US3256198A - Compositions containing an oxygen releasing compound and an organic carbonate - Google Patents

Compositions containing an oxygen releasing compound and an organic carbonate Download PDF

Info

Publication number
US3256198A
US3256198A US274857A US27485763A US3256198A US 3256198 A US3256198 A US 3256198A US 274857 A US274857 A US 274857A US 27485763 A US27485763 A US 27485763A US 3256198 A US3256198 A US 3256198A
Authority
US
United States
Prior art keywords
compositions
carbonate
organic
sodium
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US274857A
Inventor
Edwin A Matzner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to US274857A priority Critical patent/US3256198A/en
Application granted granted Critical
Publication of US3256198A publication Critical patent/US3256198A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/10Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
    • D06L4/12Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen combined with specific additives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/10Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
    • D06L4/15Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen using organic agents

Definitions

  • the present invention relates to novel compositions containing oxygen-releasing compounds, and more particularly relates to washing and/or sanitizing compositions containing bleaching agents with or without detersive agents.
  • the present invention further relates to improved bleaching and/or laundering compositions, containing oxygen-releasing agents and which are useful, for example, in bleaching and/or laundering operations or in the removal of stains from textile materials.
  • Detergent compositions containing an oxygen-releasing compound for example, an inorganic per-salt, such as an alkali metal perborate or percarbonate, or a peroxide, such as urea peroxide, have been disclosed heretofore as useful for bleaching and sanitizing purposes. Although such compositions provide a satisfactory bleaching action when they are used in Water which is at or near the boiling point, (e.g., 95 C.lO C.), the bleaching activity is unsatisfactory when the water is at lower temperatures, that is, temperatures below 75 C. Detergent and/or sanitizing compositions containing oxygen-releasing compounds thus have the disadvantage of being unsatisfactory for many uses, such as the washing and/or bleaching of textiles and fabrics.
  • an oxygen-releasing compound for example, an inorganic per-salt, such as an alkali metal perborate or percarbonate, or a peroxide, such as urea peroxide
  • compositions containing these oXygen-releasing compounds are also unsatisfactory in that they cannot be efficiently employed in modern automatic washing machines and laundering devices utilizing water at relatively low temperatures, such as 50 C. to 70 C.
  • Patent 2,955,905, issued October 11, L960 discloses the addition of certain esters such as the benzoyl ester of alkali metal phenolsulfonates and glucose penta-acetate, as oxygenreleasing promoters, to washing compositions, containing inorganic per-salts;
  • German Patent 1,018,181, published July 8, 1955 discloses the addition of certain compounds such as malonitrile or ethylene dicyanide in compositions containing inorganic per-salts;
  • German Patent 1, 038,- 693, published November 22, 1956 discloses certain carboxylic anyhdrides such as benzoic anhydride and phthalic anyhdride in compositions containing sodium perborate to promote or accelerate the release of oxygen therefrom.
  • compositions containing the promoter compounds of the above-mentioned patents have certain disadvantages in that they either do not bleach efliciently in water at temperatures of between 50 C. and 75 C. or tend to render such compositions unstable, that is, cause a loss of available oxygen from the inorganic per-salts, when the compositions are stored under normal storage conditions for periods of from 1 week to several months. Compositions which have lost available oxygen are usually inefficient or ineffective for bleaching and washing purposes.
  • compositions containing oxygen-releasing compounds and certain hereinafter defined organic carbonates will effectively and economically bleach and whiten textiles and fabrics in Water at temperatures as low as 40 C. when used under standard laundering conditions. Additionally, compositions containing these organic carbonates are stable for prolonged periods of time under ordinary storage conditions.
  • the present invention provides a composition
  • a composition comprising a mixture of an oxygen-releasing compound, for example, an organic or an inorganic per-salt, and an organic compound having the formula:
  • R is selected from like or dissimilar organic radicals, at least one of such radicals being characterized in that its corresponding alcohol (ROH) has a pK,,, below about 11.7.
  • ROH corresponding alcohol
  • Such compositions can be readily formulated as bleaching and/ or sanitizing agents which are effective under a wide variety of conditions when used with water at temperatures of from about 50 C. to C.
  • the preferred compositions are generally stable with respect to loss of available oxygen for prolonged periods of time, that is, for periods up to six months or longer.
  • R may be any of a wide variety of like or dissimilar organic radicals provided that one or both of the organic radicals has or forms a corresponding alcohol, e.g., ROH (where R has the signifcance herein defined), which alcohol is characterized in having a pK of below about 11.7.
  • ROH where R has the signifcance herein defined
  • R may represent like or dissimilar organic radicals whose corresponding alcohols are characterized in having a pK below about 11.7 and such alcohols usually have a pK between about 11.7 and about 5.0.
  • R may represent dissimilar organic radicals, where the corresponding alcohol of only one radical is characterized in having a pK between about 11.7 and 5.0.
  • pK is well known, and the pK, of a compound is defined as the negative logarithm of the dissociation constant of the compound.
  • Organic radicals whose corresponding alcohols are characterized in having a pK below about 11.7 include substituted or unsubstituted branched chain aliphatic radicals, and substituted or unsubstituted aromatic radicals.
