US3545474A - Tool diverter and system for directing tfl tools - Google Patents

Tool diverter and system for directing tfl tools Download PDF

Info

Publication number
US3545474A
US3545474A US741397A US3545474DA US3545474A US 3545474 A US3545474 A US 3545474A US 741397 A US741397 A US 741397A US 3545474D A US3545474D A US 3545474DA US 3545474 A US3545474 A US 3545474A
Authority
US
United States
Prior art keywords
tool
tfl
diverter
outflow
wells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US741397A
Inventor
Walter Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing North American Inc
Original Assignee
North American Rockwell Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North American Rockwell Corp filed Critical North American Rockwell Corp
Application granted granted Critical
Publication of US3545474A publication Critical patent/US3545474A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/068Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells
    • E21B33/076Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/08Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
    • E21B23/12Tool diverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87708With common valve operator
    • Y10T137/87732With gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87788With valve or movable deflector at junction
    • Y10T137/8782Rotary valve or deflector

Definitions

  • the present invention relates to a system including a tool diverter for guiding a TFL tool into one of a plurality of tubing outlets associated with a plurality of wells or well completions, and more particularly to a remotely controllable tool diverter which when connected in series is capable of utilization in an automated system for servicing a plurality of wells or well completions.
  • TFL through the flowline
  • TFL system thus described is known and forms no part of the instant invention.
  • the purpose of a tool diverter is to channel TFL tools which are pumped from one station (above the water or in an underwater pressure vessel) into one of two or more tubing lines leading to two or more different wells or to different oil sands in one well.
  • Prior diverter designs have required either that a diver descend to the diverter position and orient it to the required setting or else they have required that a special setting tool be pumped down from the surface and returned. Further, prior diverters have not been suited to serial connection allowing the conduction of a TFL tool to a selected one of many wells. Such a capability is necessary in a system designed to effect periodic, automatic servicing of a plurality of wells.
  • the invention contemplates apparatus for channeling TF L tools.
  • the apparatus comprises a casing having an inflow tube connection and a plurality of outflow tube connections.
  • a rotatable portion Located within the casing is a rotatable portion whose function is to line up, the inflow terminal with one of a plurality of outflow terminals, the various outflow terminals being connected to tubes leading to different wells or well completions.
  • the rotatable portion comprises a conducting tube with curved center line extending at the inflow end straight in the direction of the axis of rotation and curved away from it at the outflow end.
  • the rotatable portion comprises a plurality of conducting tubes each oriented to connect the inflow terminal with a different outflow terminal depending upon which conducting tube is alined with the inflow terminal.
  • the rotatable portion in each instance is secured to a drive shaft which may typically be driven by a hydraulic or electric actuator which may be remotely controlled to guide a TFL tool into one of two or more selected tubing outlets in a programed manner.
  • the invention further contemplates connecting a plurality of tool diverters in a serial manner allowing the guidance of a TFL tool into one of a large number of selected tubing outlets thereby providing the capability of servicing numerous wells or well completions with a single tool.
  • a number of diverters switched in series may be located inside of a pressure proof vessel located on the oceans floor where repair and adjustment work may be carried out under atmospheric conditions.
  • each diverter represents a self-contained unit and with pressure proof actuators could be exposed to a subsea environment and would, therefore, not necessarily require a pressure proof vessel.
  • the configurations rendered feasible by the instant invention are further particularly suited to a general arrangement which located all TFL tool holders, all TFL control equipment, as well as the control equipment for the production line, gas line, and TFL fluid line on an above sea platform with one each line leading to an interim pressure vessel located on the sea bottom to which a large number of underwater wells are connected.
  • This arrangement makes most equipment requiring frequent adjustments easily accessible on the platform, but
  • the interim pressure vessel would contain the switching equipment which would direct the TFL running tool (coming in from the platform) to one of a multiplicity of wells.
  • FIG. 1 is a partially exploded perspective view of a tool diverter constructed in accordance with the present invention, with a portion thereof broken away to show a plurality of conducting tubes adapted to guide a TFL tool into one of a plurality of selected tubing outlets.
  • FIG. 2 is a partial section, partial elevational view of the tool diverter of FIG. 1 with one of the curved conducting tubes alined with a tubing outlet.
  • FIG. 3 is a cross-sectional view of the tool diverter of FIG. 2, as seen along broken line 33 of FIG. 2.
