US3595343 A US 3595343A
Authority
US
United States
Prior art keywords
control
engine
lift
truck
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US791354*A
Inventor
William A Williamson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doosan Bobcat North America Inc
Original Assignee
Clark Equipment Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clark Equipment Co filed Critical Clark Equipment Co
Application granted granted Critical
Publication of US3595343A publication Critical patent/US3595343A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07572Propulsion arrangements

Definitions

  • ATTORNEYS In maneuvering a lift truck prior to and during the operation of lifting a load as well as during the placing of the load on the lift fork members, it is quite generally the situation that the forward movement of the vehicle, or rearward as the case may be, is a very slow movement while the rate of the lift of the load-carrying member is desired to be relatively fast. It is necessary in order to accomplish the above outlined results, that special precautions be taken by the operator to cause the truck to move very slowly. This is quite commonly accomplished either by special so-called inching devices or by the well known expedient of slipping the clutch," both of which result in rapid clutch wear. Also, this type of maneuver under the conditions outlined above is often difficult.
  • the conventional type of lift unit is operated by hydraulic means which operates by a pump driven by the vehicle engine. Therefore, increase in rate of lift requires an increase in engine speed which is difficult to obtain while accomplishing at the same time, the slow movement of the truck.
  • the vehicle control could be set to maintain a relatively low forward speed while the engine of the lift truck vehicle could be accelerated at will to a higher speed needed for the most effective lift.
  • SUMMARY Hydraulic system control elements in combination with hydrostatic drive for moving the truck forward as well as providing, by hydraulics, a load lift control and a governor type of vehicle control.
  • the hydrostatic drive makes possible a control over vehicle speed separate from the engine speed, and the accelerator control is made to control the speed of the truck, within limits, independent of engine speed changes, thus making possible a variation in engine speed for the purpose of driving the lift pump fast enough for fast lift while the truck vehicle is operating at a slow speed.
  • FIG. I is a side view of a type of vehicle known as a lift truck on which the present control system may be used.
  • FIG. 2 is a showing ofthe control system with the several elements, both hydraulic and mechanical in diagrammatic form and disclosing their relationship.
  • FIG. 3 is a diagram showing the hydrostatic drive from the engine to the vehicle wheels with the elements thereof in diagrammatic form, together with a showing of the engine and the several pumps driven thereby forming a part of the control system. Certain relief valves and cross check valves being omitted as not pertinent to the description.
  • FIG. 1 shows an industrial lift truck 102 in which the control system shown in FIG. 2 is used.
  • Lift truck 102 is supported on forward drive wheels 106 and rear wheels I08.
  • a lift upright 110 mounted at the forward end of the lift truck is a lift upright 110 which includes a vertically movable carriage 1I2 which carries a pair of forwardly extending fork arms 114 which support the load to be carried.
  • the carriage I12 is connected to a vertically directed fluid motor, so-callcd lift cylinder 116, location of which is designated adjacent the carriage 112 in FIG. I and which is shown in the diagram of FIG. 2.
  • Certain of the elements of the control system shown diagrammatically in FIG. 2 are located in FIG.
  • FIG. 1 by a general designation of location by a lead line from the corresponding reference numeral. It is understood that all of the elements of the control system shown in FIGS. 2 and 3 are present on the lift truck of FIG. 1, with only representation elements being indicated as to their general location in FIG. 1.
  • the engine-driven fixed-displacement pump numeral 1 is connected by line 2 to deliver oil under pressure over a variable orifice 5 formed by a spool 5a, movable in a valve body 4.
  • Spool 5a is movable longitudinally of the valve body 4 by accelerator pedal 15 connected as shown in FIG. 2 so that variation in the position of the spool 5a varies the orifice 5 to control restriction in flow from line 2 as later described.
  • variable orifice spool 5a and a flow regulator spool 3 are both housed in housing 4 and are in alignment with the connection to the accelerator pedal 15.
  • a spring 5b is provided between orifice spool 5a and the top of flow regulator spool 3 and another spring 5c is on the bottom side of regulator spool 3.
  • a spring-loaded hydraulic cylinder 9 is connected to a hydrostatic transmission stem-type servocontrol valve 10 and hydraulically connected to a flow regulator 3 by a line 11, and regulator 3 in turn is connected to line 2 thru line 16. This is a connection to actuate the hydrostatic transmission shown in FIG. 3, with further functions to be described hereinafter.
  • Another hydraulic cylinder 12 is connected by suitable linkage to the carburetor butterfly valve 13. This hydraulic cylinder is hydraulically connected to be actuated from line 2 by line 14.
  • the drive of the vehicle wheels departs from the conventional geared transmission structure most commonly used, by providing a hydrostatic drive shown diagrammatically in FIG. 3.
  • the hook up includes a variable displacement hydrostatic pump 27 driven by vehicle engine 30, which by the hydraulic connections and hydrostatic assembly 113 shown in FIG. 3 drives a hydrostatic motor 118 adjacent the drive wheels to propel the axle which drives the ground wheels 106 of the truck. Between line 17 and motor 118, is a manually operated directional control valve 119.
  • the vehicle engine 30 also drives another pump, a fixed displacement so-called lift pump 26 (FIG. 3). This pump is for the purpose of actuating the lift mechanism of the lift truck and is a apart of the lift truck arrangement.
  • the engine 30 of the truck drives still another fixed displacement pump, the previously mentioned pump 1, which is shown in the diagram of FIG. 2, as well as FIG. 3.
  • a hydrostatic valve servo l0 actuates a so-called swash plate control, known in the art, for the hydro static pump 27 and that this servo mechanism operates the swash plate to change the displacement of the pump and thereby changes the speed of the vehicle wheels. It therefore follows that the total vehicle speed will result from the combination of engine speed and pump displacement.
  • variable speed engine portion of the circuit operates as follows: When it is desired to increase the engine speed, the operator presses down on the accelerator any desired amount.
  • the variable orifice 5 is opened a corresponding amount which allows the pressure in line 2 to decrease. This pressure decrease is reflected in line 14 and in cylinder 12 such that the spring in the base of the cylinder causes the piston to move from right to left. This movement opens the carburetor butterfly valve 13 which causes the engine to increase in speed.