  • Organic carbonates falling within the scope of Formula I in which R represents at least one of such organic radicals have been found to be particularly advantageous when employed in the compositions of this invention. Such organic carbonates have limited but effective water-solubility, e.g., from about 0.01 to about 5.0 grams per 100 grams of water and are somewhat more soluble in alkaline wash solutions.
  • the organic radical R may represent any of a wide variety of substituted or unsubstituted branched chain aliphatic groups or radicals.
  • unsubstituted branched chain aliphatic groups or radicals include ispropyl, isobutyl, sec butyl, t-butyl, iso-amyl, isohexyl, isononyl, isodecyl, Z-ethylhexyl, 2-propylamyl, 2- butylamyl, etc., groups or radicals.
  • the substituents of the substituted branched chain aliphatic groups or radicals may include, halogen atoms sulfo-, nitro-, carboxy-, methoxy-, carbethoxy-, amino-, etc. substituted branched chain aliphatic groups or radicals.
  • the branched chain aliphatic radicals preferably contain from 3 to about carbon atoms in the aliphatic group. Although such radicals may contain more than 10 carbon atoms, organic carbonates containing them often have limited solubility in water.
  • Examples of unsubstituted aromatic radicals which may be represented by R in Formula I may be phenyl, pyridyl, benzyl, alphaand beta-naphthyl, quinolyl, anthryl, phenanthryl, benzquinolyl and the like.
  • the substituents of substituted aromatic radicals include, for example, halo-, nitro-, sulfoand alkyl-substituted groups or radicals and the alkyl substituted groups or radicals may contain from about 1 to carbon atoms in the alkyl group.
  • R in Formula I is an organic radical and preferably represents one of the hereinbefore described branched chain aliphatic radicals or aromatic radicals. In carbonates having at least one such preferred radical, R in Formula I may also represent, in certain instances, not more than one straight chain unsubstituted aliphatic radical including, for example, alkyl radicals such as methyl, ethyl, n-propyl, n-butyl, n-amyl, n-hexyl,
  • n-heptyl n-octyl, etc., groups or radicals.
  • compositions of this invention include:
  • Organic carbonates suitable for use in the com positions of this invention may be prepared by any of several methods described on pages 483 through 487 of Synthetic Organic Chemistry by Romeo B. Wagner and Harry D. Zook published by John Wiley and Sons, New York, in 1953, provided that organic carbonates within the scope of Formula I are formed.
  • the suitable organic carbonates as herein defined may be mixed, preferably in the solid state, with a wide variety or organic and/or inorganic oxygen-releasing compounds to provide the compositions of this invention.
  • organic oxygen-releasing compounds include organic peroxides, such as urea peroxide, benzoyl peroxide, methyl ethyl ketone peroxide and the like.
  • inorganic oxygen-releasing compounds include inorganic peroxides, such as alkaline earth metal peroxides, for example, calcium, magnesium, zinc and barium peroxides.
  • suitable inorganic peroxides include alkali metal carbonate peroxides, such as sodium carbonate peroxide and alkali metal pyrophosphate peroxides, such as sodium pyrophosphate peroxide.
  • Particularly suitable inorganic oxygen-releasing compounds include inorganic per salts, such as metal and ammonium persulfates, perchlorates, and perborates. Of these per salts, water-soluble alkali metal (for example, sodium, potassium, etc.) persulf-ates and perborates are preferred, and alkali metal perborates, especially sodium and potassium perborates, are particularly preferred.
  • compositions of this invention may be present in various proportions depending upon whether the composition is to be used as a bleaching composition, a washing composition, or both, However, in most instances, such compositions contain either an organic or an inorganic oxygen-releasing compound and from about 0.1 to about 2 mols, per mol of the oxygenreleasing compound, of the useful organic carbonates.
  • compositions comprise a mixture of an inorganic per salt, such as an alkali metal perborate and from about 0.1 to about 2.0 mols, per mol of perborate, of an organic carbonate hav ing the formula:
  • R is a branched chain aliphatic radical having from 3 to about 10 carbon atoms in the aliphatic group or an aromatic radical, and R is an aliphatic or an aromatic radical.
  • Preferred organic carbonates falling within the scope of Formula II are organic carbonates in which R is a branched chain aliphatic radical containing from about 3 to about 10 carbon atoms in the aliphatic group. Also preferred are organic carbonates in which R in Formula II is an aromatic radical. Other preferred organic carbonates are compounds in which both R and R in Formula II are branched chain aliphatic radicals having from about 3 to about 10 carbon atoms in the aliphatic group. Organic carbonates which are additionally preferred are carbonates in which R and R in Formula II are both aromatic radicals.
  • the compositions comprise sodium perborate and from about 0.1 to about 2.0 mols, per mol of sodium perbo-rate, of diortho-tolyl carbonate, di-para-tolyl carbonate, diphenyl carbonate, bis(ortho-methoxy-phenyl) carbonate, or diisobutyl carbonate or mixtures of these carbonates.
  • Such compositions are stable in the dry state during storage and are useful as commercial laundry bleaches and/ or for bleaching textiles, and generally will effectively bleach textile and other materials in water at temperatures as low as 50 C.
  • organic carbonates which may be employed in the compositions may vary within the above ranges and will depend upon a number of factors such as, for example, the particular organic carbonate employed and the temperature of the water in which it is intended to use the composition.
