US3442782A - Electrochemical electrode - Google Patents

Electrochemical electrode Download PDF

Info

Publication number
US3442782A
US3442782A US552597A US3442782DA US3442782A US 3442782 A US3442782 A US 3442782A US 552597 A US552597 A US 552597A US 3442782D A US3442782D A US 3442782DA US 3442782 A US3442782 A US 3442782A
Authority
US
United States
Prior art keywords
membrane
electrode
container
tube
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US552597A
Inventor
Stanley L Shiller
Martin S Frant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermo Orion Inc
Original Assignee
Orion Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Research Inc filed Critical Orion Research Inc
Application granted granted Critical
Publication of US3442782A publication Critical patent/US3442782A/en
Anticipated expiration legal-status Critical
Assigned to FIRST NATIONAL BANK OF BOSTON, THE reassignment FIRST NATIONAL BANK OF BOSTON, THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORION RESEARCH INCORPORATED, A MA. CORP.
Assigned to ORION RESEARCH INCORPORATED reassignment ORION RESEARCH INCORPORATED RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: FIRST NATIONAL BANK OF BOSTON, THE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Definitions

  • a potentiometric electrode structure formed of a pair of coaxial, spaced-apart cylinders of electrically insulating material.
  • a wafer of ion-sensitive material is disposed in one open end of the outer cylinder such that the periphery of the wafer is in substantially continuous ribbon contact with the edge of the opening.
  • the inner container is sealed to the inner surface of the wafer and is resiliently biased against the wafer so as to force it into the ribbon contact.
  • the material of the outer container is deformable so that the pressure of the wafer against the ribbon contact creates a seal.
  • the inner container is intended to contain an internal reference electrode and electrolyte.
  • This application relates to electrochemical devices and more particularly to an electrode structure for electrochemical analysis.
  • A is the activity of the desired ion in the sample solution.
  • a membrane of a crystalline fluoride salt highly insoluble in aqueous solution, when separating two solutions, one of which is a reference solution and the other of which is the sample solution, will provide a Nernstian potential corresponding to the fluoride ion activity in the sample solution.
  • such salts are a number of the rare-earth metal fluorides such as LaF CeF PrF NdF and others such as BiF and PbF
  • sulfide ion activity can be determined, particularly by using very pure Ag S membranes.
  • these crystalline materials not only need to be highly insoluble but should be substantially imporous.
  • the rare earth trifluorides typically are used as massive monocrystals; where the membrane crystal can be grown, if at all, with great difiiculty, a highly compressed polycrystalline membrane can be formed instead, typically as in the case of Ag S.
  • such electrodes are formed using a very highly electrically resistive glass or synthetic polymeric tube as the container for the internal reference electrolyte, the membrane being sealed across an end of the tube in contact with the reference electrolyte,
  • the usual sealing methods have not been very satisfactory in providing leakage-free seals.
  • a number of epoxy resins, polyester resins, waxes, etc. have been found to be quite unsatisfactory in that they do not bind properly to the crystal itself, or permit aqueous leakage at the crystal-sealant interface.
  • FIG. 1 is an elevated schematic view of a section through an electrode embodying the principles of the present invention.
  • FIG. 2 is a schematic section through a portion of an electrode of the prior art illustrating one of the problems outlined above.
  • FIG. 1 there will be seen an embodiment of the electrode structure of the present invention including means for containing a body of reference electrolytic fluid and comprising preferably a double-walled container formed of outer shell 20 and inner tube 22.
  • shell 20 and tube 22 are hollow cylinders and are coaxial with one another, shell 20 being larger in diameter and longer than tube 22.
  • Both tube 22 and shell 20 are preferably both formed of a high electrical resistance, substantially chemically inert material (at least to the electrolytes involved) such as polyvinyl chloride, polytetrafiuoroethylene or the like, which is preferably deformable under pressure.
  • One end of shell 20 is covered with a threaded, centrally apertured cap 24.
  • Adjacent other end 26 of shell 20 is an internally conically tapered lip 28 arranged so that the opening at end 26 is reduced, i.e., of lesser diameter than the internal diameter of the remainder of the shell.
  • End 26 of shell 20 is substantially flat, i.e., a cross-sectional plane, so that the latter, intersecting the internal conical taper of lip 28, forms sharp edge 30 at the periphery of the opening at end 26.
  • crystalline, ion-sensitive membrane 32 Disposed within the opening of shell 20 at end 26 is crystalline, ion-sensitive membrane 32 of the type hereinbefore described, preferably formed in a frustoconical shape, i.e., the part of an isoceles conical solid formed by cutting off the top of a cone with a plane parallel to the plane of the base.
