US3460611A - Heat exchanger of plate fin modules - Google Patents

Heat exchanger of plate fin modules Download PDF

Info

Publication number
US3460611A
US3460611A US673479A US3460611DA US3460611A US 3460611 A US3460611 A US 3460611A US 673479 A US673479 A US 673479A US 3460611D A US3460611D A US 3460611DA US 3460611 A US3460611 A US 3460611A
Authority
US
United States
Prior art keywords
plates
module
modules
heat exchanger
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US673479A
Inventor
Floyd P Folsom
Salvatore S Tramuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Application granted granted Critical
Publication of US3460611A publication Critical patent/US3460611A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/356Plural plates forming a stack providing flow passages therein
    • Y10S165/373Adjacent heat exchange plates having joined bent edge flanges for forming flow channels therebetween

Definitions

  • the heat exchanger comprises a stack of sheet metal modules, each module recessed to define channels having corrugated strip fin means in contact with the plates of said modules and on opposite sides thereof and adapted to be arranged in an assembly contained in a casing so as to form separate flow passages for heat exchange between two fluids.
  • an object of the present invention is to provide a module of two plates recessed to accommodate the flow of two fluids and so formed as to present a reliable and effective basis for sealing around the module perimeter as well as to provide structural strength.
  • the heat exchanger comprises a casing having a plurality of modules made of sheet material and corrugated strip fin means, each module having a perimeter provided with opposing lands and flanges and the sheet material at least partially defining a flow passage for one fluid within the module and spaces on opposite sides of the module which are adapted to form portions of flow passages for a second fluid.
  • the heat exchanger casing is substantially filled with the stack of individually or preformed modules of sheet material each of the modules having a channel construction around its periphery which lends to structural strength and contributes to a sealing effect of each module within itself and also with respect to adjacent modules of the stack.
  • FIGURE 1 is an elevation view of a recuperator embodying the present invention and as connected to an engine block, the latter and necessary manifolding being shown in dot and dash lines;
  • FIGURE 2 is a perspective view of the recouperator of FIGURE 1 with a portion broken away better to show the construction and arrows depicting suitable directions of flow for two fluids;
  • FIGURE 3 is an exploded view in perspective of parts of a module a multiple of which is used in the recuperator of FIGURES 1 and 2;
  • FIGURE 4 is a perspective view of a unitized module having the components shown in FIGURE 3;
  • FIGURE 5 is a perspective view of a modified version of the module of FIGURE 4.
  • FIGURE 1 an engine is depicted at 10 upon the side of which is mounted a heat exchanger or recuperator 12.
  • An air inlet manifold is shown at 13 for directing air to one end of the heat exchanger casing 14.
  • Manifolding 16 is shown at the other end of the heat exchanger 12 for conveying heated air to the engine 10.
  • a duct 18 is provided to admit hot or engine exhaust gas to the casing 14 and this gas, after passage through the heat exchanger, may be discharged by way of an outlet duct 20.
  • the casing 14 has two inlets 22 and 24 at one end and two outlets 26 and 28 at the other end. It will be understood as the description proceeds that although a concurrent flow of two fluids is contemplated in the arrangement of the drawings, the heat exchanger is equally well adapted to guide countercurrent flow of the fluids.
  • the casing 14 is substantially filled with a stack of prefabricated modules 30 two of which are bracketed as indicated in FIGURE 2 and one of which is shown in FIG- URE 4.
  • Each module comprises two plates 32 and 34 of similar construction (although reversed in position) in that each is characterized by a recessed area 36 on one surface extending longitudinally from opposite end edges and each of these surface areas is between lands 38 extending along opposite side edges on that one surface of the plate.
  • the two plates 36 and 34 are also similar in that they have channels 40 and 42; formed on opposing end edges and extending from a second side of the plate which is opposite the first side. Channels 40 and 42 extend normal to the p ates planer surface and away from the recessed area.
  • Each of these channels includes an end flange offset from the corresponding plate and spaced therefrom.