  • aromatic organic carbonates e.g., organic carbonates in which R.
  • Formula I is an aromatic radical
  • compositions of the present invention may also contain, in addition to an oxygen-releasing compound and the useful carbonates, a variety of inorganic compounds of a class different from the inorganic oxygen-releasing compounds, and which are incapable of undergoing an oxidation reduction reaction with the oxygen-releasing compound.
  • inorganic compounds include water-soluble, alkali metal inorganic salts, preferably those inorganic salts which are employed as detergent builders.
  • tri-alkali metal phosphates such as tri-sodium phosphate and tripotassium phosphate
  • di-alkali metal hydrogen phosphates such as di-sodium hydrogen phosphate and di-potassium hydrogen phosphate
  • alkaline water soluble, molecularly dehydrated, alkali metal phosphate salts such as alkali metal pyrophosphates, for example, tetrasodium pyrophosphate and tetrapotassium pyrophosphate
  • the alkali metal tripolyphosphate such as sodium tripolyphosphate (Na P O and potassium tripolyphosphate
  • alkaline water soluble alkali metal metaphosphates such as sodium hexametaphosphate
  • water soluble, alkali metal silicates such as sodium silicates having an Na O to SiO mol ratio of from about 1:1 to about 123.6, preferably about 1:1 to 1:1.35, and the corresponding potassium silicates
  • the inorganic or detergent builder salts can be used alone or in various combinations with each other or with water-soluble neutral, inert inorganic diluents which may also have some detergent building properties, for example, water-soluble neutral inert alkali metal salt diluents such as neutral alkali metal sulfates or chlorides, for example, sodium sulfate or sodium chloride.
  • water-soluble neutral inert alkali metal salt diluents such as neutral alkali metal sulfates or chlorides, for example, sodium sulfate or sodium chloride.
  • alkaline or neutral salts which may be employed in the compositions of this invention can be varied considerably, depending upon the end use of the composition. However, when used, such salts comprise in excess of about 40% and up to about 90% by weight of the dried solids content of the composition.
  • the alkaline alkali metal salts usually comprise about 10% to about 95% of the total salts other than the oxygen-releasing compounds
  • the inert diluent neutral salts usually comprise about 90% to about 5% of the total salts other than the oxygenreleasing compounds and organic carbonates.
  • compositions of this invention may comprise an oxygen-releasing compound, the useful organic carbonates and the above-mentioned alkaline salts or combinations thereof with inert diluent neutral salts
  • the compositions may also contain, alone or in combination with the above-described salts, relatively minor amounts, usually less than 20% by weight, preferably 1 to by weight, on a solids basis, of an organic compound, preferably an organic surface active agent such as a foamin agent, emulsifier, detergent, surfactant, or the like.
  • organic surface active agents include anoinic surfactants such as sulfated and sulfonated alkyl, aryl, and alkyl-aryl hydrocarbons and alkali metal salts thereof, for example, sodium salts of long chain alkyl sulfates, sodium salts of alkyl naphthalene sulfonic acids, sodium salts of sulfonated abietenes, sodium salts of alkyl benzene sulfonic acids, particularly those in whichthe alkyl group contains from 8-24 carbon atoms, sodium salts of sulfonated mineral oils and sodium salts of sulfosuccinic acid esters such as sodium dioctyl sulfosuccinate.
  • anoinic surfactants such as sulfated and sulfonated alkyl, aryl, and alkyl-aryl hydrocarbons and alkali metal salts thereof, for example, sodium salts of long chain alkyl sulf
  • non-ionic surfactants include products formed by condensing one or more alkylene oxides of 2 to 4 carbon atoms, such as ethylene oxide or propylene oxide, preferably ethylene oxide alone or with other alkylene oxides, with a relatively hydrophobic compound, such as a fatty alcohol, fatty acid, sterol, a fatty glyceride, a fatty'amine, an aryl amine, a fatty mercaptan, a tall oil, etc.
  • alkylene oxides of 2 to 4 carbon atoms such as ethylene oxide or propylene oxide, preferably ethylene oxide alone or with other alkylene oxides
  • a relatively hydrophobic compound such as a fatty alcohol, fatty acid, sterol, a fatty glyceride, a fatty'amine, an aryl amine, a fatty mercaptan, a tall oil, etc.
  • Non-ionic surface active agents also include those products produced by condensing One or more relatively low alkyl alcohol amines (such as methanolamine, ethanolamine, propanolamine, etc.) with a fatty acid, such as lauric acid, palmitic acid, tall oil fatty acid, abietic acid, etc. to produce the corresponding amide.
  • a relatively low alkyl alcohol amines such as methanolamine, ethanolamine, propanolamine, etc.
  • a fatty acid such as lauric acid, palmitic acid, tall oil fatty acid, abietic acid, etc.
  • compositions of this invention can be used in various proportions depending upon whether the composition is to be used as a bleaching composition, a detergent composition, or the like.
  • the compositions preferably contain on a dry basis from about 1% to about 40% by weight of the oxygen-releasing compound, preferably an alkali metal perborate, and from about 0.1 to about 2.0 mols, per mol of said oxygen-releasing compound, of the useful organic carbonates, from about 0.05 to about 15% of organic surface active agent, and the remainder consisting substantially of the alkaline inorganic metal salts and/or the inert diluent salts different from the oxygen-releasing compound.
