US3531361A - Printing plate assembly compacting apparatus - Google Patents

Printing plate assembly compacting apparatus Download PDF

Info

Publication number
US3531361A
US3531361A US679953A US3531361DA US3531361A US 3531361 A US3531361 A US 3531361A US 679953 A US679953 A US 679953A US 3531361D A US3531361D A US 3531361DA US 3531361 A US3531361 A US 3531361A
Authority
US
United States
Prior art keywords
printing plate
roller
electrotype
plastic
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US679953A
Inventor
Attilio Grandinetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIDWEST BODY Inc A CORP OF DE
Electrographic Corp
Original Assignee
Electrographic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrographic Corp filed Critical Electrographic Corp
Application granted granted Critical
Publication of US3531361A publication Critical patent/US3531361A/en
Assigned to MIDWEST BODY, INC., A CORP. OF DE. reassignment MIDWEST BODY, INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ELECTROGRAPHIC CORPORATION
Assigned to WALTER E. HELLER & COMPANY, INC. reassignment WALTER E. HELLER & COMPANY, INC. MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: ELECTROGRAPHIC CORPORATION (FORMERLY EB ACQUISTION CORP. II)
Assigned to ELECTROGRAPHIC CORPORATION (FORMERLY EB ACQUISITION CORP. II), A CORP. OF DE, reassignment ELECTROGRAPHIC CORPORATION (FORMERLY EB ACQUISITION CORP. II), A CORP. OF DE, ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MIDWEST BODY, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C3/00Reproduction or duplicating of printing formes
    • B41C3/08Electrotyping; Application of backing layers thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Definitions