  • Membrane 32 is disposed such that the smaller area planar surface 34 thereof extends outwardly from the opening in shell 20 beyond the plane of end 26, the larger area planar surface 36 being therefore disposed within the interior of the shell. It will be seen then that edge 26 continually contacts the conical periphery of membrane 32, preferably along an intersecting circular line lying in a plane parallel to the planes of surfaces 34 and 36.
  • the solid conical angle of membrane 32 is preferably less (i.e., more acute) than the conical angle of the taper of lip 28.
  • Tube 22 which is of lesser internal diameter than the diameter of surface 36, is positioned so that one end 40 of the tube bears against O-ring 38 of like diameter, the O-ring being disposed on and concentric with surface 36.
  • O-ring 38 which is preferably elastically deformable by lesser pressure than that which would unduly stress membrane 32, and which is formed of electrically insulating material, such as polytetrafluoroethylene, hence comprises means for sealing end 40 of tube 22 to surface 36.
  • Tube 22 is held against O-ring 38 by pressure exerted by resilient means such as spring 42, the latter being maintained in compression between cap 24 and opposite end 44 of tube 22.
  • resilient means such as spring 42
  • the O-ring not only serves as a seal but more importantly tends to distribute the pressure of tube 22 more widely over surface 36 of membrane 32, thus minimizing the possibility of fracture of the crystal by stresses which might occur due to irregularities in the edge of end 40 of tube 22.
  • Electrode 46 Positioned within tube 22 and extending preferably from a position adjacent end 40 (but not touching surface 36) to and through seal or plug 45 in opposite end 44 of the tube, is electrically conductive reference electrode 46, usually of a metal and a salt thereof selected according to the nature of the ion to be measured.
  • plug 45, tube 22, O-ring 38 and surface 36 form a sealed enclosure in which is disposed a body of reference electrolyte 48 in contact with both surface 36 and elec trode 44.
  • Electrode 46 is connected to the usual coaxial cable 50 which preferably extends through the central aperture of the cap.
  • electrode 46 can be a silver-silver chloride electrode and electrolyte 48 can be an aqueous solution with fixed fluoride and silver levels, e.g., l N KF and 1 N KCl saturated with AgCl.
  • electrolyte 48 can be an aqueous solution with fixed fluoride and silver levels, e.g., l N KF and 1 N KCl saturated with AgCl.
  • FIG. 2 there is shown a typical prior art structure comprising a cylindircal membrane 50 held within shell 52 by a press fit into O-ring seal 54, thereby forming an end of an enclosure for reference electrolyte fluid 58.
  • O-ring seal 54 forms at least one annular groove 56 immediately around the edge of membrane 50. Such grooves have been found to trap sample solution, as by capillarity. When such an assembly is transferred from one sample solution to a different sample solution in a series of measurements, the trapped fluid in groove 56 interferes seriously with the subsequent measurement.
  • an electrochemical electrode assembly comprising, in combination,
  • an electrochemical electrode assembly as defined in claim 1 including a second hollow container of electrically resistive material disposed within and spaced from said first container, said second container having an opening therein;
  • said means for resiliently biasing said membrane comprises spring means disposed for urging said second container toward the membrane.
  • an electrochemical electrode assembly as defined in claim 4 including a reference electrolyte solution disposed within said second container so as to provide the only electrically conductive path between said reference electrode and said surface of said membrane.
  • said first-mentioned container is a substantially cylindrical elongated element and said end has an internally, substantially conically tapered lip terminating at said opening as a substantially circular aperture of reduced diameter in a substantially planar surface disposed diametrically across the longitudinal axis of said element so as to form a sharp, acutely angled edge around said aperture, and
  • said membrane is substantially a frustoconical element the solid conical angle of which is more acute than the conical taper of said lip, said membrane be- 5 ing disposed in said aperture such that said edge is in continuous contact with the conical surface which constitutes the edge surface of said membrane;
  • the base plane of the frustoconical element being disposed within said first-mentioned container.
  • an electrochemical electrode assembly as defined in claim 6 including a second hollow cylindrical container disposed within and spaced coaxially from said first mentioned container, said second container having an end opening therein; and
  • a pressure deformable O-ring disposed on said base plane of said frustoconical element between the latter and the periphery of the opening in said second container;