  • the ingredients are normally present in the compositions on the same solids basis, but the compositions may contain from to 99% by weight of water.
  • the compositions comprise on a solids basis from about 3 to about 15 by weight of sodium perborate, from about 0.5 to about 1.5 mols, per mol of sodium perborate, of the preferred organic carbonate such as di-ortho-tolyl carbonate, or di-phenyl carbonate or di-isobutyl carbonate, from about 10 to about by weight of sodium tripolyphosphate or a mixture of such phosphate and sodium silicate and the remainder consisting essentially of sodium sulphate.
  • Such compositions are useful as bleaching and/or washing compositions in commercial laundering operations.
  • the compositions comprise on a solid basis from about 3% to 15% by weight of sodium perborate, from about 0.5 to about 1.5 mols, per mol of perborate, of any of the preferred organic carbonates, from about 1.0 to about 20% by weight of an an-ionic wetting agent such as a sodium alkyl benzene sulfonate wherein the alkyl radical has from about 8 to about 24 carbon atoms, preferably sodium dodecylbenzene sulfonate and the remainder consisting substantially of sodium sulfate.
  • an an-ionic wetting agent such as a sodium alkyl benzene sulfonate wherein the alkyl radical has from about 8 to about 24 carbon atoms, preferably sodium dodecylbenzene sulfonate and the remainder consisting substantially of sodium sulfate.
  • Such compositions are useful as household bleaches and/ or sanitizer-s.
  • compositions comprise from about 3 to about 15 by weight of sodium perborate, from about 0.5 to about 1.5 mols, per mol of perborate, of any of thepreferred carbonates of this invention and the remainder consist ing substantially of sodium carbonate or mixtures thereof with sodium tripolyphosphate.
  • These compositions are useful as washing and/ or sanitizing agents, particularly in cleaning and sanitizing food processing equipment and containers.
  • the proportions and kind of ingredients in the formulation employed will depend upon the purposes for which the formulation or composition is being used, that is, whether it is being used for bleaching, sanitizing, laundering, etc. Regardless of the use in volved, however, the compositions containing the oxygenreleasing compound and any of the organic carbonates herein defined have definite properties of bleaching and sanitizing in aqueous solutions at temperatures well below the boiling point of water, and these compositions in the dry state also have a tendency to retain their available oxygen content under ordinary storage conditions for prolonged periods of time, that is, for periods up to 6 months and longer.
  • compositions of this invention and processes for preparing the same will be obtained from the following specific examples which are intended to illustrate the invention but not to limit the scope thereof, parts and percentages being by weight unless otherwise indicated.
  • Example 1 Dry mixed compositions containing the following ingredients in the percentages given in Table I were prepared by homogeneously blending the ingredients:
  • Example 11 The bleaching acceleration or promotion properties of this invention are further indicated by the following dye-bleaching experiments.-
  • compositions 1 through 10 The bleaching activity of compositions 1 through 10 was determined by dissolving 0.35 gram of each composition in 1 liter of water in separate cylindrical receptacles. The receptacles were provided with a mechanical agitator and the solutions therein were agitated and maintained at a temperature of about 60 C. Solutions of compositions 2, 3 and had an available oxygen concentration of parts per million; solutions of compositions 1 and 4 had an available oxygen content of parts per million and solutions 6 through 10 had an available oxygen content of 15 parts per million. The solutions of the compositions contained a mol ratio of sodium perborate to organic carbonate of approximately 1:1.
  • compositions of this invention effectively promote the bleaching of standard dyes when in solution in 60 C.
  • compositions similar to compositions 1 through 10 but dilfering only in that they did not contain an organic carbonate were evaluated under th above conditions, more than 75% of the color was retained in the solutions after minutes.
  • Example III g. samples of compositions identical to those described in Example I were stored in open glass vials in a humidity cabinet maintained at 90 F. and a relative humidity of 85% for 8 days. Available oxygen determinations were conducted on a portion of these samples every second day.
  • compositions similar to compositions 1 through 10 were prepared using prior art compounds such as acrylamide, acetamide, malonitrile, benzoic anhydride, phthalic anhydride, and glucos penta-acetate in place of the organic carbonates of compositions 1 through 10, such compositions containing the prior art compounds lost at least 35% of available oxygen after 8 days of storage under the above conditions.
  • compositions containing these prior art compounds were evaluated for bleaching activity under the conditions described in Examples I and II, their bleaching activity was significantly below the bleaching activity of the compositions 1 through 10 when tested at temperatures as low as 60 C.
  • organic carbonates in which R in Formula I represents two organic radicals whose corresponding alcohols (ROH) are characterized in having a pK above about 11.7, are usually inefiicient or ineffective in promoting the bleaching activity of, or the release of oxygen from, oxygen-releasing compounds.
