US3586462A - Absorption refrigeration machine pump - Google Patents

Absorption refrigeration machine pump Download PDF

Info

Publication number
US3586462A
US3586462A US820753A US3586462DA US3586462A US 3586462 A US3586462 A US 3586462A US 820753 A US820753 A US 820753A US 3586462D A US3586462D A US 3586462DA US 3586462 A US3586462 A US 3586462A
Authority
US
United States
Prior art keywords
chamber
partition
liquid
storage chamber
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US820753A
Inventor
Kenneth K Kaiser
Richard A English
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Application granted granted Critical
Publication of US3586462A publication Critical patent/US3586462A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/033Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/025Liquid transfer means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • Absorption refrigeration systems comprising a high-pressure side, including a generator and a condenser, and a lowpressure side, including an evaporator and an absorber, require a solution transfer mechanism such as a pump to transfer weak solution from the low side of the system to the high side.
  • the pressure difierence across the system may be large, necessitating the use of a positive displacement reciprocating piston pump or a diaphragm pump, both of which provide a pulsed output which can create excessive noise in the system.
  • the solution to be pumped passes from the absorber to the pump. While the machine is operating, the pump receives slugs" of liquid from the absorber, rather than a steady flow. This can cause undesirable fluctuating pump noise and could possibly damage the pump mechanism.
  • Another problem which may arise in the operation of an ab sorption refrigeration system is the generation of noncondensible gases such as hydrogen which may have a detrimental effect on the performance of the system. It is desirable to provide means to separate the noncondensible gases and retain them out of circulation in the system. It is difficult to separate the gases from the absorbent solution on the high-pressure side of the system due to the tendency of the gas to remain suspended in the solution in the form of fine bubbles. The gases are therefore ordinarily separated and collected on the low-pressure side of the machine.
  • storage of the noncondensible gases on the low-pressure side of the system where separation is easily accomplished requires an undesirably large storage tank because of the volume of gas at low pressure. It is desirable to pump" these separated gases to the high side of the machine along with the solution for storage on the high pressure side of the system.
  • This invention relates to an absorption refrigeration system employing a pump comprised of a housing having first'and second partitions therein to provide a first low-pressure chamber for receiving solution and noncondensible gases from the absorber, a second chamber having transfer means therein for receiving solution and gases from the first chamber, and a third chamber for receiving solution and noncondensible gases from said transfer means and storing the noncondensible gases therein to dampen the pulsations generated by the transfer means.
  • FIG. l is a schematic flow diagram of an absorption refrigeration system
  • FIG. 2 is a sectional view of the preferred embodiment of the pump of the present invention.
  • FIG. 3 is a sectional view taken along line IIIIII of FIG. 2.
  • FIG. I of the drawing there is shown a refrigeration system comprising an absorber 10, a condenser 112, an evaporator or chiller 114, a generator 16, a liquid-suction heat exchanger 118, and a vapor distributor 20 connected to provide refrigeration.
  • a pump 22 is employed to circulate weak absorbent solution from absorber to generator 16.
  • weak absorbent solution refers to solution which is weak in absorbent power
  • strong absorbent solution refers to a solution which is strong in absorbent power.
  • a suitable absorbent for use in the system described is water; a suitable refrigerant is ammonia.
  • Liquid refrigerant condensed in condenser 12 passes through refrigerant liquid passage 24 to the liquid-suction heat exchanger.
  • the liquid-suction heat exchanger 18 includes a housing 26 having a refrigerant restrictor 28 at the upstream end and a refrigerant restrictor 30 at the downstream end thereof. A portion of the liquid refrigerant supplied to the liquid-suction heat exchanger 18 flashes upon passing through restrictor 28 due to the low pressure existing downstream of the restrictor, thereby cooling the remainder of the refrigerant in the housing 26. The cooled refrigerant liquid and flashed refrigerant vapor then pass through restrictor 30 into heat exchanger 32 of chiller 14.