  • FIG. 4 is a cross-sectional view of the tool diverter of FIG. 2, as seen along broken line 4-4 of FIG. 2.
  • FIG. 5 is a top plan view of the tool. diverter of FIG. 2.
  • FIG. 6 is a partial section, partial elevational view, as seen along broken line 6-6 of FIG. 5.
  • FIG. 7 is a cross-sectional view, as seen along broken line 7-7 of FIG. 2.
  • FIG. 8 is a cross-sectional view, as seen along broken line 8-8 of FIG. 2.
  • FIG. 9 is a partial section, partial elevational view of a second embodiment of a tool diverter constructed in accordance with the present invention, with the conducting tube oriented to connect the inflow tube to one of a plurality of selected tubing outlets.
  • FIG. 10 is a cross'sectional view, as seen along broken line 10-10 of FIG. 9.
  • FIG. ll is a bottom plan view of the tool diverter of FIG. 9.
  • FIG. 12 is a cross-sectional view, as seen along broken line 12-12 of FIG. 9.
  • FIG. 13 is a schematic diagram of a diverter system configuration in which a plurality of tool diverters of FIG. 9 are serially connected so as to direct a TFL tool into a selected one of a large number of wells or well completions.
  • FIG. 14 is a schematic diagram of a diverter system configuration in which a plurality of tool diverters of FIG. 1 are serially connected so as to direct a TFL tool into a selected one of a large number of wells or well completions.
  • FIGS. 1-8 a first embodiment of a tool diverter constructed in accordance with the instant invention is illustrated.
  • a rotatable portion comprising disks 4 and 5, spaced by shaft 9, straight conducting tube 6 and curved conducting tubes 7 and 8 are contained within a housing 1.
  • Housing 1 has a head 2 on the inflow end, a flange 12 and a cover 3 on the outflow end.
  • the inflow end is connected to inflow tubing 1 arranged at a distance from the housing center line.
  • the outflow end contains three outflow ports V, VI, and VII, of which port VI is in straight line extension of port I, ports V, and VII either side of port VI.
  • the curved conducting tubes 7 and 8 have a center line following a circular arc large enough to accommodate the anticipated TFL tool. For modern TFL tools, a five foot radius is sufficient. Alternately, the deflector bodies may have bores following a polygonal center line.
  • the rotatable portion is journaled round trunnions l and 11 and can be rotated to three positions which provide a connection of input I with either outputs V, VI, or VII as will be more fully described later.
  • Gear segment 14 is secured to shaft extension 10.
  • Gear segment 14 combs with gear 15 which is secured to drive shaft 16, driven by a hydraulic or electric actuator M or other suitable drive.
  • Shaft 16 is journaled in bearings 22 which are fastened to cover 2.
  • the movement of gear segment 14 is limited by stops 17 which are secured to inflow side head 2.
  • the rotatable part if rotated from one position to the other, lines up the bores exactly. In straight through position, opening IX lines up with I and opening III with VI. If deflection from I to V is required, opening X lines up with I and II with V. Deflection from I to VII is produced by lining up I with VIII and IV with VII.
  • Depressions 20 may be utilized to assure alignment. For example, they may be in line with a ball under spring pressure (not shown) to hold the rotatable portion in exact alinement.
  • the TFL tool coming from a remote station will arrive at inflow connection I and be guided to one of the outflow connections V, VI or VII by the position of the rotatable part.
  • the rotation is effected by an electric or hydraulic motor or actuator M driving drive shaft 16.
  • Motor M may typically be started by remote control by any of a number of means well known in the art. Rotation is stopped by pin 19 actuating switch 21. The same switch may also actuate a remote control position signal which indicates to a remote operator that the tool deflector has rotated to a new position. If continuation of rotation is required, a second remote control signal may initiate rotation again.
  • FIG. 14 there is illustrated a system incorporating a number of tool diverters of FIG. 1 serially connected so as to service a plurality of wells.
  • a TF L tool arriving from flowline connecter 85 is directed by diverter 91 either to one of two wells or to diverter 92 depending upon the prior remotely controlled setting of diverter 91.
  • Diverters alignment. 96 operate in a like manner.
  • Six diverters capable of servicing 13 wells are illustrated, although theoretically any numberof diverters may be connected in series, the choice to depend upon total system considerations.
  • the system of FIG. 14 may preferably be contained within a pressure proof underwater vessel where repair and adjustments may be carried out under atmospheric conditions.
  • FIGS. 9l2 there is illustrated a second embodiment of a tool diverter constructed in accordance with the principles of the instant invention.
  • a two position, three connection tool diverter 70 with curved conducting tube 34 is illustrated.
  • Housing 31 with flanged ends 32 and 33 surround a rotatable part which comprises curved conducting tubing 34 with curved center line extending at the inflow end straight in the direction of the axis of rotation and curving away from it at the outflow end.
  • Tubing extension 35 surrounded by packing 40, rotates inside of cover 32.
  • Disc 36 contains a trunnion 37 in axial extension of tubing extension 35. This part is sealed against the housing by packing 40 and seal 41.
  • a gear 38 surrounds cylinder 35.
  • Split disk 39 is clamped by spacer 48 between housing 31 and cover 32.
  • the inner bore of disk 39 fits loosely into the turned neck of cylinder extension 35 which allows rotation but prevents axial movement.
