US3455693A - Mordants for use in dyed filter layers - Google Patents

Mordants for use in dyed filter layers Download PDF

Info

Publication number
US3455693A
US3455693A US479762A US3455693DA US3455693A US 3455693 A US3455693 A US 3455693A US 479762 A US479762 A US 479762A US 3455693D A US3455693D A US 3455693DA US 3455693 A US3455693 A US 3455693A
Authority
US
United States
Prior art keywords
nucleus
dye
light
acid
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US479762A
Inventor
Donald W Heseltine
Dugald A Brooks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3455693A publication Critical patent/US3455693A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/10Quaternary compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/84Naphthothiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D293/00Heterocyclic compounds containing rings having nitrogen and selenium or nitrogen and tellurium, with or without oxygen or sulfur atoms, as the ring hetero atoms
    • C07D293/02Heterocyclic compounds containing rings having nitrogen and selenium or nitrogen and tellurium, with or without oxygen or sulfur atoms, as the ring hetero atoms not condensed with other rings
    • C07D293/04Five-membered rings
    • C07D293/06Selenazoles; Hydrogenated selenazoles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/825Photosensitive materials characterised by the base or auxiliary layers characterised by antireflection means or visible-light filtering means, e.g. antihalation
    • G03C1/835Macromolecular substances therefor, e.g. mordants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/42Structural details
    • G03C8/52Bases or auxiliary layers; Substances therefor
    • G03C8/56Mordant layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/142Dye mordant