  • a heat exchange medium such as water is passed over the exterior of heat exchanger 32 where it is chilled by giving up heat to evaporate the refrigerant within the heat exchanger.
  • the chilled heat exchange medium passes out of chiller 14 through line 34 to suitable remote heat exchangers (not shown) after which it is returned to the chiller through inlet 36 for rechilling.
  • the refrigerant vapor and absorbent liquid which may have a large quantity of refrigerant absorbent therein, passes through refrigerant vapor passage 38 in heat exchange relation with the refrigerant passing through housing 26.
  • Refrigerant vapor passage 38 is provided with a turbulator 39 which consists of a twisted metal strip to provide a tortuous flow path for the vapor to provide optimum heat transfer between the vapor and liquid in passage 38 and the liquid refrigerant in housing 26.
  • Refrigerant vapor and absorbent solution from passage 38 is supplied to refrigerant distributor 20 through line 40. Strong solution which is supplied from the generator to distributor 20 through line 41 mixes with the vapor and solution supplied to the distributor through line 40.
  • the refrigerant vapor-absorbent solution mixture from distributor 20 is supplied to individual circuits 42 of the absorber 10 through absorber supply tubes 43.
  • a cooling medium preferably ambient air is passed over the surface of the absorber in heat exchange relation with the solution therein for cooling the absorbent solution to promote the absorption of the refrigerant vapor by the solution.
  • the same cooling medium may be supplied to condenser I2 in heat exchange relation with refrigerant vapor therein to condense the refrigerant.
  • Cold weak absorbent solution passes from absorber 10 through line 21 into pump 22.
  • the pump 22 comprises a cylindrical casing 23 having a circular bottom closure 44 and a domed top closure 45 suitably affixed thereto as by welding.
  • a first generally circular partition member 46 which is affixed to cylindrical casing 23 as by welding, and a cylindrical partition member 47, which is affixed to bottom closure 44 and partition member 46 by suitable means such as welding, divide the pump into an inlet chamber 48, a pump or transfer chamber 49 and a noncondensible gas storage chamber 50.
  • An inlet fitting 51 is provided in casing 23 for passing solution and noncondensible gases from line 21 into chamber 48.
  • An inlet valve 53 is suitably affixed to cylindrical partition 47 at a location just below the normal level of solution within chamber 48 for reasons to be hereinafter explained.
  • a discharge valve 54 is provided in partition member 46 to allow passage of solution and noncondensible gases from chamber 49 into chamber 50.
  • a flexible diaphragm 55 having a generally cylindrical shape with a hemispherical'shaped end which is supported on a perforated mandrel 56 is disposed within chamber t9 and held in place by end plate 57 which is affixed to bottom closure by suitable means such as bolts 53.
  • a pulsating flow of hydraulic fluid from a suitable hydraulic pump '9 (refer to FIG. l) is provided to the interior of mandrel 56 through hydraulic line 63.
  • a deflector 65 is provided in chamber 50 to deflect the solution and noncondensible gases discharged from chamber 49 through discharge valve 5d to prevent solution from spraying into the upper portion ofchamber 50. in order to minimize absorption of noncondensible gases collected in the top portion of chamber 50, deflector 65 is utilized to minimize turbulence which may be created by the unrestricted discharge of solu tion and gas into the chamber 50 through discharge valve 54.
  • a pump discharge tube 67 having its open lower end near the bottom of chamber 50 is provided for passing solution from chamber 50 into line 62 while retaining the noncondensible gases therein. The noncondensible gases which are passed from chamber 48 into chamber 5t) collect in the upper portion of the chamber and are stored therein at pump discharge pressure.
  • the collected gases form a cushioning layer.
  • This cushioning layer of noncondensible gases in chamber 50 is very effective in dampening the pulses generated by the movement of diaphragm 55.