  • Gear 38 cams with pinion 45.
  • Actuation drive shaft 44 may be driven by a hydraulic or electric motor or actuator, in a manner as previously described with respect to the prior embodiment, to turn the rotatable part.
  • rotation of tubing extension 35 is contemplated, moving the outflow either to position 42 or to position 43, although any other suitable amount of rotation may be chosen.
  • Pin 46 Movement of the rotatable part is limited by pin 46 running into stop lugs 47 or 49.
  • Pin 46 is secured to disk 36 and lugs 47 and 49 are part of the housing 31, pin 46 actuates plunger switches 51 and 52 to operate a position signal and stop the actuation movement.
  • the curved tubing 34 is stiffened by web 50.
  • FIG. 13 there is illustrated a system utilizing a plurality of tool diverters of FIG. 9 serially connected so as to service a large number of wells.
  • a TFL tool coming from either a surface platform, or a tool holder on the oceans floor, will arrive at the inflow side of tool diverter 71 via flowline connecter 65.
  • Tool diverter 71 is positioned by remote control to direct the TFL tool either to the first well or to tool diverter 72, the next tool diverter in line.
  • Tool diverter 72 operates in the same manner as do the remaining diverters 73-81.
  • ll tool diverters are arranged to allow tool diversion to 12 wells or well completions.
  • 11 tool diverters are illustrated, it is to be understood that any number may be serially connected in a like manner, the choice to depend upon total system considerations.
  • the system of FIG. 13 may also preferably be contained within a pressure proof underwater vessel.
  • tool diverters of the instant invention are of fairly simple construction and are particularly susceptible to inclusion in an automated system where it is desired to effect well maintenance in a predetermined and systematic manner.
  • Apparatus for switching TFL tools into a selected one of a plurality of running lines comprising in combination:
  • a housing with an inflow tube connection at one end and a plurality of outflow tube connections at the opposite end;
  • rotatable means located within said housing and having a pair of spaced parallel disks connected together and at least one connecting tube connected between said disks for connecting said inflow tube connection with a selected one of said plurality of outflow tube connections depending upon the rotated position of said rotatable means;
  • said disks being disposed to rotate about an axis normal to the discs;
  • rotation means connected to said rotatable means for rotating said rotatable means about said axis.
  • a shaft is disposed on said axis and connects said discs
  • the number of said conducting tubes is equal to the number of said outflow tube connections and said tubes are positioned so that, when the tube opening near said inflow tube connection is alined therewith the opening of the respective tube near said outflow tube connections is also alined with a respective one of said plurality of outflow tube connections.
  • remotely controllable actuator means for driving said drive shaft to cause rotation of said rotatable means.
  • the apparatus of claim 4 further comprising: means cooperatively associated with said rotation means for stopping the rotation of said rotatable means when the opening of one of said conducting tubes is alined with said inflow tube.
  • the apparatus of claim 5 further comprising: means for sealing said conducting tubes from the remaining space inside said housing.
  • the apparatus of claim 6 further comprising: means for holding a selected one of said conducting tubes in exact alinement with said inflow and outflow connections.
  • the apparatus of claim 8 further comprising: means responsive to said rotation stopping means for remotely indicating the position of said rotatable means.
  • a plurality of apparatus as claimed in claim 5 wherein: said plurality of apparatus are serially alined with one of said plurality of outflow tube connections of each apparatus connected with the inflow tube connection of the next apparatus in the series so as to provide multiple switching paths for said TFL tools.
  • said inflow tube connection is disposed on said axis
  • said conducting tube is curved and its curved center line at the inflow end is tangent to the center line of the inflow tube connection and curves away from the axis of rotation at the outflow end;
  • the outflow end of the connecting tube is alineable with a selected one of said outflow tube connections depending upon the rotated position of said rotatable means.
  • remotely controllable actuation means for driving said drive shaft to cause rotation of said rotatable means.
  • the apparatus of claim 13 further comprising: means cooperatively associated with said rotation means for stopping the rotation of said rotatable means when the outflow end of said curved conducting tube is alined with one of said plurality of outflow tube connections.
  • the apparatus of claim 14 further comprising: means responsive to said rotation stopping means for remotely indicatiqglthe position of said rotatable means.
  • e apparatus of claim 15 further comprising: means for sealing said conducting tube from the remaining space inside said housing.
  • a plurality of apparatus as claimed in claim 12 wherein said plurality of apparatus are serially alined with one of said plurality of outflow tube connections of each apparatus connected with the inflow tube connection of the next apparatus in the series so as to provide multiple switching paths for said TFL tools.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Description