  • the channels 40 at one end of the module 30 are in registry and fixed together to define an opening 44 (FIGURE 4) leading to the interior of the module as a part of a first fluid flow passage leading through and to an opening 46 at the other end of the module.
  • fluid flow centers or strip fin means 48 and 50 are joined to opposite surfaces of the module 30 in the recessed areas between the marginal lands, Additional strip fin means 52 is retained between the two plates 32 and 34 of each module.
  • opposite side or marginal edges of the plates are preferably so made as to form channels 60 each of which is U-shaped, parallel with and outside the corresponding registering marginal land of its corresponding module.
  • the two plates 32 and 34- and the strip fin means 48, 5t) and 52 are joined together into the arrangement shown in FIGURE 4. These parts are bonded or soldered together to make an integral unit or module and before that unit is incorporated in a stack of modules it conveniently may be tested and proven to be without leaks or caused to attain that condition. After a stack of tight or sealed modules is realized, they may be bonded together to form an integral unit which, when placed in the casing 14, defines first and second fluid flow passages each of which connects inlets 24 and 22 to outlets 28 and 26 respectively of the casing 14.
  • FIGURES 1 to 4 inclusive depict an arrangement in which the channels 40, 42 of the modules are all in proper registry to suit the manifolding for the engine '10. It should be noted that each channel describes a smooth line or curve so no break or weld, which could negate a leakproof construction, is present.
  • the headers of a module are each in the form of a straight flange 70 aiding in partially defining an opening 72 leading to the recessed areas between the plates 74 and76 of the module 78.
  • Strip fin means 80 is shown on only one side of the module 78 but, of course, one of the same may be used on the other side and strip fin means 81 is shown as being between the plates and extending the full length of the module, In this modification, an edge channel 82 is shown which stops short of each end or header as at 84 thereby defining spaces such as the space 86 which serves as an inlet or outlet to fluid flow between adjacent modules.
  • a parallel flow plate-fin heat exchanger comprising: a substantially rectangular casing having two distinct fluid openings in each of its opposite ends; a stack of sheet metal modules substantially filling said casing; each of said modules including two plates having their side edges and their end edges joined together respectively; each of said plates having a recessed surface area extending longitudinally on one surface of the plate and defined between raised marginal lands on said one surface which extend longitudinally on opposite side edges of said plates; each of said plates having channels formed on opposite end edges; said channels extending from a second surface of said plate in a direction normal to the plate and offset from said recessed area; each of said channels having an edge flange disposed parallel to and overlying the surface of said plate; said one surface of a .plate positioned to oppose said one surface of an adjacent plate with the marginal lands of said plates being sealingly joined together to form said module; the facing recessed surface areas of said joined plates forming a longitudinally directed first fluid flow passage through the module; said channels which extend from plates of adjacent modules being in alignment to define a second
  • a parallel flow plate-fin heat exchanger comprising: a substantially rectangular casing having two distinct openings in each of its opposite ends; a stack of sheet metal modules substantially filling said casing; each of said modules including two plates having their side edges and their end edges joined together respectively; each of said plates having a recessed surface area extending longitudinally on one surface of the plate and defined between raised marginal lands on said one surface which extend longitudinally on opposite side edges of said plates; each of said plates having channels formed on opposite end edges; said channels extending from a second surface of said plate in a direction normal to the plate and offset from said recessed area; each of said channels having an edge flange disposed parallel to and overlying the surface of said plate; said one surface of a plate positioned to oppose said one surface of an adjacent plate with the marginal lands of said plates being sealing joined together to form said module; the facing recessed surface areas of said joined plates forming a longitudinally directed first fluid flow passage through the module; said channels which extend from plates of adjacent modules being in alignment and having their end flanges joined