  • This invention relates to a method and apparatus for assembling a printing plate consisting of a thin electrotype, a metal backing member and an intervening bridging layer usually of plastic.
  • Printing plates utilize an electrotype of copper or other material such as magnesium and
  • a mounting plate usually of aluminum, is provided for carrying the electrotype, the mounting plate functioning to permit locking of the electrotype in a desired position in a press.
  • the supporting plate is of uniform gauge and has flat faces.
  • the assembly of plastic, electrotype and mounting plate together constitute a printing plate.
  • the mounting plate itself can be of aluminum, as an example, and will have a thickness in the range of about .062 to .160.
  • the overall thickness of the printing plate must be carefully controlled to meet press requirements. As a rule, the amount of plastic material between the electrotype and mounting plate is a factor in the overall thickness of the printing plate.
  • the invention provides for the application to the printing plate components of a uniform laminating pressure along substantially a straight line and moving the line of pressure application over the entire area of the printing plate.
  • Any desired laminating pressure may be obtained without the use of a massive machine or device and without the necessity for creating a large total pressure over the entire area of the printing plate.
  • Uniformity of laminating pressure for an entire plate is provided, whose value may be readily varied to suit individual plate requirements.
  • the desired overall thickness of the printing plate can be accurately maintained. This is due to the fact that plastic between the outer components of the printing plate may have some tendency to flow.
  • the laminating pressure at any particular part of the printing plate is different from the pressure at other parts, there may be sufficient differences in the overall thickness at various points of the entire printing plate to create printing diiculties.
  • FIG. 1 is a front elevation, with certain parts broken away, illustrating a machine embodying the present invention for practicing the new method and assembling the components of a printing plate.
  • FIG. 2 is a view showing the machine of FIG. 1 with the top roller and support swung into inoperative position.
  • FIG. 3 is a detail on line 3--3 of FIG. 2 illustrating the pattern of locking members so that various sizes of printing plates may be accommodated.
  • FIG. 4 is an end View of the machine illustrated in FIG. 1, this view illustrating the locking means for maintaining the rollers in predetermined operative position.
  • FIG. 5 is an enlarged detail illustrating the supports for one end of each of the rollers.
  • FIG. 6 is an enlarged detail on line 6-6 of FIG. 5.
  • a printing plate generally indicated by 10 comprises a metal support plate 11, usually of aluminum, cemented by a suitable adhesive at region 12 to layer 13.
  • Epoxy resin cements or rubber-based resin cements are available for such purposes.
  • Layer 13 is preferably of plastic having suitably desirable mechanical properties for fulfilling the desired function.
  • the plastic used may either be thermo-setting or thermo-plastic.
  • thermo-plastic materials are used.
  • a preferred plastic is the so called ABS polymers (acrylonitrile-butadiene-styrene).
  • ABS polymers acrylonitrile-butadiene-styrene
  • such a plastic is manufactured and sold by the Marbon Chemical Division of Borg- Warner Corporation under the trademark Cycolac and by the United States Rubber Company under the trademark Kralastac.
  • the ABS polymers are characterized by good moulding ability, good hardness, high impact strength under room temperatures, toughness, good llow characteristics, high tensile strength, low specific gravity and a high degree of rigidity.
  • Plastic layer 13 is cast to the inner surface of electrotype 15. Electrotype 15, if made of copper, provides good adherence to the plastic and fills the irregular surface of the rear or inactive face of the electrotype. As a rule, plastic layer 13 is cast over electrotype 15 in a suitable mould. The smooth face of plastic layer 13 is obtained by a machining operation upon the plastic layer after the same has set. The machining operation provides a smooth surface and permits the overall thickness of electrotype 15 and plastic layer 13 to be accurately determined. The thickness of support plate 11 can also be accurately controlled by supplying the proper gauge of metal. It is thus possible to control the overall thickness of printing plate 10 to within less than about one mil (.001).