Description

May 6, 1969 s. L. SHILLER ET L ELECTROCHEMICAL ELECTRODE Filed May 24, 1966 J m a w w 2 N 8 Q 7// 2 f, m 1 m 2 t 3 M FIG.I
INVENTORS STANLEY L. SHILLER MARTIN J. FRANT RM) 3% I ATTORNEY United States Patent US. Cl. 204-195 8 Claims ABSTRACT OF THE DISCLOSURE A potentiometric electrode structure formed of a pair of coaxial, spaced-apart cylinders of electrically insulating material. A wafer of ion-sensitive material is disposed in one open end of the outer cylinder such that the periphery of the wafer is in substantially continuous ribbon contact with the edge of the opening. The inner container is sealed to the inner surface of the wafer and is resiliently biased against the wafer so as to force it into the ribbon contact. The material of the outer container is deformable so that the pressure of the wafer against the ribbon contact creates a seal. The inner container is intended to contain an internal reference electrode and electrolyte.
This application relates to electrochemical devices and more particularly to an electrode structure for electrochemical analysis.
In the United States applications Ser. No. 511,751, filed by Martin S. Frant and James W. Ross on Dec. 6, 1965, and 525,197, filed by Martin S. Frant on Feb. 4', 1966, both assigned to the assignee of this application, there are disclosed ion-sensitive electrodes using crystalline materials as ion-sensitive membranes. Particularly, these crystalline materials are used to separate two solutions one of which contains a reference solution having a substantially fixed conceneration of the ions to which the membrane is sensitive, and the other of which is the sample solution of which the concentration or activity of the particular ion in question is to be determined. A potential E will develop across the crystalline membrane when in contact with the two solutions, the potential being in accordance with the well known Nernst equation as follows:
(1) E:constant-k In A in which A is the activity of the desired ion in the sample solution. Specifically, it has been found that a membrane of a crystalline fluoride salt, highly insoluble in aqueous solution, when separating two solutions, one of which is a reference solution and the other of which is the sample solution, will provide a Nernstian potential corresponding to the fluoride ion activity in the sample solution. Examples of such salts are a number of the rare-earth metal fluorides such as LaF CeF PrF NdF and others such as BiF and PbF Similarly, sulfide ion activity can be determined, particularly by using very pure Ag S membranes. These crystalline materials not only need to be highly insoluble but should be substantially imporous. For example, the rare earth trifluorides typically are used as massive monocrystals; where the membrane crystal can be grown, if at all, with great difiiculty, a highly compressed polycrystalline membrane can be formed instead, typically as in the case of Ag S.
All of these crystalline membranes exhibit fairly large bulk resistivities (ca. ohm-cm.) Consequently, the potential developed across the crystal membrane is determined with the usual high input impedance electrometer such as a vacuum tube voltmeter.
In constructing electrodes using these crystalline ionsensitive membranes, it is necessary to insure that no low impedance paths exist between the internal reference solution and the sample solution, otherwise the voltage developed, at best will be drifty, and certainly will be inaccurate.
Typically, such electrodes are formed using a very highly electrically resistive glass or synthetic polymeric tube as the container for the internal reference electrolyte, the membrane being sealed across an end of the tube in contact with the reference electrolyte, The usual sealing methods have not been very satisfactory in providing leakage-free seals. Typically, a number of epoxy resins, polyester resins, waxes, etc., have been found to be quite unsatisfactory in that they do not bind properly to the crystal itself, or permit aqueous leakage at the crystal-sealant interface.
In addition, it is important that no grooves or other depressions be formed adjacent to the crystalline surface as these provide minute traps for sample solutions. When the electrode is placed into another sample solution having a different ionic activity, the trapped portion of the previous sample tends to provide a spurious reading, or at least cause the electrode potential to drift until the trapped solution diffuses out or is mixed with the new sample solution.
It is, therefore, a principal object of the present invention to provide an improved electrode assembly employing crystalline ion-sensitive membranes, which electrode assembly is substantially free of the foregoing problems in that the crystalline seal is substantially electrically leak free and a minimum of surface irregularities exist adjacent the crystalline material.
Other objects of the invention will in part be obvious and will in part appear hereinafter. The invention accordingly comprises the apparatus possessing the construction, combination of elements, and arrangement of parts which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.
For a fuller understanding of the nature and objects of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein:
