US3401534A - Condensate removal means for air conditioners - Google Patents

Condensate removal means for air conditioners Download PDF

Info

Publication number
US3401534A
US3401534A US612032A US61203267A US3401534A US 3401534 A US3401534 A US 3401534A US 612032 A US612032 A US 612032A US 61203267 A US61203267 A US 61203267A US 3401534 A US3401534 A US 3401534A
Authority
US
United States
Prior art keywords
condensate
blower
air
condenser
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US612032A
Inventor
Kenneth E Marsteller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Space Systems Loral LLC
Original Assignee
Philco Ford Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philco Ford Corp filed Critical Philco Ford Corp
Priority to US612032A priority Critical patent/US3401534A/en
Application granted granted Critical
Publication of US3401534A publication Critical patent/US3401534A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F13/224Means for preventing condensation or evacuating condensate for evacuating condensate in a window-type room air conditioner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser

Definitions

  • This invention provides an air conditioner of the kind including a blower of the cross'flow type, and is especially concerned with the disposal of condensate which forms on the air conditioner evaporator.
  • the invention overcomes the problems encountered in the prior art by providing a new combination of cross flow air circulating blower and rotary disc elements extending perpendicular to the axis of the blower and spaced along the axis thereof.
  • the blades and disc elements are combined to form a unitary wheel structure and the blower is so disposed within the air conditioner that the discs dip into a condensate sump.
  • the apparatus of the invention is featured by the provision of an arcuate channel or shroud for each disc, the shrouds being constructed and arranged to prevent condensate water, centrifugally propelled by the discs into the condenser air stream, from being expelled and lost through the air inlet of the condenser blower.
  • the cabinet desirably is of the so-called compact type. It contains the usual evaporator E, to cool and dehumidify an air stream which it receives through evaporator inlet EI and filter F, and which returns to room R through outlet EO. Incident to the dehumidifying of the air stream, condensate water is ordinarily deposited on evaporator surfaces exposed to this air stream. This condensate must be removed from the evaporator to permit proper and continued operation of the air conditioner.
  • Conduit means 11 are provided for gravitational transfer of the condensate from the bottom of evaporator E to a specially arranged sump 12, disposed at the bottom of condenser chamber CC. Except for conduit 11, the condenser chamber is separated from evaporator chamber EC by a divider D.
  • the divider structure, through which this conduit extends, also includes the usual guides SC, SE, one in each chamber CC, EC. These guides cooperate in known manner with the blower wheels, to be described presently, and each wheel has the usual vortex-forming member VC, VE.
  • sump 12 for condensate water is co-extensive with air conditioner condenser unit C, and this unit extends over large part of the width of air conditioner cabinet 10, as shown in FIGURE 2.
  • Two blower wheel structures 13, 14 extend similarly across the width of the device, and are installed, respectively, in an upper part of evaporator chamber EC and a lower part of condenser chamber CC, the latter directly above sump 12.
  • Both blowers are of the cross-flow type, and are associated with the corresponding guides SC, SE and vortex formers VC, VE, as is known for such blowers in general.
  • condenser blower wheel 14 is equipped with a series of radially extending flanges 15, perpendicular to the axis of the blower, which flanges may also be called annular disc elements. As best shown in FIGURE 3 these flanges are arranged to dip into sump 12 in order to dispose of condensate accumulating in this sump.
  • a unitary wheel structure 14 is provided, which includes flanges 15 and also the required air impelling cross-flow blades or vanes 16. The latter vanes are held between solid end plates P of wheel structure 14, as is known to the art.
  • the Wheel structure is rotated by suitable drive means, and a belt 17 interconnects it with evaporator blower wheel 13.
  • condensate then enters the air stream passing through condenser C, and is evaporated on the condenser surfaces.
  • each annular disc or flange 15 of the new blower wheel unit advantageously has a shroud or channel 18, of arcuate form, to prevent condensate ejection through the air inlet port.
  • Each channel extends along a certain arcuate portion of the rim of the corresponding flange 15, to wit, the portion of such rim disposed near air inlet CI.
  • the open side of each channel 18 faces an arcuate edge portion of the corresponding flange 15, extends concentrically along said edge, and envelops the same but is slightly wider than the flange is thick so that the flange can freely rotate in the channel.
  • the channels rise from sump 12 so that condensate projected onto the channel inside walls drains back along these walls into the sump.
  • condensate discharge and control units each comprising .a flange and channel 18, are thus provided. These units are spaced, one from the other, by suitable distances axially of the condenser blower wheel (FIG- URE 2), for instance as shown, by distances up to the approximate length of the diameter of a flange 15.