  • the printing plate itself may either be flat or may be curved, with the electrotype surface being convex.
  • the new device for handing the printing plate components comprises base having standards 21 and 22.
  • Standards 21 and 22 carry bearings 23 and 24 of any suitable type. As illustrated here, the bearings are of the ball-bearing type. However, other bearings of simple journal type may be used.
  • roller 27 Rotatably supported in bearings 23 and 24 is lower roller 27 of cylindrical construction, preferably of steel or similar rigid material. Roller 27 has one end reduced to provide sleeve portion 28 within bearing 23. Disposed within the roller axially thereof is non-rotatable electric heating element 29. Heating element 29 is of the metalclad type such as are used in domestic electric stoves, and extends beyond one bearingin this instance, 23-to connector structure 30 having electric power supply wires 31 going thereto.
  • Heating element 29 is stationary and may be provided with a thermostat for controlling the operating temperature of the heating element. Heating element 29 has a smooth finish to reduce friction against the roller. Roller structure 27 is rotatable about heating element 29. End portion 34 of roller 27 extends beyond bearing 24 and carries pulley 35. Pulley 35 is driven yby belt 36 from drive pulley 37 on electric motor 38. Electric motor 38 is controlled by switch buttons 40 for stopping, forward, or reverse motor rotation.
  • Roller 27 has a length equal to the maximum width of any printing plate to be handled.
  • the diameter of roller 27 may be of the order of several inches and, in any event, is much less than the diameter of any printing press cylinder for carrying printing plate 10.
  • roller 27 has a plurality of tapped recesses 42, each recess 42 extending radially of the cylinder.
  • recesses 42 are disposed at spaced intervals along a line parallel to the cylinder axis. This disposition of recesses is for convenience. In practice, two recesses will cooperate as a pair and be independent of the other recesses. For example, referring to FIG. 3, the very end recesses will cooperate at one pair; the next recesses will cooperate as a second pair, etc. It is not necessary that one pair of recesses be aligned with any other pair of recesses.
  • the locating member Disposed in a recess is locating member, shown in enlarged form in FIG. 6.
  • the locating member comprises externally threaded sleeve 44 with apertured end wall 45.
  • Slidably disposed within sleeve 44 is hollow pin 47 having externally extending shoulder for limiting the outward movement of pin 47 from sleeve 44.
  • Disposed within pin 47 is coil spring 49, one end of which bears against the head of pin 47 and the other end of which bears against transverse pin carried by sleeve 44.
  • the arrangement is such that pin 47 can, if necessary, be pushed against spring 49 so that the entire pin is within the outline of roller 27. It is thus possible to have locating pins in every recess 42.
  • any printing plate which is so wide as to extend ybeyond a locating pin can clear a pin by forcing the pin down into the sleeve.
  • Support plate 11 has notches at each side thereof for engagement with a pair of pins properly spaced for the particular width of the printing plate.
  • the locating pins 47 are used for the purpose of initially locating the parts of the printing plate at the beginning of an operation.
  • the locating notches at the sides of support plate 11 also extend through plastic layer 13 and the sides of electrotype 15. This, however, is not essential.
  • Top roller 55 Cooperating with roller 27 is top roller 55.
  • Top roller preferably has outer layer 56 of rubber of sutcient flexibility to yield somewhat when cooperating with the active or printing face of electrotype 15.
  • the roller has reduced portions 58 and 59 which are carried in floating bearings 60 and 61.
  • Bearings 60 and 61 are mounted for movement in guide structures 63 and 64.
  • Guide structures 63 and 64 have springs 65 and 66 for applying pressure to bearings ⁇ 60 and 61, thus applying pressure on roller 55.
  • Bolt means 68 and 69 are provided for adjusting the compression of springs 65 and 66, lthe general arrangement being similar to a conventional clothes wringer.
  • Guide structures 63 and 64 are each provided with stops 67 and 67 to limit the travel of floating bearings 60 and 61 in response to compression of springs 65 and 66.