  • a suitable valve 69 is provided for periodic purging of noncondensible gases from chamber Stll. It should be understood that when the machine is initially started or purged, chamber 5d will fill with liquid before liquid flows out discharge tube 67. As noncondensible gases are pumped into chamber 5t they will collect in the top portion of the chamber which will force the liquid level down. Before an amount of compressed noncondensible gases is collected which would displace liquid to a level near the inlet to tube 67, the chamber should be purged to prevent passage ofthe gases from the chamber.
  • the storage of noncondensible gases in chamber 50 is very effective in dampening the pulses generated by the movement of diaphragm S5.
  • the weal; solution in line a7. is passed through rectifier heat exchange coil dd in heat exchange relation with hot strong solution passing through heat exchange coil 66 disposed within coil did and with the hot refrigerant vapor flowing through rectifier shell 68 in contact with the outer surface of coil 6d.
  • the weak solution from coil dd is discharged into the upper portion of generator to along with any vapor which is formed in coil dd due to heat exchange with the hot vapor passing thereover and the hot solution flowing therethrough.
  • Generator 16 comprises a shell '76 having tapered fins 72 suitably aftixed thereto as by welding.
  • the generator is heated by a gas burner 74 or other suitable heating means
  • the weak solution is boiled in generator 16 to concentrate the solution, thereby forming a strong solution and refrigerant vapor.
  • the hot strong absorbent solution passes upwardly through the analyzer section of generator lid through analyzer coil 76 in heat exchange with the weak solution passing downwardly over the coil.
  • the warm strong solution then passes through heat exchange coil 66 within coil 6d and line M into the distributor 20.
  • a restrictor 78 is provided in line 41 so that the solution supplied to the vapor distributor is at the same pressure as the vapor in line Refrigerant vapor formed in generator to passes upwardly through the analyzer section thereof where it is concentrated by mass heat transfer with weak solution passing downwardly over analyzer coil 76.
  • Analyzer plates 80 in generator id provide a tortuous path for flow of solution and vapor to assure intimate contact therebetween to improve the mass heat transfer.
  • the vapor then passes through rectifier 63 in heat exchange relation with the weak solution passing through coil 64.
  • Absorbent condensed in rectifier 68 flows downwardly into the generator along with the weak solution discharged from coil 64.
  • Refrigerant vapor passes from rectifier 65 through line 82 to condenser 12
  • a pump for use in an absorption refrigeration system comprising a cylindrical casing having a circular bottom closure and a domed top closure,
  • first partition dividing said casing into a noncondensible gas storage chamber and a second chamber, said first partition being a generally circular member affixed to said cylindrical casing,
  • a second partition associated with said casing and said first partition to divide said second chamber into an inlet chamber and a transfer chamber, said second partition being cylindrical and affixed to said bottom closure and said generally circular first partition,
  • inlet valve means associated with said second partition to allow passage of liquid and gases from the inlet chamber to the transfer chamber
  • discharge valve means associated with said second partition to allow passage of liquid and gases from the transfer chamber to the storage chamber
  • discharge means communicating with the storage chamber closely adjacent with bottom of the chamber of passage of liquid from the discharge chamber.
  • said discharge means comprises a tube projecting downwardly through said domed top closure toward said generally cylindrical partition to said casing, the open lower end of said tube being spaced closely adjacent the generally circular partition for passage of liquid from the storage chamber.
  • a pump according to claim 2 further including deflector means disposed in the storage chamber opposite said discharge valve means to prevent discharge of liquid from the valve into the upper portion of the storage chamber.
  • a pump according to claim 2 wherein said means for pumping fluid includes a resilient diaphragm adapted to be cyclically flexed by pulsating hydraulic pressure.
  • a pump according to claim 5 wherein said resilient diaphragm has a generally cylindrical shape with a hemispher ical end thereto, said diaphragm being disposed within said cylindrical partition.
  • a pump according to claim 6 further including a purge valve affixed to said domed top closure and communicating with the interior of said storage chamber for bleeding excess noncondensible gases from said storage chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