FIG. 1 is an elevated schematic view of a section through an electrode embodying the principles of the present invention; and
FIG. 2 is a schematic section through a portion of an electrode of the prior art illustrating one of the problems outlined above.
Referring now to FIG. 1 there will be seen an embodiment of the electrode structure of the present invention including means for containing a body of reference electrolytic fluid and comprising preferably a double-walled container formed of outer shell 20 and inner tube 22. Preferably shell 20 and tube 22 are hollow cylinders and are coaxial with one another, shell 20 being larger in diameter and longer than tube 22. Both tube 22 and shell 20 are preferably both formed of a high electrical resistance, substantially chemically inert material (at least to the electrolytes involved) such as polyvinyl chloride, polytetrafiuoroethylene or the like, which is preferably deformable under pressure. One end of shell 20 is covered with a threaded, centrally apertured cap 24. Adjacent other end 26 of shell 20 is an internally conically tapered lip 28 arranged so that the opening at end 26 is reduced, i.e., of lesser diameter than the internal diameter of the remainder of the shell. End 26 of shell 20 is substantially flat, i.e., a cross-sectional plane, so that the latter, intersecting the internal conical taper of lip 28, forms sharp edge 30 at the periphery of the opening at end 26.
Disposed within the opening of shell 20 at end 26 is crystalline, ion-sensitive membrane 32 of the type hereinbefore described, preferably formed in a frustoconical shape, i.e., the part of an isoceles conical solid formed by cutting off the top of a cone with a plane parallel to the plane of the base. Membrane 32 is disposed such that the smaller area planar surface 34 thereof extends outwardly from the opening in shell 20 beyond the plane of end 26, the larger area planar surface 36 being therefore disposed within the interior of the shell. It will be seen then that edge 26 continually contacts the conical periphery of membrane 32, preferably along an intersecting circular line lying in a plane parallel to the planes of surfaces 34 and 36. The solid conical angle of membrane 32 is preferably less (i.e., more acute) than the conical angle of the taper of lip 28.
Tube 22 which is of lesser internal diameter than the diameter of surface 36, is positioned so that one end 40 of the tube bears against O-ring 38 of like diameter, the O-ring being disposed on and concentric with surface 36. O-ring 38, which is preferably elastically deformable by lesser pressure than that which would unduly stress membrane 32, and which is formed of electrically insulating material, such as polytetrafluoroethylene, hence comprises means for sealing end 40 of tube 22 to surface 36.
Tube 22 is held against O-ring 38 by pressure exerted by resilient means such as spring 42, the latter being maintained in compression between cap 24 and opposite end 44 of tube 22. Thus, the O-ring not only serves as a seal but more importantly tends to distribute the pressure of tube 22 more widely over surface 36 of membrane 32, thus minimizing the possibility of fracture of the crystal by stresses which might occur due to irregularities in the edge of end 40 of tube 22.
Positioned within tube 22 and extending preferably from a position adjacent end 40 (but not touching surface 36) to and through seal or plug 45 in opposite end 44 of the tube, is electrically conductive reference electrode 46, usually of a metal and a salt thereof selected according to the nature of the ion to be measured. Thus, as shown, plug 45, tube 22, O-ring 38 and surface 36 form a sealed enclosure in which is disposed a body of reference electrolyte 48 in contact with both surface 36 and elec trode 44. Electrode 46 is connected to the usual coaxial cable 50 which preferably extends through the central aperture of the cap.
Typically, where membrane 32 is a rare-earth metal fluoride, electrode 46 can be a silver-silver chloride electrode and electrolyte 48 can be an aqueous solution with fixed fluoride and silver levels, e.g., l N KF and 1 N KCl saturated with AgCl. Other typical electrode-electrolyte materials, depending on the nature of the membrane, are described in the above-noted applications or will be obvious to those skilled in the art.
Now it will be seen that because membrane 32 is held under the bias of spring in contact with edge 30, and because shell 20 (at least adjacent edge 30) is compliant, the line-contact between the membrane and shell edge tends to become a ribbon contact and form an excellent pressure seal without exerting any undue stresses on the less compliant or more brittle crystalline structure of the membrane. Because the structure of the electrode is double-walled, the seal formed between membrane and shell edge lies at the internal surface of the interspace between the tube and shell and therefore is not exposed to internal electrolyte unless fluid leakage should occur at the seal provided by O-ring 38. Ordinarily, the double-seal arrangement insures that no low electrical impedance path will occur between reference electrolyte 48 and a sample solution contacting surface 34. To this end, one can fill the interspace with a silicone fluid or other material immiscible with water and unreactive with either of the reference or sample solutions.
