US3558809A - Automatic dark current control system for pickup tubes employing a light inhibiting strip mounted on the pickup tube face plate - Google Patents

Automatic dark current control system for pickup tubes employing a light inhibiting strip mounted on the pickup tube face plate Download PDF

Info

Publication number
US3558809A
US3558809A US748714A US3558809DA US3558809A US 3558809 A US3558809 A US 3558809A US 748714 A US748714 A US 748714A US 3558809D A US3558809D A US 3558809DA US 3558809 A US3558809 A US 3558809A
Authority
US
United States
Prior art keywords
pickup
dark current
control system
current control
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US748714A
Inventor
Takao Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Application granted granted Critical
Publication of US3558809A publication Critical patent/US3558809A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/40Circuit details for pick-up tubes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/749Circuitry for compensating brightness variation in the scene by influencing the pick-up tube voltages

Definitions

  • Eslinger and Alvin Sinderbrand ABSTRACT An automatic dark current control system for a pickup tube including an opaque region provided on the pickup tube face plate, means for detecting an output signal corresponding to the opaque region, and means for controlling a target voltage with the detected signal.
  • This invention relates to an automatic dark current control system for pickup tubes, and more particularly to a system for holding a dark current of a pickup tube substantially constant at all times with purely electronic and simple circuit means.
  • the dark currents of the pickup tubes vary in different manners, so that even if the white balance is maintained in the steady state of the pickup tube with its temperature being held constant, it is difiicult to obtain complete white balance until the pickup tube reaches the steady state after the start of its operation, Further, there is the possibility that the dark current varies due to the variations in the ambient temperature to destroy the white balance.
  • this invention has for its object the elimination of the aforementioned defect by providing a lighttransmission inhibiting region on the target of the pickup tube at one selected area, detecting the level of the portion of the video output signal corresponding to the light-transmission inhibiting region and controlling the target voltage to hold the level substantially constant with the detected output.
  • FIG. 1 is a schematic diagram illustrating a conventional type of color television camera device
  • FIG. 2 is a block diagram showing one example of an automatic dark current control system for a pickup tube produced according to this invention
  • FIG. 3 is a plan view illustrating, by way of example, the front of the pickup tube exemplified in FIG. 2;
  • FIG. 4 is a waveform diagram showing one example of a video output signal.
  • FIG. 1 there is illustrated a prior art color television camera of the type employing three pickup tubes.
  • the light from an object 1 to be televised is separated or broken up into red, green and blue components through an optical system 2 and these color components are applied toglass faceplates 4R, 4G and 4B of pickup tubes 3R, 3G and 38, through which the object 1 is focused into an image on targets 5R, 5G and 5B of the pickup tubes 3R, 3G and 38.
  • Video signals emanating from the targets SR, 56 and 5B are respectively fed to output terminals 7R, 7G and 78 through video amplifiers 6R, 6G and 6B.
  • the pickup tubes 3R, 3G and 38 may be, for example, vidicon tubes.
  • the video signals obtained at the output terminals 7R, 7G and 7B are caused to vary by dark currents of the pickup tubes 3R, 3G and 38 (output currents of the pickup tubes appearing in the case of no light being directed to the glass faceplates 4R, 4G and 4B) and this leads to the lowering of the white balance.
  • the dark currents of the pickup tubes vary in different manners to render the outputs of the pickup tubes different from one another and hence provide lowered white balance.
  • FIGS. 2 to 4 illustrate an automatic dark current control system of this invention for the elimination of the drawbacks experienced in the prior art.
  • FIG. 2 a video signal 9 obtained from a target 5 of an image pickup tube 3 is applied to an output terminal 7 through a video amplifier 6.
  • a deflection unit 11 of the pickup tube 3 is supplied with horizontal and vertical deflecting signals from a deflection circuit 12.
  • a light-transmission inhibiting region or opaque region is formed on the target 5 at one selected area. It is preferred to located the opaque region at a position corresponding to the ineffective video signal period following the blanking signal period, of the video signal.
  • a mask is disposed on the effective area 4a of the glass faceplate 4 at one end thereof relative to the horizontal scanning direction in a manner to extend in the vertical scanning direction as illustrated in FIG. 3, thus providing the light-transmission inhibiting region 8.
  • one portion of the output of the video amplifier 6 is applied to a detector circuit 10 to detect that portion of the video signal which corresponds to the light-transmission inhibiting region 8. In other words, a dark current is detected.
  • the detector circuit 10 may take that form of, for example, a sampling circuit and is supplied with pulses obtained from the horizontal synchronizing signal by the deflection circuit 12 at times corresponding to the light-transmission inhibiting region 8.
  • the dark current thus obtained is fed to a comparator circuit 13, which compares a reference voltage E from a reference voltage source with a dark current level E
  • the output of the comparator circuit 13 is applied to a target voltage control circuit 14, which controls the target voltage by feedback to maintain the dark current level of the pickup tube 3 substantially constant.
  • a video output signal such as depicted in FIG. 4 which contains a horizontal flyback period T a dark current period T corresponding to the lighttransmission inhibiting region 8 and a video signal period T in such an order as shown.
  • the signal of the dark current period T is detected from the detector circuit l0, and if the dark current level E is, for example, greater than-the reference voltage E, the control circuit 14 is controlled by the output of the comparator circuit 13 to cause a decrease in the target voltage. In this manner, the dark current is held substantially constant.
  • the dark current varies due to the temperature change of the pickup tube 3 until the pickup tube reaches its steady state after the start of its operation or due to the change of the ambient temperature
  • the variation of the dark current is detected and the target voltage is controlled correspondingly, ensuring to maintain the dark current substantially constant. Consequently, if the amount of the light from the object to be transmitted is constant, a video output signal of constant black level can be obtained from the output terminal 7.
  • the present invention being applied to the color television camera device employing a plurality of pickup tubes as depicted in FIG. I, one adjustment of the white balance enables the avoidance of the deterioration of the white balance resulting from the temperature change of the pickup tubes. Further, the camera device can be rendered operative immediately upon turning on the power source switch.
  • the dark current period T is provided following the flyback period T,, that is, the light-transmission inhibiting region 8 is located in the ineffective area of the picture, the region 8 does not exert any influence upon the reproduced picture. While the dark current period T, is rendered to appear following the horizontal flyback period T it may be positioned subsequent to the vertical flyback period.
  • An automatic dark current control system for pickup tubes comprising means for providing a light-transmission inhibiting region on a target of the pickup tube at one selected area, means for detecting the level of the portion of a video output signal produced by scanning the light-transmission inhibiting region, and means for controlling the target voltage with the detected portion of the video output signal produced by scanning the light-inhibiting region to hold the said level substantially constant.
  • An automatic dark current control system for pickup tubes as claimed in claim 1 including a deflection means of the pickup tube in which the detecting means includes a sampling circuit operated in synchronization with a deflection signal applied to the deflection means.
  • An automatic dark current control system for pickup tubes as claimed in claim 1 in which the light-transmission inhibiting region is scanned during an ineffective video signal period.
  • An automatic dark current control system for pickup tubes as claimed in claim 1 including a plurality of pickup tubes respectively for the different color images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