  • the guide structures have top portions containing the top ends of springs 65 and 66.
  • Top roller 55 together with its bearing supports, and spring compression means are pivotally secured at 70 above standard 21 to permit the top roller structure as a whole to be swung clear of bottom roller 27 to the inoperative position illustrated in FIG. 2.
  • Means are provided for maintaining the top roller structure in the operating position illustrated in FIG. l.
  • This comprises post 73 adjacent standard 22.
  • Post 73 has pivotally secured thereto at 74 locking lever 75 having operating handle 76.
  • Locking lever 75 carries locking pin 77 which is adapted to be positioned in slot 78 of detent arm 79.
  • Dentent arm 79 extends downwardly to standard 22 and is pivotally secured thereto at 80.
  • Spring 81 attached to a pin on dentent arm 79 and to bracket part 82 of standard 22 normally maintains detent arm 79 in the locking position illustrated in FIG. 4.
  • Locking lever 75 has portion 84 extending downwardly as seen in FIG. 4 to engage stop portion 86 carried by guide portion 64. Upon release of lever 75, permitting this lever to swing up around pin 74 as seen in FIG. 4, the top roller structure will be free to move up to the position illustrated in FIG. 2.
  • the top roller is moved to the position illustrated in FIG. 2.
  • the printing plate components are positioned so that a pair of locking pins 47 engages the centrally disposed holes or notches in the two sides of the support plate.
  • the top roller assembly is moved down into locked position and after proper adjustment of the roller pressure, the motor is activated to turn roller 27.
  • the printing plate components are assembled so that the electrotype faces the rubber-faced roller.
  • the speed of rotation of the rollers is slow enough so that an operator can stop the motor when the rollers have moved the printing plate almost to one end position.
  • the motor is reversed and the rollers move the plate to the other end position.
  • the motor is again reversed to bring the compacted plate to the starting or center position. Then the top roller is unlocked and the finished printing plate removed.
  • the cycle of operation may be controlled automatically by limit switches which will reverse the electric motor at one end and the other end of the printing plate movement and will stop the motor in the center after the second reversal.
  • the printing plates may be quickly processed. It will be evident that the comparatively narrow area at which pressure is exerted upon the printing plate assembly at any one time makes possible highly accurate compacted pressure control and at the same time insures uniformity of pressure along both dimensions of the plate. The iinished item is accurate in regard to thickness.
  • the device for compacting the components of the printing plate can accommodate a large variety of printing plates, not only with respect to width and length, but also with respect to curvature. It is thus clear that a versatile and convenient means for compacting printing plates is provided.
  • plastic layer 13 it is possible to use a low melting alloy or metal such as lead.
  • the lead would be cast against the reverse or inactive face of the electrotype, and the lead surface Where it would be cemented to the aluminum support plate would be machined or iinished to a smooth surface having a desired overall thickness for both the lead and electrotype.
  • any suitable rigid 4materialmetal or plastic may be used.
  • Apparatus for compacting layers of electrotype, backing material and a rigid supporting plate into an integral printing plate assembly comprising: a first rotatably mounted roller; a second rotatably mounted roller; said second roller having a resilient surface covering adapted to engage the printing surface of said electrotype component of said printing plate assembly;
  • spring means for urging said rst and second rollers together under pressure of predetermined value when said rollers are in said operative position of direct, opposed alignment so as to develop a straight line of compacting pressure therebetween;
  • said pressure rollers are adapted to exert said line of compacting pressure on said assembly components initially at a point intermediate the ends thereof and as said rollers alternately turn in forward and reverse directions, to thereafter move said line of compacting pressure back and forth over the entire area of said assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Plates And Materials Therefor (AREA)