  • Example IV Dry mixed compositions containing the following ingredients in parts by weight given in Table V were prepared by homogeneously blending the ingredients:
  • a composition consisting essentially of a mixture of (1) an oxygen-releasing compound selected from the group consisting of an organic peroxide and an inorganic per-salt, and (2) from about 0.1 to about 2.0 mols, per mol of said oxygen-releasing compound, of an organic carbonate having the formula:
  • R is an organic radical such that its corresponding alcohol of the formula ROH has a pK below 11.7 and the other R is a radical selected from the group consisting of (a) an unsubstituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group, (b) a substituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group and se"- lected from the group consisting of nitro-, and methoxysubstituted branched chain aliphatic radicals, (c) an unsubstituted aromatic radical selected from the group consisting of phenyl, benzyl, alpha-naphthyl, and beta-naph: thyl radicals, and (d) a substituted aromatic radical selected from the group consisting of phenyl, benzyl,'alpl1a naphthyl, and beta-naph
  • composition of claim 1 wherein said oxygenreleasing compound is an alkali-metal perborate and each R is the same organic radical.
  • a composition consisting essentially of a mixture of sodium perborate and from about 0.5 to about 1.5 mols, per mol of said perborate, of di-ortho-tolyl carbonate.
  • a composition consisting essentially of a mixture of sodium perborate and from about 0.5 to about 1.5 mols, per mol of said perborate, of di-para-tolyl carbonate.
  • a composition consisting essentially of a mixture of sodium perborate and from about 0.5 to about 1.5 mols, per mol of said perborate, of diphenyl carbonate.
  • a composition consisting essentially of a mixture of sodium perborate and from about 1.0 to about 2.0 mols, per mol of said perborate, of bis(ortho-methoxyphenyl) carbonate.
  • composition of matter consisting essentially of a mixture of sodium perborate and from about 1.0 to about TABLE V Composition Number Ingredient (parts by weight) Sodium perborate 4. 0 4. 0 8. 0 6.0
  • compositions 11 through 20 were separately dissolved in Water to form separate solutions having a concentration of 10 milligrams/ 100 cc. and were evaluated for bleaching activity using the procedures and temperature described in Examples I and II, and for stability using the procedure of Example III. In all instances, the compositions bleached and brightened unbleached muslin and rapidly decolorized dye solutions. Additionally, no compositions lost more than 7% available oxygen when subjected to the procedures described in Example III.
  • R and R are selected from the group consisting radicals having nitro-, or alkyl groups as substituents thereon, said alkyl group containing from about 1 to carbon atoms; at least one of said Rs being characterized in that its corresponding alcohol of the formula ROH has a pK below about 11.7, and (3) from about 40% to about 90% by weight of a detergent builder salt selected from the group consisting of alkali metal phosphates, alkali metal silicates having an alkali metal oxide to silica mol ratio of from about 1:1 to about 1:3.6, alkali metal borates, alkali metal carbonates, alkali metal bicarbonates, alkali metal sulfates and mixtures thereof, said salt being further characterized in being incapable of undergoing an oxidation-reduction reaction with said oxygen-releasing compound.
  • a detergent builder salt selected from the group consisting of alkali metal phosphates, alkali metal silicates having an alkali metal oxide to silica mol ratio of from about 1:1 to
  • a composition consisting essentially of a mixture of (1) from about 1% to about 40% by weight of an alkali metal perborate, (2) from about 0.1 to about 2.0 mols, per mol of said alkali metal perborate, of an organic carbonate having the formula:
  • R and R are selected from the group consisting of (a) an unsubstituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group, (b) a substituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group and selected from the group consisting of nitro-, and methoxy-substituted branched chain aliphatic radical, (c) unsubstituted aromatic radical selected from the group consisting of phenyl, benzyl, alpha-naphthyl, and beta-naphthyl radicals and (d) a substituted aromatic radical selected from the group consisting of phenyl, benzyl, alpha-naphthyl, and beta-naphthyl radicals having nitro-, or alkyl groups as substituents thereon, said alkyl group containing from about 1 to 20 carbon atoms; at least one
  • a composition consisting essentially of a mixture of (1) from about 1% to about 40% by weight of an alkali metal perborate, (2) from about 0.1 to about 2.0 mols, per mol of said perborate of an organic carbonate having the formula:
  • R1O-( JORz wherein R and R are selected from the group consist ing of (a) an unsubstituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group, (b) a substituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group and selected from the group consisting of nitro-, and methoxy-substituted branched chain aliphatic radical, (c) an unsubstituted aromatic radical selected from the group consisting of phenyl,
  • alkyl group containing from about 1 to 20 carbon atoms
  • a detergent builder salt selected from the group consisting of water-soluble, alkali metal phosphates, 'alkali metal silicates having an alkali metal oxide to silica mol ratio of from about 1:1 to about 113.6, alkali metal borates, alkali metal sulfates, alkali metal carbonates, alkali metal bicarbonates, and mixtures thereof, and (4) from about 1% to about 20% by weight of a non-soap synthetic organic detergent selected from the group consisting of nonsoap synthetic anionic surface active agents and non-soap synthetic nonionic surface active agents, said builder salt further characterized as being incapable of undergoing an oxidation-reduction reaction with said perborate.
  • a composition consisting essentially of a mixture of (1) from about 1% to about 40% by weight of sodium perborate, (2) from about 0.1 to about 2.0 mols, per mol of sodium perborate, of an organic carbonate selected from the group consisting of di-ortho-tolyl carbonate, dipara-tolyl carbonate, di-phenyl carbonate, bis-ortho-methoxyphenyl carbonate, and di-isobutyl carbonate, and (3) from about 40% to about 90%, based on the total weight of said mixture, of a detergent builder salt selected from the group consisting of sodium tripolyphosphate, sodium sulfate, sodium carbonate, sodium silicate, and mixtures thereof.