An automatic dark current control system for a pickup tube including an opaque region provided on the pickup tube face plate, means for detecting an output signal corresponding to the opaque region, and means for controlling a target voltage with the detected signal.

Description

United States Patent [72] Inventor Takao Aoki Kanagawa-ken, Japan [21] Appl. No. 748,714 [22] Filed July 30, 1968 [45] Patented Jan. 26, 1971 [73] Assignee Sony Corporation Tokyo, Japan a corporation of Japan [32] Priority Aug. 1, 1967 J p [31] v 42/49445 [54] AUTOMATIC DARK CURRENT CONTROL SYSTEM FOR PICKUP TUBES EMPLOYIN G A LIGHT INHIBITING STRIP MOUNTED ON THE PICKUP TUBE FACE PLATE 4 Claims, 4 Drawing Figs.
[52] US. Cl 178/5.4, r 178/72 [51] Int. Cl H04n 5/44, H04n 5/3 8 [50] FieldofSearch l78/7.2E, 7.2A,5.4;315/l0 [56] References Cited UNITED STATES PATENTS 3,102,924 8/1963 Legler l78/7.2E 3,126,447 3/1964 Bendell 178/7.2A 3,206,547 8/1965 Leitich et a1. l78/7.2E 3,407,267 10/1968 Smith l78/6.8
Primary Examiner-Robert L. Grifiin Assistant Examiner-Donald E. Stout Attorneys-Albert C. Johnston, Robert E. lsner, Lewis H.
Eslinger and Alvin Sinderbrand ABSTRACT: An automatic dark current control system for a pickup tube including an opaque region provided on the pickup tube face plate, means for detecting an output signal corresponding to the opaque region, and means for controlling a target voltage with the detected signal.
C DE'FL PCT/0N AUTOMATIC DARK CURRENT CONTROL SYSTEM FOR PICKUP TUBES EMPLOYING A LIGHT INHIBITING STRIP MOUNTED ON THE PICKUP TUBE FACE PLATE This invention relates to an automatic dark current control system for pickup tubes, and more particularly to a system for holding a dark current of a pickup tube substantially constant at all times with purely electronic and simple circuit means.
Conventional television cameras encounter a difficulty in the regulation of the dark current of the pickup tube. Especially, color television cameras employing a plurality of pickup tubes has a drawback such that the white balance of signals is lost unless the dark currents of the pickup tubes are always controlled to be constant. The dark current greatly varice with the temperature of the pickup tube and hence does not become constant until the temperature of the pickup tube reaches a predetermined value after the initiation of its operation. In addition to this, the dark currents of the pickup tubes vary in different manners, so that even if the white balance is maintained in the steady state of the pickup tube with its temperature being held constant, it is difiicult to obtain complete white balance until the pickup tube reaches the steady state after the start of its operation, Further, there is the possibility that the dark current varies due to the variations in the ambient temperature to destroy the white balance.
In view of such a fact, this invention has for its object the elimination of the aforementioned defect by providing a lighttransmission inhibiting region on the target of the pickup tube at one selected area, detecting the level of the portion of the video output signal corresponding to the light-transmission inhibiting region and controlling the target voltage to hold the level substantially constant with the detected output.
Accordingly, it is one object of this invention to provide a system for controlling the dark current of a pickup tube to be constant.
It is another object of this invention to provide a color television camera of excellent white balance.
It is still another object of this invention to provide a color television camera in which the dark currents of a plurality of pickup tubes are uniform to provide for good white balance.
Other objects, features and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a schematic diagram illustrating a conventional type of color television camera device;
FIG. 2 is a block diagram showing one example of an automatic dark current control system for a pickup tube produced according to this invention;
FIG. 3 is a plan view illustrating, by way of example, the front of the pickup tube exemplified in FIG. 2; and
FIG. 4 is a waveform diagram showing one example of a video output signal.
In FIG. 1 there is illustrated a prior art color television camera of the type employing three pickup tubes. With such a color television camera, the light from an object 1 to be televised is separated or broken up into red, green and blue components through an optical system 2 and these color components are applied toglass faceplates 4R, 4G and 4B of pickup tubes 3R, 3G and 38, through which the object 1 is focused into an image on targets 5R, 5G and 5B of the pickup tubes 3R, 3G and 38. Video signals emanating from the targets SR, 56 and 5B are respectively fed to output terminals 7R, 7G and 78 through video amplifiers 6R, 6G and 6B. In this case, the pickup tubes 3R, 3G and 38 may be, for example, vidicon tubes.
However, where the quantity of the incident light is constant, the video signals obtained at the output terminals 7R, 7G and 7B are caused to vary by dark currents of the pickup tubes 3R, 3G and 38 (output currents of the pickup tubes appearing in the case of no light being directed to the glass faceplates 4R, 4G and 4B) and this leads to the lowering of the white balance. Further, the dark currents of the pickup tubes vary in different manners to render the outputs of the pickup tubes different from one another and hence provide lowered white balance.