Definitions

  • a bulky quaternary nitrogen heterocyclic alkali-release mordant that under alkaline conditions form betaines that will not mordant anions, is advantageously used as a mordant for a water-soluble acid dye and hydrophilic colloid light-adsorbing and light-filtering layers of photographic elements where it is desired to firmly hold the acid dye until photographic processing when during treatment in the alkaline processing solutions the acid dye is completely released and the betaines formed of the mordant is incapable of remordanting the acid dye or thiosulfate ions from the fixing bath.
  • This invention relates to certain bulky, i.e., relatively high molecular weight, quaternary nitrogen heterocyclic compounds which function as alkali-releases mordants, to photographic materials and more particularly to photographic elements containing these compounds in light-screening and light-absorbing layers, and to methods for their preparation.
  • Such dye-mordant lightscreening salt may be in a layer overlying a light-sensitive emulsion or overlying two or more light-sensitive emulsions; or it may be in a light-sensitive emulsion for the purpose of modifying a light record in such emulsion or for protecting an overlying light-sensitive emulsion or emulsions from the action of light of wavelengths absorbed by such light-screening substance, or it may be in a layer not containing a light-sensitive substance but arranged between two light-sensitive emulsions; or it may be in a layer serving as a backing on an element having one or more light-sensitive emulsions (for example, to reduce halation).
  • light-screening substances are often required (a) in overcoatings upon photographic elements to protect the light-sensitive emulsion or emulsions from the action of light which it is not desired to record, (b) -in layers arranged between differentially color sensitized emulsions, e.g., to protect redand green-sensitive emulsions from the action of blue light, and (c) in backings forming the so-called antihalation layers on either side of a transparent support carrying the light-sensitive emulsion or emulsions.
  • the element contains a color sensitized emulsion or color sensitized emulsions
  • lightscreening substances which can readily be rendered ineffective, i.e., decolorized or destroyed and removed prior 3,455,693 Patented July 15, 1969 ice to or during or after photographic processing.
  • mordants Numerous substances have been proposed as mordants to prepare the dye-mordant salts used as light-screening and light-absorbing materials for the purposes indicated above.
  • the proposed mordants are relatively high molecular weight compounds having ionic charges opposite to those of the particular light-absorbing dye.
  • the dye employed might be an acid dye, in which case the mordant would be a cationic compound.
  • Typical of such proposed mordants are, for example, derived polymers such as the basic reaction products of polyvinylsulfonates and C-aminopyridines as described in D. D. Reynolds, et al., US. Patents 2,701,243 and 2,768,078, granted, Feb. 1, 1955, and Oct. 23, 1956, respectively.
  • hydrophilic materials such as gelatin and readily form substantially non-ditfusible salts with water-soluble acid dyes.
  • they have a molecular weight of about at least 300, although polymeric materials having a molecular weight of 600 to 50,000, and higher, have been found to be particularly useful in our invention.
  • an object of the invention to provide a light-sensitive photographic element having one or more layers containing at least one novel and nonditfusible salt of certain novel quaternary nitrogen heterocyclic mordants with a water-soluble acid dye. Another object is to provide a light filter layer containing at least one of the above salts; which layer may be coated between two or more silver halide emulsion layers in a multilayer element. Another object is to provide a lightsensitive gelatino-silver halide layer containing at least one of the above salts.
  • Another object is to provide photographic elements with an overcoating and/or a backing layer which contain(s) at least one novel non-diffusing salt of certain novel quaternary nitrogen heterocyclic mordants with water-soluble acid dyes.
  • R represents an alkyl group having typically from 1 to 18 carbon atoms (e.g., methyl, ethyl, propyl, butyl, hexyl, benzyl, phenethyl, decyl, dodecyl, octadecyl, etc.), or an aryl group (e.g., phenyl, tolyl, naphthyl, diphenyl, terphenyl, etc.), or an amino or substituted amino group (e.g., amino, dimethylamino, anilino, etc.), or a linear polymeric structure, for example, an addition type polymer such as a polymer of a monoethylenically unsaturated polymerizable compound having periodically occurring groups of the structure:
  • a monomethylenically unsaturated polymer e.g., a polyvinyl ester or alkyl ketone, 21 polyisopropenyl ester or alkyl ketone;
  • R represents the hydrogen atom, a lower alkyl group (e.g., methyl, ethyl, etc.), or a phenyl group;
  • R represents the hydrogen atom, an alkyl group (e.g., methyl, ethyl, propyl, isopropyl, butyl, hexyl, dodecyl, pentadecyl, benzyl, phenethyl, etc.), a hydroxy, a halogen (e.g., chlorine or bromine), or an aryl group (e.g., phenyl, tolyl, biphenylyl, etc.);
  • X represents an acid anion (e.g., chloride, bromide, iod
  • imidazole nucleus e.g., imidazole
  • a benzimidazole nucleus e.g., benzimidazole
  • a naphthimidazole nucleus e.g., 1-alkyl-a-naphthimidazole, 1-aryl-B-naphthimidazole, 1-alkyl-5-methoxy-u-naphthimidazole, etc. a 1,2,4-thiadiazole nucleus,
  • a 1 or 4 alkyl-1,2,4-triazole nucleus e.g., 1-methy1-1,2,4-triazole, 1-butyl-1,2,4-triazo1e,
  • a tetrazole nucleus e.g., tetrazole
  • the new class of bulky quaternary nitrogen heterocyclic compounds of the invention include (1) derived resinous copolymers consisting essentially of not less than 25% by weight of polymerized units of the general structure:
  • R R X and Z are as previously defined, n and m each represents an integrer of from 1 to 2;
  • R represents the hydrogen atom, an alkyl group (e.g., methyl, ethyl, propyl, isopropyl, butyl, hexyl, dodecyl, pentadecyl, benzyl, phenethyl, etc.), a hydroxyl group, a halogen (e.g., chlorine or bromine), or an aryl group (e.g.
  • R represents the hydrogen atom, a lower alkyl group (e.g., methyl, ethyl, etc.), or an aryl group (e.g., phenyl, tolyl, etc.), etc., and wherein the said m, R, R and X stand in each occurrence for the same defined member.
  • the components of Formula II above are so chosen as to give compounds having molecular weights in each instance of at least 300.
  • m, R, R R X and Z are as defined above, under conditions that result in the desired degree of conversion of units of above Formula IV to the corresponding quaternary salts units represented by Formula II(a) above.
  • the preferred starting polymers in the above process are polyvinyl chloroacetate described by Wiley et al., J. Poly. Sci., 3, 708 (1948) or copolymers containing vinyl chloroacetate and vinyl alcohol units prepared by partial esterfication of polyvinyl alcohol with chloroacetic anhydride, and poly(vinyl chloromethyl ketone) prepared, for example, by polymerizing monomeric vinyl chloromethyl ketone (Cath et al., J. Chem. Soc., 1948, p.
  • the reaction is carried out in an inert reaction medium which is a solvent for the starting polymer such as, for example, in acetone, dimethyl sulfoxide, N,N-dimethylformamide, 'y-butyrolactone, etc.
  • the reaction mixture is allowed to stand for several days or more, at room temperatures or heated for several hours.
  • the quaternary salt product which forms is isolated by precipitation into a nonsolvent for salt product, or in the case where the salt product forms as a precipitate in the reaction mixture, the supernatant liquor can be simply decanted.
  • the quaternary salt product can then be further purified by washing with a nonsolvent and dried preferably under vacuum.
  • the quaternary salt products consisting from about 25-100% by weight of quaternized units and from 750% by weight of unquaternized residual units have been found to be especially eflicacious mordants in photographic layers and are preferred.
  • Formula III compounds can be prepared by reacting a compound having the general formula:
  • n, R and R are as previously defined, with a mixture of a tertiary amine of Formula V above and a halogen such as chlorine, bromine or iodine, preferably in about the molar ratios of 12121 of the compounds of Formula VII, Formula V and halogen, respectively.
  • a nonsolvent e.g. acetone
  • the above defined polymeric mordants of the invention function as alkali-release mordants.
  • they form betaines so as to lose their ability to act as a mordant with release and subsequent removal of the mordanted dye from the system.
  • the bulky quaternary nitrogen compound which under acid or neutral conditions is capable of salt formation with an acidic dye may under alkaline conditions release the dye by decomposition of the mordant to separate the quaternary nitrogen fragment from the bulky residue or by a rearrangement reaction to produce a zwitterion with resultant internal charge compensation or by the loss of the quaternary nature of the nitrogen.
  • a major advantage of the above 7 alkali release mordants is, therefore, that the compounds do not retain either the previously mordanted dye or thiosulfate ion from the fixing bath after processing, as do other compounds of similar mordanting ability providing a neutral or mildly alkaline hypo bath is used.
  • the photographic elements prepared with the abovedescribed polymeric and non-polymeric mordants of the invention comprise a support material having thereon at least one hydrophilic colloid layer containing a mordant of the invention, which layer may also contain a lightsensitive silver halide.
  • the preferred light-sensitive photographic elements comprise a support having thereon at least one hydrophilic colloid layer containing a mordant of the invention and at least one light-sensitive silver halide emulsion layer.
  • the mordant containing light-screening and antihalation layers are customarily prepared by coating on the support or photographic element by methods well known in the art, a water solution comprising at least one mordant of the invention, an acid dye, a water-permeable hydrophilic colloid binder and a coating aid such as saponin.
  • a water solution comprising at least one mordant of the invention, an acid dye, a water-permeable hydrophilic colloid binder and a coating aid such as saponin.
  • the pH of the coating solution is adjusted when necessary to a level that is compatible with the light-sensitive emulsion layer by the usual methods.
  • Suitable support materials include any of those used in photography such as cellulose acetate, cellulose propionate, cellulose acetate-butyrate, cellulose nitrate, synthetic resins such as nylon, polyesters, polystyrene, polypropylene, etc., paper, and the like.
  • Suitable hydrophilic colloid materials that can be used in the mordant containing compositions and layers, and photographic elements, of the invention include gelatin, albumin, collodion, gum arabic, agar-agar, cellulose derivatives such as alkyl esters of carboxylated cellulose, hydroxy ethyl cellulose, carboxy methyl hydroxy ethyl cellulose, synthetic resins, such as the amphoteric copolymers described by .Clavier et al. in U.S. Patent 2,949,442, issued Aug. 16, 1960, polyvinyl alcohol, polyvinyl pyrrolidone, and others well known in the art.
  • the abovementioned amphoteric copolymers are made by polymerizing the monomer having the formula:
  • R represents an atom of hydrogen or a methyl group, and a salt of a compound having the general formula:
  • R has the above-mentioned meaning, such as an alkylamine salt.
  • These monomers can further be polymerized with a third unsaturated monomer in an amount up to about 20 percent, and preferably from -15 percent, of the total weight of monomer used, such as an ethylene monomer that is copolymerizable with the two principal monomers.
  • the third monomer may contain either a. basic group or an acid group and may, for example, be vinyl acetate, vinyl chloride, acrylonitrile, methacrylonitrile, styrene, acrylates, methacrylates, acrylamide, methacrylamide, etc.
  • polymeric gelatin substitutes examples include copolymers of allyla-mines and methacrylic acid; copolymers of allylamine, acrylic acid and acrylamide; hydrolyzed copolymers of allylamine, methacrylic acid and vinyl acetate; the copolymers of allylamine, acrylic acid and styrene; the copolymers of allylamine, methacrylic acid and acrylonitrile; etc.
  • the dyes that can be effectively mordanted in accordance with our invention include any filter dye that has one or more acidic group substituents such as sulfo or carboxyl groups, for example, the oxonol dyes described and claimed in copending application of Joseph Bailey, Ser. No. 98,709, filed Mar. 27, 1961, now Patent No. 3,247,127, having the formula:
  • Z represents the nonmetallic atoms necessary to complete a l-carboxyalkyl 3 hydrocarbon substituted hexahydro-2,4,6-trioxo-S-pyrimidine nucleus, 11 in each case is an'integer of from 1 to 3, each R represents a carboxyalkyl group in which the carboxy substituent is attached to an alkyl group having from 1 to 2 carbon atoms, R is an alkyl group of from 1 to 8 carbon atoms or an aryl group such as phenyl or an alkyl or alkoxy substituted phenyl group, and X is hydrogen or an alkyl group of from l to 4 carbon atoms, such that no more than one X is an alkyl group.
  • Suitable acid dyes include the benzoxazolepyrazolone merocyanine dyes described in copending application of Jones et al. U.S. Ser. No 167,666, filed J an. 22, 1962, now Patent No. 3,282,- 699, having the formula:
  • R7 represents an alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, etc., or a carboxyalkyl group, such as carboxymethyl, carboxyethyl, carboxypropyl, etc., or a sulfoalkyl group, such as sulfoethyl, sulfopropyl, sulfobutyl, etc.;
  • Z represents the nonmetallic atoms necessary to complete a heterocyclic nucleus of the benzoxazole series (including benzoxazole and benzoxazole substituted with substitutions such as methyl, ethyl, phenyl, methoxy, ethoxy, chlorine, bromine, etc.) or a nucleus of the benzoxazole series which has a sulfo-substituent 0n the benzene ring as well as one or
  • Z represents the sulfo-substituted benzoxazole nucleus and when R represents a carboxyalkyl group or a sulfoalkyl group, Z represents the nonmetallic atoms necessary to complete a benzoxazole nucleus; Q represents the nonmetallic atoms necessary to complete a heterocyclic nucleus of the sulfophenyl pyrazolinone series and n is an integer from 1 to 3.
  • the invention is not limited to just those dyes coming within the general formulas of the above-mentioned copending applications, since as previously set forth any filter dye containing one or more sulfo or carboxyl groups can be employed.
  • Typical light-filtering dyes include, for example,
  • trioxo-S-pyrimidine pentamethineoxonol
  • typical ultraviolet absorbing dyes include the 2,5- bis(substituted sulfophenyl) thiazolo[5,4 d]thiazole disodium salts of Sawdey U.S. Ser. No. 183,417, filed Mar. 29, 1962, such as 2,5-bis (o-methoXy-x-sulfophenyl)thiazolo[5,4-d]
  • tartrazine and the like filter dyes.
  • Hardening materials that may be used to advantage include such hardening agents as formaldehyde; 2. halogen-substituted aliphatic acid such as mucobromic acid as described in White US. Patent 2,080,019, issued May 11, 1937; a compound having a plurality of acid anhydride groups such as 7,8-diphenyl-bicyclo (2,2,2)-7- octene-2,3,5,6-tetra-carboxylic dianhydride, or a dicarboxylic or a disultonic acid chloride such as terephthaloyl chloride or naphthalene-1,S-disulfonyl chloride as described in Allen and Carroll US.
  • hardening agents as formaldehyde
  • 2. halogen-substituted aliphatic acid such as mucobromic acid as described in White US. Patent 2,080,019, issued May 11, 1937
  • a compound having a plurality of acid anhydride groups such as 7,8-dip
  • a dialdehyde or a sodium bisulfite derivative thereof such as B-methyl glutaraldehyde bis-sodium bisulfite as described in Allen and Burness, Canadian Patent No. 588,451, issued Dec. 8, 1959; a bis-aziridine carboxamide such as trimethylene bis(l-aziridine carboxamide) as described in Allen and Webster U.S. Patent 2,950,197, issued Aug. 23, 1960; or 2,3-dihydroxydioxane as described in Jeifreys U.S. Patent 2,870,013, issued Jan. 20, 1959.
