US3360193A - Regenerative compressors with integral mufflers - Google Patents

Regenerative compressors with integral mufflers Download PDF

Info

Publication number
US3360193A
US3360193A US517412A US51741265A US3360193A US 3360193 A US3360193 A US 3360193A US 517412 A US517412 A US 517412A US 51741265 A US51741265 A US 51741265A US 3360193 A US3360193 A US 3360193A
Authority
US
United States
Prior art keywords
compressor
chamber
inlet
motor
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US517412A
Inventor
Dwight E Harris
Zoehfeld Gunther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rotron Manufacturing Co Inc
Original Assignee
Rotron Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rotron Manufacturing Co Inc filed Critical Rotron Manufacturing Co Inc
Priority to US517412A priority Critical patent/US3360193A/en
Priority to NL6617161A priority patent/NL6617161A/xx
Priority to GB55330/66A priority patent/GB1116754A/en
Priority to FR89249A priority patent/FR1506889A/en
Application granted granted Critical
Publication of US3360193A publication Critical patent/US3360193A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/664Sound attenuation by means of sound absorbing material

Definitions

  • a regenerative compressor of the type including a motor and a housing. providing a toroidal compressor chamber cooperating with an impeller driven by the motor, and an annular chamber surrounding the motorthrough which fluid is introduced and extracted through inlet and outlet ports between the compressor chamber and annular chamber.
  • the annular chamber is divided into separate inlet and outlet portions communicating with the respective ports, and has opposed faces adjacent which sound absorbent material is disposed, partially filling the annular chamber.
  • Perforated retaining plates secure the sound absorbent material in place within the annular chamber and effectively provide a series of sound absorbent cavities between the plate and opposing face of each chamber.
  • This invention relates to noise suppressors for regenerasor nd mor s ec'ficall t an im roved s five commas a e p l y o p mlet port 30 and extracted at an increased pressure from regenerative compressor and sound muffler assembly which attenuates compressor noise without addingto the overall dimensions of the compressor.
  • a further object of the invention is to provide a noise attenuation design for regenerative compressors which does not increase the overall dimensions of the compressor.
  • the invention attains these and other objects by suppressing compressor noise by means integral with the compressor. Specifically, this is accomplished by providing a compressor housing formed with a generally annular chamber surrounding the compressor mo or and locating within this chamber sound absorptive material or structure. In a preferred embodiment, this chamber is divided into inlet and outlet portions which communicate with the respective inlet and outlet ports of the compressor chamber.
  • FIGURE 1 is a cross-section of a compressor in accordance with the invention, taken generally along the line 1-1 of FIGURE 2;
  • FIGURE 2 is a cross-section of the compressor, taken along the line 22 in FIGURE 1.
  • a representative compressor includes a housing 10 having an annular compressor chamber 12 containing a stripper section 14 located between inlet port 30 and outlet port 32. Pressure is built up in the compressor by the rotation of the impeller 16 which is segmented by a plurality of spaced radial blades 19.
  • the impeller 16 is driven by a motor 20 whose axis of rotation is coaxial with the impeller.
  • the motor 20, shown schematically, comprises a stator 21 and a rotor 22 mounted on a shaft 23.
  • the shaft 23, which is attached to the impeller 16, is mounted in bearings 24 and 25 in the stator housing 10.
  • An end bell 26 i is suitably fastened to the main part of the housing, as by the cap screws 26a, and may be removed for assembly and replacement or repair of the motor 20 or motor bearings 24, 25.
  • An end cover 27 at the other end of the housing 10 protects the impeller 16 from direct forces or blows which could cause an imbalance or misalignment of the impeller on the shaft 23 and confines the working fluid within the machine.
  • the fluid e.g., air
  • the outlet port 32 communicates with a generally annular chamber divided by the two baffle plates 35 and 36 into an inlet chamber 34a and an outlet chamber 34b (FIGURE 1).
  • External connections to the compressor are made through inlet and outlet connectors ported to the respective chamber sections 34a and 34b, the inlet connector 38 being shown in FIGURE 1.
  • the inlet chamber 34a in accordance with the invention, has two functions. First, it acts as an expansion chamber for fluid supplied to the compressor and therefore reduces the turbulence of the fluid entering the stator compression chamber 12 through the inlet port 30. Second it is a sonic attenuation cavity for sound pressure waves inherent in this type of regenerative compressor. Similarly, the outlet chamber 34b serves to dampen the sound wave pulsations generated by the passage of the impeller blades 19 past the stripper adjacent the outlet port 32. It is also a sound attenuating cavity for the outlet side of the compressor. 9
  • the outlet chamber 34b is provided with a pair of sound absorbent mufliers 45 at the faces 40b comprising a sound absorptive material 46 and perforated retainers 48.
  • the mufflers also attenuate motor noise which is transmitted through the housing 10.
  • the inlet and outlet chambers 34a, 3412 can be separated into several intercommunicating resonant cells dimensionally proportioned to attenuate compressor noise by reflection and cancellation of the predominant frequency sound waves.
  • the compressor noise is quenched at its immediate source by means integral with the compressor. Moreover, since no devices external to the compressor itself are required, such suppression is effected without an increase in the overall dimension of the compressor, and the uncomplex construction and assembly of the mufllers and the compressor housing facilitates economic production.