  • the volume of oil delivered by fixed displacement pump 1 also increases. This increased volume is delivered across variable orifice 5 and results in an increasing pressure in line 2, line 14 and cylinder 12. This in turn tends to cause the butterfly valve 13 to close.
  • Line 16 is connected to line 2 and, therefore,, sees any pressure fluctuations that occur in line 2.
  • the best way to explain the reason for this is to assign some values to these pressures. Assuming that cylinder 12 operates over a pressure range of to 50 p.s.i. That is, at 100 p.s.i. the cylinder is collapsed and the engine is idling at 500 r.p.m. At 50 p.s.i the cylinder is extended and the engine is running at 2200 rpm. Now let us assume that cylinder 9 operates over a pressure range of from 20 p.s.i. to 4 p.s.i. Under normal operating conditions cylinder 9 will always see more pressure than is required to fully extend it. Therefore, its movement must be regulated by a volume change.
  • valve spool 8 and control 22 are constructed to control both of these functions.
  • the best way to describe this action is to take an example.
  • the driver wants to move the truck at a very low rate of speed while elevating the load at a very high rate of speed.
  • the driver sets his truck speed by movement of accelerator pedal 15 in a small amount. This causes a small pressure drop in line 2, moves flow regulator spool 3 and causes the operations hereinbefore described to take place, thus setting a low truck speed rate.
  • valve handle 22 To lift the load, the operator moves valve handle 22 (HO. 2) from right to left. This causes pressurized oil from line 23 to communicate with line 24 which is connected to the lift cylinder. This much of the spool 8 is a conventional configuration and permits a certain amount of throttling of the oil. in moving spool 8, the movement of control handle 22 also uncovers the port which is connected to line 7. This allows oil to bleed off to tank and causes the pressure in line 2 to drop. The pressure drop in line 2 is, as described earlier, accompanied by a corresponding increase in carburetor butterfly 13 opening and consequently an increase in engine speed. This increase in engine speed is compensated for in the truck speed by orifice 18 in the return line of the hydrostatic drive (see above discussion).
  • Valve spool 8 was designed to progressively uncover the opening from line 7 thus permitting throttling of the oil and consequently progressive decrease in pressure in line 2. This permits selective increase of engine speed to whatever the operator desires in order to accomplish a satisfactory rate of lift without materially increasing the speed of the truck.
  • Actuation of the lift control lever 22 and spool 8 will cause the engine speed to increase in proportion to the amount of lever 22 movement, thereby providing maximum lift rate capabilities.
  • any change in engine speed will be automatically compensated for by a change in pump displacement, and change in associated drive ratio of the vehicle hydrostatic transmission, thereby leaving the vehicle speed unchanged.
  • lift and lift truck as used herein are considered as applicable to lift truck mechanisms wherein a lift function is accomplished such as dump trucks, tractor scrapers, paving machines, all of which have enginedriven ground-wheel drives and auxiliary power devices which have independently variable control requirements to which the structure disclosed herein could be adapted.
  • a control system for a lift truck said truck having an engine, an acceleration control member, a lift control mechanism, a fuel flow control, and a variable ratio hydrostatic drive for the truck from said engine to propel the truck for ground drive;
  • control members responsive to flow rate in a hydraulic line of said hydrostatic drive
  • connections from said control member constructed and arranged to vary the effective drive ratio thru said hydrostatic drive from said engine to allow said engine to increase in speed as called for by said lift control mechanism while maintaining relatively low ground speed of said truck as called for by said acceleration control member.
  • a carburetor valve controlling fuel flow to said engine
  • connections from said control member constructed and arranged to vary the effective drive ratio thru said hydrostatic drive from said engine to allow said engine to increase in speed as called for by said lift control while maintaining relatively low ground speed of said truck, comprise:
  • a manually actuated control valve spool member for control and actuation of said lift mechanism
  • control valve spool member constructed and arranged to bleed hydraulic fluid from said main delivery line thru auxiliary delivery line on actuation of said control valve spool causing speed up of the engine to actuate said lift and load support member at a relatively fast rate in proportion to movement of said valve spool member.
  • a control system for a lift truck said truck having an engine, an acceleration control member, a fuel control, lift control mechanism, and a variable ratio hydrostatic drive for the truck from said engine to propel the truck for ground drive:
  • control system comprising:
  • hydraulic actuated means controlled by said lift control mechanism and said acceleration control member for varying the hydrostatic drive ratio between the engine and the wheels of said truck to allow said increase in speed of said engine to increase the lift rate of said lift mechanism while continuing to drive said truck at speeds called for by acceleration control member.
  • a manually actuated control valve member for controlling actuation of said fluid pressure operated lift mechanism
  • control valve member including means to bypass fluid from said further hydraulic control mechanism thereby to compensate for variations in at least one of said other components on actuation of said control valve member for control of the lift rate of said lift mechanism;
  • a carburetor valve controlling fuel flow to said engine
  • an auxiliary delivery line connecting said main delivery line with said resiliently biased hydraulic cylinder and piston at a position between said engine-driven pump and said variable orifice thereby supplying fluid under pressure to said piston in a direction to close said carburetor valve against the resilient bias;
  • a manually actuated control valve member for controlling actuation of said fluid pressure operated lift mechanism
  • control valve member including means to bypass fluid from said main delivery line connecting said fluid pump with said outlet orifice on actuation of said lift control valve member whereby said engine output may be increased independently of said acceleration control member for the purpose of actuation of said lift mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Fluid Gearings (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

The system employs hydrostatic drive for a lift truck in combination with hydraulic system elements which control not only the hydrostatic drive and truck speed through the accelerator setting, but also afford elements and controls for actuation of the lift mechanism which make possible a speed up of the engine to provide a fast lift while the truck is driven at a controlled slow speed.