  • a dialdehyde or a sodium bisulfite derivative thereof such as B-methyl glutaraldehyde bis-sodium bisulfite as described in Allen and Burness, Canadian Patent No. 588,451, issued Dec. 8, 1959
  • a bis-aziridine carboxamide such as trimethylene bis(l-aziridine carboxamide) as described in Allen and Webster U.S. Patent 2,950
  • the photographic element utilizing our light-screening layers have light-sensitive emulsion layers containing silver chloride, silver bromide, silver chlorobromide, silver iodide, silver bromoiodide, silver chlorobromoiodide, etc., as the light-sensitive material. Any light-sensitive silver halide emulsion layers may be used in these photographic elements.
  • the silver halide emulsion may be sensitized by any of the sensitizers commonly used to produce the desired sensitometric characteristics.
  • Example 1 Poly(vinyl pyridinium acetate) chloride A. 20 g. (approx. 0.17 mol) of polyvinyl chloroacetate was dissolved in 200 ml. of acetone. Then 40 ml. (approx. 0.47 mol) of pyridine was added and the mixture allowed to stand overnight at room temperature. Soft material had precipitated. The supernatant liquid was decanted. The residue was dissolved in methanol, precipitated in ether, washed, and vacuum dried. It was then redissolved in methanol and reprecipitated in ether, washed, and vacuum dried.
  • this product 0 showed that it contained 2.8% by weight of nitrogen as compared with calculated theory of approximately 7% by weight of nitrogen for pure poly(vinyl pyridinium acetate) chloride. Accordingly, this derived polymer consisted essentially of about 40% by weight of recurring (vinyl pyridinium acetate) chloride units of the structure:
  • Example 2 A solution of 60.0 (approx. 0.57 mol) of poly(vinyl chloromethyl ketone) in 600 ml. of N,N-dimethylformamide was treated with ml. (approx. 1.58 mol) of pyridine. The mixture was allowed to stand for 6 days. A soft precipitate formed. The supernatant liquor gave no precipitate in ether and discarded. The residue was disand the remainder of the polymer molecule to make 100% of recurring units of unreacted vinyl chloromethyl ketone.
  • Example 3 To 10 cc. of 10% photographic gelatin melted at C. was added 30 mg. of poly(vinyl pyridinium acetate) chloride dissolved in 10 cc. of water. The pH of the solution was adjusted to 4.5-5.0 with glacial acetic acid. To this was added 10 mgs. of his [3-methyl-1-p-sulfophenyl-S-pyrazolone (4) pentamethineoxonol dissolved in water with vigorous stirring. The pH of the melt was then readjusted to :10.1 with 2.5 N sodium hydroxide solution, a coating aid added, the total volume adjusted to 32 cc. with distilled water and the melt coated on a film support and dried.
  • Another portion of the coating was treated in a conventional alkaline silver halide developer solution containing hydroquinone and p-methylaminophenol sulfate as the developing agents.
  • the mordanted dye was completely bleached by this treatment.
  • the coating was treated in a conventional sodium thiosulfate fixing bath and then washed. No residual sodium thiosulfate was detected in the coating by the Ross-Crabtree method.
  • Example 4 shows the use of the derived polymers of the invention as an ultraviolet absorbing overcoating layer over light-sensitive gelatino-silver halide emulsion layers, for example, over the emulsion layers of a multilayer color element of the type described in Mannes et al., US. Patent 2,252,718, issued Aug. 19, 1941.
  • a gelatin-mordant composition was prepared by mixing 200 g. of a 10% aqueous gelatin solution at 40 C. and 200 g. of a 15% aqueous solution of the polymeric mordant prepared according to Example 1A at 40 C., The clear solution obtained was then chilled, noodled, and washed with cold water in the normal manner for 6 hours, drained, remelted at 50 C. and weighed.
  • a coating melt was then prepared as follows employin g the above gelatin-mordant composition.
  • the sulfur dioxide hydroquinone clathrate is described by H. M. Powell, J. Chem. Soc. (1948), pages 61-73- CA. 42, 5293 (1948).
  • This melt was then coated over the emulsion layers of the above-mentioned multilayer color element at 6 g./sq. ft. (containing 1.33% gelatin) to give a coating comprising 120 mg./sq. ft. of the polymeric mordant of Example 1 and 40 mg./sq. ft. of the filter dye in mg./sq.
  • Our alkali-release polymeric mordants are also used to advantage in mordanting light-filtering dyes, such as a blue-light absorbing dye having one or more acid substituents, in a filtering layer between the top blue-sensitive layer and over the green-sensitive and the red-sensitive layers of a multilayer color photographic element of the type described in Mannes et al US. Patent 2,252,718, referred to previously.
  • appropriate dyes of other colors can be used to advantage in mordanted filter layers between the green-sensitive and red-sensitive layers, or one or more appropriate dyes can be mordanted in an antihalation layer either. between the light-sensitive layers and the support or on the side of the support away from the light-sensitive layers.
  • Examples 5 through 8 illustrate the use of the derived polymeric mordants of the invention in antihalation layers, and further illustrate the improvement obtained therewith in regard to hypo retention in the processed elements, as compared with an element prepared with a known mordanting polymer and a non-mordanted control element.
  • the coating melts Were prepared, in general, .by the procedure described in above Example 4.
  • the melt compositions with the exception of the control example, were coated on an ordinary cellulose acetate film support and over this melt layer was coated in each case a fine-grained silver chlorobromide gelatin emulsion layer.
  • the filter dyes employed are listed as follows:
  • Example 6 A film element was coated having an antihalation undercoat comprising gelatin poly(a-methylallyl-N- guaridylketimine, glycolic acid salt) prepared in accordance with Minsk US. Patent 2,882,156, issued Apr. 14,
  • Dye B 1.6 mg./ft.
  • Dye C 2.9 mg./ft.
  • Dye D 2.5 mg./ft.
  • Example 7 A film element was coated having an antihalation undercoat comprising gelatin and the polymeric mordant of Example 1A (45 mg./ft. Dye A (2.4 mg./ft. Dye B (1.6 mg./ft. Dye C (2.9 mg./ft. and Dye D (2.5 mg./ft.
  • Example 8 A film element was coated having an antihalation undercoat comprising gelatin and the polymeric mordant of Example 1A (45 mg./ft. Dye E (5 mg./ft. Dye F (5 mg./ft. and Dye G (5 mg./ft.
  • This compound forms the yellow betaine upon treatment with alkali with a resultant internal charge com pensation as follows: 4
  • This compound at a ratio of 5 parts by weight to 1 part by weight of dye, mordanted the dye bis[3-methyllp-sulfophenyl-S-pyrazolone-(4) ]-pentamethine oxonol in gelatin with no bleeding upon washing in water.
  • the mordanted dye was bleached in a developer having the composition:
  • Example 10.-4-benzyl-1-(2-phenylphenacyl pyridinium bromide CaHs 0 A mixture of 1.7 g. (0.01 mol) of 4-benzylpyridine and 2.7 g. (0.01 mol) of 2-bromo-2-phenylacetophenone was heated on the hot plate until the reaction became exothermic. The product was a glass which was chipped out and crushed under ether, washed with ether and collected on a filter and dried. The yield was 4.4 g. of
  • Example y 3/-4-pentadecylphenacyl) pyridinium iodide This compound was prepared by the procedure of above Example 10, except that the reactants were pyridine and 2 hydroxy 4 pentadecylphenacyl iodide. On testing this compound in accordance with the method described in Example 10, it was found to mordant well, to bleach rapidly and to retain no hypo in the aforementioned developer and fixing compositions.
  • FIG. 1 shows light-screening layer 10 comprising gelatin, an acid substituted filter dye and the polymeric mordant of Example 1A, poly(vinyl pyridinium acetate) chloride, coated over a light-sensitive silver halide emulsion layer 11 which is coated on support 12.
  • FIG. 2 shows antihalation layer 15 comprising gelatin, an acid substituted dye and the polymeric mordant of Example 1A, poly(vinyl pyridinium acetate) chloride, coated adjacent to support 16 and a light-sensitive silver halide emulsion .layer 14 coated over layer 15.
  • FIG. 3 shows a multilayer color element comprising a support 21 having a red-sensitive silver halide emulsion layer 20 coated thereon, a green-sensitive silver halide emulsion layer 19 coated over layer 20, a light-screening layer 18 comprising gelatin, an acid substituted dye, and the polymer mordant of Example 1A, poly(vinyl pyridinium acetate) chloride, coated over layer 19, and a blue-sensitive silver halide emulsion layer 17 coated over layer 18.
  • the above mordants are prepared according to the methods of the inventions described in Examples 1 and 2 by reacting polyvinyl chloroacetate
  • mordants of the invention can also be advantageously used in light-screening layers between two or more color sensitized silver halide emulsion layers, or in antihalation backing layers, or incorporated directly in light-sensitive silver halide emulsion layers, or they can be used to prepare imbibition dye transfer blanks of improved properties.
  • a light-sensitive photographic element comprising a support material having thereon at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic colloid layer containing at least one substantially nondiffusible salt of a watersoluble dye with a compound represented by the formula:
  • R represents a member selected from the class consisting of hydrogen, a lower alkyl group and a phenyl group
  • R represents a member selected from the class consisting of hydrogen, an alkyl group and an aryl group
  • X represents an acid anion
  • Z represents the nonmetallic atoms required to complete a nucleus containing a 5- to G-membered heterocyclic ring
  • R represents a member selected from the class consisting of an alkyl group, an aryl group and a polymeric chain of a monoethylenically unsaturated compound having recurring groups of the structure:
  • R in each occurrence represents the same member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group
  • X in each occurrence represents the same acid anion
  • R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group
  • Z represents the nonmetallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a thianaphtheno-7',6',4,S-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a napththoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naph
  • a light-sensitive photographic element comprising a support material having thereon at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic colloid layer containing at least one substantially nonditfusible salt of a water-soluble dye with a compound having the formula:
  • n represents an integer of from 1 to 2
  • R represents a member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group
  • R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group
  • X represents an acid anion
  • Z represents the non-metallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, at naphthothiazole nucleus, a thianaphtheno-7',6',4,S-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, 2.
  • thiazoline nucleus a quinoline nucleus, an isoquinone nucleus, 2. pyridine nucleus, an imidazole nucleus, a benzimidazole nucleus, a naphthimidazole nucleus, a 3,3-dialkylindolenine nucleus, a 1,2,4-thiadiazole nucleus, a 1,2,4-triazole nucleus, and a tetrazole nucleus, the said compound having a molecular weight of at least 300.
  • a light-sensitive photographic element comprising a support material having thereon at least two hydrophilic colloid layers, at least one of said hydrophilic colloid layers being a silver halide emulsion layer and at least one of said hydrophilic layers containing at least one salt of an acidic dye with a copolymer consisting essentially of from 25-80% by Weight of recurring polymerized units of the structure:
  • m in each occurrence represents the same integer of from 1 to 2
  • R in each occurrence represents the same member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group
  • X in each occurrence represents the same acid anion
  • R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group
  • Z represents the nonmetallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, at naphthothiazole nucleus, a thianaphtheno-7,6',4,5-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nu
  • a light-sensitive photographic element comprising a support material having thereon at least two hydrophilic colloid layers, at least one of said hydrophilic colloid layers being a silver halide emulsion layer and at least one of said hydrophilic layers containing at least one salt of an acidic dye with a compound having the formula:
  • n represents an integer of from 1 to 2
  • R represents a member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group
  • R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group
  • X represents an acid anion
  • Z represents the nonmetallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a thianaphtheno-7',6,4,5-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, a thiazoline nucleus, a
  • an imidazole nucleus a benzimidazole nucleus, 21 naphth imidazole nucleus, at 3,3-dialkylindolenine nucleus, a 1,2,4-thiadiazole nucleus, at 1,2,4-triazole nucleus, and a tetrazole nucleus, the said compound having a molecular weight of at least 300.
  • a light-sensitive photographic element comprising a support material having coated thereon at least one lightsensitive silver halide emulsion layer and having coated over said emulsion layer a hydrophilic colloid layer containing at least one substantially non-diffusible salt of a water-soluble acid dye with a copolymer consisting essentially of from 25-80% by weight of recurring polymerized units of the structure:
  • m in each occurrence represents the same integer of from 1 to 2
  • R in each occurrence represents the same member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group
  • X in each occurrence represents the same acid anion
  • R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group
  • Z represents the non-metallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a thianaphtheno-7',6',4,5-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzosele
  • a light-sensitive photographic element comprising a support material having coated thereon at least one lightsensitive silver halide emulsion layer and having coated over said emulsion layer a hydrophilic colloid layer containing at least one substantially non-diffusible salt of a water-soluble acid dye with a compound having the formula:
  • n represents an integer of from l to 2
  • R represents a member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group
  • R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group
  • X represents an acid anion
  • Z represents the nonmetallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a thianaphtheno-7',6',4,5-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, a thiazoline nucleus,
  • a light-sensitive photographic element wherein the said copolyrner component of said salt consists essentially of (vinyl pyridinium acetate) chloride units and vinyl chloroacetate units.
  • a light-sensitive photographic element wherein the said resinous copolymer component of said salt consists essentially of (vinyl pyridinium methyl ketone) chloride units and vinyl chloromethyl ketone units.
  • a light-sensitive photographic element wherein at least one of said dye components of said salts is a dye selected from the group consisting of 4 [(3 ethyl 2(3H) benzoxazolylidene)ethylidene]- 3 methyl 1 p sulfophenyl 2 pyrazolin 5 one monosulfonated, bis(1 butyl 3 car-boxymethyl 5- barbituric acid)trimethineoxonol, 4 [4 (3 ethyl- 2'(3H) benzoxazolylidene) 2 butenylidene] 3- methyl 1 p sulfophenyl 2 pyrazolin 5 one monosulfonated, bis(1 butyl 3 carboxymethyl 5 barbituric acid)pentamethineoxonol, bis[3 methyl 1 (psulfophenyl) 2 pyrazolin 5 one (4)]methineoxonol, bis[
  • An element comprising a support material having thereon one hydrophilic colloid layer containing a salt of a water-soluble dye with a compound having the formula:
  • R rep resents a member selected from the class consisting of an alkyl group, and an aryl group
  • R represents a member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group
  • R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group
  • X represents an acid anion
  • Z represents the nonmetallic atoms required to complete a nucleus containing a 5- to 6-membered heterocyclic ring, said compound having a molecular weight of at least 300.