  • a regenerative fluid compressor of the type having a rotary impeller and an integral motor coaxial with the impeller the combination of a housing member having a compressor chamber and a second chamber surrounding the motor, the housing providing inlet and outlet ports between the compressor and second chambers, and sound absorbent means in said second chamber to attenuate sound generated by variations in the pressure of the fluid passing therethrough.
  • a regenerative compressor of the type having a motor integral therewith the combination of a housing member having a toroidal chamber with inlet and outlet ports therein and a generally annular chamber surrounding the motor divided into semi-annular inlet and outlet portions communicating with said respective inlet and outlet ports, and sound absorbent means partially filling said inlet and outlet portions of said annular chamber.
  • a housing member having a generally annular chamber surrounding the motor and including inlet and outlet ports for introducing and extracting fluid from the compressor through the chamber, said chamber having opposed faces, and a pair of spaced-apart segments of sound absorbent material adjacent said faces and partially filling said chamber to provide at least one cavity for attenuating sound generated in connection with the passage of fluid through both the inlet and outlet ports.
  • a regenerative compressor of the type having a rotary impeller and an integral motor coaxial with the impeller, the combination of a housing member having a toroidal stator chamber and an annular chamber surrounding the motor and divided into inlet and outlet portions for communication with the stator chamber, said annular chamber having opposed annular faces, and a semicircular mutfler of sound absorbent material in each of said inlet and outlet portions and partially filling said chamber.
  • a regenerative compressor of the type having a motor integral therewith and a rotary impeller driven by and coaxial with the motor
  • a housing member having an annular chamber surrounding the motor and including inlet and outlet ports for the compressor, and means within said annular chamber forming a plurality of resonant sound cavities at least one of Which communicates with the inlet port and at least another of which communicates with the outlet port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Dec. 26, 1967 D. E. HARRIS ETAL 3,360,193
REGENERATIVE COMPRESSORS WITH INTEGRAL MUFFLERS Filed Dec. 29, 1965 4| 2-| IO 42 40a 43: L a 38 26 45a 40a 26a m a a L i F/G. -f-|6 1E l L J 26a M '45 1 INVENTORS DWIGHT E. HARRIS a 30 BY GUNTHER ZOEHFELD 32 A W1 36 their ATTORNEYS United States Patent 3,360,193 REGENERATIVE COMPRESSORS WITH INTEGRAL MUFFLERS Dwight E. Harris, Woodstock, and Gunther Zoehfeld,
West Hurley, N.Y., assignors to Rotron Manufacturing Company, Inc., Woodstock, N.Y., a corporation of New York Filed Dec. 29, 1965, Ser. No. 517,412 7 Claims. (Cl. 230-232) ABSTRACT OF THE DISCLOSURE A regenerative compressor of the type including a motor and a housing. providing a toroidal compressor chamber cooperating with an impeller driven by the motor, and an annular chamber surrounding the motorthrough which fluid is introduced and extracted through inlet and outlet ports between the compressor chamber and annular chamber. The annular chamber is divided into separate inlet and outlet portions communicating with the respective ports, and has opposed faces adjacent which sound absorbent material is disposed, partially filling the annular chamber. Perforated retaining plates secure the sound absorbent material in place within the annular chamber and effectively provide a series of sound absorbent cavities between the plate and opposing face of each chamber.
This invention relates to noise suppressors for regenerasor nd mor s ec'ficall t an im roved s five commas a e p l y o p mlet port 30 and extracted at an increased pressure from regenerative compressor and sound muffler assembly which attenuates compressor noise without addingto the overall dimensions of the compressor.
Many regenerative compressors, particularly of the type described herein, inherently generate noise due to the pressure pulsations created by the expansion and/or compression of the fluid trapped between impeller blades as it passes the bafile separating the inlet and outlet ports of the compress-or chamber. In this respect, the compressor acts much like a siren. In many compressor applications, the noise level of a compressor may be critical. For this reason, it is essential that the compressor operate with minimum noise.
Of the regenerative compressor using noise suppressing device-s, many employ mufllers or other sound absorbing apparatus which are either poor sound attenuators or, although effective, increase the overall dimensions of the compressor. The latter, however, are undesirable, since they add weight to the compressor and render it unsatisfactory for use in equipment in which the space or volume occupied by the compressor must be minimized.
It is therefore an object of the invention to provide an improved regenerative compressor assembly which efficiently and effectively reduces the noise generated in the compressor.
A further object of the invention is to provide a noise attenuation design for regenerative compressors which does not increase the overall dimensions of the compressor.
The invention attains these and other objects by suppressing compressor noise by means integral with the compressor. Specifically, this is accomplished by providing a compressor housing formed with a generally annular chamber surrounding the compressor mo or and locating within this chamber sound absorptive material or structure. In a preferred embodiment, this chamber is divided into inlet and outlet portions which communicate with the respective inlet and outlet ports of the compressor chamber.
For a better understanding of the invent-ion, reference may be made to the following detailed description, taken in conjunction with the accompanying drawings, in which:
FIGURE 1 is a cross-section of a compressor in accordance with the invention, taken generally along the line 1-1 of FIGURE 2; and
FIGURE 2 is a cross-section of the compressor, taken along the line 22 in FIGURE 1.
