US3594306A - Separation cell and scavenger cell froths treatment - Google Patents

Separation cell and scavenger cell froths treatment Download PDF

Info

Publication number
US3594306A
US3594306A US627958A US3594306DA US3594306A US 3594306 A US3594306 A US 3594306A US 627958 A US627958 A US 627958A US 3594306D A US3594306D A US 3594306DA US 3594306 A US3594306 A US 3594306A
Authority
US
United States
Prior art keywords
froth
bitumen
zone
cell
scavenger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US627958A
Inventor
Ernest W Dobson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Great Canadian Oil Sands Ltd
Original Assignee
Great Canadian Oil Sands Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Great Canadian Oil Sands Ltd filed Critical Great Canadian Oil Sands Ltd
Application granted granted Critical
Publication of US3594306A publication Critical patent/US3594306A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • C10G1/047Hot water or cold water extraction processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/007Working-up pitch, asphalt, bitumen winning and separation of asphalt from mixtures with aggregates, fillers and other products, e.g. winning from natural asphalt and regeneration of waste asphalt

Definitions

  • Tar sands which are also known as oil sands and bituminous sands, are aggregates of sand, mineral and water impregnated with heavy petroleum.
  • the largest and most important deposits of the sands are the Athabasca sands, found in northern Alberta, Canada. These sands underlay more than 13,000 square miles at depths of to 2000 feet.
  • Total recoverable reserves after extraction and processing are estimated at more than 300 billion barrelsjust about equal to the world-wide reserves of conventional oil, sixty percent of which is in the Middle East.
  • the American Petroleum Institute estimated total United States oil reserves at the end of 1965 at 39.4 billion barrels.
  • the tar sands are primarily silica, having closely associated therewith an oil film. This oil varies from about 5 percent to 21 percent by weight, with a typical content of 13 weight percent of the total material. The oil is quite viscous6 to 8 API gravityand contains typically 4.5 percent sulfur and 38 percent aromatics.
  • the composition of the sands includes clay and silt in quantities of from about 1 to 50 weight percent, more usually 10 to 30 percent and a small amount of water in quantities of l to 10 percent by weight.
  • bituminous sands are jetted with steam and mulled with a minor amount of hot water at temperatures in the range of 240 to 210 F.
  • the resulting pulp is dropped into a stream of circulating hot water and carried to a separation cell maintained at a temperature of about 150 to 200 F.
  • a separation cell In the separation cell, sand settles to the bottom as tailings and bitumen rises to the top in the form of an oil froth.
  • An aqueous middlings layer containing some mineral and bitumen is formed between these layers.
  • a scavenger step may be conducted on the middlings layer from the primary separation step to recover additional amounts of bitumen therefrom. This step usually comprises aerating the middlings as taught by K. A. Clark, The Hot Water Washing Method, Canadian Oil and Gas Industries 3, 46 (1950).
  • the present invention is directed to an improvement in the above described hot water process and more specifically is directed to a process for treating the separation cell and scavenger cell froths.
  • the invention is :based on the discovery that the secondary recovery froth can be significantly upgraded in bitumen content by settling, thereby significantly reducing the water and mineral that must be separated in the subsequent centrifuging step.
  • settling will upgrade the scavenger froth since the primary froth may not be so upgraded unless the froth emulsion is first broken by dilution and/ or added chemical aids.
  • the scavenger froth need not be diluted or otherwise treated in order to bring about upgrading by settling.
  • the froths from a hot water process are treated as follows:
  • the secondary froth which is the froth from the scavenger zone, is settled in a settling zone to form a lower layer of settler tailings substantially reduced in bitumen content compared to the secondary froth and an upper layer substantially upgraded in bitumen content compared to the secondary froth.
  • the lower layer and the upper layer are separately removed from the settler and the upper layer is mixed with the primary oil froth.