  • a composition consisting essentially of a mixture of (1) from about 1% to about 40% by Weight of sodium perborate, (2) from about 0.1 to about 2.0 mols, per mol of sodium perborate, of an organic carbonate selected from the group consisting of di-ortho-tolyl carbonate, di-para-toly-l carbonate, di-phenyl carbonate, bisortho-methoxyphenyl carbonate, and di-isobutyl carbonate, and (3) from about 0.05% to about 15% by weight of a sodium alkyl benzene sulfonate wherein the alkyl radical has from about 8 to about 24 carbon-atoms.
  • a composition consisting essentially of a-mixture of (1) from about 1% to about 40% by weight of sodium perborate, (2) from about 0.1 to about 2.0 mols, per mol of sodium perborate, of an organic carbonate selected from the group consisting of di-ortho-tolyl carbonate, di-para-tolyl carbonate, di-phenyl carbonate, bis-orthomethoxyphenyl carbonate, and di-isobutyl carbonate, (3) from about 40% to about 90% by weight of a detergent builder salt selected from the group consisting of sodium tripolyphosphate, sodium sulfate, sodium carbonate, sodium silicate, and mixtures thereof, and (4) from about 0.05 to about 15 by weight of a sodium alkyl benzene sulfonate wherein the alkyl radical has from about 8 to about 24 carbon atoms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

3,256,198 COMPOSITIONS CONTAINING AN OXYGEN RE- LEASING COMPOUND AND AN ORGANIC CAR- BONATE Edwin A. Matzner, St. Louis, Mo., assignor to Monsanto Company, St. Louis, Mo., a corporation of Delaware No Drawing. Filed Apr. 22, 1963, Ser. No. 274,857
- 13 Claims. (Cl. 252-99) The present invention relates to novel compositions containing oxygen-releasing compounds, and more particularly relates to washing and/or sanitizing compositions containing bleaching agents with or without detersive agents. The present invention further relates to improved bleaching and/or laundering compositions, containing oxygen-releasing agents and which are useful, for example, in bleaching and/or laundering operations or in the removal of stains from textile materials.
Detergent compositions containing an oxygen-releasing compound, for example, an inorganic per-salt, such as an alkali metal perborate or percarbonate, or a peroxide, such as urea peroxide, have been disclosed heretofore as useful for bleaching and sanitizing purposes. Although such compositions provide a satisfactory bleaching action when they are used in Water which is at or near the boiling point, (e.g., 95 C.lO C.), the bleaching activity is unsatisfactory when the water is at lower temperatures, that is, temperatures below 75 C. Detergent and/or sanitizing compositions containing oxygen-releasing compounds thus have the disadvantage of being unsatisfactory for many uses, such as the washing and/or bleaching of textiles and fabrics. which cannot withstand higher temperatures, that is, temperatures above about 70 C. Compositions containing these oXygen-releasing compounds are also unsatisfactory in that they cannot be efficiently employed in modern automatic washing machines and laundering devices utilizing water at relatively low temperatures, such as 50 C. to 70 C.
Such disadvantages have been recognized and the prior art indicates that attempts have been made to formulate compositions containing oxygen-releasing compounds, such as per-salts and peroxides with the goal of providing more effective bleaching and sanitizing activity at temperatures as low as 50 0., usually between 50 C. and 75 C.
Examples of prior art compositions are the following: US Patent 2,898,181, issued August 4, 1959, discloses certain carboxylic acid amides such as acetamide and acrylamide in washing compositions containing inorganic per-salts and surfactants, to promote or accelerate the release of oxygen from the inorganic per-salt; US. Patent 2,955,905, issued October 11, L960, discloses the addition of certain esters such as the benzoyl ester of alkali metal phenolsulfonates and glucose penta-acetate, as oxygenreleasing promoters, to washing compositions, containing inorganic per-salts; German Patent 1,018,181, published July 8, 1955, discloses the addition of certain compounds such as malonitrile or ethylene dicyanide in compositions containing inorganic per-salts; and German Patent 1, 038,- 693, published November 22, 1956, discloses certain carboxylic anyhdrides such as benzoic anhydride and phthalic anyhdride in compositions containing sodium perborate to promote or accelerate the release of oxygen therefrom.
However, compositions containing the promoter compounds of the above-mentioned patents have certain disadvantages in that they either do not bleach efliciently in water at temperatures of between 50 C. and 75 C. or tend to render such compositions unstable, that is, cause a loss of available oxygen from the inorganic per-salts, when the compositions are stored under normal storage conditions for periods of from 1 week to several months. Compositions which have lost available oxygen are usually inefficient or ineffective for bleaching and washing purposes.
States ate i It has presently been found, however, that compositions containing oxygen-releasing compounds and certain hereinafter defined organic carbonates will effectively and economically bleach and whiten textiles and fabrics in Water at temperatures as low as 40 C. when used under standard laundering conditions. Additionally, compositions containing these organic carbonates are stable for prolonged periods of time under ordinary storage conditions.
Accordingly, it is one object of the present invention to provide novel compositions containing oxygen-releasing compounds.
