US3287888A - Apparatus for the treatment of synthetic filaments - Google Patents

Apparatus for the treatment of synthetic filaments Download PDF

Info

Publication number
US3287888A
US3287888A US496635A US49663565A US3287888A US 3287888 A US3287888 A US 3287888A US 496635 A US496635 A US 496635A US 49663565 A US49663565 A US 49663565A US 3287888 A US3287888 A US 3287888A
Authority
US
United States
Prior art keywords
yarn
roll
filaments
path
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US496635A
Inventor
Ronald W Chidgey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL129961D priority Critical patent/NL129961C/xx
Priority to GB1054567D priority patent/GB1054567A/en
Priority to NO155386A priority patent/NO118444B/no
Priority to NL6412987A priority patent/NL6412987A/xx
Priority to BE655469D priority patent/BE655469A/xx
Priority to IL22423A priority patent/IL22423A/en
Priority to FR994479A priority patent/FR1420615A/en
Priority to LU47328D priority patent/LU47328A1/xx
Priority to CH1423167A priority patent/CH486575A/en
Priority to SE13600/64A priority patent/SE300779B/xx
Priority to DE19641435588 priority patent/DE1435588A1/en
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to US496635A priority patent/US3287888A/en
Priority to US496634A priority patent/US3365874A/en
Application granted granted Critical
Publication of US3287888A publication Critical patent/US3287888A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/229Relaxing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/04Supporting filaments or the like during their treatment
    • D01D10/0436Supporting filaments or the like during their treatment while in continuous movement
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/225Mechanical characteristics of stretching apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