  • the primary oil froth is the froth product from the primary separation zone.
  • the mixture of primary froth and product stream can then be further processed by, for example, dilution with a hydrocarbon diluent miscible with the bitumen in the mixture and capable of lowering its specific gravity and centrifuging to remove any remaining water and sand from the diluent-bitumen product.
  • the lower layer from the scavenger froth settler may be recycled and added to the oil-rich middlings from the primary separation cell for feed into the scavenger zone.
  • any type or combination of types of settlers may be used.
  • continuous mechanical thickeners or clarifiers consisting of a single-compartment cylindrical tank or basin with a sloping bottom, a conical central area over a discharge outlet, and rotating rakes that move the settled solids toward the center of the basin might be used.
  • Tanks may be either square or rectangular when space is limited or when a vast amount of settling area, combined with a high volume of relatively dilute flow, is required.
  • any diluent may be used so long as it is a hydrocarbon capable of dissolving the bitumen constituent of the particular stream treated and of substantially lowering its specific gravity. While hydrocarbons such as benzene, xylene, toluene, gasoline, kerosene, furnace distillates or diesel fuels and others maybe used, petroleum naphtha is the preferred diluent.
  • the drawing schematically illustrates one embodiment of the present invention.
  • the figure shows the process utilizing settling of the secondary froth to upgrade bitumen 3 content before addition to the primary froth preliminary to further treatment.
  • bituminous tar sands are fed into the system through line 1 where they first pass to a conditioning drum or muller 16. Water and steam are introduced from 2 and mixed with the sands. The total Water so introduced is a minor amount based on the weight of the tar sands processed and generally is in the range of to 40 percent by weight of the mulled mixture. Mulling of the tar sands produces a pulp which then passes from the conditioning drum as indicated by line 3 to a screen indicated at 17. The purpose of screen 17 is to remove from the tar sands pulp any debris, rocks or oversized lumps as indicated generally at 4.
  • the pulp passes from screen 17 as indicated by 5 to a pump sump 18 where it is diluted with additional fresh water from 6 and a middlings recycle stream 7.
  • the diluted pulp is then pumped via 8 to the primary separation zone 19.
  • the settling zone in separator 19 is relatively quiescent so that all froth rises to the top and is withdrawn via line 9 while the sand settles to the bottom as a tailings layer which is wihdrawn through line 10.
  • a middlings layer which contains some oil that failed to separate is withdrawn from the cell through line 11 to a flotation scavenger zone 20.
  • a flotation scavenger zone 20 In this zone an air flotation operation is conducted to cause the formation of additional oil froth which passes from scavenger zone 20 through line 12 to a forth settler zone 21.
  • An oil-lean water middlings stream is removed and discarded from the bottom of scavenger zone 20 via line 13.
  • the scavenger froth forms into a lower layer of settler tailings which is withdrawn and recycled via 14 to be mixed with oil-rich middlings for feed to the scavenger zone 20 via line 11.
  • an upper layer of upgraded bitumen froth forms above the tailings and is withdrawn through and mixed with primary froth from line 9 for further processing.
  • bitmuminous tar sands which comprises: forming a mixture of the bituminous sands and water, passing the mixture into a separation zone; settling the mixture in the separation zone to form an upper primary bitumen froth layer, a. middlings layer comprising water, mineral and bitumen and a sand tailings layer; separately removing the primary bitumen froth layer and the sand layer; passing a stream of middlings layer from said separation zone to an air flotation zone and therein recovering a secondary bitumen froth; the improvement which comprises:
  • a method of treating at least a portion of the middlings from a separation zone in a hot water process for treating tar sands which comprises:
  • Step (d) 4. The method of claim 3, in which the layer of froth settler tailings from Step (d) is recycled and added to the middlings passing to the air flotation zone in Step (a).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