O Umted States Patent 1 1 3,545,474
72] Inventor Walter Brown References Cited Long Beach, California UNITED STATES PATENTS 1 pp 741397 2,713,909 7/1955 Bakel 166/70 1 Filed July 1,1968 3,047,020 7/1962 Barrett, Jr. 137/610X I 1 Patented Dec-8,1970 1 3,199,537 8/1965 Swanson l37/6lOX 1 Aeeignee America" Rockwe" 3,396,789 8/1968 Dean l66/70X Primary Examiner-William R. Cline I 54] TOOL DIVER-PER AND SYSTEM FOR DIRECTING Attorneys-William R. Lane and L. Lee Humphries TFL TOOLS 1 18 Claims Drawmg ABSTRACT: Apparatus for operation in a system using TF L [52 U.S. Cl 137/610, h g the flewline) tools, wherein it is desirable to ir 166/70 the tool into one of a plurality of paths. To divert the tool, a [51 1 Int. Cl. E2lb 23/00; rotatable m r i p i which i pa l f lining p an F16k 1 1 /()0 inflow tube with one of a plurality of outflow tubes depending [50] Field ofSearch 137/610, p its rotated p i n A n m r f u h fle r on 608 625,46; 166/7() 7 5, I5 3 156; nected in series, and remotely actuated, can automatically 15/ |04,()6 A direct a TFL tool into a selected one of a plurality of wells.
ACTUAIUR PATENTEU DEC 8 I970 SHEET 1 OF 5 ACTUKI'OR FIGJ ATTORNEY PATENTEU DEC 8 I970 SHEEY 2 OF 5 INVENTOR. WALTER BROWN 7 ATTORNEY PATENTED DEC 8 19m SHEEI 3 [IF 5 INVENTUR. WALTER BROWN ATTORNEY PATENTEDHEB 8|97U 3545474 SHEET U 0F 5 INVENTOR.
WALTER BROWN ATTORNEY PATENIEUDEI: 8 mm T0 FLOW LINE coumacron INW-FNW WALTER BROWN ATTORNEY TOOL DIVERTER AND SYSTEM FOR DIRECTING TFL TOOLS BACKGROUND OF THE INVENTION .1 Field of the Invention The present invention relates to a system including a tool diverter for guiding a TFL tool into one of a plurality of tubing outlets associated with a plurality of wells or well completions, and more particularly to a remotely controllable tool diverter which when connected in series is capable of utilization in an automated system for servicing a plurality of wells or well completions.
2. Description of Prior Art In recent years the drilling of offshore wells has gained increasing prominence consonant with the desire to maintain and expand the countrys gas and oil reserves. In order to effect maintenance and other operations on such wells wherein the wellhead assembly may be positioned a considerable distance below the surface of the water, various methods have been developed. One of these methods utilizes so-called through the flowline (TFL) tools for performing a variety of functions such as scraping paraffin, setting plugs, etc. When combined with pistons, these TFL tools are pumped down" into a well through the production line by pressurizing the production line above the tool. Later, the tool is pumped up again by pressurizing the lower end of the production line through a service line (sometimes called the TFL fluid line). Because these tools consist of a chain of parts, the conducting tubes and path directing diverters have to provide a straight through or a slightly curved passage which avoids abrupt changes of direction. The TFL system thus described is known and forms no part of the instant invention. The purpose of a tool diverter is to channel TFL tools which are pumped from one station (above the water or in an underwater pressure vessel) into one of two or more tubing lines leading to two or more different wells or to different oil sands in one well.
Prior diverter designs have required either that a diver descend to the diverter position and orient it to the required setting or else they have required that a special setting tool be pumped down from the surface and returned. Further, prior diverters have not been suited to serial connection allowing the conduction of a TFL tool to a selected one of many wells. Such a capability is necessary in a system designed to effect periodic, automatic servicing of a plurality of wells.
SUMMARY OF THE INVENTION Briefly stated, the invention contemplates apparatus for channeling TF L tools. The apparatus comprises a casing having an inflow tube connection and a plurality of outflow tube connections. Located within the casing is a rotatable portion whose function is to line up, the inflow terminal with one of a plurality of outflow terminals, the various outflow terminals being connected to tubes leading to different wells or well completions. In a first embodiment of the present invention, the rotatable portion comprises a conducting tube with curved center line extending at the inflow end straight in the direction of the axis of rotation and curved away from it at the outflow end. In a second embodiment of the instant invention, the rotatable portion comprises a plurality of conducting tubes each oriented to connect the inflow terminal with a different outflow terminal depending upon which conducting tube is alined with the inflow terminal. The rotatable portion in each instance is secured to a drive shaft which may typically be driven by a hydraulic or electric actuator which may be remotely controlled to guide a TFL tool into one of two or more selected tubing outlets in a programed manner.
The invention further contemplates connecting a plurality of tool diverters in a serial manner allowing the guidance of a TFL tool into one of a large number of selected tubing outlets thereby providing the capability of servicing numerous wells or well completions with a single tool. A number of diverters switched in series may be located inside of a pressure proof vessel located on the oceans floor where repair and adjustment work may be carried out under atmospheric conditions. However, each diverter represents a self-contained unit and with pressure proof actuators could be exposed to a subsea environment and would, therefore, not necessarily require a pressure proof vessel.
The configurations rendered feasible by the instant invention are further particularly suited to a general arrangement which located all TFL tool holders, all TFL control equipment, as well as the control equipment for the production line, gas line, and TFL fluid line on an above sea platform with one each line leading to an interim pressure vessel located on the sea bottom to which a large number of underwater wells are connected. This arrangement makes most equipment requiring frequent adjustments easily accessible on the platform, but
cuts down on the vulnerability of a large number of lines near the water surface. In this configuration, the interim pressure vessel would contain the switching equipment which would direct the TFL running tool (coming in from the platform) to one of a multiplicity of wells.
OBJECTS It is therefore an object of this invention to provide a novel TFL tool diverter.
It is a further object of the invention to provide a system for remotely directing TFL tools, pumped from an underwater pressure vessel, or a surface station, to one of two or more production lines coming from one of two or more formations of a multicompletion well or one of two or more wells.
It is still a further object of the present invention to provide a simple device which can be remotely actuated to guide a TFL tool into one of two or more selected tubing outlets.