Of equal importance are the facts that the junction between the conical periphery of the membrane and end 26 is a substantially open, obtuse angle, and that both end 26 and surface 34 are substantially planar. Being readily drained, this shape will not tend to hold or trap sample fluid when the electrode is removed from a solution. For example, referring to FIG. 2 there is shown a typical prior art structure comprising a cylindircal membrane 50 held within shell 52 by a press fit into O-ring seal 54, thereby forming an end of an enclosure for reference electrolyte fluid 58. It will be apparent that O-ring seal 54 forms at least one annular groove 56 immediately around the edge of membrane 50. Such grooves have been found to trap sample solution, as by capillarity. When such an assembly is transferred from one sample solution to a different sample solution in a series of measurements, the trapped fluid in groove 56 interferes seriously with the subsequent measurement.
Although the embodiment shown has been described as comprising elements of circular cross section, this is not to be construed as a limitation inasmuch as other cross sectional configurations are useful if not as easy to manufacture.
Since certain changes may be made in the above apparatus without departing from the scope of the invention herein involved it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted in an illustrative and not in a limiting sense.
What is claimed is:
1. In an electrochemical electrode assembly comprising, in combination,
a substantially rigid, imporous ion-sensitive membrane;
a hollow container of electrically resistive material and having an end integral therewith defining an opening, said membrane being disposed in said opening such that the entire periphery of the latter is in continuous ribbon contact with the edge surface of said membrane, at least said periphery being more deformable under pressure than said membrane; and
means resiliently biasing said membrane into said contact so as to deform said periphery to form said ribbon contact and seal said membrane within said opening.
2. In an electrochemical electrode assembly as defined in claim 1 including a second hollow container of electrically resistive material disposed within and spaced from said first container, said second container having an opening therein; and
means sealing said opening to the surface of said membrane facing inwardly of said first-mentioned container.
3. In an electrochemical electrode assembly as defined in claim 2 wherein said means for resiliently biasing said membrane comprises spring means disposed for urging said second container toward the membrane.
4. In an electrochemical electrode assembly as defined in claim 2 including a reference electrode positioned within said second container.
5. In an electrochemical electrode assembly as defined in claim 4 including a reference electrolyte solution disposed within said second container so as to provide the only electrically conductive path between said reference electrode and said surface of said membrane.
6. In an electrochemical electrode assembly as defined in claim 1 wherein said first-mentioned container is a substantially cylindrical elongated element and said end has an internally, substantially conically tapered lip terminating at said opening as a substantially circular aperture of reduced diameter in a substantially planar surface disposed diametrically across the longitudinal axis of said element so as to form a sharp, acutely angled edge around said aperture, and
wherein said membrane is substantially a frustoconical element the solid conical angle of which is more acute than the conical taper of said lip, said membrane be- 5 ing disposed in said aperture such that said edge is in continuous contact with the conical surface which constitutes the edge surface of said membrane;
the base plane of the frustoconical element being disposed within said first-mentioned container.
7. In an electrochemical electrode assembly as defined in claim 6 including a second hollow cylindrical container disposed within and spaced coaxially from said first mentioned container, said second container having an end opening therein; and
a pressure deformable O-ring disposed on said base plane of said frustoconical element between the latter and the periphery of the opening in said second container;
6 tainer and spaced from the latter and from said base plane, and a body of reference electrolyte solution within said second container and in contact with both said reference electrode and said membrane.
References Cited UNITED STATES PATENTS 3,211,640 10/1965 Leonard et al 204l95.1
FOREIGN PATENTS 5/1947 Great Britain.
JOHN H. MACK, Primary Examiner.
and means for biasing said second container against 15 TUNG, Assistant Examinersaid O-ring. 8. In an electrochemical electrode assembly as defined in claim 7 including;
a reference electrode disposed within said second con- US. Cl. X.R. 204280, 286, 295
US552597A 1966-05-24 1966-05-24 Electrochemical electrode Expired - Lifetime US3442782A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US55259766A 1966-05-24 1966-05-24