Description

. United States Patent William A. Williamson Niles, Mich.
Jan. 15, [969 July 27, 1971 Clark Equipment Company Inventor Appl. No Filed Patented Assignee CONTROL SYSTEM FOR LIFT TRUCKS 8 Claims, 3 Drawing Figs.
us. Cl 187/9, l87ll7,60/l9, 180/66 Int. Cl B66b 9/20 mu olSeareh 187/9, 17;
ISO/66; 60/19 {56] References Cited UNITED STATES PATENTS 3,005,562 lO/l96l Shaffer 187/9 3,369,360 2/1968 De Biasi 60/19 3,543,508 12/1970 Schwab 60/19 Primary Examiner-Harvey C. Hornsby Attorney-Hobbs 8L Green & Kemon, Palmer & Estabrook ABSTRACT: The system employs hydrostatic drive for a lift truck in combination with hydraulic system elements which control not only the hydrostatic drive and truck speed through the accelerator setting, but also afford elements and controls for actuation of the lift mechanism which make possible a speed up of the engine to provide a fast lift while the truck is driven at a controlled slow speed.
PATENTED JUL2 7 IQI'I SHEET 1 [IF 2 FIG. I
IIO
ATTORNEYS In maneuvering a lift truck prior to and during the operation of lifting a load as well as during the placing of the load on the lift fork members, it is quite generally the situation that the forward movement of the vehicle, or rearward as the case may be, is a very slow movement while the rate of the lift of the load-carrying member is desired to be relatively fast. It is necessary in order to accomplish the above outlined results, that special precautions be taken by the operator to cause the truck to move very slowly. This is quite commonly accomplished either by special so-called inching devices or by the well known expedient of slipping the clutch," both of which result in rapid clutch wear. Also, this type of maneuver under the conditions outlined above is often difficult.
Furthermore, the conventional type of lift unit is operated by hydraulic means which operates by a pump driven by the vehicle engine. Therefore, increase in rate of lift requires an increase in engine speed which is difficult to obtain while accomplishing at the same time, the slow movement of the truck.
In view of the above conditions, it would be most advantageous if the vehicle control could be set to maintain a relatively low forward speed while the engine of the lift truck vehicle could be accelerated at will to a higher speed needed for the most effective lift.
It is also a problem in a lift truck to maintain a relatively slow forward speed without undue manipulation of the accelerator pedal, leaving the operator more freedom to manipulate the lifl controls. It would be advantageous to have a governor type of control for the forward speed of the vehicle, when desired, so that it could be set to be independent, within limits, of change in torque requirements of the vehicle.
SUMMARY Hydraulic system control elements in combination with hydrostatic drive for moving the truck forward as well as providing, by hydraulics, a load lift control and a governor type of vehicle control. The hydrostatic drive makes possible a control over vehicle speed separate from the engine speed, and the accelerator control is made to control the speed of the truck, within limits, independent of engine speed changes, thus making possible a variation in engine speed for the purpose of driving the lift pump fast enough for fast lift while the truck vehicle is operating at a slow speed.
It is therefore a primary object of the invention to provide a lift truck control system accomplishing controlled slow speed of the truck while allowing the engine to be speeded up to drive the lift pump for relatively fast movement of the lift mechanism.
It is a further object to provide inching capability in a lift truck without having to utilize a special inching mechanism to perform this function, while allowing the engine speed to be increased.
Further, it is an object and the structure affords, a governing of vehicle speed, which is operable over the entire speed range of the engine controlled by variation in accelerator setting.
It is another object to provide a control mechanism whereby the accelerator control member controls the speed of the truck independent, within limits, of changes in speed requirements of the lift system.
The above and other objects will appear more fully from the following more detailed description of an illustrative structure and by reference to the accompanying drawings.
DRAWINGS FIG. I is a side view of a type of vehicle known as a lift truck on which the present control system may be used.
FIG. 2 is a showing ofthe control system with the several elements, both hydraulic and mechanical in diagrammatic form and disclosing their relationship.
FIG. 3 is a diagram showing the hydrostatic drive from the engine to the vehicle wheels with the elements thereof in diagrammatic form, together with a showing of the engine and the several pumps driven thereby forming a part of the control system. Certain relief valves and cross check valves being omitted as not pertinent to the description.
DESCRIPTION OF AN ILLUSTRATIVE STRUCTURE Referring to the drawings, FIG. 1 shows an industrial lift truck 102 in which the control system shown in FIG. 2 is used. Lift truck 102 is supported on forward drive wheels 106 and rear wheels I08. Mounted at the forward end of the lift truck is a lift upright 110 which includes a vertically movable carriage 1I2 which carries a pair of forwardly extending fork arms 114 which support the load to be carried. The carriage I12 is connected to a vertically directed fluid motor, so-callcd lift cylinder 116, location of which is designated adjacent the carriage 112 in FIG. I and which is shown in the diagram of FIG. 2. Certain of the elements of the control system shown diagrammatically in FIG. 2 are located in FIG. 1 by a general designation of location by a lead line from the corresponding reference numeral. It is understood that all of the elements of the control system shown in FIGS. 2 and 3 are present on the lift truck of FIG. 1, with only representation elements being indicated as to their general location in FIG. 1.
Referring particularly to FIG. 2, the engine-driven fixed-displacement pump numeral 1 is connected by line 2 to deliver oil under pressure over a variable orifice 5 formed by a spool 5a, movable in a valve body 4. Spool 5a is movable longitudinally of the valve body 4 by accelerator pedal 15 connected as shown in FIG. 2 so that variation in the position of the spool 5a varies the orifice 5 to control restriction in flow from line 2 as later described.
The variable orifice spool 5a and a flow regulator spool 3 are both housed in housing 4 and are in alignment with the connection to the accelerator pedal 15. A spring 5b is provided between orifice spool 5a and the top of flow regulator spool 3 and another spring 5c is on the bottom side of regulator spool 3.