An absorption refrigeration machine having a generator and condenser on the high side thereof and an evaporator and absorber on the low side employing a pulser-type solution pump to minimize ''''slugging,'''' transfer noncondensible gases and solution from the low side to the high side of the machine, store noncondensible gases on the high side thereof and utilize the collected noncondensible gases to dampen pump discharge pulsations.

Description

United States Patent Inventors Kenneth K. Kaiser Camby; Richard A. English, Indianapolis, both of,
Ind. Appl No. 820,753 Filed May 1,1969 Patented June 22,1971 Assignee Carrier Corporation Syracuse, NY
ABSORPTION REFRIGERATION MACHINE PUMP 7 Claims, 3 Drawing Figs.
US. Cl 417/394, 62/55 Int. Cl F04b 9/10, F17c 7/02 Fieldof Search 417/395,
[56] I References Cited UNITED STATES PATENTS 2,368,132 1/1945 French 103/150 2,836,121 5/1958 Browne 103/44 FOREIGN PATENTS 3,132 1862 Great Britain 103/44 Primary ExaminerRobert M, Walker Attorneys-Harry G, Martin, Jr. and J. Raymond Curtin ABSTRACT: An absorption refrigeration machine having a generator and condenser on the high side thereof and an evaporator and absorber on the low side employing a pulsertype solution pump to minimize slugging," transfer noncondensible gases and solution from the low side to the high side of the machine, store noncondensible gases on the high side thereof and utilize the collected noncondensible gases to dampen pump discharge pulsations.
i Ail PATENTEDJuuzmn 3586;462
' SHEET 1 [1f 2 {8}, 111' I :FIFFIHIIL HH w:
.. r uumuuu -uu I N VENTORS KENNETH K. KAISER. BY RICHARD A. ENGLISH.
ATTORNEY.
PATENTED JUH22 I971 SHEET 2 OF 2 IN VENTORS. KENNETH K. KAISER. BY RICHARD A. ENGLISH.
I o l n O 0 6 I ATTORNEY.
ARSORFTHON REFRIGERATION MACHINE PUMP BACKGROUND OF THE INVENTION Absorption refrigeration systems comprising a high-pressure side, including a generator and a condenser, and a lowpressure side, including an evaporator and an absorber, require a solution transfer mechanism such as a pump to transfer weak solution from the low side of the system to the high side. The pressure difierence across the system may be large, necessitating the use of a positive displacement reciprocating piston pump or a diaphragm pump, both of which provide a pulsed output which can create excessive noise in the system.
The solution to be pumped passes from the absorber to the pump. While the machine is operating, the pump receives slugs" of liquid from the absorber, rather than a steady flow. This can cause undesirable fluctuating pump noise and could possibly damage the pump mechanism.
Another problem which may arise in the operation of an ab sorption refrigeration system is the generation of noncondensible gases such as hydrogen which may have a detrimental effect on the performance of the system. It is desirable to provide means to separate the noncondensible gases and retain them out of circulation in the system. It is difficult to separate the gases from the absorbent solution on the high-pressure side of the system due to the tendency of the gas to remain suspended in the solution in the form of fine bubbles. The gases are therefore ordinarily separated and collected on the low-pressure side of the machine. However, storage of the noncondensible gases on the low-pressure side of the system where separation is easily accomplished requires an undesirably large storage tank because of the volume of gas at low pressure. It is desirable to pump" these separated gases to the high side of the machine along with the solution for storage on the high pressure side of the system.
SUMMARY OF THE INVENTION This invention relates to an absorption refrigeration system employing a pump comprised of a housing having first'and second partitions therein to provide a first low-pressure chamber for receiving solution and noncondensible gases from the absorber, a second chamber having transfer means therein for receiving solution and gases from the first chamber, and a third chamber for receiving solution and noncondensible gases from said transfer means and storing the noncondensible gases therein to dampen the pulsations generated by the transfer means.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. l is a schematic flow diagram of an absorption refrigeration system;
FIG. 2 is a sectional view of the preferred embodiment of the pump of the present invention; and
FIG. 3 is a sectional view taken along line IIIIII of FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. I of the drawing, there is shown a refrigeration system comprising an absorber 10, a condenser 112, an evaporator or chiller 114, a generator 16, a liquid-suction heat exchanger 118, and a vapor distributor 20 connected to provide refrigeration. A pump 22 is employed to circulate weak absorbent solution from absorber to generator 16.
As used herein, the term "weak absorbent solution" refers to solution which is weak in absorbent power, and the term strong absorbent solution" refers to a solution which is strong in absorbent power. A suitable absorbent for use in the system described is water; a suitable refrigerant is ammonia.
Liquid refrigerant condensed in condenser 12 passes through refrigerant liquid passage 24 to the liquid-suction heat exchanger. The liquid-suction heat exchanger 18 includes a housing 26 having a refrigerant restrictor 28 at the upstream end and a refrigerant restrictor 30 at the downstream end thereof. A portion of the liquid refrigerant supplied to the liquid-suction heat exchanger 18 flashes upon passing through restrictor 28 due to the low pressure existing downstream of the restrictor, thereby cooling the remainder of the refrigerant in the housing 26. The cooled refrigerant liquid and flashed refrigerant vapor then pass through restrictor 30 into heat exchanger 32 of chiller 14.