Description

Sept 29, 1970 A. GRANDINETTr 3,531,361
PRNTING PLATE ASSEMBLY- COMPACTING APPARATUS Filed Sept. 21, 1967 2 sheets-'sheet 1 Sept. 29, 1970 A. GRANDlNr-:T'rl
PRINTING PLATE ASSEMBLY COMPACTING APPARATUS Filed Sept. 21, 1967 PINE ATTYs #Zia/z BY More @AN HNNEGAN,DURHAM$ United States Patent O U.S. Cl. 156-582 2 Claims ABSTRACT F THE DISCLOSURE Apparatus for compacting layers of electrotype, backing material and a mounting plate into an integral printing plate assembly, wherein the compacting pressure is directed along a line extending across the printing plate components by means of an opposed pair of rotatable rollers maintained under a predetermined pressure, one of the rollers including retractable locating pins for locking the printing plate components against relative movement upon the initial application of pressure thereto by the pressure rollers. The rollers are selectively driven in both forward and reverse directions so as to move the line of compacting pressure therebetween from the point intermediate the ends of the components back and forth over the entire area of the assembly.
This application is a divisional of my copending application Ser. No. 372,052 filed June 2, 1964, now Pat. No. 3,484,326.
This invention relates to a method and apparatus for assembling a printing plate consisting of a thin electrotype, a metal backing member and an intervening bridging layer usually of plastic. Printing plates utilize an electrotype of copper or other material such as magnesium and In addition to the reinforcing action, a mounting plate, usually of aluminum, is provided for carrying the electrotype, the mounting plate functioning to permit locking of the electrotype in a desired position in a press. The supporting plate is of uniform gauge and has flat faces.
The assembly of plastic, electrotype and mounting plate together constitute a printing plate. The mounting plate itself can be of aluminum, as an example, and will have a thickness in the range of about .062 to .160. The overall thickness of the printing plate must be carefully controlled to meet press requirements. As a rule, the amount of plastic material between the electrotype and mounting plate is a factor in the overall thickness of the printing plate.
Where copper electrotypes are used, there is generally no problem involved in obtaining adherence between the plastic and copper surface. With aluminum, however, there is some ditiiculty in obtaining adherence of some plastics, particularly the preferred plastic used in this invention. Accordingly, a thin layer of cement which will adhere to both aluminum and the desired plastic can be used to obtain the desired adherence between the mounting plate yand plastic. In the event that the electrotype metal is other than copper, and if diiiiculty is encountered in obtaining adherence to the desired plastic, then cement may also be used between the plastic and the electrotype surface.
a lCC Due to the small tolerances involved in the overall thickness of a printing plate and due to the necessity for securing good adherence between the various components of the printing plate, the means and method of assembling the same become important. It is essential that the assembly of the printing plate be accomplished without damage to the printing surface of the printing plate.
In accordance with the present invention, a simple and effective method of assembling such a printing plate is provided and a suitable means for practicing the method is also provided.
In order to integrate the printing plate components into a unitary structure, the invention provides for the application to the printing plate components of a uniform laminating pressure along substantially a straight line and moving the line of pressure application over the entire area of the printing plate. Any desired laminating pressure may be obtained without the use of a massive machine or device and without the necessity for creating a large total pressure over the entire area of the printing plate. Uniformity of laminating pressure for an entire plate is provided, whose value may be readily varied to suit individual plate requirements. Because of the precise control over the laminating pressure which is possible by the new method and apparatus, the desired overall thickness of the printing plate can be accurately maintained. This is due to the fact that plastic between the outer components of the printing plate may have some tendency to flow. Thus if the laminating pressure at any particular part of the printing plate is different from the pressure at other parts, there may be sufficient differences in the overall thickness at various points of the entire printing plate to create printing diiculties.
In order that the invention may be fully disclosed, a detailed description thereof will now be given in connection with the drawings wherein:
FIG. 1 is a front elevation, with certain parts broken away, illustrating a machine embodying the present invention for practicing the new method and assembling the components of a printing plate.
FIG. 2 is a view showing the machine of FIG. 1 with the top roller and support swung into inoperative position.
FIG. 3 is a detail on line 3--3 of FIG. 2 illustrating the pattern of locking members so that various sizes of printing plates may be accommodated.
FIG. 4 is an end View of the machine illustrated in FIG. 1, this view illustrating the locking means for maintaining the rollers in predetermined operative position.
FIG. 5 is an enlarged detail illustrating the supports for one end of each of the rollers.
FIG. 6 is an enlarged detail on line 6-6 of FIG. 5.
Before proceeding to describe the machine and method, a brief description of the printing plate components will be given.