APPARATUS FOR THE TREATMENT OF SYNTHETIC FILAMENTS Original Filed Nov. 12, 1963 .L' 'iiii'ii? INVENTOR RONALD w. CHIDGEY ATTORNEY United States Patent 4 Claims. (CI. 5735) This application is a division of application Serial No. 322,704, filed November 12, 1963.
This invention relates to treatment of synthetic filaments. More particularly, the invention relates to a process and apparatus for treating untwisted nylon filament yarn to relax same and to render same adaptable for use as w-arp yarn in fabric construction.
Normally, producers of man-made filament yarns employ twisters to impart true twist in the yarns so that the yarns can be handled conveniently by throwsters and fabric manufacturers without individual filaments becoming separated from the main filament bundle. Twisting the yarn to maintain it unitary and to prevent separation of the individual filaments is an expensive operation. Furthermore, at todays high rate of filament production, especially where the filaments are spun and drawn without intermediate packaging, the yarns cannot be twisted to the desired amount because of mechanical limitations of known twist-imparting devices at extremely high takeup speeds but must be wound up with very little or no twist.
Heretofore several ways have been suggested for treating untwisted filament yarns so that they will perform in a manner comparable to twisted yarn. A recent disclosure describes a process of whipping running yarn of zero or low twist in a confined zone under some tension by perpendicular impingement of a small stream of gas moving at a high velocity. The whipping action causes the filaments to become interlaced and intertwined. While such y-arn processes into fabric as one having considerable twist, the interlaced yarn exhibits very irregular light reflectances because large and small groups of the filaments become erratically entangled. This irregular light reflecting phenomenon is referred to as flashes and is quite undesirable from an aesthetic standpoint. Various resins, potentially resinous materials, adhesives and sizes have been applied to spun yarns or zero twist filament yarns to insure adequate handling characteristics without too much success. These known bonding agents adversely affect the dyeing and tactile properties of the yarn and fabric made therefrom.
Nylon filaments and filaments of other synthetic thermoplastic polymers after being spun have relatively low tensile strength and low molecular orientation. To orient these filaments molecularly and thereby to increase the strength thereof, the filaments are stretched a desired amount by attenuating them using thread advancing devices operated at a predetermined peripheral speed differential therebetween. The drawn filaments are placed under considerable stress during the stretching operation. Most of this stress is relieved in the form of an immediate elastic recovery when the tension on the filaments is first reduced. The elastic recovery ordinarily occurs between the drawing device and the yarn take-up device by significantly reducing the tension on the filaments at this point in the drawing operation. The elastic recovery is manifested by a quick reduction in length of the filaments. Usually, this reduction in length may vary from four to eight percent of the length of the drawn filaments, depending upon the processing conditions employed.
In addition to the tendency of the filaments to contact 3,287,888 Patented Nov. 29, 1966 ice quickly after being drawn, the filaments have a latent overstrain that is slow to be relieved at room temperaturc. temperature to relieve this strain completely even when the filaments are under little or no tension. It has long been recognized that relief of the latent strain can be hastened by relaxing nylon filaments and filaments of other synthetic thermoplastic polymers at elevated temperatures which causes longitudinal shrinking of the filaments by an additional amount. Hot relaxing hasbeen accomplished by steaming the filaments or by applying heat to the filaments in other ways immediately after drawing and before package formation. Unfortunately, complete relaxation of the filaments ordinarily is gained at the expense of obtaining filaments having an undesirably low initial modulus. In recent times methods and apparatus have been disclosed whereby freshly drawn nylon filaments are hot relaxed under controlled conditions without considerable lowering of the initial modulus thereof. The known methods and apparatus for doing this require extensive alteration of existing nylon drawing equipment and do not permit accurate control of the filaments during hot relaxation thereof so as to produce filaments of optimum physical properties.
It is an object of the present invention to provide a substantially untwisted synthetic continuous multifilament yarn having an undividedness or coherence such that it can be used in the untwisted condition as warp and/or filling yarn of a fabric.
It is another object to provide fabric, the warp and/ or filling of which is constructed from filament yarn treated by the process of the invention.
It is another object of the present invention to provide a process for treating untwisted synthetic continuous multifilament yarn to relax same and at the-same time to render same adaptable for use as warp and/or filling yarn of a fabric. 7
It is a further object of the present invention to provide apparatus for treating untwisted continuous multifilament yarn to relax same and at the same time render the yarn adaptable for use as warp' and/ or filling yarn of a. fabric.
In accordance with the invention a particular uncrimped continuous multifilament yarn made of a synthetic thermoplastic polymer is provided. The individual filaments of the yarn are in substantially parallel contiguous relation with little or no twist imparted therein. The individual filaments are cohered or attached together at random I points to imp-art a simulated unifilar character thereto and are arranged to render compact transverse rotundness to the yarn. In addition, the yarn can be relaxed or stress-relieved so as to'be mitigated against a latent tendency to retract.
The yarn usually is not crimped; that is, the filaments of the yarn are substantially straight and unbent and have not been textured or otherwise deformed to increase the bulk thereof. The individual filaments are substantially parallel which means they do not criss-cross to a large extent and are not interlaced which would disturb the parallelism of zero twist filaments. The yarn can be relaxed, thereby having reduced tendency to contract in length. Being thus treated, the yarn exhibits low shrinkage and relatively high initial modulus. The yarn is not ribbon-like or pronouncedly flat-sided but rather has a transverse rotundness as a threadline of normal untreated man-made filaments.
In the method of the invention synthetic continuous filament yarn traveling longitudinally from a source of supply is stretched in a zone several times the original length thereof. Thereafter a peripheral effort is applied to the yarn to impart a slight false twist thereto with the'twist running back toward the stretch zone. The amount .of false twist will be about 2 to 20 turns per inch. While It may take as long as twenty-four hours at room the yarn to this range.
so twisted, a small amount of liquid evanescent solvent of the polymer from which the yarn is made is applied to the yarn. Just forward of the point of false twist application the yarn detwists and is heated, preferably under low tension, such that the action of the solvent is dissipated. Low tension permits the yarn to relax. There'- after the yarn is collected in orderly form.