A spring-loaded hydraulic cylinder 9 is connected to a hydrostatic transmission stem-type servocontrol valve 10 and hydraulically connected to a flow regulator 3 by a line 11, and regulator 3 in turn is connected to line 2 thru line 16. This is a connection to actuate the hydrostatic transmission shown in FIG. 3, with further functions to be described hereinafter.
Another hydraulic cylinder 12 is connected by suitable linkage to the carburetor butterfly valve 13. This hydraulic cylinder is hydraulically connected to be actuated from line 2 by line 14.
The drive of the vehicle wheels departs from the conventional geared transmission structure most commonly used, by providing a hydrostatic drive shown diagrammatically in FIG. 3. The hook up includes a variable displacement hydrostatic pump 27 driven by vehicle engine 30, which by the hydraulic connections and hydrostatic assembly 113 shown in FIG. 3 drives a hydrostatic motor 118 adjacent the drive wheels to propel the axle which drives the ground wheels 106 of the truck. Between line 17 and motor 118, is a manually operated directional control valve 119. The vehicle engine 30 also drives another pump, a fixed displacement so-called lift pump 26 (FIG. 3). This pump is for the purpose of actuating the lift mechanism of the lift truck and is a apart of the lift truck arrangement. However, like the hydrostatic drive, when combined in the system, it is a part of the combination herein disclosed. Also the engine 30 of the truck drives still another fixed displacement pump, the previously mentioned pump 1, which is shown in the diagram of FIG. 2, as well as FIG. 3.
It is also noted that a hydrostatic valve servo l0 actuates a so-called swash plate control, known in the art, for the hydro static pump 27 and that this servo mechanism operates the swash plate to change the displacement of the pump and thereby changes the speed of the vehicle wheels. It therefore follows that the total vehicle speed will result from the combination of engine speed and pump displacement.
In operation, when the engine is idling, a given amount of oil is pumped by the control system pump 1 through line 2 across orifice 5 and to the tank. This creates a back pressure in line 2 which is reflected in line 14 and in cylinder 12. This pressure in cylinder 12 is sufficient to override the balance spring to cause the cylinder 12 to assume a retracted position. This, in turn, causes the carburetor butterfly valve 13 to be nearly closed. This pressure is also seen in line 7, but it is blocked by spool 8 when there is not actuation of the control.
With conditions as above, the variable speed engine portion of the circuit operates as follows: When it is desired to increase the engine speed, the operator presses down on the accelerator any desired amount. The variable orifice 5 is opened a corresponding amount which allows the pressure in line 2 to decrease. This pressure decrease is reflected in line 14 and in cylinder 12 such that the spring in the base of the cylinder causes the piston to move from right to left. This movement opens the carburetor butterfly valve 13 which causes the engine to increase in speed. As the engine speed increase, the volume of oil delivered by fixed displacement pump 1 also increases. This increased volume is delivered across variable orifice 5 and results in an increasing pressure in line 2, line 14 and cylinder 12. This in turn tends to cause the butterfly valve 13 to close. The more the engine speed increases, the farther the butterfly valve 13 will go toward its closed position. Eventually, a point of equilibrium is reached at which the butterfly opening matches the current engine speed and the increase in speed ceases. At this point, the pressure in line 2 is somewhat less than the initial idle pressure. If, during the operation of the truck there is any change in speed of the engine brought about by changing tractive conditions, the pressure in line 2 will automatically change accordingly. This pressure working through lines 14 and cylinder 12, will cause butterfly valve 13 to open or close to compensate for this change, thereby bringing the engine speed back to the original level called for by the accelerator pedal. It is important to note at this point that this is a governor-type control effective for each setting of the accelerator pedal. in other words, it is the control of the speed of the truck, at one accelerator pedal position and the compensation is for varying tractive conditions, change in torque, or load.
OUtput speed of the hydrostatic transmission and consequently the truck speed is controlled by flow regulator spool 3 in the valve body 4. Normally, this spool 3 is balanced by springs 5b and 5c on either end as shown, such that there is no oil delivered to cylinder 9 through line 11. Operation of the accelerator pedal 15 moves orifice member 5 downward and compresses the spring Sb on the top of the flow regulator spool 3, unbalancing the spool 3, and causing it to move downward. This opens a path from the pressurized source line 16 to line 11 in cylinder 9. This pressure causes cylinder 9 to stroke the pump servo l0 and start oil traveling through the hydrostatic transmission loop 113 causing the truck to move. Since the transmission is a closed-loop system and substantially all of the oil that is delivered by the pump ultimately reaches the oilretum line 17 shown at the bottom of the valve body 4. This line 17 is also shown in FIG. 3 with orifice 18. The oil in line 17 passes across the orifice 18 thereby creating a pressure drop. The magnitude of the pressure drop will be proportional to the amount of flow across the orifice. This pressure drop is reflected at the bottom of the regulator spool valve 3 by line 19. This pressure drop will gradually build up as the flow of oil increases and eventually balances the forces on spool 3 causing it to close. Line 20 runs between the downstream side of the orifice 18 and the top of the flow regulator 3. This line cancels out any extraneous pressures in line 17 which might be brought about by dynamic braking and ensures that the flow regulator spool valve 3 only sees the pressure drop across the orifice. Any engine speed change that is not called for by the accelerator will be compensated for by pressure change in line 19. For example, if the engine speeds up causing the oil flow to the transmission to increase, a greater pressure will be developed in line 19 and cause the flow regulator spool to move upward opening the path from line 11 to line 21 and consequently the tank. This will cause the cylinder 9 and the servo 10 to destroke causing the flow through the transmission to decrease thereby bringing the pressure in line 19 back into balance.