Turning now to F-IGURES 1 and 2, a representative compressor includes a housing 10 having an annular compressor chamber 12 containing a stripper section 14 located between inlet port 30 and outlet port 32. Pressure is built up in the compressor by the rotation of the impeller 16 which is segmented by a plurality of spaced radial blades 19. The impeller 16 is driven by a motor 20 whose axis of rotation is coaxial with the impeller. The motor 20, shown schematically, comprises a stator 21 and a rotor 22 mounted on a shaft 23. The shaft 23, which is attached to the impeller 16, is mounted in bearings 24 and 25 in the stator housing 10. An end bell 26 i is suitably fastened to the main part of the housing, as by the cap screws 26a, and may be removed for assembly and replacement or repair of the motor 20 or motor bearings 24, 25. An end cover 27 at the other end of the housing 10 protects the impeller 16 from direct forces or blows which could cause an imbalance or misalignment of the impeller on the shaft 23 and confines the working fluid within the machine.
Referring to FIGURE 2, the fluid (e.g., air) is introduced into the toroidal stator chamber 12 through the the outlet port 32, as indicated by the arrows. These ports 30, 32 communicate with a generally annular chamber divided by the two baffle plates 35 and 36 into an inlet chamber 34a and an outlet chamber 34b (FIGURE 1). External connections to the compressor are made through inlet and outlet connectors ported to the respective chamber sections 34a and 34b, the inlet connector 38 being shown in FIGURE 1.
The inlet chamber 34a, in accordance with the invention, has two functions. First, it acts as an expansion chamber for fluid supplied to the compressor and therefore reduces the turbulence of the fluid entering the stator compression chamber 12 through the inlet port 30. Second it is a sonic attenuation cavity for sound pressure waves inherent in this type of regenerative compressor. Similarly, the outlet chamber 34b serves to dampen the sound wave pulsations generated by the passage of the impeller blades 19 past the stripper adjacent the outlet port 32. It is also a sound attenuating cavity for the outlet side of the compressor. 9
At each of the faces 40a of the inlet chamber 34a is a muffler 41 consisting of sound absorptive material 42 and a rigid plate 43 retaining the sound absorbent material and having perforations 43a to effectively create a multitude of sound absorptive cavities in the material 42. In the same manner, the outlet chamber 34b is provided with a pair of sound absorbent mufliers 45 at the faces 40b comprising a sound absorptive material 46 and perforated retainers 48. It should be noted that since the chambers 34a and 34b surround the motor 20, the mufflers also attenuate motor noise which is transmitted through the housing 10. Alternatively, the inlet and outlet chambers 34a, 3412 can be separated into several intercommunicating resonant cells dimensionally proportioned to attenuate compressor noise by reflection and cancellation of the predominant frequency sound waves.
Thus, in accordance with the invention, the compressor noise is quenched at its immediate source by means integral with the compressor. Moreover, since no devices external to the compressor itself are required, such suppression is effected without an increase in the overall dimension of the compressor, and the uncomplex construction and assembly of the mufllers and the compressor housing facilitates economic production.
The embodiments of the invention described herein are illustrative only, and many modifications and variations may be made therein within skill of the art. Accordingly, all such modifications and variations are intended to be included within the scope of the appended claims.
We claim:
1. In a regenerative fluid compressor of the type having a rotary impeller and an integral motor coaxial with the impeller, the combination of a housing member having a compressor chamber and a second chamber surrounding the motor, the housing providing inlet and outlet ports between the compressor and second chambers, and sound absorbent means in said second chamber to attenuate sound generated by variations in the pressure of the fluid passing therethrough.
2. In a regenerative compressor of the type having a motor integral therewith, the combination of a housing member having a toroidal chamber with inlet and outlet ports therein and a generally annular chamber surrounding the motor divided into semi-annular inlet and outlet portions communicating with said respective inlet and outlet ports, and sound absorbent means partially filling said inlet and outlet portions of said annular chamber.
3. In a regenerative compressor of the type having an integral motor and a rotary impeller driven by and coaxial with the motor, the combination of a housing member having a generally annular chamber surrounding the motor and including inlet and outlet ports for introducing and extracting fluid from the compressor through the chamber, said chamber having opposed faces, and a pair of spaced-apart segments of sound absorbent material adjacent said faces and partially filling said chamber to provide at least one cavity for attenuating sound generated in connection with the passage of fluid through both the inlet and outlet ports.
4. The combination in accordance with claim 3 further comprising opposed perforated retaining means abutting said sound absorbent segments in said chamber.
5. In a regenerative compressor of the type having a rotary impeller and an integral motor coaxial with the impeller, the combination of a housing member having a toroidal stator chamber and an annular chamber surrounding the motor and divided into inlet and outlet portions for communication with the stator chamber, said annular chamber having opposed annular faces, and a semicircular mutfler of sound absorbent material in each of said inlet and outlet portions and partially filling said chamber.
6. In a regenerative compressor of the type having a motor integral therewith and a rotary impeller driven by and coaxial with the motor, the combination of a housing member having an annular chamber surrounding the motor and including inlet and outlet ports for the compressor, and means within said annular chamber forming a plurality of resonant sound cavities at least one of Which communicates with the inlet port and at least another of which communicates with the outlet port.
7. A regenerative compressor according to claim 6, in which the annular chamber includes opposed faces and the resonant sound cavities are formed adjacent the opposed faces.
ROBERT M. WALKER, Primary Examiner.