It is another object of the present invention to provide a simple device which can be arranged in series and which can be remotely actuated to guide a TFL tool into one of two or more selected tubing outlets to service a plurality of underwater wells or well completions.
Still other objects, features and attendant advantages of the present invention will become apparent to those skilled in the art from a reading of the following detailed description of several embodiments constructed in accordance therewith taken in conjunction with the accompanying drawings and wherein:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially exploded perspective view of a tool diverter constructed in accordance with the present invention, with a portion thereof broken away to show a plurality of conducting tubes adapted to guide a TFL tool into one of a plurality of selected tubing outlets.
FIG. 2 is a partial section, partial elevational view of the tool diverter of FIG. 1 with one of the curved conducting tubes alined with a tubing outlet.
FIG. 3 is a cross-sectional view of the tool diverter of FIG. 2, as seen along broken line 33 of FIG. 2.
FIG. 4 is a cross-sectional view of the tool diverter of FIG. 2, as seen along broken line 4-4 of FIG. 2.
FIG. 5 is a top plan view of the tool. diverter of FIG. 2.
FIG. 6 is a partial section, partial elevational view, as seen along broken line 6-6 of FIG. 5.
FIG. 7 is a cross-sectional view, as seen along broken line 7-7 of FIG. 2. i
FIG. 8 is a cross-sectional view, as seen along broken line 8-8 of FIG. 2.
FIG. 9 is a partial section, partial elevational view of a second embodiment of a tool diverter constructed in accordance with the present invention, with the conducting tube oriented to connect the inflow tube to one of a plurality of selected tubing outlets.
FIG. 10 is a cross'sectional view, as seen along broken line 10-10 of FIG. 9.
FIG. ll is a bottom plan view of the tool diverter of FIG. 9.
FIG. 12 is a cross-sectional view, as seen along broken line 12-12 of FIG. 9. FIG. 13 is a schematic diagram of a diverter system configuration in which a plurality of tool diverters of FIG. 9 are serially connected so as to direct a TFL tool into a selected one of a large number of wells or well completions.
FIG. 14 is a schematic diagram of a diverter system configuration in which a plurality of tool diverters of FIG. 1 are serially connected so as to direct a TFL tool into a selected one of a large number of wells or well completions.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIGS. 1-8, a first embodiment of a tool diverter constructed in accordance with the instant invention is illustrated. A rotatable portion comprising disks 4 and 5, spaced by shaft 9, straight conducting tube 6 and curved conducting tubes 7 and 8 are contained within a housing 1. Housing 1 has a head 2 on the inflow end, a flange 12 and a cover 3 on the outflow end. The inflow end is connected to inflow tubing 1 arranged at a distance from the housing center line. The outflow end contains three outflow ports V, VI, and VII, of which port VI is in straight line extension of port I, ports V, and VII either side of port VI.
The curved conducting tubes 7 and 8 have a center line following a circular arc large enough to accommodate the anticipated TFL tool. For modern TFL tools, a five foot radius is sufficient. Alternately, the deflector bodies may have bores following a polygonal center line. The rotatable portion is journaled round trunnions l and 11 and can be rotated to three positions which provide a connection of input I with either outputs V, VI, or VII as will be more fully described later.
Gaskets 13 and packing 18 seal the pressurized tool track from the space inside housing 1. Gear segment 14 is secured to shaft extension 10. Gear segment 14 combs with gear 15 which is secured to drive shaft 16, driven by a hydraulic or electric actuator M or other suitable drive. Shaft 16 is journaled in bearings 22 which are fastened to cover 2. The movement of gear segment 14 is limited by stops 17 which are secured to inflow side head 2. In order to function properly, it is required that the rotatable part, if rotated from one position to the other, lines up the bores exactly. In straight through position, opening IX lines up with I and opening III with VI. If deflection from I to V is required, opening X lines up with I and II with V. Deflection from I to VII is produced by lining up I with VIII and IV with VII.
A pin 19 with rounded head, secured to rotor flange 5, actuates one of three plunger switches 21 which are in contact if the rotor is lined up in the three described positions. Depressions 20 may be utilized to assure alignment. For example, they may be in line with a ball under spring pressure (not shown) to hold the rotatable portion in exact alinement.
In operation, the TFL tool coming from a remote station will arrive at inflow connection I and be guided to one of the outflow connections V, VI or VII by the position of the rotatable part. The rotation is effected by an electric or hydraulic motor or actuator M driving drive shaft 16. Motor M may typically be started by remote control by any of a number of means well known in the art. Rotation is stopped by pin 19 actuating switch 21. The same switch may also actuate a remote control position signal which indicates to a remote operator that the tool deflector has rotated to a new position. If continuation of rotation is required, a second remote control signal may initiate rotation again.
Referring now to FIG. 14, there is illustrated a system incorporating a number of tool diverters of FIG. 1 serially connected so as to service a plurality of wells. A TF L tool arriving from flowline connecter 85 is directed by diverter 91 either to one of two wells or to diverter 92 depending upon the prior remotely controlled setting of diverter 91. Diverters alignment. 96 operate in a like manner. Six diverters capable of servicing 13 wells are illustrated, although theoretically any numberof diverters may be connected in series, the choice to depend upon total system considerations. The system of FIG. 14 may preferably be contained within a pressure proof underwater vessel where repair and adjustments may be carried out under atmospheric conditions.
Referring now to FIGS. 9l2, there is illustrated a second embodiment of a tool diverter constructed in accordance with the principles of the instant invention. A two position, three connection tool diverter 70 with curved conducting tube 34 is illustrated. Housing 31 with flanged ends 32 and 33 surround a rotatable part which comprises curved conducting tubing 34 with curved center line extending at the inflow end straight in the direction of the axis of rotation and curving away from it at the outflow end. Tubing extension 35, surrounded by packing 40, rotates inside of cover 32. Disc 36 contains a trunnion 37 in axial extension of tubing extension 35. This part is sealed against the housing by packing 40 and seal 41. A gear 38 surrounds cylinder 35. Split disk 39 is clamped by spacer 48 between housing 31 and cover 32. The inner bore of disk 39 fits loosely into the turned neck of cylinder extension 35 which allows rotation but prevents axial movement. Gear 38 cams with pinion 45. Actuation drive shaft 44 may be driven by a hydraulic or electric motor or actuator, in a manner as previously described with respect to the prior embodiment, to turn the rotatable part.