It is another object of the present invention to provide storage-stable bleaching compositions containing an oxygen-releasing agent.
It is a further object of this invention to provide stable bleaching and/or detergent compositions containing an oxygen-releasing compound which compositions are capable, when employed in water at temperatures as low as 50 C., of good bleaching activity and oxygen-releasing properties.
Still further objects and advantages of this invention are disclosed in or will become apparent from the following description and the appended claims.
The present invention provides a composition comprising a mixture of an oxygen-releasing compound, for example, an organic or an inorganic per-salt, and an organic compound having the formula:
where R is selected from like or dissimilar organic radicals, at least one of such radicals being characterized in that its corresponding alcohol (ROH) has a pK,,, below about 11.7. Such compositions can be readily formulated as bleaching and/ or sanitizing agents which are effective under a wide variety of conditions when used with water at temperatures of from about 50 C. to C. The preferred compositions are generally stable with respect to loss of available oxygen for prolonged periods of time, that is, for periods up to six months or longer.
In the above formula, R may be any of a wide variety of like or dissimilar organic radicals provided that one or both of the organic radicals has or forms a corresponding alcohol, e.g., ROH (where R has the signifcance herein defined), which alcohol is characterized in having a pK of below about 11.7. Thus, in the above formula, R may represent like or dissimilar organic radicals whose corresponding alcohols are characterized in having a pK below about 11.7 and such alcohols usually have a pK between about 11.7 and about 5.0. On the other hand, R may represent dissimilar organic radicals, where the corresponding alcohol of only one radical is characterized in having a pK between about 11.7 and 5.0.
The term pK, is well known, and the pK,, of a compound is defined as the negative logarithm of the dissociation constant of the compound. Organic radicals whose corresponding alcohols are characterized in having a pK below about 11.7 include substituted or unsubstituted branched chain aliphatic radicals, and substituted or unsubstituted aromatic radicals. Organic carbonates falling within the scope of Formula I in which R represents at least one of such organic radicals have been found to be particularly advantageous when employed in the compositions of this invention. Such organic carbonates have limited but effective water-solubility, e.g., from about 0.01 to about 5.0 grams per 100 grams of water and are somewhat more soluble in alkaline wash solutions. The carbonates are stable, and effectively promote the bleaching Formula I, the organic radical R may represent any of a wide variety of substituted or unsubstituted branched chain aliphatic groups or radicals. Examples of unsubstituted branched chain aliphatic groups or radicals include ispropyl, isobutyl, sec butyl, t-butyl, iso-amyl, isohexyl, isononyl, isodecyl, Z-ethylhexyl, 2-propylamyl, 2- butylamyl, etc., groups or radicals. The substituents of the substituted branched chain aliphatic groups or radicals may include, halogen atoms sulfo-, nitro-, carboxy-, methoxy-, carbethoxy-, amino-, etc. substituted branched chain aliphatic groups or radicals. The branched chain aliphatic radicals preferably contain from 3 to about carbon atoms in the aliphatic group. Although such radicals may contain more than 10 carbon atoms, organic carbonates containing them often have limited solubility in water.
Examples of unsubstituted aromatic radicals which may be represented by R in Formula I may be phenyl, pyridyl, benzyl, alphaand beta-naphthyl, quinolyl, anthryl, phenanthryl, benzquinolyl and the like. The substituents of substituted aromatic radicals include, for example, halo-, nitro-, sulfoand alkyl-substituted groups or radicals and the alkyl substituted groups or radicals may contain from about 1 to carbon atoms in the alkyl group.
As noted hereinbefore, R in Formula I is an organic radical and preferably represents one of the hereinbefore described branched chain aliphatic radicals or aromatic radicals. In carbonates having at least one such preferred radical, R in Formula I may also represent, in certain instances, not more than one straight chain unsubstituted aliphatic radical including, for example, alkyl radicals such as methyl, ethyl, n-propyl, n-butyl, n-amyl, n-hexyl,
n-heptyl, n-octyl, etc., groups or radicals.
Illustrative examples of some specific carbonates falling within the scope of Formula I which may be advantageously employed in the compositions of this invention include:
Compounds falling within the scope of Formula I which are preferred in the compositions of this invention include:
Di-ortho-tolyl carbonate Di-para-tolyl carbonate Di-phenyl carbonate Bis-ortho-methoxyphenyl carbonate Di-isobutyl carbonate The organic carbonates suitable for use in the com positions of this invention may be prepared by any of several methods described on pages 483 through 487 of Synthetic Organic Chemistry by Romeo B. Wagner and Harry D. Zook published by John Wiley and Sons, New York, in 1953, provided that organic carbonates within the scope of Formula I are formed.
The suitable organic carbonates as herein defined may be mixed, preferably in the solid state, with a wide variety or organic and/or inorganic oxygen-releasing compounds to provide the compositions of this invention. Examples of organic oxygen-releasing compounds include organic peroxides, such as urea peroxide, benzoyl peroxide, methyl ethyl ketone peroxide and the like. Examples of inorganic oxygen-releasing compounds include inorganic peroxides, such as alkaline earth metal peroxides, for example, calcium, magnesium, zinc and barium peroxides. Other suitable inorganic peroxides include alkali metal carbonate peroxides, such as sodium carbonate peroxide and alkali metal pyrophosphate peroxides, such as sodium pyrophosphate peroxide. Particularly suitable inorganic oxygen-releasing compounds include inorganic per salts, such as metal and ammonium persulfates, perchlorates, and perborates. Of these per salts, water-soluble alkali metal (for example, sodium, potassium, etc.) persulf-ates and perborates are preferred, and alkali metal perborates, especially sodium and potassium perborates, are particularly preferred.