One form of apparatus for treating filaments in the multistage operation herein described includes suitable means for longitudinally forwarding molecularly orientable (undrawn) filament yarn from a suitable source at a predetermined rate. A driven draw roll is positioned in the yarn path and is adapted to forward the yarn at a speed such that the yarn is stretched a desired amount between the forwarding means and the draw roll. Disposed in the yarn path therebetween is a yarn snubbing pin to apply a selected resistance to the forward movement of the yarn so that the point of stretching of the filaments is localized. A freely rotatable separator roll :is positioned adjacent the draw roll in spaced relationship therewith. The axis of the separator roll is at a slight angle with respect to the axis of the draw roll in order that yarn normally progressing around the draw roll and the separator roll moves in a helical path. Also mounted adjacent the draw roll in spaced relationship therewith in the yarn path is a rotatable yarn heating element having a circumferential flange. The yarn is heated to an elevated temperature by contact with this element after it has been drawn. The flange is adapted to exert a peripheral effort on the yarn so as to impart a slight false twist thereto. The element preferably is a heated roll positioned axially at a slight angle with respect to the axis of the draw roll in order that the yarn normally progressing around the draw roll and the heated roll moves in a helical path. In the yarn path between the draw roll and the flange where the yarn has a slight false twist,
1 means for applying a small amount of a liquid evanescent solvent is positioned. Means for taking up the yarn in an orderly manner is provided without subjecting the yarn to high tensioning. In the yarn path before the take-up means, means for applying a finish or lubricant can be employed.
In accordance with a more specific method of the present invention, undrawn filament nylon yarn is longitudinally forwarded to a stretch zone to increase the orientation of the molecules thereof. During the stretching the temperature of the yarn is raised to about ISO-190 C. The molecular friction during the necking down of the filaments in drawing plus the surface friction between the snubbing pin and the yarn at the speeds ordinarily employed are sufficient to increase the temperature of At lower speeds where friction heat may not be sufficient, the snubbing pin can be positively heated, such as by providing an electrically resistant element inside the snubbing pin. During drawing the filaments are subjected to high tensioning. In the next step of the invention, the yarn is cooled to about 40-145 C. and the tension on the yarn is reduced. This can be accomplished by multi wraps of the yarn around the driven draw roll and the separator roll. Three, four, or more wraps are sufficient to provide sufiicient gripping of the yarn during the drawing thereof and to provide suflicient reduction of tension thereon. As is known, the
. tension on the yarn diminishes as the number of wraps inof twist will be only 2-20 turn-s per inch. While having this twist, a liquid evanescent solvent is applied to the yarn in a small amount. Ordinarily about 0.25.0 percent of the solvent is sutficient to effect sufiicient integrality or cohesion of the filaments, although more or lesser amounts of solvent may be employed depending on the type of yarn, type of solvent, degree of cohesion desired, etc.
Next, the yarn is detwisted and heated quickly to about l50190 C. to dry the yarn and to deactivate the action of the solvent while the yarn is under reduced tension permitting relaxation thereof. Heating is accomplished by passing the yarn in contacting engagement with a heated surface having a peripheral speed substantially equal to the speed of the yarn. The time during which the yarn is heated by the surface is from about 0.001 to 0.4 second, preferably from 0.001 to 0.05 second. The yarn is moved in a figure of eight path, the heating of the yarn by means of the heated surface to the temperature of about 15()l90 C. being efiect'ed on the inside of the loop of the figure of eight path wherein the yarn moves in a direction opposite to that taken by the yarn around the rolls.
Then, the yarn is cooled quickly to about 40-130 C. The cooling of the yarn is preferably accomplished as it moves in the loop of the figure of eight path wherein the yarn moves in the same direction as that taken by the yarn around the draw roll and separator roll.
In the next step the yarn again is heated quickly to about l90 C. This is accomplished by passing the yarn again in contacting engagement with the same or different moving heated surface. The time during which the yarn is heated by the surface is from about 0.001 to 0.4 second, preferably from 0.001 to 0.05 second. Preferably, the yarn is looped back so that heating thereof is effected again on the inside of the loop of a figure of eight path wherein the yarn moves in a direction opposite to that taken by the yarn around the draw roll and separator roll.
Finally, the yarn is cooled while the yarn is under a tension of about 0.020.2 gram per denier; the heat can be dissipated to the ambient air and to the rolls. Thereafter, the yarn is taken up in an orderly manner in package form under a tension of about 0.05-0.4 gram per denier at a speed of about four to twelve percent less than the speed of the yarn immediately after it is drawn. The yarn can be wound on a bobbin or the like. Before take-up a finish, lubricant or like beneficiating agent can be applied to the yarn to improve its handling characteristics. The yarn even though not twisted can be employed in the warp or filling of woven fabric as similar yarn having considerable twist.
The invention is further illustrated by reference to the accompanying drawing wherein:
The single figure is a schematic view in perspective with principal parts in location illustrating one yarn lacing arrangement employing the apparatus of the invention.
With reference to the drawing, it will be noted that yarn 1 which is to be treated and which is composed of a bundle of smooth substantially parallel filaments that have not been fully oriented, is supplied from a yarn source. The yarn source can be, for example, a package previously dotted from a conventional filament spinning machine. Also, the apparatus as illustrated can be adapted readily for processing continuous filament yarn which is supplied directly from the spinning machine without an intermediate take-up. The yarn is passed to a rotatably arranged thread advancing means comprising a pair of feed rolls 2, at least one of which is positively driven. The rolls engage each other to nip the yarn sufliciently to prevent slippage of the yarn therebetween. The yarn is led around a snubbing pin 3 or like yarn braking means. The pin preferably is mounted to be non-rotative and has a smooth yarn contact surface made of material having a high resistance to wear. As indicated above, the pin can be heated if needed to raise the temperature of the yarn to the required temperature, although positive heating of the pin is not necessary normally.
After being passed around pin 3 a desired number of times, yarn 1 is directed around a rotatably mounted draw roll 4 and its associated separator roll 5 which is freely rotatably mounted. R011 4 is positively driven at a peripheral speed such that the yarn is given a predetermined stretch between rolls 2 and 4 which define a stretch zone. As illustrated, the yarn takes five wraps around rolls 4 and 5, the axes of which are askew so as to permit longitudinal advancement of the yarn from inside to outside of the roll and to prevent superim-positioning of the wraps. This number of wraps normally provides suflicient gripping action so that the yarn is stretched as desired without yarn slippage. As it moves away from pin 3, the yarn normally has an elevated temperature and is under a high tension depending upon the ultimate denier and elongation of the yarn. As the yarn progresses along rolls 4 and 5 the yarn is cooled; and the tension on the yarn is gradually reduced with each succeeding wrap.