As may be seen with particular reference to FIG. 11, rotation of tubing extension 35 is contemplated, moving the outflow either to position 42 or to position 43, although any other suitable amount of rotation may be chosen.
Movement of the rotatable part is limited by pin 46 running into stop lugs 47 or 49. Pin 46 is secured to disk 36 and lugs 47 and 49 are part of the housing 31, pin 46 actuates plunger switches 51 and 52 to operate a position signal and stop the actuation movement. The curved tubing 34 is stiffened by web 50.
Referring now to FIG. 13, there is illustrated a system utilizing a plurality of tool diverters of FIG. 9 serially connected so as to service a large number of wells. A TFL tool coming from either a surface platform, or a tool holder on the oceans floor, will arrive at the inflow side of tool diverter 71 via flowline connecter 65. Tool diverter 71 is positioned by remote control to direct the TFL tool either to the first well or to tool diverter 72, the next tool diverter in line. Tool diverter 72 operates in the same manner as do the remaining diverters 73-81. As illustrated in FIG. 13, ll tool diverters are arranged to allow tool diversion to 12 wells or well completions. Although 11 tool diverters are illustrated, it is to be understood that any number may be serially connected in a like manner, the choice to depend upon total system considerations. The system of FIG. 13 may also preferably be contained within a pressure proof underwater vessel.
It is to be noted that the tool diverters of the instant invention are of fairly simple construction and are particularly susceptible to inclusion in an automated system where it is desired to effect well maintenance in a predetermined and systematic manner.
While the invention has been described with respect to several physical embodiments constructed in accordance therewith, it will be apparent to those skilled in the art that various modifications and improvements may be made without departing from the scope and spirit of the invention. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrative embodiments but only by the scope of the appended claims.
Iclaim:
1. Apparatus for switching TFL tools into a selected one of a plurality of running lines comprising in combination:
a housing with an inflow tube connection at one end and a plurality of outflow tube connections at the opposite end;
rotatable means located within said housing and having a pair of spaced parallel disks connected together and at least one connecting tube connected between said disks for connecting said inflow tube connection with a selected one of said plurality of outflow tube connections depending upon the rotated position of said rotatable means;
said disks being disposed to rotate about an axis normal to the discs; and
rotation means connected to said rotatable means for rotating said rotatable means about said axis.
2. The apparatus of claim 1 wherein said inflow tube connection is positioned at a distance from said housing centerline.
3. The apparatus of claim 2 wherein:
a shaft is disposed on said axis and connects said discs; and
the number of said conducting tubes is equal to the number of said outflow tube connections and said tubes are positioned so that, when the tube opening near said inflow tube connection is alined therewith the opening of the respective tube near said outflow tube connections is also alined with a respective one of said plurality of outflow tube connections.
4. The apparatus of claim 3 wherein said rotation means comprises:
a drive shaft connected to said rotatable means; and
remotely controllable actuator means for driving said drive shaft to cause rotation of said rotatable means.
5. The apparatus of claim 4 further comprising: means cooperatively associated with said rotation means for stopping the rotation of said rotatable means when the opening of one of said conducting tubes is alined with said inflow tube.
6. The apparatus of claim 5 further comprising: means for sealing said conducting tubes from the remaining space inside said housing.
7. The apparatus of claim 6 further comprising: means for holding a selected one of said conducting tubes in exact alinement with said inflow and outflow connections.
8. The apparatus of claim 6 wherein said last named means comprises:
a plurality of depressions in said casing; and
a ball under spring pressure, said ball being alined with a selected one of said depressions when a selected one of said conducting tubes is alined in its corresponding outflow connection.
9. The apparatus of claim 8 further comprising: means responsive to said rotation stopping means for remotely indicating the position of said rotatable means.
10. A plurality of apparatus as claimed in claim 5 wherein: said plurality of apparatus are serially alined with one of said plurality of outflow tube connections of each apparatus connected with the inflow tube connection of the next apparatus in the series so as to provide multiple switching paths for said TFL tools.
11. The apparatus of claim 10 wherein said serial arrangement of said plurality of apparatus is in a substantially linear configuration.
12. The apparatus of claim 1 wherein:
said inflow tube connection is disposed on said axis;
said conducting tube is curved and its curved center line at the inflow end is tangent to the center line of the inflow tube connection and curves away from the axis of rotation at the outflow end; and
the outflow end of the connecting tube is alineable with a selected one of said outflow tube connections depending upon the rotated position of said rotatable means.
13. The apparatus of claim 12 wherein said rotation means comprises:
a drive shaft connected to said rotatable means; and
remotely controllable actuation means for driving said drive shaft to cause rotation of said rotatable means.
14. The apparatus of claim 13 further comprising: means cooperatively associated with said rotation means for stopping the rotation of said rotatable means when the outflow end of said curved conducting tube is alined with one of said plurality of outflow tube connections.
15. The apparatus of claim 14 further comprising: means responsive to said rotation stopping means for remotely indicatiqglthe position of said rotatable means.
16. e apparatus of claim 15 further comprising: means for sealing said conducting tube from the remaining space inside said housing.
17. A plurality of apparatus as claimed in claim 12 wherein said plurality of apparatus are serially alined with one of said plurality of outflow tube connections of each apparatus connected with the inflow tube connection of the next apparatus in the series so as to provide multiple switching paths for said TFL tools.
18. The apparatus of claim 17 wherein said serial arrangement of said plurality of apparatus is in a substantially circular configuration.
US741397A 1968-07-01 1968-07-01 Tool diverter and system for directing tfl tools Expired - Lifetime US3545474A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74139768A 1968-07-01 1968-07-01