Claims (1)

1. IN A REGENERATIVE FLUID COMPRESSOR OF THE TYPE HAVING A ROTARY IMPELLER AND AN INTEGRAL MOTOR COAXIAL WITH THE IMPELLER, THE COMBINATION OF A HOUSING MEMBER HAVING A COMPRESSOR CHAMBER AND A SECOND CHAMBER SURROUNDING THE MOTOR, THE HOUSING PROVIDING INLET AND OUTLET PORTS BETWEEN THE COMPRESSOR AND SECOND CHAMBERS, AND SOUND ABSORBENT MEANS IN SAID SECOND CHAMBER TO ATTENUATE SOUND GENERATED BY VARIATIONS IN THE PRESSURE OF THE FLUID PASSING THERETHROUGH.
US517412A 1965-12-29 1965-12-29 Regenerative compressors with integral mufflers Expired - Lifetime US3360193A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US517412A US3360193A (en) 1965-12-29 1965-12-29 Regenerative compressors with integral mufflers
NL6617161A NL6617161A (en) 1965-12-29 1966-12-06
GB55330/66A GB1116754A (en) 1965-12-29 1966-12-09 Vortex compressors containing built-in mufflers for attenuating the compressor noise
FR89249A FR1506889A (en) 1965-12-29 1966-12-28 Muffler for jet compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US517412A US3360193A (en) 1965-12-29 1965-12-29 Regenerative compressors with integral mufflers