Description

g- 12, 1969 v- F. P. FOLSOM ETAL 3,460,611
HEAT EXCHANGER OF PLATE FIN MODULES Filed Oct. 6, 1967 2 Sheets-Sheet 1 IN VENIY )RS ATTORNEY Aug. 12, 1969 v F. P. FOLSOM ETAL 3,460,611 HEAT EXCHANGER OF PLATE FIN MODULES Filed Oct. 6, 1967 2 Sheets-Sheet 2 I N VEN TOR-9 W010 fo/som 5 Sb/04302? I fivmah 76 A TORNEY United States Patent 3,460,611 HEAT EXCHANGER 0F PLATE FIN MODULES Floyd P. Folsom, Burt, and Salvatore S. Tramuta, Schenectady, N.Y., assignors to General Motors Corporation, Detroit, Mich, a corporation of Delaware Filed Oct. 6, 1967, Ser. No. 673,479 Int. Cl. F2Sf 3/14 US. Cl. 165166 2 Claims ABSTRACT OF THE DISCLOSURE The heat exchanger comprises a stack of sheet metal modules, each module recessed to define channels having corrugated strip fin means in contact with the plates of said modules and on opposite sides thereof and adapted to be arranged in an assembly contained in a casing so as to form separate flow passages for heat exchange between two fluids.
It has been found advantageous to utilize a uniform thickness of sheet material throughout a stack of heat exchanger modules so that no localized adverse expansion and contraction effects are encountered during cyclic heating and cooling. Also, in the interest of lowering costs of manufacture, it is highly advantageous to make a heat exchanger of a stack of plates which are similar in structure and such as to present facing surfaces of such breadth as to contribute an adequate seal wherever desired to separate the flow paths of fluids to be passed through the heat exchanger.
To the above ends, an object of the present invention is to provide a module of two plates recessed to accommodate the flow of two fluids and so formed as to present a reliable and effective basis for sealing around the module perimeter as well as to provide structural strength.
Summary of the invention In accordance with the present invention the heat exchanger comprises a casing having a plurality of modules made of sheet material and corrugated strip fin means, each module having a perimeter provided with opposing lands and flanges and the sheet material at least partially defining a flow passage for one fluid within the module and spaces on opposite sides of the module which are adapted to form portions of flow passages for a second fluid. The heat exchanger casing is substantially filled with the stack of individually or preformed modules of sheet material each of the modules having a channel construction around its periphery which lends to structural strength and contributes to a sealing effect of each module within itself and also with respect to adjacent modules of the stack.
These and other features of the invention will now be described in detail in the specification and then pointed out more particularly in the appended claims.
In the drawings:
FIGURE 1 is an elevation view of a recuperator embodying the present invention and as connected to an engine block, the latter and necessary manifolding being shown in dot and dash lines;
FIGURE 2 is a perspective view of the recouperator of FIGURE 1 with a portion broken away better to show the construction and arrows depicting suitable directions of flow for two fluids;
FIGURE 3 is an exploded view in perspective of parts of a module a multiple of which is used in the recuperator of FIGURES 1 and 2;
FIGURE 4 is a perspective view of a unitized module having the components shown in FIGURE 3; and
FIGURE 5 is a perspective view of a modified version of the module of FIGURE 4.
In FIGURE 1, an engine is depicted at 10 upon the side of which is mounted a heat exchanger or recuperator 12. An air inlet manifold is shown at 13 for directing air to one end of the heat exchanger casing 14. Manifolding 16 is shown at the other end of the heat exchanger 12 for conveying heated air to the engine 10. A duct 18 is provided to admit hot or engine exhaust gas to the casing 14 and this gas, after passage through the heat exchanger, may be discharged by way of an outlet duct 20.
With this arrangement, the casing 14 has two inlets 22 and 24 at one end and two outlets 26 and 28 at the other end. It will be understood as the description proceeds that although a concurrent flow of two fluids is contemplated in the arrangement of the drawings, the heat exchanger is equally well adapted to guide countercurrent flow of the fluids.
The casing 14 is substantially filled with a stack of prefabricated modules 30 two of which are bracketed as indicated in FIGURE 2 and one of which is shown in FIG- URE 4. Each module comprises two plates 32 and 34 of similar construction (although reversed in position) in that each is characterized by a recessed area 36 on one surface extending longitudinally from opposite end edges and each of these surface areas is between lands 38 extending along opposite side edges on that one surface of the plate. The two plates 36 and 34 are also similar in that they have channels 40 and 42; formed on opposing end edges and extending from a second side of the plate which is opposite the first side. Channels 40 and 42 extend normal to the p ates planer surface and away from the recessed area. Each of these channels includes an end flange offset from the corresponding plate and spaced therefrom. The channels 40 at one end of the module 30 are in registry and fixed together to define an opening 44 (FIGURE 4) leading to the interior of the module as a part of a first fluid flow passage leading through and to an opening 46 at the other end of the module.
Preferably, fluid flow centers or strip fin means 48 and 50 are joined to opposite surfaces of the module 30 in the recessed areas between the marginal lands, Additional strip fin means 52 is retained between the two plates 32 and 34 of each module.
In order to increase the integrity or strength of each module 30, opposite side or marginal edges of the plates are preferably so made as to form channels 60 each of which is U-shaped, parallel with and outside the corresponding registering marginal land of its corresponding module.
The two plates 32 and 34- and the strip fin means 48, 5t) and 52 are joined together into the arrangement shown in FIGURE 4. These parts are bonded or soldered together to make an integral unit or module and before that unit is incorporated in a stack of modules it conveniently may be tested and proven to be without leaks or caused to attain that condition. After a stack of tight or sealed modules is realized, they may be bonded together to form an integral unit which, when placed in the casing 14, defines first and second fluid flow passages each of which connects inlets 24 and 22 to outlets 28 and 26 respectively of the casing 14.