Publications (1)

Publication Number Publication Date
US3545474A true US3545474A (en) 1970-12-08

Family

ID=24980571

Family Applications (1)

Application Number Title Priority Date Filing Date
US741397A Expired - Lifetime US3545474A (en) 1968-07-01 1968-07-01 Tool diverter and system for directing tfl tools

Country Status (1)

Country Link
US (1) US3545474A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674123A (en) * 1970-08-20 1972-07-04 Hydril Co Pig diverter
US3771560A (en) * 1972-04-21 1973-11-13 Follett Corp Ice diverter valve and control system therefor
US3811248A (en) * 1971-04-24 1974-05-21 Zimmermann A Maschbau Apparatus for reversing the conveying-air in pneumatic suction-conveying installations
US4015660A (en) * 1975-12-16 1977-04-05 Standard Oil Company (Indiana) Subsea oil and gas production manifold system
FR2413536A1 (en) * 1977-12-30 1979-07-27 Inst Francais Du Petrole ANCHORING AND TRANSFER STATION FOR THE PRODUCTION OF OIL OFFSHORE OIL
US4260022A (en) * 1978-09-22 1981-04-07 Vetco, Inc. Through the flow-line selector apparatus and method
US4291724A (en) * 1980-06-24 1981-09-29 Cameron Iron Works, Inc. Flowline switching apparatus
US5129459A (en) * 1991-08-05 1992-07-14 Abb Vetco Gray Inc. Subsea flowline selector
US5217045A (en) * 1989-07-03 1993-06-08 Gerhard Gramm Distributor device
US5878815A (en) * 1995-10-26 1999-03-09 Marathon Oil Company Assembly and process for drilling and completing multiple wells
US6182765B1 (en) * 1998-06-03 2001-02-06 Halliburton Energy Services, Inc. System and method for deploying a plurality of tools into a subterranean well
US6488093B2 (en) * 2000-08-11 2002-12-03 Exxonmobil Upstream Research Company Deep water intervention system
US6533032B1 (en) * 1999-10-28 2003-03-18 Abb Vetco Gray Inc. Subsea pig launcher and method of using the same
US20050236050A1 (en) * 2004-04-27 2005-10-27 Dresser, Inc. Multiple line administration
US20050236051A1 (en) * 2004-04-27 2005-10-27 Mcbeth Russell E Multi-port flow selector manifold valve and manifold system
US20050236049A1 (en) * 2004-04-27 2005-10-27 Manson Ronald J In-line multi-port selector valve
US20100065140A1 (en) * 2008-09-12 2010-03-18 Jeremy Duncan Stuart Joynson Piggable wye
US8171989B2 (en) * 2000-08-14 2012-05-08 Schlumberger Technology Corporation Well having a self-contained inter vention system
US20140034298A1 (en) * 2012-08-01 2014-02-06 Halliburton Energy Services, Inc. Remote Activated Deflector
US20150267505A1 (en) * 2014-03-19 2015-09-24 Ge Oil & Gas Pressure Control Lp Selector Valve for High Pressure Hydrocarbon Production Operations
AU2016200070B2 (en) * 2012-08-01 2016-08-11 Halliburton Energy Services, Inc. Remote activated deflector
US20220026010A1 (en) * 2018-11-26 2022-01-27 Subsea 7 Norway As Diverting Pigs in a Pipeline or Piping System