FIGS. 2 to 4 illustrate an automatic dark current control system of this invention for the elimination of the drawbacks experienced in the prior art.
In FIG. 2 a video signal 9 obtained from a target 5 of an image pickup tube 3 is applied to an output terminal 7 through a video amplifier 6. A deflection unit 11 of the pickup tube 3 is supplied with horizontal and vertical deflecting signals from a deflection circuit 12.
In accordance with this invention a light-transmission inhibiting region or opaque region is formed on the target 5 at one selected area. It is preferred to located the opaque region at a position corresponding to the ineffective video signal period following the blanking signal period, of the video signal. For this purpose, a mask is disposed on the effective area 4a of the glass faceplate 4 at one end thereof relative to the horizontal scanning direction in a manner to extend in the vertical scanning direction as illustrated in FIG. 3, thus providing the light-transmission inhibiting region 8.
Further, one portion of the output of the video amplifier 6 is applied to a detector circuit 10 to detect that portion of the video signal which corresponds to the light-transmission inhibiting region 8. In other words, a dark current is detected. The detector circuit 10 may take that form of, for example, a sampling circuit and is supplied with pulses obtained from the horizontal synchronizing signal by the deflection circuit 12 at times corresponding to the light-transmission inhibiting region 8.
The dark current thus obtained is fed to a comparator circuit 13, which compares a reference voltage E from a reference voltage source with a dark current level E The output of the comparator circuit 13 is applied to a target voltage control circuit 14, which controls the target voltage by feedback to maintain the dark current level of the pickup tube 3 substantially constant.
With such an arrangement as described in the foregoing, there is detected from the target 5 a video output signal such as depicted in FIG. 4 which contains a horizontal flyback period T a dark current period T corresponding to the lighttransmission inhibiting region 8 and a video signal period T in such an order as shown. The signal of the dark current period T,,, that is, the dark current, is detected from the detector circuit l0, and if the dark current level E is, for example, greater than-the reference voltage E, the control circuit 14 is controlled by the output of the comparator circuit 13 to cause a decrease in the target voltage. In this manner, the dark current is held substantially constant.
Namely, in the case where the dark current varies due to the temperature change of the pickup tube 3 until the pickup tube reaches its steady state after the start of its operation or due to the change of the ambient temperature, the variation of the dark current is detected and the target voltage is controlled correspondingly, ensuring to maintain the dark current substantially constant. Consequently, if the amount of the light from the object to be transmitted is constant, a video output signal of constant black level can be obtained from the output terminal 7. With the present invention being applied to the color television camera device employing a plurality of pickup tubes as depicted in FIG. I, one adjustment of the white balance enables the avoidance of the deterioration of the white balance resulting from the temperature change of the pickup tubes. Further, the camera device can be rendered operative immediately upon turning on the power source switch. In addition, if the dark current period T is provided following the flyback period T,,, that is, the light-transmission inhibiting region 8 is located in the ineffective area of the picture, the region 8 does not exert any influence upon the reproduced picture. While the dark current period T,, is rendered to appear following the horizontal flyback period T it may be positioned subsequent to the vertical flyback period.
It will be apparent that many modifications and variations may be effected without departing from the scope of the novel concepts of this invention.
I claim:
1. An automatic dark current control system for pickup tubes comprising means for providing a light-transmission inhibiting region on a target of the pickup tube at one selected area, means for detecting the level of the portion of a video output signal produced by scanning the light-transmission inhibiting region, and means for controlling the target voltage with the detected portion of the video output signal produced by scanning the light-inhibiting region to hold the said level substantially constant.
2. 2. An automatic dark current control system for pickup tubes as claimed in claim 1 including a deflection means of the pickup tube in which the detecting means includes a sampling circuit operated in synchronization with a deflection signal applied to the deflection means.
3. An automatic dark current control system for pickup tubes as claimed in claim 1 in which the light-transmission inhibiting region is scanned during an ineffective video signal period.
4. An automatic dark current control system for pickup tubes as claimed in claim 1 including a plurality of pickup tubes respectively for the different color images.