Publications (1)

Publication Number Publication Date
US3442782A true US3442782A (en) 1969-05-06

Family

ID=24206012

Family Applications (1)

Application Number Title Priority Date Filing Date
US552597A Expired - Lifetime US3442782A (en) 1966-05-24 1966-05-24 Electrochemical electrode

Country Status (1)

Country Link
US (1) US3442782A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497424A (en) * 1968-03-19 1970-02-24 Orion Research Cation sensitive electrode and process
US3617460A (en) * 1969-12-17 1971-11-02 Beckman Instruments Inc Electrode assembly
US3708411A (en) * 1969-04-02 1973-01-02 Foxboro Co Construction of ion electrode
DE2400613A1 (en) * 1973-01-15 1974-07-18 Control Data Corp ELECTRODE ARRANGEMENT AND ELECTROCHEMICAL ELECTRODE FOR DETERMINING ION ACTIVITY IN A SOLUTION
JPS5194290U (en) * 1975-01-27 1976-07-28
US4162211A (en) * 1977-02-25 1979-07-24 Beckman Instruments, Inc. Combination electrode assembly
EP0022625A1 (en) * 1979-07-06 1981-01-21 Beckman Instruments, Inc. Short path liquid junction structure for electrochemical electrodes
US4285791A (en) * 1979-07-06 1981-08-25 Eppendorf Geratebau Netherler + Hinz Gmbh Electrode system
WO1986000137A1 (en) * 1984-06-11 1986-01-03 Bukamier Gary L Improvements in electrochemical sensors
US5019238A (en) * 1984-03-28 1991-05-28 Baxter Diagnostics Inc. Means for quantitative determination of analyte in liquids
US5393402A (en) * 1994-02-09 1995-02-28 Hach Company Electrode with crystal membrane
US5830338A (en) * 1996-03-01 1998-11-03 Orion Research Inc. Combination ISE and solutions therefor
US20110308946A1 (en) * 2008-12-22 2011-12-22 Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik mbH + Co. K Ion-Selective Electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB587967A (en) * 1944-12-12 1947-05-09 Marconi Instruments Ltd Improvements in glass electrodes for the measurement of electro-chemical properties of liquids
US3211640A (en) * 1962-01-29 1965-10-12 Beckman Instruments Inc Encapsulated transducer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB587967A (en) * 1944-12-12 1947-05-09 Marconi Instruments Ltd Improvements in glass electrodes for the measurement of electro-chemical properties of liquids
US3211640A (en) * 1962-01-29 1965-10-12 Beckman Instruments Inc Encapsulated transducer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497424A (en) * 1968-03-19 1970-02-24 Orion Research Cation sensitive electrode and process
US3708411A (en) * 1969-04-02 1973-01-02 Foxboro Co Construction of ion electrode
US3617460A (en) * 1969-12-17 1971-11-02 Beckman Instruments Inc Electrode assembly
DE2400613A1 (en) * 1973-01-15 1974-07-18 Control Data Corp ELECTRODE ARRANGEMENT AND ELECTROCHEMICAL ELECTRODE FOR DETERMINING ION ACTIVITY IN A SOLUTION
JPS5194290U (en) * 1975-01-27 1976-07-28