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674123A (en) * 1970-08-20 1972-07-04 Hydril Co Pig diverter
US3811248A (en) * 1971-04-24 1974-05-21 Zimmermann A Maschbau Apparatus for reversing the conveying-air in pneumatic suction-conveying installations
US3771560A (en) * 1972-04-21 1973-11-13 Follett Corp Ice diverter valve and control system therefor
US4015660A (en) * 1975-12-16 1977-04-05 Standard Oil Company (Indiana) Subsea oil and gas production manifold system
US4270611A (en) * 1977-12-30 1981-06-02 Institut Francais Du Petrole Mooring station and transfer terminal for offshore hydrocarbon production
FR2413536A1 (en) * 1977-12-30 1979-07-27 Inst Francais Du Petrole ANCHORING AND TRANSFER STATION FOR THE PRODUCTION OF OIL OFFSHORE OIL
US4260022A (en) * 1978-09-22 1981-04-07 Vetco, Inc. Through the flow-line selector apparatus and method
US4291724A (en) * 1980-06-24 1981-09-29 Cameron Iron Works, Inc. Flowline switching apparatus
US5217045A (en) * 1989-07-03 1993-06-08 Gerhard Gramm Distributor device
US5129459A (en) * 1991-08-05 1992-07-14 Abb Vetco Gray Inc. Subsea flowline selector
US5878815A (en) * 1995-10-26 1999-03-09 Marathon Oil Company Assembly and process for drilling and completing multiple wells
US6182765B1 (en) * 1998-06-03 2001-02-06 Halliburton Energy Services, Inc. System and method for deploying a plurality of tools into a subterranean well
US6533032B1 (en) * 1999-10-28 2003-03-18 Abb Vetco Gray Inc. Subsea pig launcher and method of using the same
US6488093B2 (en) * 2000-08-11 2002-12-03 Exxonmobil Upstream Research Company Deep water intervention system
US6659180B2 (en) 2000-08-11 2003-12-09 Exxonmobil Upstream Research Deepwater intervention system
US8171989B2 (en) * 2000-08-14 2012-05-08 Schlumberger Technology Corporation Well having a self-contained inter vention system
US20050236050A1 (en) * 2004-04-27 2005-10-27 Dresser, Inc. Multiple line administration
US7343932B2 (en) 2004-04-27 2008-03-18 Cameron International Corporation Multiple line administration
WO2005108832A1 (en) * 2004-04-27 2005-11-17 Cooper Cameron Corporation In-line multi-port selector valve
WO2005108833A1 (en) * 2004-04-27 2005-11-17 Dresser, Inc. Multiple line administration
US20050236051A1 (en) * 2004-04-27 2005-10-27 Mcbeth Russell E Multi-port flow selector manifold valve and manifold system
US7343933B2 (en) 2004-04-27 2008-03-18 Cameron International Corporation Multi-port flow selector manifold valve and manifold system
US20050236049A1 (en) * 2004-04-27 2005-10-27 Manson Ronald J In-line multi-port selector valve
GB2438863A (en) * 2004-04-27 2007-12-12 Cameron Int Corp In-line multi-port selector valve
US20100065140A1 (en) * 2008-09-12 2010-03-18 Jeremy Duncan Stuart Joynson Piggable wye
US20140034298A1 (en) * 2012-08-01 2014-02-06 Halliburton Energy Services, Inc. Remote Activated Deflector
US9010422B2 (en) * 2012-08-01 2015-04-21 Halliburton Energy Services, Inc. Remote activated deflector
AU2016200070B2 (en) * 2012-08-01 2016-08-11 Halliburton Energy Services, Inc. Remote activated deflector
US20150267505A1 (en) * 2014-03-19 2015-09-24 Ge Oil & Gas Pressure Control Lp Selector Valve for High Pressure Hydrocarbon Production Operations
US9909386B2 (en) * 2014-03-19 2018-03-06 Ge Oil & Gas Pressure Control Lp Selector valve for high pressure hydrocarbon production operations
US20220026010A1 (en) * 2018-11-26 2022-01-27 Subsea 7 Norway As Diverting Pigs in a Pipeline or Piping System
US11624470B2 (en) * 2018-11-26 2023-04-11 Subsea 7 Norway As Diverting pigs in a pipeline or piping system

Similar Documents

Publication Publication Date Title
US3545474A (en) Tool diverter and system for directing tfl tools
US3674123A (en) Pig diverter
US4133418A (en) Through the flowline selector
US3545489A (en) Tool diverter for directing tfl tools
US3664376A (en) Flow line diverter apparatus
EP1082546B1 (en) A device and method for regulating fluid flow in a well
US4291724A (en) Flowline switching apparatus
US6109352A (en) Simplified Xmas tree using sub-sea test tree
US4566494A (en) Vent line system
US5377762A (en) Bore selector
US3806082A (en) Power kelly cock
US3494377A (en) Gate valve mechanism for control of plural passages
EP0500165A1 (en) Dart launching system for sub-sea cementing head or sub-sea tool for oil wells
US20110209876A1 (en) Apparatus, System and Method For Releasing Fluids From A Subsea Riser
US3866628A (en) Detent diverter
US20240142052A1 (en) Rotary multi-port greasing valve
US4110057A (en) Gas lift mandrel valve mechanism
US4519263A (en) Matrix switching control of subsea production systems
US3796257A (en) Subsurface safety valve
US11898644B2 (en) Frac transfer diverter valve
CN111188586B (en) Electric control piston type while-drilling bypass valve
US3783899A (en) Valve operator
US2188141A (en) Tool joint control for blowout preventers
US3482601A (en) Diverter
US3400730A (en) Preselective control of remotely located electrically operated apparatus