Publications (1)

Publication Number Publication Date
US3360193A true US3360193A (en) 1967-12-26

Family

ID=24059704

Family Applications (1)

Application Number Title Priority Date Filing Date
US517412A Expired - Lifetime US3360193A (en) 1965-12-29 1965-12-29 Regenerative compressors with integral mufflers

Country Status (4)

Country Link
US (1) US3360193A (en)
FR (1) FR1506889A (en)
GB (1) GB1116754A (en)
NL (1) NL6617161A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3421688A (en) * 1966-03-16 1969-01-14 Edwards High Vacuum Int Ltd Liquid sealed mechanical vacuum pumps
US3577891A (en) * 1968-08-21 1971-05-11 Hitachi Ltd Swash plate compressor
JPS4977211A (en) * 1972-11-27 1974-07-25
US3955905A (en) * 1973-07-17 1976-05-11 Robert Bosch G.M.B.H. Sliding-vane pump
JPS5388812U (en) * 1976-12-22 1978-07-21
FR2397546A1 (en) * 1977-07-13 1979-02-09 Carrier Corp FLUID PRESSURE VARIATION ABSORBER
US4174196A (en) * 1976-07-28 1979-11-13 Hitachi, Ltd. Screw fluid machine
EP0500488A1 (en) * 1991-02-19 1992-08-26 Carrier Corporation Collector silencer for a centrifugal compressor
US5249919A (en) * 1992-12-22 1993-10-05 Carrier Corporation Method of mounting silencer in centrifugal compressor collector
US5300178A (en) * 1990-02-06 1994-04-05 Soltech Inc. Insulation arrangement for machinery
US5336046A (en) * 1991-10-09 1994-08-09 Hatachi, Ltd. Noise reduced centrifugal blower
US5499900A (en) * 1992-12-29 1996-03-19 Joint Stock Company En & Fi Vortex flow blower
US5603601A (en) * 1993-12-03 1997-02-18 Gebr. Becker Gmbh & Co. Compressor with attachments mounted on stubs of a housing of the compressor
US5961309A (en) * 1997-04-24 1999-10-05 Trw Inc. Gear pump with noise attenuation
US6550574B2 (en) 2000-12-21 2003-04-22 Dresser-Rand Company Acoustic liner and a fluid pressurizing device and method utilizing same
WO2004005715A1 (en) * 2002-07-02 2004-01-15 Bristol Compressors, Inc. Resistive suction muffler for refrigerant compressors
US20040146396A1 (en) * 2003-01-28 2004-07-29 Dresser-Rand Company Gas compression apparatus and method with noise attenuation
US6877511B2 (en) 1994-10-14 2005-04-12 Bird Products Corporation Portable drag compressor powered mechanical ventilator
US20050249617A1 (en) * 2004-05-10 2005-11-10 Visteon Global Technologies, Inc. Fuel pump having single sided impeller
US20050249581A1 (en) * 2004-05-10 2005-11-10 Visteon Global Technologies, Inc. Fuel pump having single sided impeller
US20120301267A1 (en) * 2006-05-24 2012-11-29 Seleon Gmbh Conducting unit, and conducting methods
DE102012213598B3 (en) * 2012-08-01 2013-11-14 Eberspächer Climate Control Systems GmbH & Co. KG Combustion air fan for vehicle heater, has sound absorption chamber which is formed between front end of sound absorption material and lying end region of air flow pipe
US20170342859A1 (en) * 2016-05-31 2017-11-30 Eberspächer Climate Control Systems GmbH & Co. KG Side channel blower, especially for a vehicle heater
EP3550151A1 (en) * 2018-04-04 2019-10-09 Eberspächer Climate Control Systems GmbH & Co. KG. Combustion air fan
US11084354B2 (en) * 2017-04-18 2021-08-10 Eberspächer Climate Control Systems GmbH Vehicle heater