THE HOT WATER PROCESS FOR EXTRACTING BITUMEN FROM TAR SANDS PRODUCES A FROTH PRODUCT FROM A SEPARATION CELL. A SECONDARY RECOVERY MAY BE CONDUCTED ON THE MIDDLINGS FROM THE SEPARATION CELL TO PRODUCE ADDITIONAL FROTH WHICH USUALLY IS COMBINED WITH THE PRIMARY FROTH AND TREATED. IT HAS NOW BEEN FOUND THAT THE FROTH FROM THE SECONDARY RECOVERY OPERATION CAN BE UPGRADED IN BITUMEN CONTENT BY GRAVITY SETTLING. BY THE PROCESS OF THE PRESENT INVENTION THEN, SECONDARY RECOVERY FROTH IS SETTLED TO PRODUCE AN UPPER LAYER UPGRADED IN BITUMEN CONTENT OVER THE SECONDARY FROTH. THIS UPGRADED BITUMEN LAYER IS THEN ADDED TO THE PRIMARY FROTH FOR FURTHER PROCESSING.

Description

July 20, 1 E. w. DOBSON 3,594,306
SEPARATION CELL AND SCAVENGER CELL FROTHS TREATMENT Filed April 3, 1967 TAR SANDS COMBINED WATER FROTH 2 I comomomwe DRUM 0:
0 LL I LU l- .l O I'- CC (I F- m 11- Lu (.9
w 5 SCAVENGER 9 FROTH CC 0 1 (I) E E A a. FROTH 2l SETTLER 5 OVERSIZE OIL-RICH MIDDLINGS l4 U SEPARATION ,ZONE FLOTATION i SCAVENGER Am ZONE MIDDLINGS '3 l0 OIL LEAN MIDDLINGS SAND TRAILINGS !.\"=QI..\T( )R.
ERNEST W. DOBSON ATTORNEY United States Patent US. Cl. 20811 4 Claims ABSTRACT OF THE DISCLOSURE The hot water process for extracting bitumen from tar sands produces a froth product from a separation cell. A secondary recovery may be conducted on the middlings from the separation cell to produce additional froth which usually is combined with the primary froth and treated. It has now been found that the froth from the secondary recovery operation can be upgraded in bitumen content by gravity settling. By the process of the present invention then, secondary recovery froth is settled to produce an upper layer upgraded in bitumen content over the secondary froth. This upgraded bitumen layer is then added to the primary froth for further processing.
BACKGROUND OF THE INVENTION (1) Field of the invention Tar sands, which are also known as oil sands and bituminous sands, are aggregates of sand, mineral and water impregnated with heavy petroleum. The largest and most important deposits of the sands are the Athabasca sands, found in northern Alberta, Canada. These sands underlay more than 13,000 square miles at depths of to 2000 feet. Total recoverable reserves after extraction and processing are estimated at more than 300 billion barrelsjust about equal to the world-wide reserves of conventional oil, sixty percent of which is in the Middle East. By way of comparison, the American Petroleum Institute estimated total United States oil reserves at the end of 1965 at 39.4 billion barrels.
The tar sands are primarily silica, having closely associated therewith an oil film. This oil varies from about 5 percent to 21 percent by weight, with a typical content of 13 weight percent of the total material. The oil is quite viscous6 to 8 API gravityand contains typically 4.5 percent sulfur and 38 percent aromatics.
In addition to oil and sand, the composition of the sands includes clay and silt in quantities of from about 1 to 50 weight percent, more usually 10 to 30 percent and a small amount of water in quantities of l to 10 percent by weight.
(2) Description of the prior art Several basic extraction methods have been known for many years for the separation of oil from the sands. In the so-called cold water method, the separation is accomplished by mixing the sands with a solvent capable of dissolving the bitumen constituent. The mixture is then introduced into a large volume of water, water with a surface agent added, or a solution of a neutral salt in water. The combined mass is then subjected to a pressure or gravity separation.
In the hot water method, the bituminous sands are jetted with steam and mulled with a minor amount of hot water at temperatures in the range of 240 to 210 F. The resulting pulp is dropped into a stream of circulating hot water and carried to a separation cell maintained at a temperature of about 150 to 200 F. In the separation cell, sand settles to the bottom as tailings and bitumen rises to the top in the form of an oil froth. An aqueous middlings layer containing some mineral and bitumen is formed between these layers. A scavenger step may be conducted on the middlings layer from the primary separation step to recover additional amounts of bitumen therefrom. This step usually comprises aerating the middlings as taught by K. A. Clark, The Hot Water Washing Method, Canadian Oil and Gas Industries 3, 46 (1950).