A freely rotatable heated yarn relaxing roll 7 having a flange 6 is positioned adjacent dra-w roll 4 in spaced relationship therewith. The axis of roll 7 is at a slight angle with respect to the axis of the draw roll in order that the yarn wraps do not become superimposed. Embedded in roll 7 is an electric resistance heater element (not shown). Lines 7a supply electrical energy to the heater element. The heating of roll 7 can be achieved in other ways, such as by heated fluid inside the roll or by the use of high frequency heating. After completion of the wraps around rolls 4 and 5, the yarn is moved at an angle away from the wraps in a figure of eight path in a reverse Wrap about rolls 4 and 7. In the angled path the yarn frictionally engages flange 6 which imposes a peripheral effort thereon such that a slight false twist is imparted to the yarn with the twist running back toward roll 4. While twisted a liquid evanescent solvent is applied to the yarn as it brushes across the surface of wick material 8. The solvent is supplied thereto through conduit 9 from a suitable source (not shown). Usually the solvent will be metered to insure uniform application thereof to the yarn.
While the yarn is looped back around rolls 4 and 7 the yarn contacts the heated moving surface provided by roll 7, the yarn moving in a direction opposite to that taken by the yarn in its wraps about rolls 4 and 5. During its contact with roll 7 the temperature of the yarn is raised, the yarn detwists, and the yarn is dried to dissipate the action of the solvent.
The yarn is again cooled. This can be accomplished by completing the figure of eight path of the yarn around roll 4, the heat being transferred to the ambient air and to the roll. The yarn is again looped back and moved in contacting engagement with roll 7 to reheat the yarn. A third heating by contacting roll 7 and intermediate cooling of the yarn is advantageous to insure better relaxation and to insure dissipation of the action of the solvent.
The yarn is then forwarded to a take-up device. Between roll 7 and the take-up device the yarn is cooled.
Roll 10 serves as a convenient guide for the yarn moving to the take-up device. One such device is a conventional winder having a drum traverse 11 wherein the yarn is wrapped on a holder 12 to form a package 13 without twist being imparted to the yarn, The yarn may be taken up while being twisted, although twisting of the yarn is not required. The yarn is taken up at speeds permitting reduction in length of the yarn of about four to twelve percent between roll 10 and the point of maximum stretch of the yarn which occurs in the yarn path between pin 3 and roll 4. Yarn forwarding rolls may be interposed in the yarn path beyond roll 10 and before the point where the yarn is taken up in order to provide better tensioning control.
As illustrated after treatment and before take-up of the yarn, a finish, lubricant or like agent can be applied to the yarn to improve the handling properties thereof. This can be accomplished by the provision of wick applicator 14 having a beneflciating agent supplied thereto through conduit 15 from a suitable source not shown. For best results only a small amount of finish or like agents is present on the yarn prior to treatment. It has been found that an excess amount of such agents on the yarn prior to treatment can interfere adversely with the efficacy of the solvent. Conversely, the solvent may destroy the benefits desired from such agents when the solvent is after applied.
Obviously, tension control mechanisms responsive to variations in yarn tension can be employed to vary appropriately the speed of the yarn forwarding devices to provide better control of the yarn being processed.
The method of the present invention is applicable to a wide variety of synthetic continuous filament yarns. The yarn is made from thermoplastic fiber-forming resins and can be extended by drawing and then show increased molecular orientation along the axis thereof. The yarn may be formed from these resins by known techniques, including melt extrusion, wet spinning and dry spinning. As examples of the fiber-forming synthetic polymers the following may be mentioned: polyethylene; polypropylene; polyurethanes; copolymers of vinyl acetate and vinyl chloride; the copolymers of vinylidene chloride and a minor proportion of mono-olefinic compounds copolymerizable therewith, such as vinyl chloride, homopolymers of acrylonitrile, copolymers of acrylonitrile and a minor proportion of at least one mono-olefins compound copolymerized therewith and polymer blends containing polymerized acrylonitri-le in a major proportion; copolymers of vinyl chloride and acrylonitrile; linear polyesters of aro matic dicarboxylic acids and dihydric compounds, such as polyethylene terephthalate; linear polycarbonamides such as nylon-66, nylon-6, nylon-4, nylon7, nylon610 and other fiber-forming copolymers, e.g., 6/66, 6/ 610/ 66, 66/610, etc.
Filaments having a normal cross section such as that obtained using a circular spinning orifice during filament formation can be treated. However, multi-lobal yarn and yarn having an axial passage can likewise be treated in accordance with the present process.
Yarn having some twist can be processed. However, it is preferred to start with a source of yarn having zero twist, since an advantage of the present invention is that the need of twist for rendering the yarn processable into fabric is obviated. For economic considerations twist in the yarn to be processed is avoided. The denier of the yarn can vary as well as the denier of the individual filaments, the ordinary deniers of commercially available yarns being completely suitable.
The evanescent solvents are active so as to soften the yarn and to render the same stickable at the temperatures employed. The solvents can be composed of an active substance normally solid at room temperature but readily dissolvable in an inert volatile diluent to form a single phase liquid. When the yarn carrying the solvents is heated, the diluent flashes therefrom and the action of the active substance is dissipated. Specific solvents will be selected with regard to the type of yarns being processed.
For treating nylon yarns, solutions of multi-hydroxybenzenes have been found to be effective evanescent solvents. Dihydroxybenzene compounds which can be employed as the active substance in the solvents include resorcinol, hydroquinone and pyrocatechol. A trihydroxybenzene, for example, is pyrogallol. The multi-hydroxybenzenes are not limited to the foregoing specific compounds since derivatives thereof can also be used to effect cohesion and the stabilization of the yarn. The preferred procedure is to dissolve the compounds in a suitable inert diluent. Dihydroxybenzenes and trihydroxybenzenes are readily soluble in water, common alcohols (methanol, ethanol, etc.) and common ethers (dimethyl ether, diethyl ether, etc.). It has been found that a preferred procedure involves dissolving a predetermined amount of the benzene compound in water or methanol. An aqueethers (dimethyl ether, diethyl ether, etc.).
. The wind-up speed was 725 yards per minute.
, cold-drawing wa wound thereon.
nylon yarns is molten chloral hydrate -or a solution thereof. Chloral hydrate is also readily soluble in water, common alcohols (methanol, ethanol, etc.) and common A preferred procedure involves dissolving a predetermined amount of chloral hydrate in water or methanol. An aqueous or methanolic solution containing about 25-90 weight percent chloral hydrate gives good results. The preferred concentration of chloral hydrate in solution is 40-85 weight percent.
For treating acrylic filament yarns (yarns made from acrylonitrile polymers) solutions of aliphatic cyclic carbonates are etfective evanescent solvents. These carbonates can be selected from the group of the cyclic carbonates of 1,2; 2,3-; and 1,3-dihydric aliphatic alcohols. Such aliphatic cyclic carbonates include ethylene carbonate, propylene carbonate, trimethylene carbonate, 1,2- butylene carbonate, 1,3-butylene carbonate, 2,3-'butylene carbonate, isobutylene carbonate and mixtures thereof. Especially useful of the foregoing group is ethylene carbonate. An aqueous solution containing about 8() percent aliphatic cyclic carbonate on a weight basis gives good results. The preferred concentration of aliphatic cyclic carbonate is 40-60 weight percent,
The following examples will serve to illustrate the invention, although they are not intended to be limitative thereof.