FIGURES 1 to 4 inclusive depict an arrangement in which the channels 40, 42 of the modules are all in proper registry to suit the manifolding for the engine '10. It should be noted that each channel describes a smooth line or curve so no break or weld, which could negate a leakproof construction, is present. In FIGURE 5, the same advantages are obtained but in this particular embodiment the headers of a module are each in the form of a straight flange 70 aiding in partially defining an opening 72 leading to the recessed areas between the plates 74 and76 of the module 78. Strip fin means 80 is shown on only one side of the module 78 but, of course, one of the same may be used on the other side and strip fin means 81 is shown as being between the plates and extending the full length of the module, In this modification, an edge channel 82 is shown which stops short of each end or header as at 84 thereby defining spaces such as the space 86 which serves as an inlet or outlet to fluid flow between adjacent modules.
When individual plate modules are formed as herein disclosed, allowance is made inherent in the arrangement to allow for differential expansion between adjacent passages. After stacking it is possible and often preferred to join the headers or end flanges only of adjacent modules ultimately to serve as parts of a manifold.
We claim:
1. A parallel flow plate-fin heat exchanger comprising: a substantially rectangular casing having two distinct fluid openings in each of its opposite ends; a stack of sheet metal modules substantially filling said casing; each of said modules including two plates having their side edges and their end edges joined together respectively; each of said plates having a recessed surface area extending longitudinally on one surface of the plate and defined between raised marginal lands on said one surface which extend longitudinally on opposite side edges of said plates; each of said plates having channels formed on opposite end edges; said channels extending from a second surface of said plate in a direction normal to the plate and offset from said recessed area; each of said channels having an edge flange disposed parallel to and overlying the surface of said plate; said one surface of a .plate positioned to oppose said one surface of an adjacent plate with the marginal lands of said plates being sealingly joined together to form said module; the facing recessed surface areas of said joined plates forming a longitudinally directed first fluid flow passage through the module; said channels which extend from plates of adjacent modules being in alignment to define a second fluid flow passage parallel to said first fluid flow passage and between the plates of adjacent modules and the sides of said casing, said first and second channels having corrugated strip fin means in contact with said plates on opposite sides thereof; said first fluid flow passage extending through the module from one of said openings in one end of said casing to one of said openings in an opposite end of said casing; said second fluid flow passage extending between adjacent modules parallel to said first fluid flow passage from the second opening in one end of said casing to the second opening in an opposite end of said casing.
2. A parallel flow plate-fin heat exchanger comprising: a substantially rectangular casing having two distinct openings in each of its opposite ends; a stack of sheet metal modules substantially filling said casing; each of said modules including two plates having their side edges and their end edges joined together respectively; each of said plates having a recessed surface area extending longitudinally on one surface of the plate and defined between raised marginal lands on said one surface which extend longitudinally on opposite side edges of said plates; each of said plates having channels formed on opposite end edges; said channels extending from a second surface of said plate in a direction normal to the plate and offset from said recessed area; each of said channels having an edge flange disposed parallel to and overlying the surface of said plate; said one surface of a plate positioned to oppose said one surface of an adjacent plate with the marginal lands of said plates being sealing joined together to form said module; the facing recessed surface areas of said joined plates forming a longitudinally directed first fluid flow passage through the module; said channels which extend from plates of adjacent modules being in alignment and having their end flanges joined together to define a second fluid flow passage parallel to said first fluid flow passage and between the plates of adjacent modules and the sides of said casing; said channels forming curved end faces on said modules; strip means both between modules and between plates within a module throughout said stack to transfer heat between said plates and fluids within said first and second fluid flow passages, said first and second channels having corrugated strip fin means in contact with said plates on opposite sides thereof; said first fluid flow passage extending through the module from one of said openings in one end of said casing to one of said openings in an opposite end of said casing; said second fluid flow passage extending between adjacent modules parallel to said first fluid flow passage from the second opening in one end of said casing to the second opening in an opposite end of said casing; and recessed U-shaped channels on said one surface of the plates within said marginal lands and along opposite side edges to impart rigidity to said plates.
References Cited UNITED STATES PATENTS 2,236,750 4/1941 Cross -157 2,368,814 2/1945 Fagan 165-166 2,875,986 3/1959 Holm 165-166 X 3,212,572 10/1965 Otto 165-166 2,216,495 11/1965 Johnson 165-166 3,313,344 4/1967 Hayden 165-166 ROBERT A. OLEARY, Primary Examiner THEOPHIL W. STREULE, Assistant Examiner
US673479A 1967-10-06 1967-10-06 Heat exchanger of plate fin modules Expired - Lifetime US3460611A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US67347967A 1967-10-06 1967-10-06