  • the channels do not seriously impede the air flow induced by the blower, while they fully prevent any discharge of condensate through the air inlet.
  • vortex member VC for condenser blower wheel 14 Adjacent the upper end of each channel 18, vortex member VC for condenser blower wheel 14 is slotted, as is indicated at 19 in FIGURE 2. This is done to provide room for condensate impelling flange 15. Between the slotted regions, member VC extends across the entire space adjacent the Wheel, in form of a shield, as is well known to the .art. The shield extends from a position spaced from the wheel to a position very close to, but not contacting, the air impelling vanes 16.
  • the new condenser cross-flow blower wheel 14 rotates in the direction of the arcuate arrow shown in FIGURE 3. While producing a circulation of air through chamber CC, condenser C, and space 0, and While of course a separate circulation of air is maintained by wheel 13 between evaporator inlet EI and outlet EO (FIGURE 1), the new condenser cross-flow blower also operates effectively to dispose of condensate accumulated in sump 12. For this purpose, as already noted, flanges 15 centrifugally throw condensate water, which they pick up from the sump, into the cross-flow air stream propelled by vanes 16.
  • the condensate is picked up by the rotating flanges from local portions of sump 12, as will be appreciated from inspection of FIGURES 2 and 3, and is then propelled by these flanges into the air stream entering the condenser, while being prevented by shrouds 18 from being expelled without exposure to the condenser coils.
  • the air stream, with drops of the condensate therein, passes over the hot coils and heat exchange surfaces of condenser C, FIGURE 1, and through condenser outlet CO into outer area 0. While passing through the hot condenser, all or most of the condensate water is evaporated.
  • the air impelling vanes 16 of condenser cross-flow blower 14 are located in such a way, by suitable journalling of blower shaft in air conditioner cabinet 10, that the vanes remain above the condensate level in sump 12.
  • a maximum level for water in the condensate sump can be fixed by well known means, not shown, and in normal operation the condensate level remains substantially constant as the rotating flanges remove all condensate that they encounter in the sump.
  • a refrigerating system having an evaporator and a condenser; means providing for circulation of air in heat exchange relation with the evaporator to cool the air and remove moisture therefrom as condensate; cross-flow blower means having an inlet and an outlet and providing for circulation of air in heat exchange relation with the condenser to cool the latter, said cross-flow blower means including disc means disposed along the axis of the blower and extending generally perpendicular thereto; sump means for receiving said condensate from said evaporator and so disposed that said disc means dips therein whereby to entrain the condensate in the condenser air stream when the blower is.
  • conduit means extending from a low portion of said evaporator to said sump means for transfer of said condensate to said sump and disc means.
  • An air conditioning unit including: a refrigerating system having an evaporator and a condenser; means providing for circulation of air in heat exchange relation with the evaporator to cool the air and remove moisture therefrom as condensate; cross-flow blower means having an inlet and an outlet and providing for circulation of air in heat exchange relation with the condenser to cool the latter, said cross-flow blower means including a plurality of disc elements disposed along the axis of the blower and extending generally perpendicular thereto; sump means for receiving said condensate from said evaporator and so disposed that said disc elements dip therein whereby to entrain the condensate in the condenser air stream when the blower is rotated; and shroud means associated with each disc element to prevent discharge of condensate through said blower inlet opening.
  • Refrigerating apparatus including an evaporator and a condenser; means to collect condensate water formed on said evaporator; a cross-flow blower wheel having vanes for circulating air from an inlet to and in heat exchange relation with said condenser to cool the latter; a plurality of disc elements secured to said wheel, spaced apart along the axis of the wheel, and extending generally perpendicular thereto; a sump below said cross-flow blower vanes for receiving the collected condensate; means to rotate the wheel in order that, incident to circulation of air, said disc elements entrain the condensate from the sump .and project it into the circulating air; and a shroud associated with each disc element to prevent discharge of condensate through said inlet.
  • Apparatus as described in claim 6 additionally comprising vortex baffle structure extending through the space adjacent the blower wheel to a position close to said vanes to aid in said circulation of air, said vortex baffle structure being slotted to accommodate said disc elements and shrouds.
  • each shroud is stationarily positioned along a portion of the periphery of the corresponding disc element adjacent said inlet to prevent discharge of condensate through said inlet.
  • each shroud is an arcuate channel concentric with said wheel, partly surrounding a peripheral portion of the corresponding disc element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Description