EXAMPLE I An untwisted, undrawn filament nylon-66 yarn with a spun denier of 190 and composed of 34 filaments was removed axially from a spin bobbin and was advanced by means of a pair of feed rolls as shown in the drawing. The yarn was wrapped two times around snubbing pin 3 and then was wrapped four times around draw roll 4 and separator roll 5. The draw ratio employed was 2.7 and the peripheral speed of the draw roll was 800 yards per minute. The yarn was then wrapped around heated roll 7 and brought at an angle across flange 6 which imparted a false twist of about 10 turns per inch to the yarn with the twist running back toward roll 4. While twisted, aqueous solution of chloral hydrate was wicked onto the yarn. The weight percent of the chloral hydrate in solution was 80. The wicked yarn contained about 2 weight percent of the solution. The temperature of roll 7 was 220 C.
Then, the yarn was wrapped around roll 4 for the fifth time and was looped back again around heated roll 7 and roll 4 as shown in the drawing. After the third pass around roll 7 the yarn was wound onto a cheese package on a tubular paper core without twisting the yarn.
The tension on the yarn during winding was 1 0 grams, A small amount of finish was applied to the yarn as it passed over wick 14.
The resulting yarn exhibited excellent physical properties, having a boiling water residual shrinkage of 6.8
The
whereas the same type core collapsed and could not be removed from the winding spindle without destroying the package when the same yarn drawn by conventional The yarn was used asthe warp in the construction of nylon taffeta. The warp was prepared and slashed in a conventional manner.
The filling was made of nylon filaments untwisted and not treated in accordance with this example. Good coherency of the warp yarn was maintained during the weaving of the fabric; and it dyed uniformly. The yarn had a rotund cross section and was not pronouncedly flat-sided as would be expected from being passed over a surface in the presence of a solvent. The filaments of the yarn were bonded at random points to adjacentfilaments and were maintained in substantial parallel relationship.
For determining the residual yarn shrinkage, a skein of yarn is placed in boiling water for 60 minutes and then is hung up to dry for 24 hours. Percent shrinkage i the initial length of yarn minus the length thereof after boiling divided by the initial length of the yarn times one hundred.
Initial modulus is defined as a ratio of change in stress to strain in the first linear portion of a stress-strain curve. The ratio is calculated from the stress, expressed in force per unit linear density, and the strain expressed as percent elongation. As the strain is expressed in terms of elongation, the modulus equals one hundred times the quotient (stress/strain). The modulus is determined at 1 /2 percent elongation based on the slope of the curve at this percentage. The modulus is obtained from yarn stress-strain curves measured by the Instron Tensile Tester, which, in operation, stretche the yarn at a constant rate of elongation. From the stress-strain curve, the stress is measured graphically at 1 /2 percent elongation on the initial linear portion of the stress-strain curve; and the modulus is calculated at one hundred times this value, divided by the denier of the yarn sample.
EXAMPLE II The procedure of the above was repeated except an aqueous solution containing 50 weight percent resorcinol was used instead of chloral hydrate. The nylon-66 yarn contained about 1 weight percent of the solution. It was found that the yarn was relaxed; that is, it was stabilized against longitudinal retraction, having a high initial modulus and low shrinkage. The yarn was sufiiciently coherent that it could be used as warp in the weaving of taffeta without the drawbacks normally encountered when untreated zero twist yarn is used in the same manner.
Similarly excellent results are obtained when a methanolic solution of 65.5 weight percent resorcinol; an ethanolic solution of 29.9 weight percent hydroquinone; a methanolic solution of 26.4 weight percent hydroquinone; saturated aqueous solution of resorcinol; saturated methanolic solution of pyrogallol, and the like are employed in the treatment of undrawn, untwisted nylon filaments. In each case the yarn is relaxed and adapted for use as warp or filling yarn of a fabric. Other nylons such as nylon-6 can be treated with like results. In
7 addition, acrylic filament yarn with no twist can be treated by the application of an aqueous solution of ethylene carbonate or the like. The yarn is relaxed with filaments cohered at random points.
The present invention alfords numerous advantages. For example, filament yarn can be drawn and relaxed, as well as rendered coherent in one convenient operation. The yarn is stabilized or mitigated against longitudinal retraction such that cheap disposable paper winding cores can be used by filament manufactures in shipping the yarn to its customer. The yarn can be wound in the form of a tapered package with considerably less occurrence of pirn taper 'barr. The filaments of the yarn are maintained in substantial parallel relationship, but the yarn has a unifilar character enabling it to perform in the construction of fabric as a coherent unitary strand. The yarn is not excessively fiat as ribbon but exhibits transverse rotundness. Yarns can be processed at high rates, and existing yarn processing apparatus can be modified at modest cost to incorporate the novel apparatus features of the present invention. A warp of these yarns can be conveniently slashed by conventional methods. I
Since may different embodiments of the invention can be made without departing from the spirit and scope thereof, the invention is not limited by the specific illustrations except to the extent defined in the following claims.
I claim:
1. Apparatus for treating molecularly orienta'b-le continuous multifilament yarn of substantially zero twist to render same stress-relieved and of such coherency that the yarn is adapted for use as warp yarn of a fabric comprising:
(a) means for longitudinally forwarding the yarn in a path from a source thereof;
(b) a driven draw roll positioned in the yarn path and adapted to forward the yarn at a speed such that the yarn is stretched to orient same molecularly;
(c) a freely rotatable separator roll positioned adjacent the draw roll in spaced relationship therewith, the axis of the separator roll being at a slight angle with respect to the axis of the draw roll so that the yarn normally progressing around the rolls moves in a helical path;
(d) a heated freely rotatable second separator roll mounted adjacent the draw roll, the axis of the second separator roll being at a slight angle with respect to the axis of the draw roll so that yarn normally progressing around the rolls moves in a helical path.
(e) a circumferential flange on the heated separator roll and positioned so that yarn moving from the draw roll at an angle to the heated separator roll has a peripheral moment applied thereto by contact with the flange to impart a false twist thereto between the flange and draw roll;
(f) means located in the yarn path between the flange and draw roll for applying a liquid to the yarn; and
(g) means for packaging the yarn after it passes around the heated roll.
2. The apparatus of claim 1 including a yarn snubbing pin in the yarn path between the means for forwarding the yarn of the source thereof and the draw roll.
3. The apparatus of claim 1 wherein (f) is a wick material.
4. The apparatu of claim 1 wherein a second means for applying a liquid to the yarn is located in the yarn path between the draw roll and packaging means.
References Cited by the Examiner UNITED STATES PATENTS 2,054,354 9/1936 Alderfer 57-168 X 2,321,726 6/1943 Alderfer 57-168 2,946,181 7/1960 Tissot et al 57-157 2,976,671 3/1961 Steen 57-157 2,988,867 6/1961 Quittner 57-157 3,025,660 3/1962 Gonsalves 57-55.5 X 3,067,461 12/1962 Hughey 57-157 3,069,837 12/1962 Olson 57-157 3,094,834 6/1963 Deeley et al. 57-55.5 3,114,235 12/1963 Griset 57-157 3,161,706 12/1964 Peters 57-168 X FOREIGN PATENTS 798,909 7/ 1958 Great Britain.
FRANK J. COHEN, Primary Examiner.
J. PETRAKES, Assistant Examiner.