Publications (1)

Publication Number Publication Date
US3460611A true US3460611A (en) 1969-08-12

Family

ID=24702817

Family Applications (1)

Application Number Title Priority Date Filing Date
US673479A Expired - Lifetime US3460611A (en) 1967-10-06 1967-10-06 Heat exchanger of plate fin modules

Country Status (1)

Country Link
US (1) US3460611A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552488A (en) * 1968-12-27 1971-01-05 Pall Corp Plate-fin heat exchanger
JPS4933448U (en) * 1972-06-24 1974-03-23
DE2413165A1 (en) * 1973-04-16 1974-11-07 Garrett Corp RECHARGEABLE COUNTERFLOW PLATE HEAT EXCHANGER
US3893509A (en) * 1974-04-08 1975-07-08 Garrett Corp Lap joint tube plate heat exchanger
US3894581A (en) * 1973-04-16 1975-07-15 Garrett Corp Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
US3945434A (en) * 1974-09-30 1976-03-23 The Garrett Corporation Gas turbine heat exchanger apparatus
DE2518683A1 (en) * 1975-04-26 1976-11-04 4 P Verpackungen Gmbh HEAT TRANSFER
US4073340A (en) * 1973-04-16 1978-02-14 The Garrett Corporation Formed plate type heat exchanger
DE2943010A1 (en) * 1978-10-26 1980-05-08 Garrett Corp Heat exchanger for regenerated gas turbine systems - has bellows forming blind passages balancing out loads on core (NL 29.4.80)
JPS5595073U (en) * 1978-12-23 1980-07-01
US4229868A (en) * 1978-10-26 1980-10-28 The Garrett Corporation Apparatus for reinforcement of thin plate, high pressure fluid heat exchangers
US4310960A (en) * 1973-04-16 1982-01-19 The Garrett Corporation Method of fabrication of a formed plate, counterflow fluid heat exchanger and apparatus thereof
FR2519421A1 (en) * 1981-12-31 1983-07-08 Chausson Usines Sa PLATE-TYPE HEAT EXCHANGER COMPRISING SANDWICH BARS BETWEEN PLATES
DE3641458A1 (en) * 1986-12-04 1988-06-09 Funke Waerme Apparate Kg HEAT EXCHANGER
EP0408751A1 (en) * 1989-02-03 1991-01-23 Zaporozhsky Avtomobilny Zavod 'kommunar' (Proizvodstvennoe Obiedinenie 'avtozaz') Plate heat exchanger
EP0560676A1 (en) * 1992-03-12 1993-09-15 Delta Plus Cross-flow heat-exchanger
WO1998048230A1 (en) * 1997-04-22 1998-10-29 Volvo Lastvagnar Ab Cross- and counterflow plate heat exchanger wherein the ports are provided with flanged, joined rims around part of their periphery
US6293337B1 (en) * 1998-07-24 2001-09-25 Modine Manufacturing Company Exhaust gas heat exchanger
US6374904B1 (en) * 1998-03-05 2002-04-23 Geoff Hurst Heat exchanger and channel member therefor
US20080017361A1 (en) * 2004-02-18 2008-01-24 Renewability Energy Inc. Helical coil-on-tube heat exchanger
US20080196874A1 (en) * 2005-04-13 2008-08-21 Alfa Laval Corporate Ab Plate Heat Exchanger
US20090090493A1 (en) * 2007-10-05 2009-04-09 The Boeing Company Twist vane counter-parallel flow heat exchanger apparatus and method
US20090211739A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Heat Exchanger with Pressure and Thermal Stain Management
US20090211740A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Heat Exchange Device and Method for Manufacture
US20090260787A1 (en) * 2006-04-25 2009-10-22 Modine Manufacruring Company Heat exchanger for motor vehicles
US20090308582A1 (en) * 2008-06-13 2009-12-17 Lockheed Martin Corporation Heat Exchanger
US20100243222A1 (en) * 2002-04-26 2010-09-30 Oxycom Beheer B.V. Heat exchanger and method for manufacturing thereof
US20110079375A1 (en) * 2009-10-06 2011-04-07 Lockheed Martin Corporation Modular Heat Exchanger
US20110127022A1 (en) * 2009-12-01 2011-06-02 Lockheed Martin Corporation Heat Exchanger Comprising Wave-shaped Fins
US20130105128A1 (en) * 2011-10-28 2013-05-02 Dana Canada Corporation Low Profile, Split Flow Charge Air Cooler with Uniform Flow Exit Manifold
US20140284033A1 (en) * 2013-03-19 2014-09-25 Delphi Technologies, Inc. Heat exchanger
US20150144309A1 (en) * 2013-03-13 2015-05-28 Brayton Energy, Llc Flattened Envelope Heat Exchanger
WO2015081274A1 (en) * 2013-11-27 2015-06-04 Brayton Energy, Llc Flattened envelope heat exchanger
US20160122024A1 (en) * 2014-11-03 2016-05-05 Hamilton Sundstrand Corporation Heat exchanger
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US20180292142A1 (en) * 2016-10-14 2018-10-11 Dana Canada Corporation Heat Exchanger Having Aerodynamic Features To Improve Performance
US20190017748A1 (en) * 2016-02-12 2019-01-17 Mitsubishi Electric Corporation Plate heat exchanger and heat pump heating and hot water supply system including the plate heat exchanger
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
US10809007B2 (en) 2017-11-17 2020-10-20 General Electric Company Contoured wall heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2216495A (en) * 1938-02-02 1940-10-01 Chemical Marketing Company Inc Manufacture of gold alloys
US2236750A (en) * 1939-04-28 1941-04-01 Burl G Cross Furnace heat economizer
US2368814A (en) * 1942-05-14 1945-02-06 Bush Mfg Company Heat exchange unit
US2875986A (en) * 1957-04-12 1959-03-03 Ferrotherm Company Heat exchanger
US3212572A (en) * 1961-06-21 1965-10-19 United Aircraft Prod Plate type heat exchanger
US3313344A (en) * 1965-05-11 1967-04-11 Gen Motors Corp Plate fin heat exchanger with curved expansion tubes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2216495A (en) * 1938-02-02 1940-10-01 Chemical Marketing Company Inc Manufacture of gold alloys
US2236750A (en) * 1939-04-28 1941-04-01 Burl G Cross Furnace heat economizer
US2368814A (en) * 1942-05-14 1945-02-06 Bush Mfg Company Heat exchange unit
US2875986A (en) * 1957-04-12 1959-03-03 Ferrotherm Company Heat exchanger
US3212572A (en) * 1961-06-21 1965-10-19 United Aircraft Prod Plate type heat exchanger
US3313344A (en) * 1965-05-11 1967-04-11 Gen Motors Corp Plate fin heat exchanger with curved expansion tubes