Line 16 is connected to line 2 and, therefore,, sees any pressure fluctuations that occur in line 2. The best way to explain the reason for this is to assign some values to these pressures. Assuming that cylinder 12 operates over a pressure range of to 50 p.s.i. That is, at 100 p.s.i. the cylinder is collapsed and the engine is idling at 500 r.p.m. At 50 p.s.i the cylinder is extended and the engine is running at 2200 rpm. Now let us assume that cylinder 9 operates over a pressure range of from 20 p.s.i. to 4 p.s.i. Under normal operating conditions cylinder 9 will always see more pressure than is required to fully extend it. Therefore, its movement must be regulated by a volume change. Since spool 3 in body 4 constitutes a flow regulator, this will be no problem. The pressure drops in line 2, due to a slowdown of the engine. The carburetor butterfly opens, introducing more gasoline and air to the engine. This will attempt to bring the engine speed back up. lf, however, the engine can not overcome the torque load imposed upon it; the engine speed will continue to drop. As the speed continues to drop, the pressure drops below 40 p.s.i. in line 2 and line 16. While this has been happening, the orifice 18 has signaled flow regulator spool 3 calling for more displacement on the pump. 1f the pump has not fully stroked, it will go to full stroke which will, of course, add to the torque load on the engine. Since the flow regulator 3 is open, the pressure in line 16 is seen in cylinder 9. When the pressure drops below the 40-pound maximum for the cylinder 9, it will begin to destroke forcing the oil in the cylinder back through lines 11, 16 and 3, and into line 2. This destroking of the pump will have the same effect as shifting the machine into higher gear, thereby relieving the torque load on the engine allowing it to speed up and reach a pressure equilibrium with cylinder 9.
In the operation of the lift truck, it is often desirable to lift the load at the maximum rate of speed possible while driving the truck at a relative low rate of speed. The lift speed is dependent upon two things(l) the amount that the control valve is opened and (2) the speed of the engine. The part of the system including valve spool 8 and control 22 are constructed to control both of these functions. The best way to describe this action is to take an example. In this example, it is assumed that the driver wants to move the truck at a very low rate of speed while elevating the load at a very high rate of speed. The driver sets his truck speed by movement of accelerator pedal 15 in a small amount. This causes a small pressure drop in line 2, moves flow regulator spool 3 and causes the operations hereinbefore described to take place, thus setting a low truck speed rate. To lift the load, the operator moves valve handle 22 (HO. 2) from right to left. This causes pressurized oil from line 23 to communicate with line 24 which is connected to the lift cylinder. This much of the spool 8 is a conventional configuration and permits a certain amount of throttling of the oil. in moving spool 8, the movement of control handle 22 also uncovers the port which is connected to line 7. This allows oil to bleed off to tank and causes the pressure in line 2 to drop. The pressure drop in line 2 is, as described earlier, accompanied by a corresponding increase in carburetor butterfly 13 opening and consequently an increase in engine speed. This increase in engine speed is compensated for in the truck speed by orifice 18 in the return line of the hydrostatic drive (see above discussion). The engine speed increase has not been brought about by the operator changing the accelerator position. The connections through variable orifice 5 and regulator spool 3 have not changed, therefore, the increased delivery through return line 17 will be compensated for by destroking the pump. Valve spool 8 was designed to progressively uncover the opening from line 7 thus permitting throttling of the oil and consequently progressive decrease in pressure in line 2. This permits selective increase of engine speed to whatever the operator desires in order to accomplish a satisfactory rate of lift without materially increasing the speed of the truck.
It is understood in the above discussion that when the term destroking the pump" of the hydrostatic drive is used, it means that the effective drive ratio between the engine and the wheels of the truck has been in the direction corresponding to a higher gear" ratio in an conventional gear transmission, and conversely stroking the pump means a shift in drive corresponding to a lower gear" ratio.
In the above connection, it is also to be noted that in the description above where the pressure buildup in line 19 accomplished by a relatively large pressure drop across orifice 18, indicating relatively large flow of oil in line 17, that the resulting movement of spool 3 will open line 11 to line 21 thereby allowing cylinder 9 to move toward a retracted position and thus destroke" the pump changing to a higher effective drive ratio and consequently lower truck speed. Compensating changes are thus made in effective gear ratio so any change in ground speed of the truck not called for by change in accelerator l5 setting will be thus compensated by a change in pressure in line 19 stroking" or destroking" the pump as may be called for by existing conditions.
Actuation of the lift control lever 22 and spool 8 will cause the engine speed to increase in proportion to the amount of lever 22 movement, thereby providing maximum lift rate capabilities. For any specific operating position of accelerator any change in engine speed will be automatically compensated for by a change in pump displacement, and change in associated drive ratio of the vehicle hydrostatic transmission, thereby leaving the vehicle speed unchanged.
It is understood that the terms lift" and lift truck" as used herein are considered as applicable to lift truck mechanisms wherein a lift function is accomplished such as dump trucks, tractor scrapers, paving machines, all of which have enginedriven ground-wheel drives and auxiliary power devices which have independently variable control requirements to which the structure disclosed herein could be adapted.
The invention has been described by reference to an illustrative structure, but the invention is intended to be limited only by the scope of the following claims.
lclaim:
1. In a control system for a lift truck, said truck having an engine, an acceleration control member, a lift control mechanism, a fuel flow control, and a variable ratio hydrostatic drive for the truck from said engine to propel the truck for ground drive;
mechanism operable in proportion to setting of said acceleration control member to actuate said fuel control to propel said truck at speeds controlled in relation to the position of said member, including relatively low speeds;
separate connections operated with said lift control to operate said fuel control to increase the speed of said engme; mechanism to vary the hydrostatic drive ratio connection between the engine and the wheels of said truck to allow said increase in speed of said engine to drive said lift mechanism at a relatively high rate of lift while continuing to drive said truck at the speed called for by said acceleration control member, said mechanism comprising:
control members responsive to flow rate in a hydraulic line of said hydrostatic drive;
connections from said control member constructed and arranged to vary the effective drive ratio thru said hydrostatic drive from said engine to allow said engine to increase in speed as called for by said lift control mechanism while maintaining relatively low ground speed of said truck as called for by said acceleration control member.
2. A control system as in claim 1 wherein:
mechanism operable in proportion to setting of said acceleration control member to actuate said fuel control to propel said truck at speeds controlled in relation to the position of said member, including relatively low speeds comprises:
a fluid pump driven by said engine;
a variable outlet orifice controlled by said acceleration control member;
a main delivery line connecting said fluid pump with said variable outlet orifice;
a carburetor valve controlling fuel flow to said engine;
a hydraulic actuated cylinder and piston resiliently biased to open said carburetor valve, said valve being actuated toward closure by hydraulic pressure;
an auxiliary delivery line connecting said main delivery line with said resiliently biased hydraulic cylinder and piston thereby supplying fluid under pressure to said piston in a direction to close said carburetor valve against the resilient bias.
3. A control system as in claim 1 wherein:
connections from said control member constructed and arranged to vary the effective drive ratio thru said hydrostatic drive from said engine to allow said engine to increase in speed as called for by said lift control while maintaining relatively low ground speed of said truck, comprise:
a hydraulic-fluid flow line in said hydrostatic drive, the flow rate thru which is indicative of the speed generated by the drive for propelling said truck;
an orifice in said hydraulic-fluid flow line;
connections from the upstream side and downstream side of said orifice responsive to pressure drop across said orifice;
mechanism responsive to pressure in said connections to vary the effective drive ratio of said hydrostatic drive.
4. A control system as in claim 2 wherein there is provided:
a manually actuated control valve spool member for control and actuation of said lift mechanism;
a separate source of fluid pressure for actuating said lift mechanism an auxiliary delivery line from said main delivery line to said control valve spool member;
a section of said control valve spool member constructed and arranged to bleed hydraulic fluid from said main delivery line thru auxiliary delivery line on actuation of said control valve spool causing speed up of the engine to actuate said lift and load support member at a relatively fast rate in proportion to movement of said valve spool member.
5. A control system for a lift truck, said truck having an engine, an acceleration control member, a fuel control, lift control mechanism, and a variable ratio hydrostatic drive for the truck from said engine to propel the truck for ground drive:
said control system comprising:
mechanism operable relative to the setting of said acceleration control member to actuate said fuel control to propel said truck at speeds controlled by the position of said member, including relatively low speeds;
connections operable with said lift control mechanism, in-
dependently of said acceleration control, to increase the speed of said engine to effect a relatively high rate of lift;
mechanism varying the hydrostatic drive ratio between the engine and the wheels of said truck constructed and arranged to allow said increase in speed of said engine to increase the lift rate of said lift mechanism while continuing to drive said truck at speeds called for by said acceleration control member.
6. A mechanism as in claim 5 wherein there is provided:
a fluid pump driven by said engine;
hydraulic actuated means controlled by said lift control mechanism and said acceleration control member for varying the hydrostatic drive ratio between the engine and the wheels of said truck to allow said increase in speed of said engine to increase the lift rate of said lift mechanism while continuing to drive said truck at speeds called for by acceleration control member.
7. In a control system for an industrial vehicle having a fluid pressure operated lift mechanism and further hydraulic control mechanism for other components of the vehicle;
a manually actuated control valve member for controlling actuation of said fluid pressure operated lift mechanism;
a separate source of fluid pressure for actuating said lift mechanism said control valve member including means to bypass fluid from said further hydraulic control mechanism thereby to compensate for variations in at least one of said other components on actuation of said control valve member for control of the lift rate of said lift mechanism;
such structure assuring that said lift mechanism may be actuated at a relatively high rate of lift without undesired variation in said further hydraulic control mechanism.
8. ln a fluid pressure operated lift mechanism and a control for governing the output of an engine;
a fluid pump driven by said engine;
an acceleration control member for said engine;
a variable outlet orifice controlled by said acceleration control member;
a main delivery line connecting said fluid pump with said outlet orifice;
a carburetor valve controlling fuel flow to said engine;
a hydraulic actuated cylinder and piston resiliently biased to open said carburetor valve, said valve being actuated towards closure by hydraulic pressure;
an auxiliary delivery line connecting said main delivery line with said resiliently biased hydraulic cylinder and piston at a position between said engine-driven pump and said variable orifice thereby supplying fluid under pressure to said piston in a direction to close said carburetor valve against the resilient bias;
whereby movement of said acceleration control member from one setting to a new position to change said variable orifice will result in change of engine output followed by compensating change in said carburetor valve and gradually reach a balance corresponding to the setting of said acceleration control member;
a manually actuated control valve member for controlling actuation of said fluid pressure operated lift mechanism;
a separate source of fluid pressure for actuating said lift mechanism;
said control valve member including means to bypass fluid from said main delivery line connecting said fluid pump with said outlet orifice on actuation of said lift control valve member whereby said engine output may be increased independently of said acceleration control member for the purpose of actuation of said lift mechanism.