It is the practice to combine these froths, dilute them with naphtha and centrifuge the diluted combination to remove more water and residual sand. The naphtha is then distilled off and the bitumen is coked to a high quality crude suitable for further processing. The present invention is directed to an improvement in the above described hot water process and more specifically is directed to a process for treating the separation cell and scavenger cell froths. The invention is :based on the discovery that the secondary recovery froth can be significantly upgraded in bitumen content by settling, thereby significantly reducing the water and mineral that must be separated in the subsequent centrifuging step.
It is particularly surprising that settling will upgrade the scavenger froth since the primary froth may not be so upgraded unless the froth emulsion is first broken by dilution and/ or added chemical aids. The scavenger froth need not be diluted or otherwise treated in order to bring about upgrading by settling.
SUMMARY OF THE INVENTION Generally, with the present invention, the froths from a hot water process are treated as follows:
The secondary froth which is the froth from the scavenger zone, is settled in a settling zone to form a lower layer of settler tailings substantially reduced in bitumen content compared to the secondary froth and an upper layer substantially upgraded in bitumen content compared to the secondary froth. The lower layer and the upper layer are separately removed from the settler and the upper layer is mixed with the primary oil froth. The primary oil froth is the froth product from the primary separation zone. The mixture of primary froth and product stream can then be further processed by, for example, dilution with a hydrocarbon diluent miscible with the bitumen in the mixture and capable of lowering its specific gravity and centrifuging to remove any remaining water and sand from the diluent-bitumen product.
In one embodiment of the present invention, the lower layer from the scavenger froth settler may be recycled and added to the oil-rich middlings from the primary separation cell for feed into the scavenger zone.
In the above described process in the settling step any type or combination of types of settlers may be used. For example, continuous mechanical thickeners or clarifiers consisting of a single-compartment cylindrical tank or basin with a sloping bottom, a conical central area over a discharge outlet, and rotating rakes that move the settled solids toward the center of the basin might be used. Tanks may be either square or rectangular when space is limited or when a vast amount of settling area, combined with a high volume of relatively dilute flow, is required.
Also in the above described process in the diluting step, any diluent may be used so long as it is a hydrocarbon capable of dissolving the bitumen constituent of the particular stream treated and of substantially lowering its specific gravity. While hydrocarbons such as benzene, xylene, toluene, gasoline, kerosene, furnace distillates or diesel fuels and others maybe used, petroleum naphtha is the preferred diluent.
BRIEF DESCRIPTION OF THE DRAWING The drawing schematically illustrates one embodiment of the present invention. The figure shows the process utilizing settling of the secondary froth to upgrade bitumen 3 content before addition to the primary froth preliminary to further treatment.
In the figure, bituminous tar sands are fed into the system through line 1 where they first pass to a conditioning drum or muller 16. Water and steam are introduced from 2 and mixed with the sands. The total Water so introduced is a minor amount based on the weight of the tar sands processed and generally is in the range of to 40 percent by weight of the mulled mixture. Mulling of the tar sands produces a pulp which then passes from the conditioning drum as indicated by line 3 to a screen indicated at 17. The purpose of screen 17 is to remove from the tar sands pulp any debris, rocks or oversized lumps as indicated generally at 4.
The pulp passes from screen 17 as indicated by 5 to a pump sump 18 where it is diluted with additional fresh water from 6 and a middlings recycle stream 7. The diluted pulp is then pumped via 8 to the primary separation zone 19. The settling zone in separator 19 is relatively quiescent so that all froth rises to the top and is withdrawn via line 9 while the sand settles to the bottom as a tailings layer which is wihdrawn through line 10.
A middlings layer which contains some oil that failed to separate is withdrawn from the cell through line 11 to a flotation scavenger zone 20. In this zone an air flotation operation is conducted to cause the formation of additional oil froth which passes from scavenger zone 20 through line 12 to a forth settler zone 21. An oil-lean water middlings stream is removed and discarded from the bottom of scavenger zone 20 via line 13.