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806620A1 (en) * 1978-02-16 1979-08-30 Bosch Gmbh Robert FAN, IN PARTICULAR FOR BLOW-OFF OR SUCTION OF SMALL DRILLS
GB2129920B (en) * 1982-11-05 1986-02-19 Philips Electronic Associated Domestic laundry dryer
KR910012551A (en) * 1989-09-14 1991-08-08 이다가끼 유끼오 air blower
US5049770A (en) * 1990-03-26 1991-09-17 General Motors Corporation Electric motor-driven impeller-type air pump
WO1994015101A1 (en) * 1992-12-29 1994-07-07 Joint Stock Company En&Fi Vortex compressor
DE102004048481B3 (en) * 2004-10-05 2006-02-09 J. Eberspächer GmbH & Co. KG Combustion air fan for vehicle heater has silencer with sound damping chamber fitted to conveying channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1320224A (en) * 1919-10-28 Sttction-pbodttcing appabattts
US2396319A (en) * 1943-10-01 1946-03-12 Zephyr Wayne Company Pump
US2731194A (en) * 1953-02-02 1956-01-17 Moss A Kent Vacuum cleaner blower

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1320224A (en) * 1919-10-28 Sttction-pbodttcing appabattts
US2396319A (en) * 1943-10-01 1946-03-12 Zephyr Wayne Company Pump
US2731194A (en) * 1953-02-02 1956-01-17 Moss A Kent Vacuum cleaner blower

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3421688A (en) * 1966-03-16 1969-01-14 Edwards High Vacuum Int Ltd Liquid sealed mechanical vacuum pumps
US3577891A (en) * 1968-08-21 1971-05-11 Hitachi Ltd Swash plate compressor
JPS4977211A (en) * 1972-11-27 1974-07-25
US3955905A (en) * 1973-07-17 1976-05-11 Robert Bosch G.M.B.H. Sliding-vane pump
US4174196A (en) * 1976-07-28 1979-11-13 Hitachi, Ltd. Screw fluid machine
JPS5388812U (en) * 1976-12-22 1978-07-21
FR2397546A1 (en) * 1977-07-13 1979-02-09 Carrier Corp FLUID PRESSURE VARIATION ABSORBER
US5300178A (en) * 1990-02-06 1994-04-05 Soltech Inc. Insulation arrangement for machinery
EP0500488A1 (en) * 1991-02-19 1992-08-26 Carrier Corporation Collector silencer for a centrifugal compressor
US5336046A (en) * 1991-10-09 1994-08-09 Hatachi, Ltd. Noise reduced centrifugal blower
US5249919A (en) * 1992-12-22 1993-10-05 Carrier Corporation Method of mounting silencer in centrifugal compressor collector
US5499900A (en) * 1992-12-29 1996-03-19 Joint Stock Company En & Fi Vortex flow blower
US5603601A (en) * 1993-12-03 1997-02-18 Gebr. Becker Gmbh & Co. Compressor with attachments mounted on stubs of a housing of the compressor
US7849854B2 (en) 1994-10-14 2010-12-14 Bird Products Corporation Portable drag compressor powered mechanical ventilator
US6877511B2 (en) 1994-10-14 2005-04-12 Bird Products Corporation Portable drag compressor powered mechanical ventilator
US20050115564A1 (en) * 1994-10-14 2005-06-02 Devries Douglas F. Portable drag compressor powered mechanical ventilator
US7222623B2 (en) 1994-10-14 2007-05-29 Birds Products Corporation Portable drag compressor powered mechanical ventilator
US5961309A (en) * 1997-04-24 1999-10-05 Trw Inc. Gear pump with noise attenuation
US6550574B2 (en) 2000-12-21 2003-04-22 Dresser-Rand Company Acoustic liner and a fluid pressurizing device and method utilizing same
US6601672B2 (en) 2000-12-21 2003-08-05 Dresser-Rand Company Double layer acoustic liner and a fluid pressurizing device and method utilizing same
WO2004005715A1 (en) * 2002-07-02 2004-01-15 Bristol Compressors, Inc. Resistive suction muffler for refrigerant compressors
US6840746B2 (en) 2002-07-02 2005-01-11 Bristol Compressors, Inc. Resistive suction muffler for refrigerant compressors
US20040146396A1 (en) * 2003-01-28 2004-07-29 Dresser-Rand Company Gas compression apparatus and method with noise attenuation
US6918740B2 (en) 2003-01-28 2005-07-19 Dresser-Rand Company Gas compression apparatus and method with noise attenuation
US7008174B2 (en) 2004-05-10 2006-03-07 Automotive Components Holdings, Inc. Fuel pump having single sided impeller
US20050249581A1 (en) * 2004-05-10 2005-11-10 Visteon Global Technologies, Inc. Fuel pump having single sided impeller
US7267524B2 (en) 2004-05-10 2007-09-11 Ford Motor Company Fuel pump having single sided impeller
US20050249617A1 (en) * 2004-05-10 2005-11-10 Visteon Global Technologies, Inc. Fuel pump having single sided impeller
US20120301267A1 (en) * 2006-05-24 2012-11-29 Seleon Gmbh Conducting unit, and conducting methods
DE102012213598B3 (en) * 2012-08-01 2013-11-14 Eberspächer Climate Control Systems GmbH & Co. KG Combustion air fan for vehicle heater, has sound absorption chamber which is formed between front end of sound absorption material and lying end region of air flow pipe
US9506477B2 (en) 2012-08-01 2016-11-29 Eberspächer Climate Control Systems GmbH & Co. KG Blower, especially combustion air blower for a vehicle heater
US20170342859A1 (en) * 2016-05-31 2017-11-30 Eberspächer Climate Control Systems GmbH & Co. KG Side channel blower, especially for a vehicle heater
US10527044B2 (en) * 2016-05-31 2020-01-07 Eberspächer Climate Control Systems GmbH & Co. KG Side channel blower, especially for a vehicle heater
US11084354B2 (en) * 2017-04-18 2021-08-10 Eberspächer Climate Control Systems GmbH Vehicle heater
EP3550151A1 (en) * 2018-04-04 2019-10-09 Eberspächer Climate Control Systems GmbH & Co. KG. Combustion air fan
CN110341435A (en) * 2018-04-04 2019-10-18 埃贝斯佩歇气候控制系统有限责任两合公司 Combustion air air blower
CN110341435B (en) * 2018-04-04 2023-02-03 埃贝斯佩歇气候控制系统有限公司 Air blower for combustion