Claims (1)

1. APPARATUS FOR TREATING MOLECULARLY ORIENTABLE CONTINUOUS MULTIFILAMENT YARN OF SUBSTANTIALLY ZERO TWIST TO RENDER SAME STRESS-RELIEVED AND OF SUCH COHERENCY THAT THE YARN IS ADAPTED FOR USE AS WARP YARN OF A FABRIC CONPRISING: (A) MEANS FOR LONGITUDINALLY FORWARDING THE YARN IN A PATH FROM A SOURCE THEREOF; (B) A DRIVEN DRAW ROLL POSITIONED IN THE YARN PATH AND ADAPTED TO FORWARD THE YARN AT A SPEED SUCH THAT THE YARN IS STRETCHED TO ORIENT SAME MOLECULARLY; (C) A FREELY ROTATABLE SEPARATOR ROLL POSITIONED ADJACENT THE DRAW ROLL IN SPACED RELATIONSHIP THEREWITH, THE AXIS OF THE SEPARATOR ROLL BEING AT A SLIGHT ANGLE WITH RESPECT TO THE AXIS OF THE DRAWN ROLL SO THAT THE YARN NORMALLY PROGRESSING AROUND THE ROLLS MOVES IN A HELICAL PATH; (D) A HEATED FREELY ROTATABLE SECOND SEPARATOR ROLL MOUNTED ADJACENT THE DRAW ROLL, THE AXIS OF THE SECOND SEPARATOR ROLL BEING AT A SLIGHT ANGLE WITH RESPECT TO THE AXIS OF THE DRAWN ROLL SO THAT YARN NOR-
US496635A 1963-11-12 1965-10-15 Apparatus for the treatment of synthetic filaments Expired - Lifetime US3287888A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
NL129961D NL129961C (en) 1963-11-12
GB1054567D GB1054567A (en) 1963-11-12
NO155386A NO118444B (en) 1963-11-12 1964-11-02
NL6412987A NL6412987A (en) 1963-11-12 1964-11-06
BE655469D BE655469A (en) 1963-11-12 1964-11-09
IL22423A IL22423A (en) 1963-11-12 1964-11-09 Synthetic continuous filament yarn,method of preparing it and apparatus therefor
FR994479A FR1420615A (en) 1963-11-12 1964-11-10 Processing of synthetic filaments
LU47328D LU47328A1 (en) 1963-11-12 1964-11-11
CH1423167A CH486575A (en) 1963-11-12 1964-11-11 Process for the production of a practically straight, synthetic, endless multifilament yarn, device for carrying out the process and yarn produced according to the process and its use for the production of flat textile structures
SE13600/64A SE300779B (en) 1963-11-12 1964-11-11
DE19641435588 DE1435588A1 (en) 1963-11-12 1964-11-11 Essentially straight, synthetic, endless multifilament yarn as well as the method and device for its production
US496635A US3287888A (en) 1963-11-12 1965-10-15 Apparatus for the treatment of synthetic filaments
US496634A US3365874A (en) 1963-11-12 1965-10-15 Treatment of synthetic filaments