Claims (8)

1. In a control system for a lift truck, said truck having an engine, an acceleration control member, a lift control mechanism, a fuel flow control, and a variable ratio hydrostatic drive for the truck from said engine to propel the truck for ground drive; mechanism operable in proportion to setting of said acceleration control member to actuate said fuel control to propel said truck at speeds controlled in relation to the position of said member, including relatively low speeds; separate connections operated with said lift control to operate said fuel control to increase the speed of said engine; mechanism to vary the hydrostatic drive ratio connection between the engine and the wheels of said truck to allow said increase in speed of said engine to drive said lift mechanism at a relatively high rate of lift while continuing to drive said truck at the speed called for by said acceleration control member, said mechanism comprising: control members responsive to flow rate in a hydraulic line of said hydrostatic drive; connections from said control member constructed and arranged to vary the effective drive ratio thru said hydrostatic drive from said engine to allow said engine to increase in speed as called for by said lift control mechanism while maintaining relatively low ground speed of said truck as called for by said acceleration control member.
2. A control system as in claim 1 wherein: mechanism operable in proportion to setting of said acceleration control member to actuate said fuel control to propel said truck at speeds controlled in relation to the position of said member, including relatively low speeds comprises: a fluid pump driven by said engine; a variable outlet orifice controlled by said acceleration control member; a main delivery line connecting said fluid pump with said variable outlet orifice; a carburetor valve controlling fuel flow to said engine; a hydraulic actuated cylinder and piston resiliently biased to open said carburetor valve, said valve being actuated toward closure by hydraulic pressure; an auxiliary delivery line connecting said main delivery line with said resiliently biased hydraulic cylinder and piston thereby supplying fluid under pressure to said piston in a direction to close said carburetor valve against the resilient bias.
3. A control system as in claim 1 wherein: connections from said control member constructed and arranged to vary the effective drive ratio thru said hydrostatic drive from said engine to allow said engine to increase in speed as called for by said lift control while maintaining relatively low ground speed of said truck, comprise: a hydraulic-fluid flow line in said hydrostatic drive, the flow rate thru which is indicative of the speed generated by the drive for propelling said truck; an orifice in said hydraulic-fluid flow line; connections from the upstream side and downstream side of said orifice responsive to pressure drop across said orifice; mechanism responsive to pressure in said connections to vary the effective drive ratio of said hydrostatic drive.
4. A control system as in claim 2 wherein there is provided: a manually actuated control valve spool member for control and actuation of said lift mechanism; a separate source of fluid pressure for actuating said lift mechanism an auxiliary delivery line from said main delivery line to said control valve spool member; a section of said control valve spool member constructed and arranged tO bleed hydraulic fluid from said main delivery line thru auxiliary delivery line on actuation of said control valve spool causing speed up of the engine to actuate said lift and load support member at a relatively fast rate in proportion to movement of said valve spool member.
5. A control system for a lift truck, said truck having an engine, an acceleration control member, a fuel control, lift control mechanism, and a variable ratio hydrostatic drive for the truck from said engine to propel the truck for ground drive: said control system comprising: mechanism operable relative to the setting of said acceleration control member to actuate said fuel control to propel said truck at speeds controlled by the position of said member, including relatively low speeds; connections operable with said lift control mechanism, independently of said acceleration control, to increase the speed of said engine to effect a relatively high rate of lift; mechanism varying the hydrostatic drive ratio between the engine and the wheels of said truck constructed and arranged to allow said increase in speed of said engine to increase the lift rate of said lift mechanism while continuing to drive said truck at speeds called for by said acceleration control member.
6. A mechanism as in claim 5 wherein there is provided: a fluid pump driven by said engine; hydraulic actuated means controlled by said lift control mechanism and said acceleration control member for varying the hydrostatic drive ratio between the engine and the wheels of said truck to allow said increase in speed of said engine to increase the lift rate of said lift mechanism while continuing to drive said truck at speeds called for by acceleration control member.
7. In a control system for an industrial vehicle having a fluid pressure operated lift mechanism and further hydraulic control mechanism for other components of the vehicle; a manually actuated control valve member for controlling actuation of said fluid pressure operated lift mechanism; a separate source of fluid pressure for actuating said lift mechanism said control valve member including means to bypass fluid from said further hydraulic control mechanism thereby to compensate for variations in at least one of said other components on actuation of said control valve member for control of the lift rate of said lift mechanism; such structure assuring that said lift mechanism may be actuated at a relatively high rate of lift without undesired variation in said further hydraulic control mechanism.
8. In a fluid pressure operated lift mechanism and a control for governing the output of an engine; a fluid pump driven by said engine; an acceleration control member for said engine; a variable outlet orifice controlled by said acceleration control member; a main delivery line connecting said fluid pump with said outlet orifice; a carburetor valve controlling fuel flow to said engine; a hydraulic actuated cylinder and piston resiliently biased to open said carburetor valve, said valve being actuated towards closure by hydraulic pressure; an auxiliary delivery line connecting said main delivery line with said resiliently biased hydraulic cylinder and piston at a position between said engine-driven pump and said variable orifice thereby supplying fluid under pressure to said piston in a direction to close said carburetor valve against the resilient bias; whereby movement of said acceleration control member from one setting to a new position to change said variable orifice will result in change of engine output followed by compensating change in said carburetor valve and gradually reach a balance corresponding to the setting of said acceleration control member; a manually actuated control valve member for controlling actuation of said fluid pressure operated lift mechanism; a separate source of fluid pressure for actuating said lift mechanism; said control valve memBer including means to bypass fluid from said main delivery line connecting said fluid pump with said outlet orifice on actuation of said lift control valve member whereby said engine output may be increased independently of said acceleration control member for the purpose of actuation of said lift mechanism.
US791354*A 1969-01-15 1969-01-15 Control system for lift trucks Expired - Lifetime US3595343A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79135469A 1969-01-15 1969-01-15