Sept. 17, 1968 K. E. MARSTELLER CONDENSATE REMOVAL MEANS FOR AIR CONDITIONERS Filed Jan. 26, 1967 INVENTOR. lam 777 MAIJVZYZFA United States Patent 3,401,534 CONDENSATE REMOVAL MEANS FOR AIR CONDITIONERS Kenneth E. Marsteller, Willow Grove, Pa., assignor to Philco-Ford Corporation, Philadelphia, Pa., a corporation of Delaware Filed Jan. 26, 1967, Ser. No. 612,032 Claims. (Cl. 62-280) ABSTRACT OF THE DISCLOSURE An air conditioner having a blower wheel including disc means dipping into a condensate sump. Rotation of the blower, equipped with discs, results in entrainment of the condensate in the condenser air stream. Shrouds associated with the discs prevent discharge of condensate out of the air conditioner through the blower inlet port.
BACKGROUND OF THE INVENTION 1. Field 0 the invention This invention provides an air conditioner of the kind including a blower of the cross'flow type, and is especially concerned with the disposal of condensate which forms on the air conditioner evaporator.
2. Description of the prior art In cross-flow blower air conditioners heretofore known to the art difficulties have been encountered in disposing of the condensate which forms on the evaporator. Since air is inletted to the blower across its entire face, instead of axially thereof, the usual arrangements for entraining condensate in the air stream are not feasible, particularly since the blower would tend to expel the condensate out of the machine through its air inlet opening. Attempts have been made to meet this problem, for example by providing a belt to carry the condensate to a point of disposal, but these prior arrangements have been complicated and relatively expensive.
SUMMARY OF THE INVENTION The invention overcomes the problems encountered in the prior art by providing a new combination of cross flow air circulating blower and rotary disc elements extending perpendicular to the axis of the blower and spaced along the axis thereof. In a preferred embodiment of the invention the blades and disc elements are combined to form a unitary wheel structure and the blower is so disposed within the air conditioner that the discs dip into a condensate sump. The apparatus of the invention is featured by the provision of an arcuate channel or shroud for each disc, the shrouds being constructed and arranged to prevent condensate water, centrifugally propelled by the discs into the condenser air stream, from being expelled and lost through the air inlet of the condenser blower.
BRIEF DESCRIPTION OF THE DRAWINGS 10 is provided, which is mounted in an aperture of a Wall W which separates a room R from an outer region 0.
"ice
The cabinet desirably is of the so-called compact type. It contains the usual evaporator E, to cool and dehumidify an air stream which it receives through evaporator inlet EI and filter F, and which returns to room R through outlet EO. Incident to the dehumidifying of the air stream, condensate water is ordinarily deposited on evaporator surfaces exposed to this air stream. This condensate must be removed from the evaporator to permit proper and continued operation of the air conditioner.
The condensate is removed through a condenser C, as is usual in general, but the invention uses a new, specific combination of elements for this purpose. Conduit means 11 are provided for gravitational transfer of the condensate from the bottom of evaporator E to a specially arranged sump 12, disposed at the bottom of condenser chamber CC. Except for conduit 11, the condenser chamber is separated from evaporator chamber EC by a divider D. The divider structure, through which this conduit extends, also includes the usual guides SC, SE, one in each chamber CC, EC. These guides cooperate in known manner with the blower wheels, to be described presently, and each wheel has the usual vortex-forming member VC, VE. Advantageously, sump 12 for condensate water is co-extensive with air conditioner condenser unit C, and this unit extends over large part of the width of air conditioner cabinet 10, as shown in FIGURE 2. Two blower wheel structures 13, 14 extend similarly across the width of the device, and are installed, respectively, in an upper part of evaporator chamber EC and a lower part of condenser chamber CC, the latter directly above sump 12. Both blowers are of the cross-flow type, and are associated with the corresponding guides SC, SE and vortex formers VC, VE, as is known for such blowers in general.