In the settler zone 21, the scavenger froth forms into a lower layer of settler tailings which is withdrawn and recycled via 14 to be mixed with oil-rich middlings for feed to the scavenger zone 20 via line 11. In the settler zone an upper layer of upgraded bitumen froth forms above the tailings and is withdrawn through and mixed with primary froth from line 9 for further processing.
DESCRIPTION OF THE PREFERRED EMBODIMENT Examples I through VIII The following table shows the results of several runs conducted on air flotation scavenger froth from a hot water process. In each run tar sands of varying composition were mulled with water, flooded and flushed into a separaion zone where a primary froth was formed and recovered. Oil-rich middlings were withdrawn from the settler and subjected to an air flotation to recover a secondary froth of the composition as indicated under the headings Secondary Froth. This secondary froth was removed and passed to a 150 gallon rectangular settler and was allowed to settle for the indicated residence times. A product was recovered from the settler and was determined to be of the composition indicated under Settler Product.
Secondary froth, wt.
percent:
Bitumen 24.0 23.2 7.2 12.3 9.8 9.2 11.4 9.3 Mineral 21.6 21.2 17.0 15.9 9. 2 12.4 0. 8 11.6 Water 54.4 55.6 75.8 71.8 81.0 78.4 78.8 79.1 Settler product, wt.
percent:
Secondary frotlL.-. 53 50 28 30 21 22 28 23 Bitumen 44.0 46.5 26.0 40.7 46. 5 42.6 41.7 40.6 Mineral 15.3 12.6 14.7 15.0 9. 1 12.8 17.2 13.8 Water 30.8 40.9 50.3 44.3 44.4 44.6 41. 1 45.6 Settler tailings, wt.
percent:
Bitumen 5.2 4.5 2.6 5.9 0.9 1.6 1.8 1.9 Mineral 27.2 28.1 17.5 16.2 5.0 12.1 14.3 14.5 Water 67.6 07.4 79.9 77.9 94.1 86.3 83.9 83.6 Settler residence time,
mlns 16.5 14 6 13 5 30.0 39.5 37.5 36.6 29.4
The data presented in the table show that froth from the scavenger cell can be upgraded to a product of substantially greater bitumen proportion than the secondary froth. It was noted that primary cell froth was not upgraded by settling under the same conditions.
What is claimed is:
1. In the hot water process for treating bitmuminous tar sands which comprises: forming a mixture of the bituminous sands and water, passing the mixture into a separation zone; settling the mixture in the separation zone to form an upper primary bitumen froth layer, a. middlings layer comprising water, mineral and bitumen and a sand tailings layer; separately removing the primary bitumen froth layer and the sand layer; passing a stream of middlings layer from said separation zone to an air flotation zone and therein recovering a secondary bitumen froth; the improvement which comprises:
(a) settling said secondary froth in the absence of a diluent in a settling zone to form a lower layer of froth settler tailings substantially reduced in bitumen content compared to said secondary froth and an upper product layer substantially upgraded in bitumen content compared to said secondary froth; and
(b) separately removing said lower layer of froth settler tailings and said upper product layer from said settling zone.
2. The process of claim 1 in which the lower layer of froth settler tailings from Step (b) is added to the stream of middlings layer from the primary separation zone as a recycle stream into said air flotation zone.
3. A method of treating at least a portion of the middlings from a separation zone in a hot water process for treating tar sands which comprises:
(a) passing said portion of middlings from said separation zone to an air flotation zone;
(b) recovering a secondary oil froth in said air flotation zone;
(c) settling said secondary froth in the absence of a diluent in a settling zone, to form a lower layer of froth settler tailings substantially reduced in bitumen content compared to said secondary froth and an upper product layer substantially upgraded in bitumen content compared to said secondary froth; and
(d) separately removing said lower layer of froth settler tailings and said upper product layer.
4. The method of claim 3, in which the layer of froth settler tailings from Step (d) is recycled and added to the middlings passing to the air flotation zone in Step (a).
References Cited UNITED STATES PATENTS 2,453,060 11/1948 Bauer et al. 208-11 2,968,603 1/1961 Coulson 208-11 3,401,110 9/1968 Floyd et a1 20811 FOREIGN PATENTS 741,303 8/1966 Canada 20811 488,928 12/1952 Canada 20811 491,955 4/1953 Canada 208-11 OTHER REFERENCES Report on the Alberta Bituminous Sands, by S. M. Blair, 1950, pp. 2630.
CURTIS R. DAVIS, Primary Examiner
US627958A 1967-04-03 1967-04-03 Separation cell and scavenger cell froths treatment Expired - Lifetime US3594306A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62795867A 1967-04-03 1967-04-03