A heat exchange medium such as water is passed over the exterior of heat exchanger 32 where it is chilled by giving up heat to evaporate the refrigerant within the heat exchanger. The chilled heat exchange medium passes out of chiller 14 through line 34 to suitable remote heat exchangers (not shown) after which it is returned to the chiller through inlet 36 for rechilling.
The cold refrigerant evaporated in heat exchanger 32, along with any small quantity of absorbent which may be carried over to the heat exchanger with the refrigerant from the condenser, passes into refrigerant vapor passage 38 of liquid-suction heat exchanger 18. The refrigerant vapor and absorbent liquid, which may have a large quantity of refrigerant absorbent therein, passes through refrigerant vapor passage 38 in heat exchange relation with the refrigerant passing through housing 26. Refrigerant vapor passage 38 is provided with a turbulator 39 which consists of a twisted metal strip to provide a tortuous flow path for the vapor to provide optimum heat transfer between the vapor and liquid in passage 38 and the liquid refrigerant in housing 26. By passing the vapor and liquid in passage 38 in heat transfer with the liquid refrigerant in housing 26, a large quantity of refrigerant in the absorbent liquid in passage 38 is vaporized. The heat required for vaporization is therefore removed from the liquid in housing 26, thereby reducing the temperature of the liquid refrigerant supplied to heat exchanger 32. This heat transfer within the liquid-suction heat exchanger 18 provides an increase in the absorption machine efficiency by transferring heat from the liquid supplied thereto from the condenser to the refrigerant vapor rid absorbent liquid discharged from the chiller.
Refrigerant vapor and absorbent solution from passage 38 is supplied to refrigerant distributor 20 through line 40. Strong solution which is supplied from the generator to distributor 20 through line 41 mixes with the vapor and solution supplied to the distributor through line 40. The refrigerant vapor-absorbent solution mixture from distributor 20 is supplied to individual circuits 42 of the absorber 10 through absorber supply tubes 43. A cooling medium, preferably ambient air is passed over the surface of the absorber in heat exchange relation with the solution therein for cooling the absorbent solution to promote the absorption of the refrigerant vapor by the solution. The same cooling medium may be supplied to condenser I2 in heat exchange relation with refrigerant vapor therein to condense the refrigerant.
Cold weak absorbent solution passes from absorber 10 through line 21 into pump 22.
Referring to FIG. 2, the pump 22 comprises a cylindrical casing 23 having a circular bottom closure 44 and a domed top closure 45 suitably affixed thereto as by welding. A first generally circular partition member 46, which is affixed to cylindrical casing 23 as by welding, and a cylindrical partition member 47, which is affixed to bottom closure 44 and partition member 46 by suitable means such as welding, divide the pump into an inlet chamber 48, a pump or transfer chamber 49 and a noncondensible gas storage chamber 50. An inlet fitting 51 is provided in casing 23 for passing solution and noncondensible gases from line 21 into chamber 48. An inlet valve 53 is suitably affixed to cylindrical partition 47 at a location just below the normal level of solution within chamber 48 for reasons to be hereinafter explained. The valve allows passage of fluid from chamber 48 into chamber 49 but prevents passage of fluid in the reverse direction. A discharge valve 54 is provided in partition member 46 to allow passage of solution and noncondensible gases from chamber 49 into chamber 50. A flexible diaphragm 55 having a generally cylindrical shape with a hemispherical'shaped end which is supported on a perforated mandrel 56 is disposed within chamber t9 and held in place by end plate 57 which is affixed to bottom closure by suitable means such as bolts 53. A pulsating flow of hydraulic fluid from a suitable hydraulic pump '9 (refer to FIG. l) is provided to the interior of mandrel 56 through hydraulic line 63.
When hydraulic fluid under pressure is supplied to the interior of mandrel 5d, the diaphragm 5d is expanded toward partition member 67. The fluid and noncondensible gases within the space between diaphragm 55 and partition d7 is forced through discharge valve 54 into chamber 56). When the hydraulic pressure within diaphragm 55 is reduced, the diaphragm will return to its original shape, causing solution from chamber ill to be drawn into chamber 49 through inlet valve 53. Since the inlet valve 53 is locatedjust under the normal level of solution within chamber 48, the reduced pressure within chamber 49 will cause solution from chamber id to pass therein and create a vortex which causes a quantity of noncondensible gases collected in the upper portion of chamber id to be drawn into chamber 49.
A deflector 65 is provided in chamber 50 to deflect the solution and noncondensible gases discharged from chamber 49 through discharge valve 5d to prevent solution from spraying into the upper portion ofchamber 50. in order to minimize absorption of noncondensible gases collected in the top portion of chamber 50, deflector 65 is utilized to minimize turbulence which may be created by the unrestricted discharge of solu tion and gas into the chamber 50 through discharge valve 54. A pump discharge tube 67 having its open lower end near the bottom of chamber 50 is provided for passing solution from chamber 50 into line 62 while retaining the noncondensible gases therein. The noncondensible gases which are passed from chamber 48 into chamber 5t) collect in the upper portion of the chamber and are stored therein at pump discharge pressure. The collected gases form a cushioning layer. This cushioning layer of noncondensible gases in chamber 50 is very effective in dampening the pulses generated by the movement of diaphragm 55. A suitable valve 69 is provided for periodic purging of noncondensible gases from chamber Stll. It should be understood that when the machine is initially started or purged, chamber 5d will fill with liquid before liquid flows out discharge tube 67. As noncondensible gases are pumped into chamber 5t they will collect in the top portion of the chamber which will force the liquid level down. Before an amount of compressed noncondensible gases is collected which would displace liquid to a level near the inlet to tube 67, the chamber should be purged to prevent passage ofthe gases from the chamber.