Referring to FIG. 6, a printing plate generally indicated by 10 comprises a metal support plate 11, usually of aluminum, cemented by a suitable adhesive at region 12 to layer 13. Epoxy resin cements or rubber-based resin cements are available for such purposes. Layer 13 is preferably of plastic having suitably desirable mechanical properties for fulfilling the desired function. The plastic used may either be thermo-setting or thermo-plastic. Preferably, thermo-plastic materials are used. A preferred plastic is the so called ABS polymers (acrylonitrile-butadiene-styrene). For example, such a plastic is manufactured and sold by the Marbon Chemical Division of Borg- Warner Corporation under the trademark Cycolac and by the United States Rubber Company under the trademark Kralastac. The ABS polymers are characterized by good moulding ability, good hardness, high impact strength under room temperatures, toughness, good llow characteristics, high tensile strength, low specific gravity and a high degree of rigidity.
Plastic layer 13 is cast to the inner surface of electrotype 15. Electrotype 15, if made of copper, provides good adherence to the plastic and fills the irregular surface of the rear or inactive face of the electrotype. As a rule, plastic layer 13 is cast over electrotype 15 in a suitable mould. The smooth face of plastic layer 13 is obtained by a machining operation upon the plastic layer after the same has set. The machining operation provides a smooth surface and permits the overall thickness of electrotype 15 and plastic layer 13 to be accurately determined. The thickness of support plate 11 can also be accurately controlled by supplying the proper gauge of metal. It is thus possible to control the overall thickness of printing plate 10 to within less than about one mil (.001).
It is important that the entire printing plate be compacted to provide an integral structure. The printing plate itself may either be flat or may be curved, with the electrotype surface being convex.
The new device for handing the printing plate components comprises base having standards 21 and 22. Standards 21 and 22 carry bearings 23 and 24 of any suitable type. As illustrated here, the bearings are of the ball-bearing type. However, other bearings of simple journal type may be used.
Rotatably supported in bearings 23 and 24 is lower roller 27 of cylindrical construction, preferably of steel or similar rigid material. Roller 27 has one end reduced to provide sleeve portion 28 within bearing 23. Disposed within the roller axially thereof is non-rotatable electric heating element 29. Heating element 29 is of the metalclad type such as are used in domestic electric stoves, and extends beyond one bearingin this instance, 23-to connector structure 30 having electric power supply wires 31 going thereto.
Heating element 29 is stationary and may be provided with a thermostat for controlling the operating temperature of the heating element. Heating element 29 has a smooth finish to reduce friction against the roller. Roller structure 27 is rotatable about heating element 29. End portion 34 of roller 27 extends beyond bearing 24 and carries pulley 35. Pulley 35 is driven yby belt 36 from drive pulley 37 on electric motor 38. Electric motor 38 is controlled by switch buttons 40 for stopping, forward, or reverse motor rotation.
Roller 27 has a length equal to the maximum width of any printing plate to be handled. The diameter of roller 27 may be of the order of several inches and, in any event, is much less than the diameter of any printing press cylinder for carrying printing plate 10. In order to accommodate various widths of printing plates, roller 27 has a plurality of tapped recesses 42, each recess 42 extending radially of the cylinder. A illustrated in the drawings, recesses 42 are disposed at spaced intervals along a line parallel to the cylinder axis. This disposition of recesses is for convenience. In practice, two recesses will cooperate as a pair and be independent of the other recesses. For example, referring to FIG. 3, the very end recesses will cooperate at one pair; the next recesses will cooperate as a second pair, etc. It is not necessary that one pair of recesses be aligned with any other pair of recesses.
Disposed in a recess is locating member, shown in enlarged form in FIG. 6. The locating member comprises externally threaded sleeve 44 with apertured end wall 45. Slidably disposed within sleeve 44 is hollow pin 47 having externally extending shoulder for limiting the outward movement of pin 47 from sleeve 44. Disposed within pin 47 is coil spring 49, one end of which bears against the head of pin 47 and the other end of which bears against transverse pin carried by sleeve 44. The arrangement is such that pin 47 can, if necessary, be pushed against spring 49 so that the entire pin is within the outline of roller 27. It is thus possible to have locating pins in every recess 42.
As illustrated in FIG. 3, any printing plate which is so wide as to extend ybeyond a locating pin can clear a pin by forcing the pin down into the sleeve. Support plate 11 has notches at each side thereof for engagement with a pair of pins properly spaced for the particular width of the printing plate. The locating pins 47 are used for the purpose of initially locating the parts of the printing plate at the beginning of an operation. As is indicated in FIG. 6, the locating notches at the sides of support plate 11 also extend through plastic layer 13 and the sides of electrotype 15. This, however, is not essential.
Cooperating with roller 27 is top roller 55. Top roller preferably has outer layer 56 of rubber of sutcient flexibility to yield somewhat when cooperating with the active or printing face of electrotype 15. The roller has reduced portions 58 and 59 which are carried in floating bearings 60 and 61. Bearings 60 and 61 are mounted for movement in guide structures 63 and 64. Guide structures 63 and 64 have springs 65 and 66 for applying pressure to bearings `60 and 61, thus applying pressure on roller 55. Bolt means 68 and 69 are provided for adjusting the compression of springs 65 and 66, lthe general arrangement being similar to a conventional clothes wringer.
Guide structures 63 and 64 are each provided with stops 67 and 67 to limit the travel of floating bearings 60 and 61 in response to compression of springs 65 and 66. The guide structures have top portions containing the top ends of springs 65 and 66.