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552488A (en) * 1968-12-27 1971-01-05 Pall Corp Plate-fin heat exchanger
JPS4933448U (en) * 1972-06-24 1974-03-23
JPS5151062Y2 (en) * 1972-06-24 1976-12-08
US4073340A (en) * 1973-04-16 1978-02-14 The Garrett Corporation Formed plate type heat exchanger
DE2413165A1 (en) * 1973-04-16 1974-11-07 Garrett Corp RECHARGEABLE COUNTERFLOW PLATE HEAT EXCHANGER
US3894581A (en) * 1973-04-16 1975-07-15 Garrett Corp Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
US4310960A (en) * 1973-04-16 1982-01-19 The Garrett Corporation Method of fabrication of a formed plate, counterflow fluid heat exchanger and apparatus thereof
US4134195A (en) * 1973-04-16 1979-01-16 The Garrett Corporation Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
US3893509A (en) * 1974-04-08 1975-07-08 Garrett Corp Lap joint tube plate heat exchanger
US3945434A (en) * 1974-09-30 1976-03-23 The Garrett Corporation Gas turbine heat exchanger apparatus
DE2518683A1 (en) * 1975-04-26 1976-11-04 4 P Verpackungen Gmbh HEAT TRANSFER
DE2943010A1 (en) * 1978-10-26 1980-05-08 Garrett Corp Heat exchanger for regenerated gas turbine systems - has bellows forming blind passages balancing out loads on core (NL 29.4.80)
US4229868A (en) * 1978-10-26 1980-10-28 The Garrett Corporation Apparatus for reinforcement of thin plate, high pressure fluid heat exchangers
JPS5595073U (en) * 1978-12-23 1980-07-01
FR2519421A1 (en) * 1981-12-31 1983-07-08 Chausson Usines Sa PLATE-TYPE HEAT EXCHANGER COMPRISING SANDWICH BARS BETWEEN PLATES
DE3641458A1 (en) * 1986-12-04 1988-06-09 Funke Waerme Apparate Kg HEAT EXCHANGER
EP0408751A1 (en) * 1989-02-03 1991-01-23 Zaporozhsky Avtomobilny Zavod 'kommunar' (Proizvodstvennoe Obiedinenie 'avtozaz') Plate heat exchanger
EP0408751A4 (en) * 1989-02-03 1991-10-30 Zaporozh Avtomobil Plate heat exchanger
EP0560676A1 (en) * 1992-03-12 1993-09-15 Delta Plus Cross-flow heat-exchanger
FR2688582A1 (en) * 1992-03-12 1993-09-17 Delta Plus HEAT EXCHANGER WITH CURRENT CROSSES.
WO1998048230A1 (en) * 1997-04-22 1998-10-29 Volvo Lastvagnar Ab Cross- and counterflow plate heat exchanger wherein the ports are provided with flanged, joined rims around part of their periphery
US6374904B1 (en) * 1998-03-05 2002-04-23 Geoff Hurst Heat exchanger and channel member therefor
US6293337B1 (en) * 1998-07-24 2001-09-25 Modine Manufacturing Company Exhaust gas heat exchanger
US8439103B2 (en) * 2002-04-26 2013-05-14 Oxycom Beheer B.V. Heat exchanger and method for manufacturing thereof
US20100243222A1 (en) * 2002-04-26 2010-09-30 Oxycom Beheer B.V. Heat exchanger and method for manufacturing thereof
US20080017361A1 (en) * 2004-02-18 2008-01-24 Renewability Energy Inc. Helical coil-on-tube heat exchanger
US8251133B2 (en) * 2004-02-18 2012-08-28 Renewability Energy Inc. Helical coil-on-tube heat exchanger
US20080196874A1 (en) * 2005-04-13 2008-08-21 Alfa Laval Corporate Ab Plate Heat Exchanger
US8167029B2 (en) * 2005-04-13 2012-05-01 Alfa Laval Corporate Ab Plate heat exchanger