Description

J l 15, 1969 D. w. HESELTINE ET AL 3,455,693
MORDANTS FOR USE IN DYED FILTER LAYERS Filed Aug. 16, 1965 GELAT/N CONTAIN/N6 SALT OF DYE AND POLY (V/NYLPYR/D/N/UM ACETA TE) CHLORIDE LIGHT- SENSITIVE SILVER HAL/DE EMULSION FILM sup/ 097 k-LIGHT-SENS/T/VE SILVER HAL/DE EMULSION GELA TIN CONTAINING SALT OF DYE AND POLY (VINYL PYR/D/N/UM ACETA TE} CHLORIDE FILM SUPPORT /7 BLUE-SENSITIVE SILVER HAL/DE EMULSION z /6ELAT/N co/vrm/w/va SALT 0F DYE AND POLY g {V/NYLPYR/D/N/UM ACE TATE) CHLORIDE GREEN- SENSITIVE SILVER HAL/DE EMULSION RED-SENSITIVE SILVER HAL/DE EMULSION FILM SUPPORT DUGALD A. BROOKS DONALD W. HESELTINE INVENTORS ATTORNEY 8/ AGENT United States Patent MORDANTS FOR USE IN DYED FILTER LAYERS Donald W. Heseltine and Dugald A. Brooks, Rochester,
N.Y., assignors to Eastman Kodak Company, Rochester, N .Y., a corporation of New Jersey Filed Aug. 16, 1965, Ser. No. 479,762 Int. Cl. G03c 1/84 US. CI. 96-84 11 Claims ABSTRACT OF THE DISCLOSURE A bulky quaternary nitrogen heterocyclic alkali-release mordant that under alkaline conditions form betaines that will not mordant anions, is advantageously used as a mordant for a water-soluble acid dye and hydrophilic colloid light-adsorbing and light-filtering layers of photographic elements where it is desired to firmly hold the acid dye until photographic processing when during treatment in the alkaline processing solutions the acid dye is completely released and the betaines formed of the mordant is incapable of remordanting the acid dye or thiosulfate ions from the fixing bath.
This invention relates to certain bulky, i.e., relatively high molecular weight, quaternary nitrogen heterocyclic compounds which function as alkali-releases mordants, to photographic materials and more particularly to photographic elements containing these compounds in light-screening and light-absorbing layers, and to methods for their preparation.
The use of organic dye containing light-filter and lightabsorbing layers in photographic elements is well known, as is the use of mordants which form substantially insoluble salts or otherwise react with water-soluble dyes, to render the dyes non-diffusing. Such dye-mordant lightscreening salt may be in a layer overlying a light-sensitive emulsion or overlying two or more light-sensitive emulsions; or it may be in a light-sensitive emulsion for the purpose of modifying a light record in such emulsion or for protecting an overlying light-sensitive emulsion or emulsions from the action of light of wavelengths absorbed by such light-screening substance, or it may be in a layer not containing a light-sensitive substance but arranged between two light-sensitive emulsions; or it may be in a layer serving as a backing on an element having one or more light-sensitive emulsions (for example, to reduce halation).
In particular, light-screening substances are often required (a) in overcoatings upon photographic elements to protect the light-sensitive emulsion or emulsions from the action of light which it is not desired to record, (b) -in layers arranged between differentially color sensitized emulsions, e.g., to protect redand green-sensitive emulsions from the action of blue light, and (c) in backings forming the so-called antihalation layers on either side of a transparent support carrying the light-sensitive emulsion or emulsions.
In most cases and especially where the element contains a color sensitized emulsion or color sensitized emulsions, it is particularly desirable to employ light-screening silhstances which do not affect the general sensitivity or the color sensitivity of light-sensitive emulsions with which they may come into contact. It is also particularly desirable to employ light-screening substances which do not substantially diffuse from the layers or coatings in which they are incorporated, either during the manufacture of the element or on storing it or in photographically processing it. Finally it is generally necessary to employ lightscreening substances which can readily be rendered ineffective, i.e., decolorized or destroyed and removed prior 3,455,693 Patented July 15, 1969 ice to or during or after photographic processing. For many purposes it is particularly convenient to employ lightscreening substances which are rendered ineffective by one of the photographic baths employed in processing the element after exposure, such as a photographic developing bath or fixing bath.
Numerous substances have been proposed as mordants to prepare the dye-mordant salts used as light-screening and light-absorbing materials for the purposes indicated above. Among the proposed mordants are relatively high molecular weight compounds having ionic charges opposite to those of the particular light-absorbing dye. For example, the dye employed might be an acid dye, in which case the mordant would be a cationic compound. Typical of such proposed mordants are, for example, derived polymers such as the basic reaction products of polyvinylsulfonates and C-aminopyridines as described in D. D. Reynolds, et al., US. Patents 2,701,243 and 2,768,078, granted, Feb. 1, 1955, and Oct. 23, 1956, respectively. While polymeric mordants such as illustrated by the abovementioned patents have the advantage of bulky molecules and do function to fix acid dyes in photographic layers, 'within their particular limitations, they have not been found entirely satisfactory in many applications primarily because these polymeric mordants on alkaline development do not tend to release the dye, i.e., they still retain their mordanting property and, accordingly, not only tend to retain some residual dye as evidenced by background stain or coloration, but more importantly retain, i.e., fix, an appreciable amount of thiosulfate ion in the subsequent hypo processing used to remove unexposed silver halide. This results in relatively poor quality and stability of the produced image. In view of this, it would be very desirable to have an elfective mordant available that is free from such disadvantages.
We have now found that certain bulky or relatively high molecular weight quaternary nitrogen heterocyclic compounds are especially useful as precipitants and mordants for acid dyes in photographic layers, and that these compounds, moreover, satisfactorily overcome the above-mentioned shortcomings of heretofore known mordants for this purpose. Thus, our new class of mordants do not retain any residual dye or deleterious amounts of thiosulfate ion in the layers after processing, and further the produced images are of very good quality and of outstanding keeping properties. These novel mordants are soluble in aqueous solutions, for example, in dilute aqueous solutions of acids such as acetic, butyric, lauric, etc., acids. Furthermore, they have good compatibility with various hydrophilic materials such as gelatin and readily form substantially non-ditfusible salts with water-soluble acid dyes. -In general, they have a molecular weight of about at least 300, although polymeric materials having a molecular weight of 600 to 50,000, and higher, have been found to be particularly useful in our invention.
It is, accordingly, an object of the invention to provide a light-sensitive photographic element having one or more layers containing at least one novel and nonditfusible salt of certain novel quaternary nitrogen heterocyclic mordants with a water-soluble acid dye. Another object is to provide a light filter layer containing at least one of the above salts; which layer may be coated between two or more silver halide emulsion layers in a multilayer element. Another object is to provide a lightsensitive gelatino-silver halide layer containing at least one of the above salts. Another object is to provide photographic elements with an overcoating and/or a backing layer which contain(s) at least one novel non-diffusing salt of certain novel quaternary nitrogen heterocyclic mordants with water-soluble acid dyes. Other objects will become apparent from consideration of the description and examples.
These and other objects are accomplished according to our invention by the preparation and use of lightsensitive photographic elements with at least one layer containing a non-diifusible light-absorbing salt of a watersoluble acid dye and a new class of bulky quaternary nitrogen heterocyclic compounds of the invention including those represented by the following general formula:
wherein m represents an integer of from 1 to 2, R represents an alkyl group having typically from 1 to 18 carbon atoms (e.g., methyl, ethyl, propyl, butyl, hexyl, benzyl, phenethyl, decyl, dodecyl, octadecyl, etc.), or an aryl group (e.g., phenyl, tolyl, naphthyl, diphenyl, terphenyl, etc.), or an amino or substituted amino group (e.g., amino, dimethylamino, anilino, etc.), or a linear polymeric structure, for example, an addition type polymer such as a polymer of a monoethylenically unsaturated polymerizable compound having periodically occurring groups of the structure:
attached to carbon atoms in the polymeric chain of a monomethylenically unsaturated polymer (e.g., a polyvinyl ester or alkyl ketone, 21 polyisopropenyl ester or alkyl ketone; R represents the hydrogen atom, a lower alkyl group (e.g., methyl, ethyl, etc.), or a phenyl group; R represents the hydrogen atom, an alkyl group (e.g., methyl, ethyl, propyl, isopropyl, butyl, hexyl, dodecyl, pentadecyl, benzyl, phenethyl, etc.), a hydroxy, a halogen (e.g., chlorine or bromine), or an aryl group (e.g., phenyl, tolyl, biphenylyl, etc.); X represents an acid anion (e.g., chloride, bromide, iodide, thiocyanate, sulfamate, perchlorate, methyl sulfate, ethyl sulfate, p-toluenesulfonate, etc.), and Z represents the nonmetallic atoms required to complete a nucleus containing a to S-membered heterocyclic ring having nitrogen, oxygen, sulfur, and selenium as the hetero atoms, typically a thiazole nucleus (e.g., thiazole, 4-rnethylthiazole, 4-phenylthiazole, S-methylthiazole, 5-phenylthiazole, 4,5-dimethylthiazole, 4,5-diphenylthiazo1e, 4-(2-thienyl)thiazole, etc.), a benzothiazole nucleus (e.g., benzothiazole, 4-chlorobenzothiazole, S-chlorobenzothiazole, 6-chlorobenzothiazole, 7-chlorobenzothiazole, 4-methylbenzothiazole, 4-methylbenzothiazole, 6-methylbenzothiazole, S-bromobenzothiazole, 6-bromobenzothiazo1e, 4-phenylbenzothiazole, 5-phenylbenzothiazole, 4-methoxybeuzothiazole, S-methoxybenzothiazole, 6-methoxyber1zothiazole, S-iodobenzothiazole, 6-iodobenzothiazole, 4-ethoxybenzothiazole, S-ethoxybenzothiazole, tetrahydrobenzothiazole, 5,6-dimethoxybenzothiazole, 5, -dioxymethylenebenzothiazole,
4 S-hydroxybenzothiazole, 6-hydroxybenzothiazole, etc.); a thianaphtheno-7',6,5-thiazole nucleus, (e.g., 4' methoxythianaphthenofl',6',4,5-thiaz0le, etc.), an oxazole (e.g., S-methyloxazole, 4-phenyloxazole, 4,5-diphenyloxazole, 4-ethyloxazole, 4,5-dimethyloxazole, S-phenyloxazole, etc.), a benzoxazole nucleus (e.g., benzoxazole, 5-chlorobeuzoxazole, S-methylbenzoxazole, 5-phenylbenzoxazole, 6-methylbenzoxazole, 5,,6-dimethylbenzoxazole, 4,6-dimethylbenzoxazole, S-methoxybenzoxazole, S-ethoxybenzoxazole, 6-chloro'benzoxazole, 5hydroxybenzoxazole, 6-hydroxybenzoxazole, etc.), a naphthoxazole nucleus (e.g., a-naphthoxazole, {3,B-naphthoxazole, fi-naphthoxazole, etc.), a selenazole nucleus (e.g., 4-methylselenazole, 4-phenylselenazole, etc.), a benzoselenazole nucleus (e.g., benzoselenazole, S-chloroselenazole, S-rnethoxybenzoselenazole, 5-hydroxybenzoselenazole, tetrahydrobenzoselenazole, etc), a naphthoselenazole nucleus (e.g., u-naphthoselenazole, {3,Q-naphthoselenazole, fl-naphthoselenazole, etc.), a thiazoline nucleus (e.g., thiazoline, 4-methylthiazoline, etc.), a quinoline nucleus (e.gL, quinoline, 3-methylquiuoline, S-methylquinoline, 7-methylquinoline, 8-methylquinoline, 6-chloroquinoline, 8-ch loroquinoline, 6-methoxyquinoline, 6-ethoxyquinoline, 6-hydroxyquinoline, 8-hydroxyquinoline, etc.), an isoquinoline nucleus (e.g., isoquinoline, 3-methylisoquinoline, S-methylisoquinoline, 6-chloroisoquinoline, 6-methoxyisoquinoline, 8-hydroxyisoquinoline, etc.), a 3,3-dialkylindolenine nucleus (e.g., 3,3-dimethylindolenine, 3,3,5-trimethylindolenine, 3,3,7-trimethylindoleniue, etc.), a pyridine nucleus (e.g., pyridine, Z-methylpyridine, Z-benzylpyridine, 3-chloropyridine, 3-hydroxypyridine, Z-methyl-S-ethylpyridine, 2,5-dibutylpyridine, 3-diphenylmethylpyridine, 4dipheny1methy1pyridina hydroxydiphenylmethylpyridine, etc.),
an imidazole nucleus (e.g., imidazole,
l-alkyl imidazole, l-alky1-4-phenylimidazole, 1-alkyl-4,S-dimethylimidazole, etc.),
a benzimidazole nucleus (e.g., benzimidazole,
l-alkylbenzimidazole, 1-aryl-5,6-dichlorobenzimidazole, etc.),
a naphthimidazole nucleus (e.g., 1-alkyl-a-naphthimidazole, 1-aryl-B-naphthimidazole, 1-alkyl-5-methoxy-u-naphthimidazole, etc. a 1,2,4-thiadiazole nucleus,
a 1 or 4 alkyl-1,2,4-triazole nucleus (e.g., 1-methy1-1,2,4-triazole, 1-butyl-1,2,4-triazo1e,
4-ethyl-l,2,4-triazole, etc.),
a tetrazole nucleus (e.g., tetrazole,
S-methyl-1,2,3,4-tetrazole, S-phenyl-l,2,3,4-tetrazole, etc.), and the like nucle1.
More particularly the new class of bulky quaternary nitrogen heterocyclic compounds of the invention include (1) derived resinous copolymers consisting essentially of not less than 25% by weight of polymerized units of the general structure:
II. (a) R and (2) non-polymeric compounds having the general structure:
wherein R R X and Z are as previously defined, n and m each represents an integrer of from 1 to 2; R represents the hydrogen atom, an alkyl group (e.g., methyl, ethyl, propyl, isopropyl, butyl, hexyl, dodecyl, pentadecyl, benzyl, phenethyl, etc.), a hydroxyl group, a halogen (e.g., chlorine or bromine), or an aryl group (e.g. phenyl, tolyl, biphenylyl, etc.), and R represents the hydrogen atom, a lower alkyl group (e.g., methyl, ethyl, etc.), or an aryl group (e.g., phenyl, tolyl, etc.), etc., and wherein the said m, R, R and X stand in each occurrence for the same defined member. The components of Formula II above are so chosen as to give compounds having molecular weights in each instance of at least 300.
In accordance with the invention, we prepare the de rived resinous copolymer coming under above Formula II by reacting a resinous addition polymer of a monoethylenically unsaturated polymerizable compound having the general formula:
Iv. R 0 R;
with a heterocyclic tertiary amine having the general formula:
wherein m, R, R R X and Z are as defined above, under conditions that result in the desired degree of conversion of units of above Formula IV to the corresponding quaternary salts units represented by Formula II(a) above. The preferred starting polymers in the above process are polyvinyl chloroacetate described by Wiley et al., J. Poly. Sci., 3, 708 (1948) or copolymers containing vinyl chloroacetate and vinyl alcohol units prepared by partial esterfication of polyvinyl alcohol with chloroacetic anhydride, and poly(vinyl chloromethyl ketone) prepared, for example, by polymerizing monomeric vinyl chloromethyl ketone (Cath et al., J. Chem. Soc., 1948, p. 278) in a solvent such as dioxane at 60 C. in the presence of a polymerization catalyst, e.g., azo-bis-isobutyronitrile. The proportions of the heterocyclic tertiary amine of Formula V above can vary widely, but preferably it is employed in the reaction in excess of the stoichiometrically calculated quantity, for example, from about 1.2 to 5, or more equivalent moles. Advantageously, the reaction is carried out in an inert reaction medium which is a solvent for the starting polymer such as, for example, in acetone, dimethyl sulfoxide, N,N-dimethylformamide, 'y-butyrolactone, etc. The reaction mixture is allowed to stand for several days or more, at room temperatures or heated for several hours. The quaternary salt product which forms is isolated by precipitation into a nonsolvent for salt product, or in the case where the salt product forms as a precipitate in the reaction mixture, the supernatant liquor can be simply decanted. The quaternary salt product can then be further purified by washing with a nonsolvent and dried preferably under vacuum. The quaternary salt products consisting from about 25-100% by weight of quaternized units and from 750% by weight of unquaternized residual units have been found to be especially eflicacious mordants in photographic layers and are preferred.
To prepare the nonpolymeric compounds of the invention coming under Formula III above, a compound having the general formula:
VI. 0 R
wherein n, R R and X are as previously defined, is reacted with a tertiary heterocyclic amine of Formula V above, in approximately equimolar proportions, and the friable product obtained is crushed under ether, washed with ether and collected on a filter and dried. Alternatively, Formula III compounds can be prepared by reacting a compound having the general formula:
VII. 0 R:
wherein n, R and R are as previously defined, with a mixture of a tertiary amine of Formula V above and a halogen such as chlorine, bromine or iodine, preferably in about the molar ratios of 12121 of the compounds of Formula VII, Formula V and halogen, respectively. Advantageously, the reaction mixture is heated for one or more hours, cooled and the solid product which forms is filtered off, washed with a nonsolvent (e.g. acetone), and recrystallized from methanol.
As previously mentioned, the above defined polymeric mordants of the invention function as alkali-release mordants. Thus, under appropriate conditions of pH, they form betaines so as to lose their ability to act as a mordant with release and subsequent removal of the mordanted dye from the system. Thus, for example, the bulky quaternary nitrogen compound which under acid or neutral conditions is capable of salt formation with an acidic dye may under alkaline conditions release the dye by decomposition of the mordant to separate the quaternary nitrogen fragment from the bulky residue or by a rearrangement reaction to produce a zwitterion with resultant internal charge compensation or by the loss of the quaternary nature of the nitrogen. A major advantage of the above 7 alkali release mordants is, therefore, that the compounds do not retain either the previously mordanted dye or thiosulfate ion from the fixing bath after processing, as do other compounds of similar mordanting ability providing a neutral or mildly alkaline hypo bath is used.
The photographic elements prepared with the abovedescribed polymeric and non-polymeric mordants of the invention comprise a support material having thereon at least one hydrophilic colloid layer containing a mordant of the invention, which layer may also contain a lightsensitive silver halide. However, the preferred light-sensitive photographic elements comprise a support having thereon at least one hydrophilic colloid layer containing a mordant of the invention and at least one light-sensitive silver halide emulsion layer. The mordant containing light-screening and antihalation layers are customarily prepared by coating on the support or photographic element by methods well known in the art, a water solution comprising at least one mordant of the invention, an acid dye, a water-permeable hydrophilic colloid binder and a coating aid such as saponin. For most purposes, it is also desirable to add agents to harden the colloidal binder material so that the light-screening layer will remain intact in the photographic element during and following the processing operations. The pH of the coating solution is adjusted when necessary to a level that is compatible with the light-sensitive emulsion layer by the usual methods. The proportions of mordant, dye, colloidal binder, hardener and coating aid may be varied over wide ranges and will depend upon the specific requirements of the photographic element being produced. The methods used to determine the optimum compositions are well known in the art and require no further elucidation here. Suitable support materials include any of those used in photography such as cellulose acetate, cellulose propionate, cellulose acetate-butyrate, cellulose nitrate, synthetic resins such as nylon, polyesters, polystyrene, polypropylene, etc., paper, and the like.
Suitable hydrophilic colloid materials that can be used in the mordant containing compositions and layers, and photographic elements, of the invention include gelatin, albumin, collodion, gum arabic, agar-agar, cellulose derivatives such as alkyl esters of carboxylated cellulose, hydroxy ethyl cellulose, carboxy methyl hydroxy ethyl cellulose, synthetic resins, such as the amphoteric copolymers described by .Clavier et al. in U.S. Patent 2,949,442, issued Aug. 16, 1960, polyvinyl alcohol, polyvinyl pyrrolidone, and others well known in the art. The abovementioned amphoteric copolymers are made by polymerizing the monomer having the formula:
wherein R represents an atom of hydrogen or a methyl group, and a salt of a compound having the general formula:
wherein R has the above-mentioned meaning, such as an alkylamine salt. These monomers can further be polymerized with a third unsaturated monomer in an amount up to about 20 percent, and preferably from -15 percent, of the total weight of monomer used, such as an ethylene monomer that is copolymerizable with the two principal monomers. The third monomer may contain either a. basic group or an acid group and may, for example, be vinyl acetate, vinyl chloride, acrylonitrile, methacrylonitrile, styrene, acrylates, methacrylates, acrylamide, methacrylamide, etc. Examples of these polymeric gelatin substitutes are copolymers of allyla-mines and methacrylic acid; copolymers of allylamine, acrylic acid and acrylamide; hydrolyzed copolymers of allylamine, methacrylic acid and vinyl acetate; the copolymers of allylamine, acrylic acid and styrene; the copolymers of allylamine, methacrylic acid and acrylonitrile; etc.
The dyes that can be effectively mordanted in accordance with our invention include any filter dye that has one or more acidic group substituents such as sulfo or carboxyl groups, for example, the oxonol dyes described and claimed in copending application of Joseph Bailey, Ser. No. 98,709, filed Mar. 27, 1961, now Patent No. 3,247,127, having the formula:
and more particularly the dyes of the formula:
wherein Z represents the nonmetallic atoms necessary to complete a l-carboxyalkyl 3 hydrocarbon substituted hexahydro-2,4,6-trioxo-S-pyrimidine nucleus, 11 in each case is an'integer of from 1 to 3, each R represents a carboxyalkyl group in which the carboxy substituent is attached to an alkyl group having from 1 to 2 carbon atoms, R is an alkyl group of from 1 to 8 carbon atoms or an aryl group such as phenyl or an alkyl or alkoxy substituted phenyl group, and X is hydrogen or an alkyl group of from l to 4 carbon atoms, such that no more than one X is an alkyl group. Other suitable acid dyes include the benzoxazolepyrazolone merocyanine dyes described in copending application of Jones et al. U.S. Ser. No 167,666, filed J an. 22, 1962, now Patent No. 3,282,- 699, having the formula:
wherein R7 represents an alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, etc., or a carboxyalkyl group, such as carboxymethyl, carboxyethyl, carboxypropyl, etc., or a sulfoalkyl group, such as sulfoethyl, sulfopropyl, sulfobutyl, etc.; Z represents the nonmetallic atoms necessary to complete a heterocyclic nucleus of the benzoxazole series (including benzoxazole and benzoxazole substituted with substitutions such as methyl, ethyl, phenyl, methoxy, ethoxy, chlorine, bromine, etc.) or a nucleus of the benzoxazole series which has a sulfo-substituent 0n the benzene ring as well as one or more of the above-mentioned simple substituents, such that when R represents an alkyl group,
Z represents the sulfo-substituted benzoxazole nucleus and when R represents a carboxyalkyl group or a sulfoalkyl group, Z represents the nonmetallic atoms necessary to complete a benzoxazole nucleus; Q represents the nonmetallic atoms necessary to complete a heterocyclic nucleus of the sulfophenyl pyrazolinone series and n is an integer from 1 to 3. However, the invention is not limited to just those dyes coming within the general formulas of the above-mentioned copending applications, since as previously set forth any filter dye containing one or more sulfo or carboxyl groups can be employed. For example, the yellow dyes mentioned in Mader et al. US. Patent 3,016,306, issued J an. 9, 1962, columns 5 and 6.
Typical light-filtering dyes include, for example,
bis( 1-butyl-3-carboxymethylhexahydro-2,4,6-trioxo- S-pyrimidine) -pentamethineoxonol,
bis 1-carboxymethyl-3-cyclohexylhexahydro-2,4,6-
trioxo-S-pyrimidine pentamethineoxonol,
bis 1-butyl-3-carboxymethylhexahydro-2,4,6-trioxo-5- pyrimidine) trimethineoxonol,
bis( l-carboxymethylhexahydro-3-octyl-2,4,6-trioxo-5- pyrimidine) methineoxonol,
4-[ (3-ethyl-2 3H) -benzoxazolylidine -ethy1idene] -3- methyl- 1- (p-sulfophenyl) -2-pyrazolin-5-one monosulfonated,
4- [4- (3 -ethyl-2 3H) -benzoxazolylidene -2-butenylidene] 3 -methyl-1- p-sulfophenyl -2-pyraZolin-5-one monosulfonated,
4-[ (3-B-carboxyethyl-2 3H -benzoxazolylidene) ethylidene] -3-methyl- 1- (p-sulfophenyl) -2- pyrazolin-S-one,
4- [4- 3-B-carboxyethyl-2 3H) -benzoxazolylidene) -2- butenylidene] -3-methyl- 1- (p-sulfophenyl -2- pyrazolin-S-one,
bis( l-butyl-3-carboxymethyl-S-barbituric acid) -trimethine oxonol,
bis 1-butyl-3-carboxymethyl-S-barbituric acid) pentamethineoxonol,
bis 3-methyl-1- (p-sulfophenyl) -2-pyrazolin-5-one- 4) methineoxonol,
bis [3-methyl-1- (p-sulfophenyl) -2-pyrazolin-5-one- (4) trimethineoxonol,
bis 3-methyl- 1- p-sulfophenyl) -2-pyrazolin-5-one- (4) 1P6ntamethine0X0nol,
bis 3-methyl- 1- (p-sulfophenyl) -5-pyrazolone- (4)] pentamethineoxonol,
and typical ultraviolet absorbing dyes include the 2,5- bis(substituted sulfophenyl) thiazolo[5,4 d]thiazole disodium salts of Sawdey U.S. Ser. No. 183,417, filed Mar. 29, 1962, such as 2,5-bis (o-methoXy-x-sulfophenyl)thiazolo[5,4-d]
thiazole disodium salt,
2,5 -bis (o-hexyloxy-x-sulfo phenyl thiazolo 5 ,4-d]
thiazole disodium salt,
2,5-bis(o-decyloxy-x-sulfophenyl)thiazolo[5,4-d]
thiazole disodium salt,
2,5-bis(o-methyl-x-sulfophenyl)thiazolo[5,4-d]
thiazole disodium salt,
2,5-bis 5 -butyl-2-methyl-x-sulfo phenyl thiazolo 5 ,4-
d]thiazole disodium salt,
2,5-bis m-methyl-x-sulfophenyl) thiazolo [5 ,4-d]
thiazole disodium salt,
2,5 -bis p-propyl-X-Sulfophenyl thiazolo [5 ,4-d]
thiazole disodium salt, etc.;
the ultraviolet absorbing dyes of Sawdey US. Patent 2,739,888, issued Mar. 27, 1956, such as 3-phenyl-2-phenylimino-5-o-sulfobenzal-4-thiazolidone sodium salt,
5- (4-methoxy-3-sulfobenzal) -3-phenyl-2-phenylimino- 4-thiazolidone (sodium salt),
3-phenyl-2-phenylimino-5- 3- 3-sulfobenzamido benzal] -4-thiazolidone (sodium salt),
3-benzyl-2-phenylimino-5-o-sulfobenzal-4-thiazolidone (sodium salt),
5-(2,4-dicarboxy-methoxybenzal)-3-phenyl-2-phenylimino-4-thiazolidone sodium salt, etc.,
tartrazine, and the like filter dyes.
Hardening materials that may be used to advantage include such hardening agents as formaldehyde; 2. halogen-substituted aliphatic acid such as mucobromic acid as described in White US. Patent 2,080,019, issued May 11, 1937; a compound having a plurality of acid anhydride groups such as 7,8-diphenyl-bicyclo (2,2,2)-7- octene-2,3,5,6-tetra-carboxylic dianhydride, or a dicarboxylic or a disultonic acid chloride such as terephthaloyl chloride or naphthalene-1,S-disulfonyl chloride as described in Allen and Carroll US. Patents 2,725,294 and 2,725,295, both issued Nov. 29, 1955; a cyclic 1,2-diketone such as cyclopentane-l,2-dione as described in Allen and Byers US. Patent 2,725,305, issued Nov. 29, 1955; a bisester of methane-sulfonic acid such as l,2-di(methanesulfonoxy)ethane as described in Allen and Laakso US. Patent 2,726,162, issued Dec. 6, 1955; 1,3-dihydroxymethylbenzimidazol-Z-one as described in July, Knott and Pollak, US. Patent 2,732,316, issued Jan. 24, 1956; a dialdehyde or a sodium bisulfite derivative thereof, the aldehyde groups of which are separated by 2-3 carbon atoms, such as B-methyl glutaraldehyde bis-sodium bisulfite as described in Allen and Burness, Canadian Patent No. 588,451, issued Dec. 8, 1959; a bis-aziridine carboxamide such as trimethylene bis(l-aziridine carboxamide) as described in Allen and Webster U.S. Patent 2,950,197, issued Aug. 23, 1960; or 2,3-dihydroxydioxane as described in Jeifreys U.S. Patent 2,870,013, issued Jan. 20, 1959.