The storage of noncondensible gases in chamber 50 is very effective in dampening the pulses generated by the movement of diaphragm S5.
The weal; solution in line a7. is passed through rectifier heat exchange coil dd in heat exchange relation with hot strong solution passing through heat exchange coil 66 disposed within coil did and with the hot refrigerant vapor flowing through rectifier shell 68 in contact with the outer surface of coil 6d. The weak solution from coil dd is discharged into the upper portion of generator to along with any vapor which is formed in coil dd due to heat exchange with the hot vapor passing thereover and the hot solution flowing therethrough.
Generator 16 comprises a shell '76 having tapered fins 72 suitably aftixed thereto as by welding. The generator is heated by a gas burner 74 or other suitable heating means The weak solution is boiled in generator 16 to concentrate the solution, thereby forming a strong solution and refrigerant vapor.
The hot strong absorbent solution passes upwardly through the analyzer section of generator lid through analyzer coil 76 in heat exchange with the weak solution passing downwardly over the coil. The warm strong solution then passes through heat exchange coil 66 within coil 6d and line M into the distributor 20. A restrictor 78 is provided in line 41 so that the solution supplied to the vapor distributor is at the same pressure as the vapor in line Refrigerant vapor formed in generator to passes upwardly through the analyzer section thereof where it is concentrated by mass heat transfer with weak solution passing downwardly over analyzer coil 76. Analyzer plates 80 in generator id provide a tortuous path for flow of solution and vapor to assure intimate contact therebetween to improve the mass heat transfer. The vapor then passes through rectifier 63 in heat exchange relation with the weak solution passing through coil 64. Absorbent condensed in rectifier 68 flows downwardly into the generator along with the weak solution discharged from coil 64. Refrigerant vapor passes from rectifier 65 through line 82 to condenser 12 to complete the refrigeration cycle.
While we have described a preferred embodiment ofour invention, it is to be understood the invention is not limited thereto since it may be otherwise embodied within the scope of the following claims.
We claim:
ii. A pump for use in an absorption refrigeration system comprising a cylindrical casing having a circular bottom closure and a domed top closure,
a first partition dividing said casing into a noncondensible gas storage chamber and a second chamber, said first partition being a generally circular member affixed to said cylindrical casing,
a second partition associated with said casing and said first partition to divide said second chamber into an inlet chamber and a transfer chamber, said second partition being cylindrical and affixed to said bottom closure and said generally circular first partition,
inlet valve means associated with said second partition to allow passage of liquid and gases from the inlet chamber to the transfer chamber,
discharge valve means associated with said second partition to allow passage of liquid and gases from the transfer chamber to the storage chamber,
means disposed in the transfer chamber for pumping a mixture of liquid and gases from the inlet chamber to the storage chamber, the gases passing into the storage chamber separating from the liquid and collecting in an upper portion of the storage chamber to form a cushioned layer to dampen pump pulsations, and
discharge means communicating with the storage chamber closely adjacent with bottom of the chamber of passage of liquid from the discharge chamber.
2. A pump according to claim 1 wherein said discharge means comprises a tube projecting downwardly through said domed top closure toward said generally cylindrical partition to said casing, the open lower end of said tube being spaced closely adjacent the generally circular partition for passage of liquid from the storage chamber.
3. A pump according to claim 2, wherein said inlet valve means is positioned below the normal level of collected fluid within the inlet chamber but closely adjacent the surface of the fluid so that passage of liquid from the inlet chamber to the transfer chamber creates a vortex to induce gas collected in the inlet chamber into the transfer chamber.
4. A pump according to claim 2 further including deflector means disposed in the storage chamber opposite said discharge valve means to prevent discharge of liquid from the valve into the upper portion of the storage chamber.
5. A pump according to claim 2 wherein said means for pumping fluid includes a resilient diaphragm adapted to be cyclically flexed by pulsating hydraulic pressure.
6. A pump according to claim 5 wherein said resilient diaphragm has a generally cylindrical shape with a hemispher ical end thereto, said diaphragm being disposed within said cylindrical partition.
7. A pump according to claim 6 further including a purge valve affixed to said domed top closure and communicating with the interior of said storage chamber for bleeding excess noncondensible gases from said storage chamber