Also Published As

Publication number Publication date
GB1116754A (en) 1968-06-12
FR1506889A (en) 1967-12-22
NL6617161A (en) 1967-06-30

Similar Documents

Publication Publication Date Title
US3360193A (en) Regenerative compressors with integral mufflers
US2881337A (en) Acoustically treated motor
CA2432219C (en) Acoustic liner and a fluid pressurizing device and method utilizing same
US11149750B2 (en) Silencing device, rotary machine, and method for manufacturing silencing device
EP1340920B1 (en) Gas compressor with acoustic resonators
CA2432094C (en) Double layer acoustic liner and a fluid pressurizing device and method utilizing same
US4679990A (en) Electric blower
US3355095A (en) Combined casing and noise muffler for a vortex fan
JP2007111308A (en) Muffler and vacuum cleaner using the same
CN213839053U (en) Noise elimination structure and household electrical appliances
US3688867A (en) Acoustically improved blower package
US3419107A (en) Manifold muffler arrangement
US5401150A (en) Noise reduced liquid sealed compressor
CN114607645A (en) Noise elimination structure and household electrical appliances
KR101937343B1 (en) silencer
CN210343440U (en) Sound-proof housing for turbonator
SU1145416A1 (en) Electric machine
GB2468778A (en) An enclosure for a fan
CN220101547U (en) Roots vacuum pump import and export silencing device
CN219778516U (en) Noise reduction structure and new energy equipment
CN220036935U (en) Compressor and air conditioner
US20210318023A1 (en) Noise suppression apparatus for an air handling unit
JP3257306B2 (en) Electric vacuum cleaner
JP2000120599A (en) Motor-driven blower and vacuum cleaner mounted with it
JPS59190423A (en) Cooling apparatus for construction machinery and industrial machinery