Publications (1)

Publication Number Publication Date
US3594306A true US3594306A (en) 1971-07-20

Family

ID=24516826

Family Applications (1)

Application Number Title Priority Date Filing Date
US627958A Expired - Lifetime US3594306A (en) 1967-04-03 1967-04-03 Separation cell and scavenger cell froths treatment

Country Status (4)

Country Link
US (1) US3594306A (en)
ES (1) ES352606A1 (en)
FR (1) FR1586646A (en)
OA (1) OA02789A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963599A (en) * 1974-11-11 1976-06-15 Sun Oil Company Of Pennsylvania Recovery of bitumen from aqueous streams via superatmospheric pressure aeration
AU621239B2 (en) * 1989-08-10 1992-03-05 Richter Gedeon Vegyeszeti Gyar Rt. Novel 2-oxo-1-oxa-8-azaspiro(4,5)decane derivatives, pharmaceutical compositions containing them and process for preparing the same
US5645714A (en) * 1994-05-06 1997-07-08 Bitman Resources Inc. Oil sand extraction process
US5723042A (en) * 1994-05-06 1998-03-03 Bitmin Resources Inc. Oil sand extraction process
US20070025896A1 (en) * 2005-07-13 2007-02-01 Bitmin Resources Inc. Oil sand processing apparatus and control system
US20070090025A1 (en) * 2005-10-21 2007-04-26 Bitmin Resources Inc. Bitumen recovery process for oil sand
US20080111096A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Composition for extracting crude oil from tar sands
US20080110804A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Slurry transfer line
US20080110803A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Settling vessel for extracting crude oil from tar sands
US20080110805A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Continuous flow separation and aqueous solution treatment for recovery of crude oil from tar sands
US20100258478A1 (en) * 2009-04-09 2010-10-14 Titanium Corporation Inc. Recovery of bitumen from froth treatment tailings
US9719022B2 (en) 2009-04-09 2017-08-01 Titanium Corporation Inc. Methods for separating a feed material derived from a process for recovering bitumen from oil sands
US10017699B2 (en) 2016-05-18 2018-07-10 Titanium Corporation Inc. Process for recovering bitumen from froth treatment tailings