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32270463A 1963-11-12 1963-11-12
US496635A US3287888A (en) 1963-11-12 1965-10-15 Apparatus for the treatment of synthetic filaments
US496634A US3365874A (en) 1963-11-12 1965-10-15 Treatment of synthetic filaments

Publications (1)

Publication Number Publication Date
US3287888A true US3287888A (en) 1966-11-29

Family

ID=27406226

Family Applications (2)

Application Number Title Priority Date Filing Date
US496634A Expired - Lifetime US3365874A (en) 1963-11-12 1965-10-15 Treatment of synthetic filaments
US496635A Expired - Lifetime US3287888A (en) 1963-11-12 1965-10-15 Apparatus for the treatment of synthetic filaments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US496634A Expired - Lifetime US3365874A (en) 1963-11-12 1965-10-15 Treatment of synthetic filaments

Country Status (8)

Country Link
US (2) US3365874A (en)
BE (1) BE655469A (en)
DE (1) DE1435588A1 (en)
IL (1) IL22423A (en)
LU (1) LU47328A1 (en)
NL (2) NL6412987A (en)
NO (1) NO118444B (en)
SE (1) SE300779B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400528A (en) * 1967-03-25 1968-09-10 Palitex Project Co Gmbh Method and apparatus for post-treating of yarn on two-for-one twisting machines
US3493646A (en) * 1966-10-18 1970-02-03 Monsanto Co Drawing and heat relaxing nylon yarn
US3581487A (en) * 1968-07-16 1971-06-01 Courtaulds Ltd Yarn drawing machine
US3846969A (en) * 1972-04-13 1974-11-12 Du Pont False-twist texturing yarn of polyester filaments having multilobal cross sections
US4041689A (en) * 1975-11-11 1977-08-16 E. I. Du Pont De Nemours And Company Multilobal polyester yarn
USRE29363E (en) * 1973-08-30 1977-08-23 E. I. Du Pont De Nemours And Company False-twist texturing yarn of polyester filaments having multilobal cross sections
US4207729A (en) * 1975-05-27 1980-06-17 Agence Nationale De Valorization De La Recherche (Anvar) Method and apparatus for coating textile strands or threads for use in hoisery or weaving
US5802649A (en) * 1996-02-12 1998-09-08 Fypro Method and apparatus for dyeing a traveling textile strand
US5881411A (en) * 1996-12-23 1999-03-16 Fypro Thread Company, Inc. Twisted, dyed and bonded filaments

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536803A (en) * 1964-05-26 1970-10-27 Celanese Corp Process for treating elastomeric fibers
US3525206A (en) * 1965-01-19 1970-08-25 Monsanto Co Nylon tire cord
US3461657A (en) * 1967-10-27 1969-08-19 Scragg & Sons Textile apparatus
GB1274854A (en) * 1968-07-12 1972-05-17 Ici Ltd Improvements in or relating to the drawing and bulking of synthetic filament yarns
US3651633A (en) * 1970-10-27 1972-03-28 Fiber Industries Inc Flange false twist textured nylon
BE791321A (en) * 1971-11-17 1973-05-14 Ici Ltd IMPROVEMENTS IN THE MANUFACTURING OF TEXTURED YARN
GB1401341A (en) * 1972-07-13 1975-07-16 Ici Ltd Production of texturised yarn
US5203939A (en) * 1991-08-05 1993-04-20 Coats Viyella, Plc Process for production of internally bonded sewing threads

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054354A (en) * 1934-12-11 1936-09-15 Edward D Andrews Elastic thread and process of making the same
US2321726A (en) * 1941-10-23 1943-06-15 Edward D Andrews Method of manufacturing thread
GB798909A (en) * 1955-07-19 1958-07-30 Onderzoekings Inst Res Improved process for manufacturing effect yarns from linear polycondensation products
US2946181A (en) * 1958-01-03 1960-07-26 Const Mecaniques De Stains Soc Production of twistless yarns by direct spinning to tow, sizing the tow, false twisting and winding
US2976671A (en) * 1958-10-30 1961-03-28 American Enka Corp Method of threading drawtwister
US2988867A (en) * 1960-02-26 1961-06-20 Ind Rayon Corp Method of handling a plurality of yarns during processing
US3025660A (en) * 1957-01-24 1962-03-20 American Enka Corp Drawtwisting process
US3067461A (en) * 1960-11-07 1962-12-11 Monsanto Chemicals Apparatus for producing twisted filament yarn
US3069837A (en) * 1959-06-30 1962-12-25 Du Pont Twisting process
US3094834A (en) * 1959-07-03 1963-06-25 British Nylon Spinners Ltd Apparatus for simultaneously stretching and falsetwisting yarn
US3114235A (en) * 1959-04-13 1963-12-17 Ethicon Inc Method of forming a round collagen strand
US3161706A (en) * 1961-09-28 1964-12-15 Polythane Corp Method and apparatus for wet spinning elastomeric polymers into a fused multifilament fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2273364A (en) * 1940-02-06 1942-02-17 Wingfoot Corp Filament