The photographic element utilizing our light-screening layers have light-sensitive emulsion layers containing silver chloride, silver bromide, silver chlorobromide, silver iodide, silver bromoiodide, silver chlorobromoiodide, etc., as the light-sensitive material. Any light-sensitive silver halide emulsion layers may be used in these photographic elements. The silver halide emulsion may be sensitized by any of the sensitizers commonly used to produce the desired sensitometric characteristics.
Our invention is further illustrated by the following examples describing the preparation of preferred mordants and the use thereof in photographic elements.
Example 1.Poly(vinyl pyridinium acetate) chloride A. 20 g. (approx. 0.17 mol) of polyvinyl chloroacetate was dissolved in 200 ml. of acetone. Then 40 ml. (approx. 0.47 mol) of pyridine was added and the mixture allowed to stand overnight at room temperature. Soft material had precipitated. The supernatant liquid was decanted. The residue was dissolved in methanol, precipitated in ether, washed, and vacuum dried. It was then redissolved in methanol and reprecipitated in ether, washed, and vacuum dried. Analysis of this product 0 showed that it contained 2.8% by weight of nitrogen as compared with calculated theory of approximately 7% by weight of nitrogen for pure poly(vinyl pyridinium acetate) chloride. Accordingly, this derived polymer consisted essentially of about 40% by weight of recurring (vinyl pyridinium acetate) chloride units of the structure:
and the remainder of the polymer to make of recurring units of unreacted vinyl chloroacetate.
B. A solution of 6.0 g. (approx. 0.5 mol) of polyvinyl chloroacetate in 100 ml. of dimethyl sulfoxide was treated with 10 g. (approx. 0.13 mol) of pyridine. The mixture was allowed to stand 5 days. The polymer was then precipitated in acetone, washed and vacuum dried. It was redissolved in methanol and reprecipitated in ether, washed and vacuum dried. The yield of product was 9 g. Analysis of this product showed that it contained 5.4% by weight of nitrogen and 13.8% by weight of chlorine as compared with calculated theory of approximately 7% by weight of nitrogen and 17.8% by weight of chlorine in essentially pure poly(vinyl pyridinium acetate) chloride. Accordingly, this derived polymer consisted essentially of about 77% by weight of recurring units of (vinyl pyridinium acetate) chloride and 23% by weight of recurring units of unreacted vinyl chloroacetate.
Example 2 A solution of 60.0 (approx. 0.57 mol) of poly(vinyl chloromethyl ketone) in 600 ml. of N,N-dimethylformamide was treated with ml. (approx. 1.58 mol) of pyridine. The mixture was allowed to stand for 6 days. A soft precipitate formed. The supernatant liquor gave no precipitate in ether and discarded. The residue was disand the remainder of the polymer molecule to make 100% of recurring units of unreacted vinyl chloromethyl ketone.
The use of our alkali-release polymers as mordants in filter layers will be illustrated with the following examples.
Example 3 To 10 cc. of 10% photographic gelatin melted at C. was added 30 mg. of poly(vinyl pyridinium acetate) chloride dissolved in 10 cc. of water. The pH of the solution was adjusted to 4.5-5.0 with glacial acetic acid. To this was added 10 mgs. of his [3-methyl-1-p-sulfophenyl-S-pyrazolone (4) pentamethineoxonol dissolved in water with vigorous stirring. The pH of the melt was then readjusted to :10.1 with 2.5 N sodium hydroxide solution, a coating aid added, the total volume adjusted to 32 cc. with distilled water and the melt coated on a film support and dried.
No signs of dye bleeding out of the gel layer were noted when a portion of the dried coating was immersed in stagnant distilled water at F. for 2 minutes, nor after a second 2-minute immersion in the water.
Another portion of the coating was treated in a conventional alkaline silver halide developer solution containing hydroquinone and p-methylaminophenol sulfate as the developing agents. The mordanted dye was completely bleached by this treatment. Following treatment in the developer, the coating was treated in a conventional sodium thiosulfate fixing bath and then washed. No residual sodium thiosulfate was detected in the coating by the Ross-Crabtree method.
Similar results were obtained when coatings were made substituting the corresponding trimethineoxonol dye and the corresponding monomethine oxonol dye for the pentamethineoxonol dye. Coating were made in which each of the above dyes were mordanted with poly(vinyl pyridinium methyl ketone) chloride instead of poly(vinyl pyridinium acetate) chloride. Each of these coatings showed no bleeding of dyes on immersion in water, but complete dye bleaching in the developer solution. No residual sodium thiosulfate was detected by the Ross- Crabtree method in the developed, fixed and Washed coatings.
Example 4 This example shows the use of the derived polymers of the invention as an ultraviolet absorbing overcoating layer over light-sensitive gelatino-silver halide emulsion layers, for example, over the emulsion layers of a multilayer color element of the type described in Mannes et al., US. Patent 2,252,718, issued Aug. 19, 1941.
A gelatin-mordant composition was prepared by mixing 200 g. of a 10% aqueous gelatin solution at 40 C. and 200 g. of a 15% aqueous solution of the polymeric mordant prepared according to Example 1A at 40 C., The clear solution obtained was then chilled, noodled, and washed with cold water in the normal manner for 6 hours, drained, remelted at 50 C. and weighed.
A coating melt was then prepared as follows employin g the above gelatin-mordant composition.
Coating melt:
Gelatin containing 7.7 g. of Example 1 polymer g. 188 Melt at 40 C. and then added premixed:
10% solution in water of the dye 2,5-bis(2- methoxy x sulfophenyl)thiazolo[5,4-
Sulfur dioxide hydroquinone clathrate g 0.32 Adjust solution pH=6.07i0.07 with Laurie acid. Adjust solution pH=6.2. Distilled water (to make total melt) -g 383 The sulfur dioxide hydroquinone clathrate is described by H. M. Powell, J. Chem. Soc. (1948), pages 61-73- CA. 42, 5293 (1948). This melt was then coated over the emulsion layers of the above-mentioned multilayer color element at 6 g./sq. ft. (containing 1.33% gelatin) to give a coating comprising 120 mg./sq. ft. of the polymeric mordant of Example 1 and 40 mg./sq. ft. of the filter dye in mg./sq. ft. of gel. On sectioning of the coated element and in photographs made therewith, no bleeding of the dye was noted. Alkaline processing conditions left no dye residue and yet no stain increase was noted, implying betaine formation of the mordant with internal charge compensation. Also, no detectable thiosulfate was retained in the fixed element.
Our alkali-release polymeric mordants are also used to advantage in mordanting light-filtering dyes, such as a blue-light absorbing dye having one or more acid substituents, in a filtering layer between the top blue-sensitive layer and over the green-sensitive and the red-sensitive layers of a multilayer color photographic element of the type described in Mannes et al US. Patent 2,252,718, referred to previously. Alternatively, appropriate dyes of other colors can be used to advantage in mordanted filter layers between the green-sensitive and red-sensitive layers, or one or more appropriate dyes can be mordanted in an antihalation layer either. between the light-sensitive layers and the support or on the side of the support away from the light-sensitive layers.
Examples 5 through 8 illustrate the use of the derived polymeric mordants of the invention in antihalation layers, and further illustrate the improvement obtained therewith in regard to hypo retention in the processed elements, as compared with an element prepared with a known mordanting polymer and a non-mordanted control element.
In each of the following examples, the coating melts Were prepared, in general, .by the procedure described in above Example 4. The melt compositions, with the exception of the control example, were coated on an ordinary cellulose acetate film support and over this melt layer was coated in each case a fine-grained silver chlorobromide gelatin emulsion layer. For convenience, the filter dyes employed are listed as follows:
Dye A4-[ (3 -ethyl-2 3H) -benzoxazolylidene)ethylidene]-3-methyl-1-p-sulfophenyl-Z-pyrazolin-5-one, monosulfonated Dye B-Bis(1-butyl-3-carboxymethyl-S-barbituric acid) trimethineoxonol Dye C-4- [4- 3-ethyl-2 (3H) -benzoxazolylidene) -2- butenylidene]-3-methyl-1-p-sulfophenyl-Z-pyrazolin- 5-one, monosulfonated Dye DBis(1-butyl-3-carboxymethyl-5-barbituric acid) pentamethineoxonol 1 3 Dye E--Bis 3-methyl-l-(p-sulfophenyl) -2-pyrazolin-5- one- (4) ]-methineoxonol Dye FBis 3-methyl-1- (p-sulfophenyl) -2-'pyrazolin-5- one- (4) -trimethine oxo nol Dye G-Bis 3-methyl-l- (p-sulfophenyl) -2-pyrazolin-5- one (4) ]-pentamethineoxonol Example 5 A control film element was coated having no antihalation undercoat.
Example 6 A film element was coated having an antihalation undercoat comprising gelatin poly(a-methylallyl-N- guaridylketimine, glycolic acid salt) prepared in accordance with Minsk US. Patent 2,882,156, issued Apr. 14,
1959, as the mordant polymer (28 mg./ft. Dye A (2.4
mg./ft. Dye B (1.6 mg./ft. Dye C (2.9 mg./ft. and Dye D (2.5 mg./ft.
Example 7 A film element was coated having an antihalation undercoat comprising gelatin and the polymeric mordant of Example 1A (45 mg./ft. Dye A (2.4 mg./ft. Dye B (1.6 mg./ft. Dye C (2.9 mg./ft. and Dye D (2.5 mg./ft.
Example 8 A film element was coated having an antihalation undercoat comprising gelatin and the polymeric mordant of Example 1A (45 mg./ft. Dye E (5 mg./ft. Dye F (5 mg./ft. and Dye G (5 mg./ft.
The film coatings of above Examples 5, 6, 7 and 8 Were exposed on an intensity scale sensitometer, developed for 2 in a conventional alkaline developer solution using 0 hydroquinone and p-methylaminophenol sulfate as the developing agents at 80 F., fixed in a conventional sodium thios-ulfate fixing bath that was substantially neutral, washed and dried. The processed strips were analyzed for residual hypo. The following results were obtained:
Hypo Reten- Relative tion Speed 7 Fog (mg/mi) Example 9.1-(4-o-biphenylylphenacyl)pyridinium iodide 4-acetyl-o-terphenyl (1 mol, 13.6 g.) was placed in a 300 ml. three-necked flask fitted with a reflux condenser and mechanical stirrer, dry pyridine (25 ml.) was added with stirring, then iodine (1 mol, 13 g.) was added and a small amount of heat was evolved. At this point a tube containing a desiccant was placed in the end of the condenser to keep the system dry. The mixture was then heated on a steam bath with good stirring for two hours, cooled, solid product filtered off, washed on a Biichner funnel with an excess of acetone and dried. After two recrystallizations from methyl alcohol the yield of yellow solid was 13 g. (54%), M.P'. 250-251" C. with decomposition.
This compound forms the yellow betaine upon treatment with alkali with a resultant internal charge com pensation as follows: 4
This compound, at a ratio of 5 parts by weight to 1 part by weight of dye, mordanted the dye bis[3-methyllp-sulfophenyl-S-pyrazolone-(4) ]-pentamethine oxonol in gelatin with no bleeding upon washing in water. The mordanted dye was bleached in a developer having the composition:
G. p-Methylaminophenol sulfate 4.5 Sodium sulfite, desiccated 90.0 Hydroquinone 8.0 Sodium carbonate, monohydrated 52.5 Potassium bromide 5.0
Water to make 1.0 liter.
with the yellow betaine color remaining; the bleaching was increased when the alkalinity of the developer was increased by the addition of sodium hydroxide. This yellow color was discharged by subsequent acidification of the gelatin coating. Although this mordant prevented bleed ing of the dye in water, washing of the gelatin layer in dilute alkali resulted in substantially complete washing out of the dye.
In the place of the specified mordant in the above example, there can be substituted an equivalent amount of related mordanting compounds including the following:
1-(4-o-biphenylylphenacyl) pyrindinium bromide 1-(4-o-biphenylyl)phenacyl-3-methylimidazolium iodide 1- 4o-biphenylyl phenacyl-3 -methylbenzimidazolium iodide 1-(4-o-biphenylyl)phenacyl-B-ethyl-naphtho [2,3-d]
imidazolium iodide 1-(4-o-biphenylyl)phenacyl-4-methyltetrazolium bromide 1-(4-o-biphenylyl)phenacyl-4-phenyltetrazolium bromide 1-(4-o-biphenylyl)phenacyl-4-methylthiazolium bromide 1-(4-o-bipheny'lyl)phenacyl-4-phenylthiazolium bromide 1-(4-o-biphenylyl)phenacyl-3-methylquinolium iodide 1-(4o-biphenylyl)phenacyl-4-methylisoquinolium iodide.
These compounds likewise function efiectively as alkalirelease mordants in the photographic use process described above, and can be prepared, in general, by the described procedure by substituting therein the appropriate intermediates.
Example 10.-4-benzyl-1-(2-phenylphenacyl pyridinium bromide CaHs 0 A mixture of 1.7 g. (0.01 mol) of 4-benzylpyridine and 2.7 g. (0.01 mol) of 2-bromo-2-phenylacetophenone was heated on the hot plate until the reaction became exothermic. The product was a glass which was chipped out and crushed under ether, washed with ether and collected on a filter and dried. The yield was 4.4 g. of
15 product analyzing C H NOBr. This compound 'was tested in the following manner:
Melt A7.5% aqueous gelatin solution, pH 6.0
Melt B2.96 ml. of a 33.8% solution of bis[3-methy1- 1-( p-sulfophenyl) -2-pyrazolin-5-one-(4) methineoxonol, 11.83 ml. of a 8.45% solution of bis[3-methyl-1- (p-s-ulfophenyl)-2-pyrazolin-5-one-(4) trimethineoxo- 1101, 5.91 ml. of a 16.9% solution of his[3-methyl-1- p-sulfophenyl)-2-pyrazolin-5-one (4)] pentamethineoxonol and distilled water to make up to 300 ml.
Melt C-9O mg. of above mordant in 3 ml. of distilled water (methanol may also be used if necessary for solution) To 12 ml. of Melt A was added 0.3 ml. of a 15.34% solution of saponin; then Melt C was added with mechanical agitation at 40 C. Then 3.0 ml. of Melt 13 was added slowly with mechanical agitation. This final melt was then coated on a cellulose acetate film support on a hand-coating block at 104 F, chill-set and dried at room temperature. Small pieces of the coatings were tested for dye bleeding in water and for bleaching in the aforementioned developer, followed by treating in a fixing bath of the following composition:
Sodium thiosulfate g 240.0 Sodium sulfite, desiccated g 15.0 Acetic acid 28% cc 48 Boric acid, crystals g 7.5 Potassium alum g 15.0
Water to make 1.0 liter.
Result: Mordanted well. Bleached slowly in the developer. Retained no hypo.
Example y 3/-4-pentadecylphenacyl) pyridinium iodide This compound was prepared by the procedure of above Example 10, except that the reactants were pyridine and 2 hydroxy 4 pentadecylphenacyl iodide. On testing this compound in accordance with the method described in Example 10, it was found to mordant well, to bleach rapidly and to retain no hypo in the aforementioned developer and fixing compositions.
Other compounds of the invention coming under Formula III above that were found to have excellent mordanting properties and to function as good alkali-1e lease materials include:
The above list of compounds can be prepared in accordance with the procedures set forth hereinabove.
In the accompanying drawing which further illustrates the preferred photographic elements of our invention:
FIG. 1 shows light-screening layer 10 comprising gelatin, an acid substituted filter dye and the polymeric mordant of Example 1A, poly(vinyl pyridinium acetate) chloride, coated over a light-sensitive silver halide emulsion layer 11 which is coated on support 12.
FIG. 2 shows antihalation layer 15 comprising gelatin, an acid substituted dye and the polymeric mordant of Example 1A, poly(vinyl pyridinium acetate) chloride, coated adjacent to support 16 and a light-sensitive silver halide emulsion .layer 14 coated over layer 15.
FIG. 3 shows a multilayer color element comprising a support 21 having a red-sensitive silver halide emulsion layer 20 coated thereon, a green-sensitive silver halide emulsion layer 19 coated over layer 20, a light-screening layer 18 comprising gelatin, an acid substituted dye, and the polymer mordant of Example 1A, poly(vinyl pyridinium acetate) chloride, coated over layer 19, and a blue-sensitive silver halide emulsion layer 17 coated over layer 18.
Similar results are obtained by substituting the following rnordants for poly(vinyl pyridiniumacetate chloride) in the preceding examples:
poly(vinyl pyridinium-a-methylacetate chloride) poly(vinyl pyridinium-u-phenylacetate chloride) poly(vinyl 2-methylthiazoliumaceta-te chloride) poly(vinyl Z-ethylselenazoliumacetate chloride) poly(vinyl quinoliniumacetate chloride) poly(vinyl 1,Z-dimethylimidazoliumacetate chloride) poly(vinyl S-methyl-1,2,3,4-tetrazoliumacetate chloride) poly(vinyl pyridiniummethyl ketone chloride) poly(vinyl Z-methylthiazoliurnmethyl ketone chloride) poly(vinyl 2-phenylbenzoxazoliummethyl ketone chloride) poly(vinyl quinoliniurnrnethyl ketone chloride) The above mordants are prepared according to the methods of the inventions described in Examples 1 and 2 by reacting polyvinyl chloroacetate or poly(vinyl chloromethyl ketone) with the appropriate heterocyclic amine.
The use of our alkali-release mordants in lightscreening layers over light-sensitive silver halide emulsion layers, and in antihalation undercoat layers, to produce improved photographic elements has been illustrated in the preceding examples. However, it will be apparent that the mordants of the invention can also be advantageously used in light-screening layers between two or more color sensitized silver halide emulsion layers, or in antihalation backing layers, or incorporated directly in light-sensitive silver halide emulsion layers, or they can be used to prepare imbibition dye transfer blanks of improved properties.
The invention has been described in detail with particular reference to preferred embodiments thereof but it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described hereinabove and as defined in the appended claims.
We claim:
1. A light-sensitive photographic element comprising a support material having thereon at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic colloid layer containing at least one substantially nondiffusible salt of a watersoluble dye with a compound represented by the formula:
17 wherein m represents an integer of from 1 to 2, R represents a member selected from the class consisting of hydrogen, a lower alkyl group and a phenyl group, R represents a member selected from the class consisting of hydrogen, an alkyl group and an aryl group, X represents an acid anion, Z represents the nonmetallic atoms required to complete a nucleus containing a 5- to G-membered heterocyclic ring, and R represents a member selected from the class consisting of an alkyl group, an aryl group and a polymeric chain of a monoethylenically unsaturated compound having recurring groups of the structure:
and from 75-0% by weight of recurring polymerized units selected from the class of those having the formula:
and the formula CH2(IJH wherein m in each occurrence represents the same integer of from 1 to 2, R in each occurrence represents the same member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group, X in each occurrence represents the same acid anion, R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group, and Z represents the nonmetallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a thianaphtheno-7',6',4,S-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a napththoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, a thiazoline nucleus, a quinoline nucleus, an isoquinoline nucleus, a pyridine nucleus, an imidazole nucleus, a benzimidazole nucleus, at naphthimidazole nucleus, a 3,3- dialkylindolenine nucleus, a 1,2,4-thiadiazole nucleus, a 1,2,4-triazole nucleus, and a tetrazole nucleus.
3. A light-sensitive photographic element comprising a support material having thereon at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic colloid layer containing at least one substantially nonditfusible salt of a water-soluble dye with a compound having the formula:
0 R2 Z II I wherein n represents an integer of from 1 to 2, R represents a member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group, R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group, X represents an acid anion, and Z represents the non-metallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, at naphthothiazole nucleus, a thianaphtheno-7',6',4,S-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, 2. thiazoline nucleus, a quinoline nucleus, an isoquinone nucleus, 2. pyridine nucleus, an imidazole nucleus, a benzimidazole nucleus, a naphthimidazole nucleus, a 3,3-dialkylindolenine nucleus, a 1,2,4-thiadiazole nucleus, a 1,2,4-triazole nucleus, and a tetrazole nucleus, the said compound having a molecular weight of at least 300.
4. A light-sensitive photographic element comprising a support material having thereon at least two hydrophilic colloid layers, at least one of said hydrophilic colloid layers being a silver halide emulsion layer and at least one of said hydrophilic layers containing at least one salt of an acidic dye with a copolymer consisting essentially of from 25-80% by Weight of recurring polymerized units of the structure:
-OH2OH o R; 2
( MnA'i-(kH-NORa and from 75-20% by weight of recurring polymerized units of the general structure:
-CH2-CH- 0 R2 (O)ml I JHX wherein m in each occurrence represents the same integer of from 1 to 2, R in each occurrence represents the same member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group, X in each occurrence represents the same acid anion, R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group, and Z represents the nonmetallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, at naphthothiazole nucleus, a thianaphtheno-7,6',4,5-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, a thiazoline nucleus, a quinoline nucleus, an isoquinoline nucleus, a pyridine nucleus, an imidazole nucleus, a benzimidazole nucleus, a naphthimidazole nucleus, a 3,3- dialkylindolenine nucleus, a 1,2,4-thiadiazole nucleus, at 1,2,4-triazole nucleus, and a tetrazole nucleus.
5. A light-sensitive photographic element comprising a support material having thereon at least two hydrophilic colloid layers, at least one of said hydrophilic colloid layers being a silver halide emulsion layer and at least one of said hydrophilic layers containing at least one salt of an acidic dye with a compound having the formula:
wherein n represents an integer of from 1 to 2, R represents a member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group, R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group, X represents an acid anion, and Z represents the nonmetallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a thianaphtheno-7',6,4,5-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, a thiazoline nucleus, a quinoline nucleus, an isoquinoline nucleus, at pyridine nucleus,
an imidazole nucleus, a benzimidazole nucleus, 21 naphth imidazole nucleus, at 3,3-dialkylindolenine nucleus, a 1,2,4-thiadiazole nucleus, at 1,2,4-triazole nucleus, and a tetrazole nucleus, the said compound having a molecular weight of at least 300.
6. A light-sensitive photographic element comprising a support material having coated thereon at least one lightsensitive silver halide emulsion layer and having coated over said emulsion layer a hydrophilic colloid layer containing at least one substantially non-diffusible salt of a water-soluble acid dye with a copolymer consisting essentially of from 25-80% by weight of recurring polymerized units of the structure:
and from 7520% by Weight of recurring polymerized units of the general structure:
-CHz-CH R2 (o)m 1( i( 1HX wherein m in each occurrence represents the same integer of from 1 to 2, R in each occurrence represents the same member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group, X in each occurrence represents the same acid anion, R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group, and Z represents the non-metallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a thianaphtheno-7',6',4,5-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, a thiazoline nucleus, a quinoline nucleus, an isoquinoline nucleus, a pyridine nucleus, an imidazole nucleus, a benzimidazole nucleus at naphthimidazole nucleus, a 3,3-dialkylindolenine nucleus, a 1,2,4-thiadiazole nucleus, a 1,2,4-triazole nucleus, and a tetrazole nucleus.
7. A light-sensitive photographic element comprising a support material having coated thereon at least one lightsensitive silver halide emulsion layer and having coated over said emulsion layer a hydrophilic colloid layer containing at least one substantially non-diffusible salt of a water-soluble acid dye with a compound having the formula:
wherein n represents an integer of from l to 2, R represents a member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group, R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group, X represents an acid anion, and Z represents the nonmetallic atoms required to complete a heterocyclic nucleus selected from the class consisting of a thiazole nucleus, a benzothiazole nucleus, a naphthothiazole nucleus, a thianaphtheno-7',6',4,5-thiazole nucleus, an oxazole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a selenazole nucleus, a benzoselenazole nucleus, a naphthoselenazole nucleus, a thiazoline nucleus, a quinoline nucleus, an isoquinoline nucleus, a pyridine nucleus, an imidazole nucleus, a benzimidazole nucleus, a naphthimidazole nucleus, a 3,3-dialkylindolenine nucleus, a 1,2,4- thiadiazole nucleus, at 1,2,4-triazole nucleus, and a tetrazole nucleus, the said compound having a molecular weight of at least 300.
8. A light-sensitive photographic element according to claim 2 wherein the said copolyrner component of said salt consists essentially of (vinyl pyridinium acetate) chloride units and vinyl chloroacetate units.
9. A light-sensitive photographic element according to claim 2 wherein the said resinous copolymer component of said salt consists essentially of (vinyl pyridinium methyl ketone) chloride units and vinyl chloromethyl ketone units.
:10. A light-sensitive photographic element according to claim 2 wherein at least one of said dye components of said salts is a dye selected from the group consisting of 4 [(3 ethyl 2(3H) benzoxazolylidene)ethylidene]- 3 methyl 1 p sulfophenyl 2 pyrazolin 5 one monosulfonated, bis(1 butyl 3 car-boxymethyl 5- barbituric acid)trimethineoxonol, 4 [4 (3 ethyl- 2'(3H) benzoxazolylidene) 2 butenylidene] 3- methyl 1 p sulfophenyl 2 pyrazolin 5 one monosulfonated, bis(1 butyl 3 carboxymethyl 5 barbituric acid)pentamethineoxonol, bis[3 methyl 1 (psulfophenyl) 2 pyrazolin 5 one (4)]methineoxonol, bis[3 methyl 1 (p sulfophenyl) 2 pyrazolin 5- one (4)]trimethineoxonol and bis[3 methyl l (psulfophenyl) 2 pyrazolin 5 one (4)]pfintamethineoxonol.
11. An element comprising a support material having thereon one hydrophilic colloid layer containing a salt of a water-soluble dye with a compound having the formula:
wherein m represents an integer of from 1 to 2, R rep resents a member selected from the class consisting of an alkyl group, and an aryl group, R represents a member selected from the class consisting of the hydrogen atom, a lower alkyl group and a phenyl group, R represents a member selected from the class consisting of the hydrogen atom, an alkyl group and an aryl group, X represents an acid anion, and Z represents the nonmetallic atoms required to complete a nucleus containing a 5- to 6-membered heterocyclic ring, said compound having a molecular weight of at least 300.
References Cited UNITED STATES PATENTS 2,675,316 4/1954 Carroll et al. 96-84 2,839,401 6/1958 Gray et al. 96l14XR 3,016,306 1/1962 Mader et al. 96-84 XR 3,271,148 9/1966 Whitmore 9684 XR NORMAN G. TORCHIN, Primary Examiner R. H. SMITH, Assistant Examiner US. Cl. X.R.
US479762A 1965-08-16 1965-08-16 Mordants for use in dyed filter layers Expired - Lifetime US3455693A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US47972065A 1965-08-16 1965-08-16
US47971865A 1965-08-16 1965-08-16
US47976265A 1965-08-16 1965-08-16
US48011165A 1965-08-16 1965-08-16