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963599A (en) * 1974-11-11 1976-06-15 Sun Oil Company Of Pennsylvania Recovery of bitumen from aqueous streams via superatmospheric pressure aeration
AU621239B2 (en) * 1989-08-10 1992-03-05 Richter Gedeon Vegyeszeti Gyar Rt. Novel 2-oxo-1-oxa-8-azaspiro(4,5)decane derivatives, pharmaceutical compositions containing them and process for preparing the same
US5645714A (en) * 1994-05-06 1997-07-08 Bitman Resources Inc. Oil sand extraction process
US5723042A (en) * 1994-05-06 1998-03-03 Bitmin Resources Inc. Oil sand extraction process
US7591929B2 (en) 2005-07-13 2009-09-22 Bitmin Resources, Inc. Oil sand processing apparatus and control system
US20070025896A1 (en) * 2005-07-13 2007-02-01 Bitmin Resources Inc. Oil sand processing apparatus and control system
US8110095B2 (en) 2005-07-13 2012-02-07 Bitmin Resources Inc. Oil sand processing apparatus control system and method
US7727384B2 (en) 2005-10-21 2010-06-01 Bitmin Resources, Inc. Bitumen recovery process for oil sand
US20070090025A1 (en) * 2005-10-21 2007-04-26 Bitmin Resources Inc. Bitumen recovery process for oil sand
US20080110803A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Settling vessel for extracting crude oil from tar sands
US20080110805A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Continuous flow separation and aqueous solution treatment for recovery of crude oil from tar sands
US20080110804A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Slurry transfer line
US7694829B2 (en) 2006-11-10 2010-04-13 Veltri Fred J Settling vessel for extracting crude oil from tar sands
US20080111096A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Composition for extracting crude oil from tar sands
US20100258478A1 (en) * 2009-04-09 2010-10-14 Titanium Corporation Inc. Recovery of bitumen from froth treatment tailings
US8382976B2 (en) * 2009-04-09 2013-02-26 Titanium Corporation Inc. Recovery of bitumen from froth treatment tailings
US9719022B2 (en) 2009-04-09 2017-08-01 Titanium Corporation Inc. Methods for separating a feed material derived from a process for recovering bitumen from oil sands
US10087372B2 (en) 2009-04-09 2018-10-02 Titanium Corporation Inc. Methods for separating a feed material derived from a process for recovering bitumen from oil sands
US10017699B2 (en) 2016-05-18 2018-07-10 Titanium Corporation Inc. Process for recovering bitumen from froth treatment tailings

Also Published As

Publication number Publication date
FR1586646A (en) 1970-02-27
ES352606A1 (en) 1969-07-16
OA02789A (en) 1970-12-15

Similar Documents

Publication Publication Date Title
US4046668A (en) Double solvent extraction of organic constituents from tar sands
US5236577A (en) Process for separation of hydrocarbon from tar sands froth
US5143598A (en) Methods of tar sand bitumen recovery
US4035282A (en) Process for recovery of bitumen from a bituminous froth
US4036732A (en) Tar sands extraction process
US2825677A (en) Process for separating oil from bituminous sands, shales, etc.
US6007709A (en) Extraction of bitumen from bitumen froth generated from tar sands
EP0134088B1 (en) Treatment of viscous crude oil
US7998342B2 (en) Separation of tailings that include asphaltenes
CA1143686A (en) Solvent extraction method
US8101067B2 (en) Methods for obtaining bitumen from bituminous materials
JP6073882B2 (en) Method for stabilizing heavy hydrocarbons
US3594306A (en) Separation cell and scavenger cell froths treatment
US3607720A (en) Hot water process improvement
CA2651155A1 (en) Upgrading bitumen in a paraffinic froth treatment process
US2968603A (en) Hot water process for the extraction of oil from bituminous sands and like oil bearing material
US3509037A (en) Tar sand separation process using solvent,hot water and correlated conditions
US3963599A (en) Recovery of bitumen from aqueous streams via superatmospheric pressure aeration
US3607721A (en) Process for treating a bituminous froth
US3901791A (en) Method for upgrading bitumen froth
US3884829A (en) Methods and compositions for refining bituminous froth recovered from tar sands
US3547803A (en) Recovery of oil from bituminous sands
US3422000A (en) Phosphate additives in a tar sand water separation process
US3900389A (en) Method for upgrading bituminous froth
US3953318A (en) Method of reducing sludge accumulation from tar sands hot water process