In accordance with the invention, condenser blower wheel 14 is equipped with a series of radially extending flanges 15, perpendicular to the axis of the blower, which flanges may also be called annular disc elements. As best shown in FIGURE 3 these flanges are arranged to dip into sump 12 in order to dispose of condensate accumulating in this sump. A unitary wheel structure 14 is provided, which includes flanges 15 and also the required air impelling cross-flow blades or vanes 16. The latter vanes are held between solid end plates P of wheel structure 14, as is known to the art. The Wheel structure is rotated by suitable drive means, and a belt 17 interconnects it with evaporator blower wheel 13. The condensate pickup flanges 15, which are characteristic of the new wheel, tend to discharge condensate centrifugally in all directions in their plane of rotation. Advantageously, such condensate then enters the air stream passing through condenser C, and is evaporated on the condenser surfaces.
A problem arises from the fact that the machine, as indicated above, is usually built in compact form. As a result of such construction, condenser cross-flow blower 7 wheel 14 must be installed in the close vicinity of condenser air inlet CI. This arrangement, combined with the use of condensate pickup flanges 15, tends to cause centrifugal discharge of some condensate through this air inlet. Such discharge is undesirable, a any condensate so discharged would not be evaporated. Therefore, each annular disc or flange 15 of the new blower wheel unit advantageously has a shroud or channel 18, of arcuate form, to prevent condensate ejection through the air inlet port. Each channel extends along a certain arcuate portion of the rim of the corresponding flange 15, to wit, the portion of such rim disposed near air inlet CI. The open side of each channel 18 faces an arcuate edge portion of the corresponding flange 15, extends concentrically along said edge, and envelops the same but is slightly wider than the flange is thick so that the flange can freely rotate in the channel. The channels rise from sump 12 so that condensate projected onto the channel inside walls drains back along these walls into the sump.
Several condensate discharge and control units, each comprising .a flange and channel 18, are thus provided. These units are spaced, one from the other, by suitable distances axially of the condenser blower wheel (FIG- URE 2), for instance as shown, by distances up to the approximate length of the diameter of a flange 15. By means of this arrangement the channels do not seriously impede the air flow induced by the blower, while they fully prevent any discharge of condensate through the air inlet.
Adjacent the upper end of each channel 18, vortex member VC for condenser blower wheel 14 is slotted, as is indicated at 19 in FIGURE 2. This is done to provide room for condensate impelling flange 15. Between the slotted regions, member VC extends across the entire space adjacent the Wheel, in form of a shield, as is well known to the .art. The shield extends from a position spaced from the wheel to a position very close to, but not contacting, the air impelling vanes 16.
In operation, the new condenser cross-flow blower wheel 14 rotates in the direction of the arcuate arrow shown in FIGURE 3. While producing a circulation of air through chamber CC, condenser C, and space 0, and While of course a separate circulation of air is maintained by wheel 13 between evaporator inlet EI and outlet EO (FIGURE 1), the new condenser cross-flow blower also operates effectively to dispose of condensate accumulated in sump 12. For this purpose, as already noted, flanges 15 centrifugally throw condensate water, which they pick up from the sump, into the cross-flow air stream propelled by vanes 16. The condensate is picked up by the rotating flanges from local portions of sump 12, as will be appreciated from inspection of FIGURES 2 and 3, and is then propelled by these flanges into the air stream entering the condenser, while being prevented by shrouds 18 from being expelled without exposure to the condenser coils. The air stream, with drops of the condensate therein, passes over the hot coils and heat exchange surfaces of condenser C, FIGURE 1, and through condenser outlet CO into outer area 0. While passing through the hot condenser, all or most of the condensate water is evaporated.
As clearly shown in FIGURE 3, the air impelling vanes 16 of condenser cross-flow blower 14 are located in such a way, by suitable journalling of blower shaft in air conditioner cabinet 10, that the vanes remain above the condensate level in sump 12. A maximum level for water in the condensate sump can be fixed by well known means, not shown, and in normal operation the condensate level remains substantially constant as the rotating flanges remove all condensate that they encounter in the sump.
While only a single embodiment of the invention has been shown and described, the details thereof are not to be construed as limitative of the invention. The invention contemplates such variations and modifications as come within the scope of the appended claims.