Claims (4)

1. An automatic dark current control system for pickup tubes comprising means for providing a light-transmission inhibiting region on a target of the pickup tube at one selected area, means for detecting the level of the portion of a video output signal produced by scanning the light-transmission inhibiting region, and means for controlling the target voltage with the detected portion of the video output signal produced by scanning the light-inhibiting region to hold the said level substantially constant.
2. 2. An automatic dark current control system for pickup tubes as claimed in claim 1 including a deflection means of the pickup tube in which the detecting means includes a sampling circuit operated in synchronization with a deflection signal applied to the deflection means.
3. An automatic dark current control system for pickup tubes as claimed in claim 1 in which the light-transmission inhibiting region is scanned during an ineffective video signal period.
4. An automatic dark current control system for pickup tubes as claimed in claim 1 including a plurality of pickup tubes respectively for the different color images.
US748714A 1967-08-01 1968-07-30 Automatic dark current control system for pickup tubes employing a light inhibiting strip mounted on the pickup tube face plate Expired - Lifetime US3558809A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4944567 1967-08-01

Publications (1)

Publication Number Publication Date
US3558809A true US3558809A (en) 1971-01-26

Family

ID=12831310

Family Applications (1)

Application Number Title Priority Date Filing Date
US748714A Expired - Lifetime US3558809A (en) 1967-08-01 1968-07-30 Automatic dark current control system for pickup tubes employing a light inhibiting strip mounted on the pickup tube face plate

Country Status (3)