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054354A (en) * 1934-12-11 1936-09-15 Edward D Andrews Elastic thread and process of making the same
US2321726A (en) * 1941-10-23 1943-06-15 Edward D Andrews Method of manufacturing thread
GB798909A (en) * 1955-07-19 1958-07-30 Onderzoekings Inst Res Improved process for manufacturing effect yarns from linear polycondensation products
US3025660A (en) * 1957-01-24 1962-03-20 American Enka Corp Drawtwisting process
US2946181A (en) * 1958-01-03 1960-07-26 Const Mecaniques De Stains Soc Production of twistless yarns by direct spinning to tow, sizing the tow, false twisting and winding
US2976671A (en) * 1958-10-30 1961-03-28 American Enka Corp Method of threading drawtwister
US3114235A (en) * 1959-04-13 1963-12-17 Ethicon Inc Method of forming a round collagen strand
US3069837A (en) * 1959-06-30 1962-12-25 Du Pont Twisting process
US3094834A (en) * 1959-07-03 1963-06-25 British Nylon Spinners Ltd Apparatus for simultaneously stretching and falsetwisting yarn
US2988867A (en) * 1960-02-26 1961-06-20 Ind Rayon Corp Method of handling a plurality of yarns during processing
US3067461A (en) * 1960-11-07 1962-12-11 Monsanto Chemicals Apparatus for producing twisted filament yarn
US3161706A (en) * 1961-09-28 1964-12-15 Polythane Corp Method and apparatus for wet spinning elastomeric polymers into a fused multifilament fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493646A (en) * 1966-10-18 1970-02-03 Monsanto Co Drawing and heat relaxing nylon yarn
US3400528A (en) * 1967-03-25 1968-09-10 Palitex Project Co Gmbh Method and apparatus for post-treating of yarn on two-for-one twisting machines
US3581487A (en) * 1968-07-16 1971-06-01 Courtaulds Ltd Yarn drawing machine
US3846969A (en) * 1972-04-13 1974-11-12 Du Pont False-twist texturing yarn of polyester filaments having multilobal cross sections
USRE29363E (en) * 1973-08-30 1977-08-23 E. I. Du Pont De Nemours And Company False-twist texturing yarn of polyester filaments having multilobal cross sections
US4207729A (en) * 1975-05-27 1980-06-17 Agence Nationale De Valorization De La Recherche (Anvar) Method and apparatus for coating textile strands or threads for use in hoisery or weaving
US4041689A (en) * 1975-11-11 1977-08-16 E. I. Du Pont De Nemours And Company Multilobal polyester yarn
US5802649A (en) * 1996-02-12 1998-09-08 Fypro Method and apparatus for dyeing a traveling textile strand
US5868010A (en) * 1996-02-12 1999-02-09 Fypro Thread Company, Inc. Method for dyeing a traveling textile strand
US5881411A (en) * 1996-12-23 1999-03-16 Fypro Thread Company, Inc. Twisted, dyed and bonded filaments

Also Published As

Publication number Publication date
NL6412987A (en) 1965-05-13
SE300779B (en) 1968-05-06
BE655469A (en) 1965-05-10
DE1435588A1 (en) 1969-02-20
NL129961C (en)
LU47328A1 (en) 1965-05-11
IL22423A (en) 1968-09-26
NO118444B (en) 1969-12-29
US3365874A (en) 1968-01-30

Similar Documents

Publication Publication Date Title
US3287888A (en) Apparatus for the treatment of synthetic filaments
US3069836A (en) Yarn relaxation process using fluid jets
US3691748A (en) Textured polyethylene terephthalate yarns
US3854177A (en) Process and apparatus for texturing yarn
US3714686A (en) Process and apparatus for texturing filaments
US3404525A (en) Low-torque multifilament compact yarn
US2890568A (en) Production of voluminous yarn
US3124632A (en) Phocess for treating nylon
US3003222A (en) Controlled relaxation of freshly drawn nylon
US3640064A (en) Novelty yarn
US3435603A (en) Process and apparatus for producing torque in synthetic filaments,fibers and yarns
US3083523A (en) Twistless, heat relaxed interlaced yarn
US3733801A (en) Yarn process
US3025659A (en) Method of thermally processing non-thermoplastic yarn
US3949041A (en) Method for texturing synthetic filament yarn
US4035883A (en) Multipurpose intermingling jet and process
US3184820A (en) Apparatus for orienting the structure of synthetic yarn
US2988866A (en) Apparatus for the production of lowshrinkage polyethylene terephthalate threads
US3018608A (en) Process for the production of lowshrinkage polyethylene terephthalate threads
US4345424A (en) Textured novelty yarn and process
US3382658A (en) Apparatus for manufacturing textured filament yarns
US3603043A (en) Cohered yarn fabrics and method for forming said yarn
GB1452355A (en) Crimping process
US4028875A (en) False-twist texturing process
US3409496A (en) Twistless multifilament yarn of polyethylene terephthalate