US4162211A (en) * 1977-02-25 1979-07-24 Beckman Instruments, Inc. Combination electrode assembly
EP0022625A1 (en) * 1979-07-06 1981-01-21 Beckman Instruments, Inc. Short path liquid junction structure for electrochemical electrodes
US4285791A (en) * 1979-07-06 1981-08-25 Eppendorf Geratebau Netherler + Hinz Gmbh Electrode system
US5019238A (en) * 1984-03-28 1991-05-28 Baxter Diagnostics Inc. Means for quantitative determination of analyte in liquids
WO1986000137A1 (en) * 1984-06-11 1986-01-03 Bukamier Gary L Improvements in electrochemical sensors
US5393402A (en) * 1994-02-09 1995-02-28 Hach Company Electrode with crystal membrane
US5830338A (en) * 1996-03-01 1998-11-03 Orion Research Inc. Combination ISE and solutions therefor
US6068744A (en) * 1996-03-01 2000-05-30 Orion Research, Inc. Combination ISE and solutions therefor
US20110308946A1 (en) * 2008-12-22 2011-12-22 Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik mbH + Co. K Ion-Selective Electrode
US8961758B2 (en) * 2008-12-22 2015-02-24 Endress + Hauser Conducta Gesellschaft für Mess—und Regeltechnik mbH + Co. KG Ion-selective electrode

Similar Documents

Publication Publication Date Title
US3492216A (en) Electrochemical device
US3442782A (en) Electrochemical electrode
US4128468A (en) Electrode structures
US3103480A (en) Double bridge electrode for electro-
US3098813A (en) Electrode
US2755243A (en) Electrochemical electrode structure
US4077861A (en) Polarographic sensor
US3498899A (en) Electrochemical electrode assembly
US4105509A (en) Combination measuring and reference potential electrode and method of measuring ph in samples subject to large voltage gradients
US3278408A (en) Electrochemical cell
GB1131574A (en) Fluoride sensitive electrode
US4053382A (en) Liquid junction of reference electrode
US3334039A (en) Electrode construction in oxygen sensor
US3505196A (en) Reference electrode
GB1127846A (en) Electrochemical cell
US2890414A (en) Electrochemical coulometer
US20220113282A1 (en) Electrochemical sensor
US4360415A (en) Noise suppressing bypass for reference electrode
US4414093A (en) Multifunctional reference electrode
US3806440A (en) Electrode with replaceable ion selective glass sensor
US3406109A (en) Polarographic sensor
US3476672A (en) Electrode assembly
US4182668A (en) Ion selective electrode
US2684938A (en) Device for measuring the ph
GB1436194A (en) Oxygen sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRST NATIONAL BANK OF BOSTON, THE

Free format text: SECURITY INTEREST;ASSIGNOR:ORION RESEARCH INCORPORATED, A MA. CORP.;REEL/FRAME:004666/0862

Effective date: 19860624

AS Assignment

Owner name: ORION RESEARCH INCORPORATED, A CORP. OF MA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST NATIONAL BANK OF BOSTON, THE;REEL/FRAME:005688/0306

Effective date: 19910430