Claims (7)

1. A pump for use in an absorption refrigeration system comprising a cylindrical casing having a circular bottom closure and a domed top closure, a first partition dividing said casing into a noncondensible gas storage chamber and a second chamber, said first partition being a generally circular member affixed to said cylindrical casing, a second partition associated with said casing and said first partition to divide said second chamber into an inlet chamber and a transfer chamber, said second partition being cylindrical and affixed to said bottom closure and said generally circular first partition, inlet valve means associated with said second partition to allow passage of liquid and gases from the inlet chamber to the transfer chamber, discharge valve means associated with said second partition to allow passage of liquid and gases from the transfer chamber to the storage chamber, means disposed in the transfer chamber for pumping a mixture of liquid and gases from the inlet chamber to the storage chamber, the gases passing into the storage chamber separating from the liquid and collecting in an upper portion of the storage chamber to form a cushioned layer to dampen pump pulsations, and discharge means communicating with the storage chamber closely adjacent with bottom of the chamber of passage of liquid from the discharge chamber.
2. A pump according to claim 1 wherein said discharge means comprises a tube projecting downwardly through said domed top closure toward said generally cylindrical partition to said casing, the open lower end of said tube being spaced closely adjacent the generally circular partition for passage of liquid from the storage chamber.
3. A pump according to claim 2, wherein said inlet valve meanS is positioned below the normal level of collected fluid within the inlet chamber but closely adjacent the surface of the fluid so that passage of liquid from the inlet chamber to the transfer chamber creates a vortex to induce gas collected in the inlet chamber into the transfer chamber.
4. A pump according to claim 2 further including deflector means disposed in the storage chamber opposite said discharge valve means to prevent discharge of liquid from the valve into the upper portion of the storage chamber.
5. A pump according to claim 2 wherein said means for pumping fluid includes a resilient diaphragm adapted to be cyclically flexed by pulsating hydraulic pressure.
6. A pump according to claim 5 wherein said resilient diaphragm has a generally cylindrical shape with a hemispherical end thereto, said diaphragm being disposed within said cylindrical partition.
7. A pump according to claim 6 further including a purge valve affixed to said domed top closure and communicating with the interior of said storage chamber for bleeding excess noncondensible gases from said storage chamber.
US820753A 1969-05-01 1969-05-01 Absorption refrigeration machine pump Expired - Lifetime US3586462A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82075369A 1969-05-01 1969-05-01