I claim:
1. In an .air conditioning unit: a refrigerating system having an evaporator and a condenser; means providing for circulation of air in heat exchange relation with the evaporator to cool the air and remove moisture therefrom as condensate; cross-flow blower means having an inlet and an outlet and providing for circulation of air in heat exchange relation with the condenser to cool the latter, said cross-flow blower means including disc means disposed along the axis of the blower and extending generally perpendicular thereto; sump means for receiving said condensate from said evaporator and so disposed that said disc means dips therein whereby to entrain the condensate in the condenser air stream when the blower is.
rotated; and shroud means associated with said disc means to prevent discharge of condensate through said blower inlet opening.
2. In an air conditioning unit as described in claim 1, conduit means extending from a low portion of said evaporator to said sump means for transfer of said condensate to said sump and disc means.
3. An air conditioning unit including: a refrigerating system having an evaporator and a condenser; means providing for circulation of air in heat exchange relation with the evaporator to cool the air and remove moisture therefrom as condensate; cross-flow blower means having an inlet and an outlet and providing for circulation of air in heat exchange relation with the condenser to cool the latter, said cross-flow blower means including a plurality of disc elements disposed along the axis of the blower and extending generally perpendicular thereto; sump means for receiving said condensate from said evaporator and so disposed that said disc elements dip therein whereby to entrain the condensate in the condenser air stream when the blower is rotated; and shroud means associated with each disc element to prevent discharge of condensate through said blower inlet opening.
4. An air conditioning unit as described in claim 3, additionally including a divider between the evaporator and the condenser, and a scroll for said cross-flow blower means, extending from the divider toward the blower means; said conduit means extending through said divider and scroll.
5. An air conditioning unit as described in claim 3, additionally comprising a vortex-forming member extending through the space adjacent the blower means to a position very close to the body of the blower means, said member being slotted in the region of each disc element to accommodate such element.
6. Refrigerating apparatus including an evaporator and a condenser; means to collect condensate water formed on said evaporator; a cross-flow blower wheel having vanes for circulating air from an inlet to and in heat exchange relation with said condenser to cool the latter; a plurality of disc elements secured to said wheel, spaced apart along the axis of the wheel, and extending generally perpendicular thereto; a sump below said cross-flow blower vanes for receiving the collected condensate; means to rotate the wheel in order that, incident to circulation of air, said disc elements entrain the condensate from the sump .and project it into the circulating air; and a shroud associated with each disc element to prevent discharge of condensate through said inlet.
7. Apparatus as described in claim 6 wherein said disc elements and shrouds are spaced along said wheel structure at distances approximately similar to the outer diameters of said disc elements.
8. Apparatus as described in claim 6 additionally comprising vortex baffle structure extending through the space adjacent the blower wheel to a position close to said vanes to aid in said circulation of air, said vortex baffle structure being slotted to accommodate said disc elements and shrouds.
9. Apparatus as described in claim 6, wherein each shroud is stationarily positioned along a portion of the periphery of the corresponding disc element adjacent said inlet to prevent discharge of condensate through said inlet.
10. Apparatus as described in claim 9 wherein each shroud is an arcuate channel concentric with said wheel, partly surrounding a peripheral portion of the corresponding disc element.
' References Cited UNITED STATES PATENTS 2,134,349 10/1938 Weiland 62-280 2,219,826 10/ 1940 Swinburne 62280 2,485,733 10/1949 Hart 62-280 2,617,637 11/1952 Moore 62-280 3,200,609 8/ 1965 Laing 62426 X WILLIAM J. WYE, Primary Examiner.
US612032A 1967-01-26 1967-01-26 Condensate removal means for air conditioners Expired - Lifetime US3401534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US612032A US3401534A (en) 1967-01-26 1967-01-26 Condensate removal means for air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US612032A US3401534A (en) 1967-01-26 1967-01-26 Condensate removal means for air conditioners