Country Link
US (1) US3558809A (en)
DE (1) DE1762657C3 (en)
GB (1) GB1211396A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808358A (en) * 1971-05-21 1974-04-30 Bosch Fernsehanlagen Method and system for automatically balancing the color channels of color image transmitters
US3914787A (en) * 1973-02-16 1975-10-21 Canon Kk Color television camera with a color-resolving optical system
US3934266A (en) * 1973-12-28 1976-01-20 Victor Company Of Japan, Limited Dark current correction circuit in two-tube color television camera
JPS51131210A (en) * 1975-05-10 1976-11-15 Teac Co Video camera
US4232331A (en) * 1977-10-04 1980-11-04 Victor Company Of Japan, Ltd. Circuit for stabilizing the black level in an output signal of a camera tube in a color television camera
US4237407A (en) * 1978-01-20 1980-12-02 Victor Company Of Japan, Limited Vertical deflection circuit for a camera tube in a television camera
US4385322A (en) * 1978-09-01 1983-05-24 View Engineering, Inc. Pattern recognition apparatus and method
US4399466A (en) * 1981-12-24 1983-08-16 Calspan Corporation Dark current compensating lens iris control
US4492982A (en) * 1980-04-18 1985-01-08 Canon Kabushiki Kaisha Video camera image tube burn-in prevention apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102924A (en) * 1959-11-25 1963-09-03 Fernseh Gmbh Arrangement for light dependent stabilization of a vidicon tube
US3126447A (en) * 1964-03-24 figure
US3206547A (en) * 1962-11-19 1965-09-14 Motorola Inc Automatic control system
US3407267A (en) * 1964-06-15 1968-10-22 Hogan Faximile Corp Scanner with stabilized black level output

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126447A (en) * 1964-03-24 figure
US3102924A (en) * 1959-11-25 1963-09-03 Fernseh Gmbh Arrangement for light dependent stabilization of a vidicon tube
US3206547A (en) * 1962-11-19 1965-09-14 Motorola Inc Automatic control system
US3407267A (en) * 1964-06-15 1968-10-22 Hogan Faximile Corp Scanner with stabilized black level output

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808358A (en) * 1971-05-21 1974-04-30 Bosch Fernsehanlagen Method and system for automatically balancing the color channels of color image transmitters
US3914787A (en) * 1973-02-16 1975-10-21 Canon Kk Color television camera with a color-resolving optical system
US3934266A (en) * 1973-12-28 1976-01-20 Victor Company Of Japan, Limited Dark current correction circuit in two-tube color television camera
JPS51131210A (en) * 1975-05-10 1976-11-15 Teac Co Video camera
US4232331A (en) * 1977-10-04 1980-11-04 Victor Company Of Japan, Ltd. Circuit for stabilizing the black level in an output signal of a camera tube in a color television camera
US4237407A (en) * 1978-01-20 1980-12-02 Victor Company Of Japan, Limited Vertical deflection circuit for a camera tube in a television camera
US4385322A (en) * 1978-09-01 1983-05-24 View Engineering, Inc. Pattern recognition apparatus and method
US4492982A (en) * 1980-04-18 1985-01-08 Canon Kabushiki Kaisha Video camera image tube burn-in prevention apparatus
US4399466A (en) * 1981-12-24 1983-08-16 Calspan Corporation Dark current compensating lens iris control

Also Published As

Publication number Publication date
DE1762657B2 (en) 1977-01-20
DE1762657C3 (en) 1978-08-31
GB1211396A (en) 1970-11-04
DE1762657A1 (en) 1971-04-29

Similar Documents

Publication Publication Date Title
SU1237094A3 (en) Colour television receiver
US4163247A (en) Color television camera with time multiplexing of luminance and chrominance information
US4473839A (en) Signal processing circuit for video camera
JPS5827472A (en) Controller for solid-state image pickup device
US4331979A (en) Line-scan still image reproducer
US3558809A (en) Automatic dark current control system for pickup tubes employing a light inhibiting strip mounted on the pickup tube face plate
US4600946A (en) Adaptive defect correction for solid-state imagers
US4249197A (en) Method and device for adjusting a television camera by means of a monitor picture, prior to scene recording
GB1495173A (en) Tv receiver equipped for simultaneously showing several programmes
US2579971A (en) Color television system
US4246598A (en) Color television camera system having solid-state opto-electric transducers for luminance and chrominance signals
US4860092A (en) Color image signal processing circuit with white balance control and gain control
US3255304A (en) Alignment of television camera
US2983784A (en) Color image signal translating system
US3610823A (en) Television camera system
KR910006478Y1 (en) White balance circuit of color television camera
GB1238467A (en)
JPH05260351A (en) Saturation detector for video camera
JPH04298167A (en) Flicker correction circuit
JP2535875B2 (en) Color camera device
US3584140A (en) Registration system for color television camera
JPH0582116B2 (en)
US3544709A (en) Dc restoration and gamma correction system
US2938076A (en) Circuits embodying television pick-up tubes
JPH0215793A (en) White balance adjuster