Publications (1)

Publication Number Publication Date
US3455693A true US3455693A (en) 1969-07-15

Family

ID=27504233

Family Applications (4)

Application Number Title Priority Date Filing Date
US479720A Expired - Lifetime US3425833A (en) 1965-08-16 1965-08-16 Mordants for bleachable filter layers
US480111A Expired - Lifetime US3444138A (en) 1965-08-16 1965-08-16 Mordants for bleachable filter layers
US479718A Expired - Lifetime US3438779A (en) 1965-08-16 1965-08-16 Mordants for bleachable filter layers
US479762A Expired - Lifetime US3455693A (en) 1965-08-16 1965-08-16 Mordants for use in dyed filter layers

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US479720A Expired - Lifetime US3425833A (en) 1965-08-16 1965-08-16 Mordants for bleachable filter layers
US480111A Expired - Lifetime US3444138A (en) 1965-08-16 1965-08-16 Mordants for bleachable filter layers
US479718A Expired - Lifetime US3438779A (en) 1965-08-16 1965-08-16 Mordants for bleachable filter layers

Country Status (5)

Country Link
US (4) US3425833A (en)
BE (1) BE685292A (en)
CH (2) CH494977A (en)
DE (3) DE1547716B2 (en)
GB (3) GB1151877A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424272A (en) 1981-08-03 1984-01-03 Polaroid Corporation Temporary polymeric mordants and elements containing same
EP0772080A2 (en) 1995-11-02 1997-05-07 Eastman Kodak Company Photographic element useful as a motion picture print film
US6045985A (en) * 1997-12-02 2000-04-04 Tulalip Consultoria Comercial Sociedade Unipessoal S.A. Light-sensitive silver halide photographic elements containing yellow filter dyes
US6903475B2 (en) 2001-02-23 2005-06-07 Black & Decker Inc. Stator assembly with an overmolding that secures magnets to a flux ring and the flux ring to a stator housing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1528616A (en) * 1975-06-04 1978-10-18 Ciba Geigy Ag Alkali-release mordants
DE3305978A1 (en) * 1983-02-21 1984-08-23 Siemens AG, 1000 Berlin und 8000 München Telecommunications system with levelling of traffic peaks
GB2140572B (en) * 1983-05-26 1986-06-18 Kodak Ltd Photographic dispersions
US5244994A (en) * 1992-03-20 1993-09-14 Eastman Kodak Company Bleachable polymeric filter dyes
US5470986A (en) * 1994-06-27 1995-11-28 E. I. Du Pont De Nemours And Company Imidazolium hardeners for hydrophilic colloid
GB2552806A (en) * 2016-08-10 2018-02-14 Sumitomo Chemical Co Light filter and sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2675316A (en) * 1949-04-14 1954-04-13 Eastman Kodak Co Photographic elements containing mordants
US2839401A (en) * 1954-12-29 1958-06-17 Du Pont Photographic silver halide emulsions containing copolymeric mordants
US3016306A (en) * 1957-11-25 1962-01-09 Eastman Kodak Co Yellow filter layers for multi-layer photographic color elements
US3271148A (en) * 1962-07-19 1966-09-06 Eastman Kodak Co Mordanting of acid dyes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2595225A (en) * 1950-02-09 1952-05-06 Du Pont Polymeric poly-quaternary ammonium salts
US2972535A (en) * 1957-09-03 1961-02-21 Eastman Kodak Co Quaternary salts of c-vinylpyridine polymers with compounds containing a haloacetyl group
FR1361293A (en) * 1962-07-19 1964-05-15 Kodak Pathe New mordanting composition usable in particular in photography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2675316A (en) * 1949-04-14 1954-04-13 Eastman Kodak Co Photographic elements containing mordants
US2839401A (en) * 1954-12-29 1958-06-17 Du Pont Photographic silver halide emulsions containing copolymeric mordants
US3016306A (en) * 1957-11-25 1962-01-09 Eastman Kodak Co Yellow filter layers for multi-layer photographic color elements
US3271148A (en) * 1962-07-19 1966-09-06 Eastman Kodak Co Mordanting of acid dyes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424272A (en) 1981-08-03 1984-01-03 Polaroid Corporation Temporary polymeric mordants and elements containing same
EP0772080A2 (en) 1995-11-02 1997-05-07 Eastman Kodak Company Photographic element useful as a motion picture print film
US6045985A (en) * 1997-12-02 2000-04-04 Tulalip Consultoria Comercial Sociedade Unipessoal S.A. Light-sensitive silver halide photographic elements containing yellow filter dyes
US6903475B2 (en) 2001-02-23 2005-06-07 Black & Decker Inc. Stator assembly with an overmolding that secures magnets to a flux ring and the flux ring to a stator housing

Also Published As

Publication number Publication date
DE1547724A1 (en) 1970-02-19
GB1151877A (en) 1969-05-14
GB1162214A (en) 1969-08-20
CH483035A (en) 1969-12-15
GB1163904A (en) 1969-09-10
US3438779A (en) 1969-04-15
US3444138A (en) 1969-05-13
CH494977A (en) 1970-08-15
BE685292A (en) 1967-01-16
DE1547716A1 (en) 1970-03-05
DE1547716B2 (en) 1976-09-23
US3425833A (en) 1969-02-04
DE1295368B (en) 1969-05-14

Similar Documents

Publication Publication Date Title
US3440051A (en) Oxonol dyes for light filtering layers in photographic elements
US3282699A (en) Photographic elements containing bleachable mordanted dye layers
US3455693A (en) Mordants for use in dyed filter layers
JPH0128938B2 (en)
US3629274A (en) Merocyanine dyes and photographic materials prepared therewith
US3384487A (en) Butadienyl dyes for photography
US3909268A (en) Tetrazolium C-oxy-betaine compounds as antifog agents for silver halide photographic emulsions
US3481927A (en) Butadienyl dyes for photography
US3260601A (en) Dyes for photographic filter and antihalation layers
US3740228A (en) Light sensitive photographic material
US3598600A (en) Photographic compositions and elements containing polymeric imidazoles
JPH05273700A (en) Solid granular dispersion of filter dye for photographic element
EP0304323B1 (en) Direct positive silver halide light-sensitive colour photographic material
US3718470A (en) Surface development process utilizing an internal image silver halide emulsion containing a composite nucleating agent-spectral sensitizing polymethine dye
US3575993A (en) Certain phenacyl pyridinium compounds
US3684729A (en) Brightener compositions
EP0191491B1 (en) Silver halide photographic material
US3652284A (en) Photographic silver halide emulsion containing a methine dye
US3398145A (en) Dyes for photographic filter and antihalation layers
US3401404A (en) Merocyanine dye-sensitized photographic materials comprising silver halide emulsion layers containing azo-dyes
US3615545A (en) Novel mordant compositions and photographic elements containing same
US3425834A (en) Mordants for bleachable filter layers
US3094418A (en) Silver halide meulsions containing cationic oxonol and benzylidene dyes
US3485632A (en) Photographic material containing antihalation or filter dye layer
US3468883A (en) Oxonol dyes for light filtering layers in photographic elements