Top roller 55, together with its bearing supports, and spring compression means are pivotally secured at 70 above standard 21 to permit the top roller structure as a whole to be swung clear of bottom roller 27 to the inoperative position illustrated in FIG. 2. Means are provided for maintaining the top roller structure in the operating position illustrated in FIG. l. This comprises post 73 adjacent standard 22. Post 73 has pivotally secured thereto at 74 locking lever 75 having operating handle 76. Locking lever 75 carries locking pin 77 which is adapted to be positioned in slot 78 of detent arm 79. Dentent arm 79 extends downwardly to standard 22 and is pivotally secured thereto at 80. Spring 81 attached to a pin on dentent arm 79 and to bracket part 82 of standard 22 normally maintains detent arm 79 in the locking position illustrated in FIG. 4.
Locking lever 75 has portion 84 extending downwardly as seen in FIG. 4 to engage stop portion 86 carried by guide portion 64. Upon release of lever 75, permitting this lever to swing up around pin 74 as seen in FIG. 4, the top roller structure will be free to move up to the position illustrated in FIG. 2.
To use the machine so far described, the top roller is moved to the position illustrated in FIG. 2. The printing plate components are positioned so that a pair of locking pins 47 engages the centrally disposed holes or notches in the two sides of the support plate. Thereupon, the top roller assembly is moved down into locked position and after proper adjustment of the roller pressure, the motor is activated to turn roller 27. It is understood that the printing plate components are assembled so that the electrotype faces the rubber-faced roller. Preferably, the speed of rotation of the rollers is slow enough so that an operator can stop the motor when the rollers have moved the printing plate almost to one end position. Thereafter, the motor is reversed and the rollers move the plate to the other end position. Preferably, when the other end position has been reached (the printing plate is still between the rollers), the motor is again reversed to bring the compacted plate to the starting or center position. Then the top roller is unlocked and the finished printing plate removed.
The cycle of operation may be controlled automatically by limit switches which will reverse the electric motor at one end and the other end of the printing plate movement and will stop the motor in the center after the second reversal.
By starting the compacting operation along the center line of the printing plate, there Will be substantially no tendency for any lateral shifting of the printing plate components. After the initial compacting, the elements along the center line between locating slots are tight enough so that uopn movement of the elements away from the locating pins, there will be no longitudinal relative shifting of components. The printing plates may be quickly processed. It will be evident that the comparatively narrow area at which pressure is exerted upon the printing plate assembly at any one time makes possible highly accurate compacted pressure control and at the same time insures uniformity of pressure along both dimensions of the plate. The iinished item is accurate in regard to thickness. The device for compacting the components of the printing plate can accommodate a large variety of printing plates, not only with respect to width and length, but also with respect to curvature. It is thus clear that a versatile and convenient means for compacting printing plates is provided.
Instead of plastic layer 13, it is possible to use a low melting alloy or metal such as lead. The lead would be cast against the reverse or inactive face of the electrotype, and the lead surface Where it would be cemented to the aluminum support plate would be machined or iinished to a smooth surface having a desired overall thickness for both the lead and electrotype.
Instead of aluminum for support plate 11, any suitable rigid 4materialmetal or plasticmay be used.
What is claimed is: 1. Apparatus for compacting layers of electrotype, backing material and a rigid supporting plate into an integral printing plate assembly, comprising: a first rotatably mounted roller; a second rotatably mounted roller; said second roller having a resilient surface covering adapted to engage the printing surface of said electrotype component of said printing plate assembly;
means for mounting said second roller for pivotal movement from a laterally offset inoperative position with respect to said rst roller to an operative position wherein said rst and second rollers are ip direct, opposed alignment;
locking means for maintaining said second roller in said operative position of direct, opposed alignment with respect to said rst roller;
spring means for urging said rst and second rollers together under pressure of predetermined value when said rollers are in said operative position of direct, opposed alignment so as to develop a straight line of compacting pressure therebetween;
a plurality of retractable locating pins carried by one of said rollers, two of said pins adapted to engage a pair of opposed, correspondingly-shaped slots provided along opposite edges of said assembly to thereby locate said assembly between said iirst and second rollers and lock the assembly components against relative movement while pressure is applied thereto by said rollers; and
means for selectively driving said rst roller for rotation in both forward and reverse directions,
whereby said pressure rollers are adapted to exert said line of compacting pressure on said assembly components initially at a point intermediate the ends thereof and as said rollers alternately turn in forward and reverse directions, to thereafter move said line of compacting pressure back and forth over the entire area of said assembly.
2. The construction according to claim 1 wherein means are provided for heating said rst roller, said heating means comprising a stationary cylindrical electric heating element disposed within said iirst roller and coaxial therewith.
References Cited UNITED STATES PATENTS l,l62,072 ll/l9115 Kearns 156-581 3,138,695 6/1964 Bracich 156-582 X 3,305,422 2/ 1967 Hamilton 156-254 U.S. Cl. XR.
lOl-32; 156-228 BENJAMIN A. BORCHALT, Primary Examiner l. l. BEVITT, Assistant Examiner
US679953A 1964-06-02 1967-09-21 Printing plate assembly compacting apparatus Expired - Lifetime US3531361A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37205264A 1964-06-02 1964-06-02
US67995367A 1967-09-21 1967-09-21