Publications (1)

Publication Number Publication Date
US3586462A true US3586462A (en) 1971-06-22

Family

ID=25231630

Family Applications (1)

Application Number Title Priority Date Filing Date
US820753A Expired - Lifetime US3586462A (en) 1969-05-01 1969-05-01 Absorption refrigeration machine pump

Country Status (1)

Country Link
US (1) US3586462A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742726A (en) * 1971-06-02 1973-07-03 Carrier Corp Absorption refrigeration system
US4269906A (en) * 1977-09-12 1981-05-26 Aktiebolaget Tudor Pump device
EP0443468A2 (en) * 1990-02-19 1991-08-28 Arnulf Stog Sorption refrigeration machine
US6406276B1 (en) 1986-03-04 2002-06-18 Deka Products Limited Partnership Constant-pressure fluid supply system with multiple fluid capability
WO2015105710A1 (en) * 2014-01-07 2015-07-16 Rocky Research Solution pump system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742726A (en) * 1971-06-02 1973-07-03 Carrier Corp Absorption refrigeration system
US4269906A (en) * 1977-09-12 1981-05-26 Aktiebolaget Tudor Pump device
US6406276B1 (en) 1986-03-04 2002-06-18 Deka Products Limited Partnership Constant-pressure fluid supply system with multiple fluid capability
EP0443468A2 (en) * 1990-02-19 1991-08-28 Arnulf Stog Sorption refrigeration machine
EP0443468A3 (en) * 1990-02-19 1991-12-18 Arnulf Stog Sorption refrigeration machine
WO2015105710A1 (en) * 2014-01-07 2015-07-16 Rocky Research Solution pump system
US9709050B2 (en) 2014-01-07 2017-07-18 Rocky Research Solution pump system

Similar Documents

Publication Publication Date Title
US4467623A (en) Counterflow absorber for an absorption refrigeration system
US3742727A (en) Absorption refrigeration system
US3586462A (en) Absorption refrigeration machine pump
US3690121A (en) Absorption refrigeration system
US3742726A (en) Absorption refrigeration system
CN114322354A (en) Absorption type circulating refrigeration system and process thereof
US2724246A (en) Method and means for improving the utilization of volatile refrigerants in heat exchangers
US3154930A (en) Refrigeration apparatus
US3369373A (en) Solution transfer apparatus
US3693373A (en) Absorption refrigeration machine
JPH0320575A (en) Absorption refrigeration machine
US3491551A (en) Absorption refrigeration pump
JP2548789Y2 (en) Cooler structure in absorption refrigeration cycle
US3396549A (en) Multiple-effect absorption refrigeration systems
US3520144A (en) Absorption refrigeration system
KR0124499B1 (en) Refrigerant gas ejection air-cooling absorption system
US3358465A (en) Absorption refrigeration systems
US3304742A (en) Absorption refrigeration systems
US2522410A (en) Absorption refrigeration apparatus
US2426069A (en) Refrigeration
US3520150A (en) Absorption refrigeration machine
US3581520A (en) Absorption refrigeration system
US3580001A (en) Absorption refrigeration machine with concentration control tank
US3514971A (en) Absorption refrigeration machine
US3555849A (en) Purging absorption refrigeration systems