Publications (1)

Publication Number Publication Date
US3595343A true US3595343A (en) 1971-07-27

Family

ID=25153462

Family Applications (1)

Application Number Title Priority Date Filing Date
US791354*A Expired - Lifetime US3595343A (en) 1969-01-15 1969-01-15 Control system for lift trucks

Country Status (7)

Country Link
US (1) US3595343A (en)
JP (1) JPS5014420B1 (en)
BE (1) BE744407A (en)
BR (1) BR7015898D0 (en)
DE (1) DE2001523A1 (en)
FR (1) FR2028378A1 (en)
GB (1) GB1240918A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834494A (en) * 1973-02-23 1974-09-10 Raymond Corp Manually-controlled hydraulic actuator systems
US3971453A (en) * 1973-01-24 1976-07-27 Clark Equipment Company Hydrostatic control - pivot steering
FR2472490A1 (en) * 1979-11-23 1981-07-03 Linde Ag ENGINE GROUP CONSISTING OF AN INTERNAL COMBUSTION ENGINE AND A PREFERABLY CHANGING HYDROSTATIC SPEED, WITH PROGRESSIVE ADJUSTMENT
US4400935A (en) * 1980-01-28 1983-08-30 Sundstrand Corporation Engine speed control
DE3507963A1 (en) * 1984-03-07 1985-09-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi SPEED CONTROLLER FOR A SINGLE DRIVE IN GOOD HANDLING VEHICLES
US5201629A (en) * 1991-04-09 1993-04-13 Clark Material Handling Company Container transporter
EP0893298A1 (en) * 1997-07-24 1999-01-27 ANTONIO CARRARO S.p.A. Hydrostatic transmission for motor vehicles
US6089353A (en) * 1996-08-16 2000-07-18 Bt Prime Mover, Inc. Material handling vehicle having a stability support
US20040192505A1 (en) * 2003-03-28 2004-09-30 Fritz Leber Method for the operation of a drive train for powering a mobile vehicle
US20060151230A1 (en) * 2002-09-26 2006-07-13 Hitachi Construction Machinery Co., Ltd. Prime mover control device of construction machine
US20070080025A1 (en) * 2005-09-30 2007-04-12 Tadashi Yamada Drive control apparatus for forklift
WO2013082802A1 (en) * 2011-12-09 2013-06-13 Zhang Yongsheng Automatic control system for hydraulic fork lifter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2202026B1 (en) * 1972-10-11 1976-10-29 Matral Sa
AT400177B (en) * 1993-08-02 1995-10-25 Hoerbiger Ventilwerke Ag SAFETY DEVICE WITH PRESSURED SAFETY VALVE
CN110065911B (en) * 2019-05-13 2023-12-26 安徽维德电源有限公司 Integrated power system of medium-large tonnage electric forklift and control method thereof
CN114506800B (en) * 2022-04-20 2022-07-05 杭叉集团股份有限公司 Electric fork-lift portal motion control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005562A (en) * 1959-10-29 1961-10-24 Towmotor Corp Hydraulic drive for lift truck
US3369360A (en) * 1965-11-18 1968-02-20 Charles P. De Biasi Hydraulic propulsion and braking system for vehicles or the like
US3543508A (en) * 1968-10-16 1970-12-01 Hyster Co Hydrostatic transmission with pressure control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005562A (en) * 1959-10-29 1961-10-24 Towmotor Corp Hydraulic drive for lift truck
US3369360A (en) * 1965-11-18 1968-02-20 Charles P. De Biasi Hydraulic propulsion and braking system for vehicles or the like
US3543508A (en) * 1968-10-16 1970-12-01 Hyster Co Hydrostatic transmission with pressure control

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971453A (en) * 1973-01-24 1976-07-27 Clark Equipment Company Hydrostatic control - pivot steering
US3834494A (en) * 1973-02-23 1974-09-10 Raymond Corp Manually-controlled hydraulic actuator systems
FR2472490A1 (en) * 1979-11-23 1981-07-03 Linde Ag ENGINE GROUP CONSISTING OF AN INTERNAL COMBUSTION ENGINE AND A PREFERABLY CHANGING HYDROSTATIC SPEED, WITH PROGRESSIVE ADJUSTMENT
US4400935A (en) * 1980-01-28 1983-08-30 Sundstrand Corporation Engine speed control
DE3507963A1 (en) * 1984-03-07 1985-09-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi SPEED CONTROLLER FOR A SINGLE DRIVE IN GOOD HANDLING VEHICLES
US4675827A (en) * 1984-03-07 1987-06-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Revolution controller for a single power plant in cargo-handling vehicles
US5201629A (en) * 1991-04-09 1993-04-13 Clark Material Handling Company Container transporter
US6089353A (en) * 1996-08-16 2000-07-18 Bt Prime Mover, Inc. Material handling vehicle having a stability support
EP0893298A1 (en) * 1997-07-24 1999-01-27 ANTONIO CARRARO S.p.A. Hydrostatic transmission for motor vehicles
US20060151230A1 (en) * 2002-09-26 2006-07-13 Hitachi Construction Machinery Co., Ltd. Prime mover control device of construction machine
US7886862B2 (en) * 2002-09-26 2011-02-15 Hitachi Construction Machinery Co., Ltd. Prime mover control device of construction machine
US20040192505A1 (en) * 2003-03-28 2004-09-30 Fritz Leber Method for the operation of a drive train for powering a mobile vehicle
US20070080025A1 (en) * 2005-09-30 2007-04-12 Tadashi Yamada Drive control apparatus for forklift
US7568547B2 (en) * 2005-09-30 2009-08-04 Kabushiki Kaisha Toyota Jidoshokki Drive control apparatus for forklift
WO2013082802A1 (en) * 2011-12-09 2013-06-13 Zhang Yongsheng Automatic control system for hydraulic fork lifter

Also Published As

Publication number Publication date
FR2028378A1 (en) 1970-10-09
BR7015898D0 (en) 1973-04-05
JPS5014420B1 (en) 1975-05-27
GB1240918A (en) 1971-07-28
DE2001523A1 (en) 1970-07-30
BE744407A (en) 1970-06-15

Similar Documents

Publication Publication Date Title
US3595343A (en) Control system for lift trucks
US3003309A (en) Single lever control apparatus for engine and hydraulic transmission
US3543508A (en) Hydrostatic transmission with pressure control
US4144946A (en) Hydraulic priority circuit
US4236596A (en) Hydrostatic-transmission control system, especially for lift and other industrial vehicles
EP1321697B1 (en) Speed controller of wheel type hydraulic traveling vehicle
US3005562A (en) Hydraulic drive for lift truck
US4573319A (en) Vehicle hydraulic system with single pump
US4399886A (en) Controls for variable displacement motor and motors
JP2702981B2 (en) Braking system and pilot control system
US3199286A (en) Hydrostatic drive
US4485623A (en) Vehicle hydraulic system with pump speed control
US3898807A (en) Hydrostatic transmission control system
EP0006117A1 (en) Overrunning load control for hydraulic motors
US3977424A (en) Differential pressure regulator valve for a hydrostatic transmission control system
US4071106A (en) Auxiliary hydrostatic wheel drive
US4136855A (en) Hoist drum drive control
US3117420A (en) Hydrostatic transmission
CA1055359A (en) Control device for a hydrostatic vehicle drive, more particularly for a fork-lift truck
US4107924A (en) Pump upgrading system
US4359130A (en) Hydraulic system for responsive splitting of engine power
US4463559A (en) Hydrostatic transmission with inching control
US4733533A (en) Controls for power drive assemblies
US3703806A (en) Control system for lift trucks
CA1191073A (en) Power transmission