Publications (1)

Publication Number Publication Date
US3531361A true US3531361A (en) 1970-09-29

Family

ID=27005622

Family Applications (1)

Application Number Title Priority Date Filing Date
US679953A Expired - Lifetime US3531361A (en) 1964-06-02 1967-09-21 Printing plate assembly compacting apparatus

Country Status (1)

Country Link
US (1) US3531361A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019949A (en) * 1974-03-12 1977-04-26 The Thames Sack And Bag Company Limited Heat sealing apparatus
US4379138A (en) * 1981-12-28 1983-04-05 Research Triangle Institute Biodegradable polymers of lactones
US4400227A (en) * 1982-01-26 1983-08-23 The Procter & Gamble Company Dynamic ultrasonic laminating apparatus having post-bonding pressure roll, and concomitant method
US4972772A (en) * 1989-01-12 1990-11-27 Bando Kagaku Kabushiki Kaisha Thermal transfer machine for belt markings
US5136945A (en) * 1990-11-01 1992-08-11 B-J Trading Limited Plate mounting device for imprinters
US6102096A (en) * 1997-05-30 2000-08-15 Johansson; Goeran Method and device for applying a pattern onto a support means

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1162072A (en) * 1914-11-28 1915-11-30 Morgan & Wright Spring-finger tool for tire-building machines.
US3138695A (en) * 1961-01-24 1964-06-23 Gen Binding Corp Laminating apparatus
US3305422A (en) * 1963-06-17 1967-02-21 Douglas Aircraft Co Inc Method and means for making ambient light filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1162072A (en) * 1914-11-28 1915-11-30 Morgan & Wright Spring-finger tool for tire-building machines.
US3138695A (en) * 1961-01-24 1964-06-23 Gen Binding Corp Laminating apparatus
US3305422A (en) * 1963-06-17 1967-02-21 Douglas Aircraft Co Inc Method and means for making ambient light filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019949A (en) * 1974-03-12 1977-04-26 The Thames Sack And Bag Company Limited Heat sealing apparatus
US4379138A (en) * 1981-12-28 1983-04-05 Research Triangle Institute Biodegradable polymers of lactones
US4400227A (en) * 1982-01-26 1983-08-23 The Procter & Gamble Company Dynamic ultrasonic laminating apparatus having post-bonding pressure roll, and concomitant method
US4972772A (en) * 1989-01-12 1990-11-27 Bando Kagaku Kabushiki Kaisha Thermal transfer machine for belt markings
US5136945A (en) * 1990-11-01 1992-08-11 B-J Trading Limited Plate mounting device for imprinters
US6102096A (en) * 1997-05-30 2000-08-15 Johansson; Goeran Method and device for applying a pattern onto a support means
US6406582B1 (en) 1997-05-30 2002-06-18 Johansson Goeran Method for applying a pattern onto a support

Similar Documents

Publication Publication Date Title
US3531361A (en) Printing plate assembly compacting apparatus
US3484326A (en) Electrotype method and apparatus
SE443119B (en) HEATABLE PLASTIC LAMINATE PLATE
US3418864A (en) Printing blanket and method of making the same
US3015268A (en) Laminated printing plate and process for making same
US2793677A (en) Laminating apparatus
US3491469A (en) Apparatus for ironing articles of apparel
US2927620A (en) Plastic laminating machine
US3163104A (en) Method and means for continuous plastic lamination
EP1233906B1 (en) Heated wheel for application of heat-activated or pressure sensitive precoated adhesive tape or string
ITVI990013A1 (en) CONTINUOUS IRONING AND PRINTING MACHINE FOR SKIN AND SIMILAR
US2257025A (en) Rubber-faced roller
US2192185A (en) Rotary ironer
US5269869A (en) Tape laying apparatus
US3118239A (en) suits
US2402706A (en) Flexible impression member
US4311176A (en) Machine for manufacturing curvilinear convex wooden frames
CN213725015U (en) Diaphragm filter cloth clamp
CN219564428U (en) Laminating machine for producing moisture-permeable thermal fabric
USRE21479E (en) Machine for bending wood sheets
US2746182A (en) Needled cover for pressing platen
US1847410A (en) Polishing machine
CN216372590U (en) Cutting machine for processing edge bedplate of sewing machine
CN219028820U (en) Conveying belt pressing equipment
CN218088062U (en) Porous high-strength composite non-woven fabric production batching device