Publications (1)

Publication Number Publication Date
US3401534A true US3401534A (en) 1968-09-17

Family

ID=24451431

Family Applications (1)

Application Number Title Priority Date Filing Date
US612032A Expired - Lifetime US3401534A (en) 1967-01-26 1967-01-26 Condensate removal means for air conditioners

Country Status (1)

Country Link
US (1) US3401534A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766751A (en) * 1972-05-02 1973-10-23 Carrier Corp Air conditioning unit with condensate disposal
US3811293A (en) * 1973-03-19 1974-05-21 Philco Ford Corp Air conditioner condensate disposal apparatus
US4120170A (en) * 1977-04-04 1978-10-17 Carrier Corporation Apparatus for reducing condensate noise in an air conditioner
DE20203758U1 (en) * 2002-03-08 2003-04-24 Meltem Waermerueckgewinnung Gm Air exchange system for ventilation of a room in a building with a heat exchanger
WO2004055441A2 (en) * 2002-12-17 2004-07-01 Lg Electronics Inc. Air conditioner
US20050115272A1 (en) * 2003-12-01 2005-06-02 Lim Hyoung K. Radiating apparatus of built-in refrigerator
CN102401432A (en) * 2010-09-16 2012-04-04 乐金电子(天津)电器有限公司 Window-type air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2134349A (en) * 1935-08-16 1938-10-25 Baldwin Southwark Corp Condensate disposal means for air conditioning apparatus
US2219826A (en) * 1939-06-30 1940-10-29 Carrier Corp Heat exchange apparatus
US2485733A (en) * 1946-12-24 1949-10-25 Philco Corp Air conditioner having condensate removal means
US2617637A (en) * 1951-01-29 1952-11-11 York Corp Drip-evaporating unit for air conditioners
US3200609A (en) * 1964-04-15 1965-08-17 Laing Vortex Inc Heat exchange apparatus and air conditioner units incorporating such apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2134349A (en) * 1935-08-16 1938-10-25 Baldwin Southwark Corp Condensate disposal means for air conditioning apparatus
US2219826A (en) * 1939-06-30 1940-10-29 Carrier Corp Heat exchange apparatus
US2485733A (en) * 1946-12-24 1949-10-25 Philco Corp Air conditioner having condensate removal means
US2617637A (en) * 1951-01-29 1952-11-11 York Corp Drip-evaporating unit for air conditioners
US3200609A (en) * 1964-04-15 1965-08-17 Laing Vortex Inc Heat exchange apparatus and air conditioner units incorporating such apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766751A (en) * 1972-05-02 1973-10-23 Carrier Corp Air conditioning unit with condensate disposal
US3811293A (en) * 1973-03-19 1974-05-21 Philco Ford Corp Air conditioner condensate disposal apparatus
US4120170A (en) * 1977-04-04 1978-10-17 Carrier Corporation Apparatus for reducing condensate noise in an air conditioner
DE20203758U1 (en) * 2002-03-08 2003-04-24 Meltem Waermerueckgewinnung Gm Air exchange system for ventilation of a room in a building with a heat exchanger
WO2004055441A2 (en) * 2002-12-17 2004-07-01 Lg Electronics Inc. Air conditioner
WO2004055441A3 (en) * 2002-12-17 2005-03-10 Lg Electronics Inc Air conditioner
CN100338400C (en) * 2002-12-17 2007-09-19 Lg电子株式会社 Air conditions
US7398654B2 (en) 2002-12-17 2008-07-15 Lg Electronics Inc. Air conditioner
US20050115272A1 (en) * 2003-12-01 2005-06-02 Lim Hyoung K. Radiating apparatus of built-in refrigerator
US7878015B2 (en) * 2003-12-01 2011-02-01 Lg Electronics Inc. Radiating apparatus of built-in refrigerator
CN102401432A (en) * 2010-09-16 2012-04-04 乐金电子(天津)电器有限公司 Window-type air conditioner
CN102401432B (en) * 2010-09-16 2015-08-05 乐金电子(天津)电器有限公司 Window air conditioner

Similar Documents

Publication Publication Date Title
US2984089A (en) Air conditioner
US9587841B2 (en) Turbo fan and ceiling type air conditioner using the same
US2485733A (en) Air conditioner having condensate removal means
US3176474A (en) Air conditioning unit
CN102473026A (en) Fan module having a dust-collecting function, and a dust-collecting device employing the same
US3401534A (en) Condensate removal means for air conditioners
US3898865A (en) Condensate disposal apparatus for an air conditioner
US4738120A (en) Refrigeration-type dehumidifying system with rotary dehumidifier
JP2008019850A (en) Dehumidifier and centrifugal fan thereof
US4067206A (en) Condensate evaporation system for air conditioners
US2941382A (en) Condensate disposal means for selfcontained air conditioners
GB2199936A (en) Condensation collection in air conditioner
US3766751A (en) Air conditioning unit with condensate disposal
US2776554A (en) Air conditioning apparatus having condensate disposal means
US2793510A (en) Condensate disposal
US2364279A (en) Air-conditioning apparatus
US3763660A (en) Air conditioning condenser fan arrangement with condensate removal
US1870216A (en) Dust separator
US3915596A (en) Condenser apparatus
US2676667A (en) Air treating apparatus
US3442092A (en) Blower and aspirator tube assembly
US3662557A (en) Aspirator disposal system for air conditioner evaporator condensate
US2134349A (en) Condensate disposal means for air conditioning apparatus
US2708834A (en) Air treating system
US2175779A (en) Air conditioning device