US20090260787A1 (en) * 2006-04-25 2009-10-22 Modine Manufacruring Company Heat exchanger for motor vehicles
US20090211740A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Heat Exchange Device and Method for Manufacture
US8215378B2 (en) 2007-05-03 2012-07-10 Brayton Energy, Llc Heat exchanger with pressure and thermal strain management
US8371365B2 (en) 2007-05-03 2013-02-12 Brayton Energy, Llc Heat exchange device and method for manufacture
US20090211739A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Heat Exchanger with Pressure and Thermal Stain Management
US8381804B2 (en) * 2007-10-05 2013-02-26 The Boeing Company Twist vane counter-parallel flow heat exchanger apparatus and method
US20090090493A1 (en) * 2007-10-05 2009-04-09 The Boeing Company Twist vane counter-parallel flow heat exchanger apparatus and method
US9068780B2 (en) 2007-10-05 2015-06-30 The Boeing Company Twist vane counter-parallel flow heat exchanger apparatus and method
US20090308582A1 (en) * 2008-06-13 2009-12-17 Lockheed Martin Corporation Heat Exchanger
US8540012B2 (en) 2008-06-13 2013-09-24 Lockheed Martin Corporation Heat exchanger
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US20110079375A1 (en) * 2009-10-06 2011-04-07 Lockheed Martin Corporation Modular Heat Exchanger
US20110127022A1 (en) * 2009-12-01 2011-06-02 Lockheed Martin Corporation Heat Exchanger Comprising Wave-shaped Fins
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US9328968B2 (en) * 2011-10-28 2016-05-03 Dana Canada Corporation Low profile, split flow charge air cooler with uniform flow exit manifold
US20130105128A1 (en) * 2011-10-28 2013-05-02 Dana Canada Corporation Low Profile, Split Flow Charge Air Cooler with Uniform Flow Exit Manifold
US20150144309A1 (en) * 2013-03-13 2015-05-28 Brayton Energy, Llc Flattened Envelope Heat Exchanger
US9631876B2 (en) * 2013-03-19 2017-04-25 Mahle International Gmbh Heat exchanger
US20140284033A1 (en) * 2013-03-19 2014-09-25 Delphi Technologies, Inc. Heat exchanger
WO2015081274A1 (en) * 2013-11-27 2015-06-04 Brayton Energy, Llc Flattened envelope heat exchanger
US20160122024A1 (en) * 2014-11-03 2016-05-05 Hamilton Sundstrand Corporation Heat exchanger
US11199365B2 (en) * 2014-11-03 2021-12-14 Hamilton Sundstrand Corporation Heat exchanger
US20190017748A1 (en) * 2016-02-12 2019-01-17 Mitsubishi Electric Corporation Plate heat exchanger and heat pump heating and hot water supply system including the plate heat exchanger
US10907906B2 (en) * 2016-02-12 2021-02-02 Mitsubishi Electric Corporation Plate heat exchanger and heat pump heating and hot water supply system including the plate heat exchanger
US20180292142A1 (en) * 2016-10-14 2018-10-11 Dana Canada Corporation Heat Exchanger Having Aerodynamic Features To Improve Performance
US10809009B2 (en) * 2016-10-14 2020-10-20 Dana Canada Corporation Heat exchanger having aerodynamic features to improve performance
US10809007B2 (en) 2017-11-17 2020-10-20 General Electric Company Contoured wall heat exchanger

Similar Documents

Publication Publication Date Title
US3460611A (en) Heat exchanger of plate fin modules
US3907032A (en) Tube and fin heat exchanger
US5184673A (en) Plate heat exchanger and method for its manufacture
US4116271A (en) Counter-current bumped plates heat exchanger
US5078209A (en) Heat exchanger assembly
US3216495A (en) Stacked plate regenerators
US3734177A (en) Heat exchanger
JPH0315117B2 (en)
US3825061A (en) Leak protected heat exchanger
US3893509A (en) Lap joint tube plate heat exchanger
US6341650B2 (en) Heat exchanger
US3424240A (en) Corrugated stacked-plate heat exchanger
GB1133291A (en) Improvements relating to recuperative heat exchangers
US2926003A (en) Heat exchanger
US3451473A (en) Heat exchanger construction
US6966173B2 (en) Heat transfer apparatus
US3741293A (en) Plate type heat exchanger
US2528013A (en) Plate type heat exchanger
US2553030A (en) Heat exchange apparatus
US5373895A (en) Heat exchanger
US3451474A (en) Corrugated plate type heat exchanger
EP0136481A3 (en) Stacked plate/fin-type heat exchanger
CA1299167C (en) Heat exchanger
US3656544A (en) Heat exchanger
GB2173586A (en) A compressed air cooler for internal combustion engines