The ingredients of the compositions of this invention may be present in various proportions depending upon whether the composition is to be used as a bleaching composition, a washing composition, or both, However, in most instances, such compositions contain either an organic or an inorganic oxygen-releasing compound and from about 0.1 to about 2 mols, per mol of the oxygenreleasing compound, of the useful organic carbonates.
In one embodiment of this invention, the compositions comprise a mixture of an inorganic per salt, such as an alkali metal perborate and from about 0.1 to about 2.0 mols, per mol of perborate, of an organic carbonate hav ing the formula:
0 R1O( O Rz V (II) where R is a branched chain aliphatic radical having from 3 to about 10 carbon atoms in the aliphatic group or an aromatic radical, and R is an aliphatic or an aromatic radical.
Preferred organic carbonates falling within the scope of Formula II are organic carbonates in which R is a branched chain aliphatic radical containing from about 3 to about 10 carbon atoms in the aliphatic group. Also preferred are organic carbonates in which R in Formula II is an aromatic radical. Other preferred organic carbonates are compounds in which both R and R in Formula II are branched chain aliphatic radicals having from about 3 to about 10 carbon atoms in the aliphatic group. Organic carbonates which are additionally preferred are carbonates in which R and R in Formula II are both aromatic radicals.
In a preferred embodiment of this invention, the compositions comprise sodium perborate and from about 0.1 to about 2.0 mols, per mol of sodium perbo-rate, of diortho-tolyl carbonate, di-para-tolyl carbonate, diphenyl carbonate, bis(ortho-methoxy-phenyl) carbonate, or diisobutyl carbonate or mixtures of these carbonates. Such compositions are stable in the dry state during storage and are useful as commercial laundry bleaches and/ or for bleaching textiles, and generally will effectively bleach textile and other materials in water at temperatures as low as 50 C.
The amount of any of the organic carbonates which may be employed in the compositions may vary within the above ranges and will depend upon a number of factors such as, for example, the particular organic carbonate employed and the temperature of the water in which it is intended to use the composition. Generally, aromatic organic carbonates (e.g., organic carbonates in which R.
in Formula I is an aromatic radical) may be employed in at temperatures between about 70 C. and 85 C., smaller amounts of organic carbonates are required than when the compositions are employed in water at temperatures between about 55 C. and 70 C.
The compositions of the present invention may also contain, in addition to an oxygen-releasing compound and the useful carbonates, a variety of inorganic compounds of a class different from the inorganic oxygen-releasing compounds, and which are incapable of undergoing an oxidation reduction reaction with the oxygen-releasing compound. Examples of such different inorganic compounds include water-soluble, alkali metal inorganic salts, preferably those inorganic salts which are employed as detergent builders. Illustrative of such salts are tri-alkali metal phosphates such as tri-sodium phosphate and tripotassium phosphate; di-alkali metal hydrogen phosphates such as di-sodium hydrogen phosphate and di-potassium hydrogen phosphate; alkaline water soluble, molecularly dehydrated, alkali metal phosphate salts such as alkali metal pyrophosphates, for example, tetrasodium pyrophosphate and tetrapotassium pyrophosphate, and the alkali metal tripolyphosphate such as sodium tripolyphosphate (Na P O and potassium tripolyphosphate; alkaline water soluble alkali metal metaphosphates such as sodium hexametaphosphate; water soluble, alkali metal silicates :such as sodium silicates having an Na O to SiO mol ratio of from about 1:1 to about 123.6, preferably about 1:1 to 1:1.35, and the corresponding potassium silicates; water-soluble alkali metal borates such as calcined sodium tetraborate or borax; Water-soluble alkali metal carbonates or bicarbonates such as sodium or potassium carbonate or bicarbonate, and the like.
The inorganic or detergent builder salts can be used alone or in various combinations with each other or with water-soluble neutral, inert inorganic diluents which may also have some detergent building properties, for example, water-soluble neutral inert alkali metal salt diluents such as neutral alkali metal sulfates or chlorides, for example, sodium sulfate or sodium chloride.
The proportions of the aforementioned alkaline or neutral salts which may be employed in the compositions of this invention can be varied considerably, depending upon the end use of the composition. However, when used, such salts comprise in excess of about 40% and up to about 90% by weight of the dried solids content of the composition. Of this, the alkaline alkali metal salts usually comprise about 10% to about 95% of the total salts other than the oxygen-releasing compounds, and the inert diluent neutral salts usually comprise about 90% to about 5% of the total salts other than the oxygenreleasing compounds and organic carbonates.
Although the compositions of this invention may comprise an oxygen-releasing compound, the useful organic carbonates and the above-mentioned alkaline salts or combinations thereof with inert diluent neutral salts, the compositions may also contain, alone or in combination with the above-described salts, relatively minor amounts, usually less than 20% by weight, preferably 1 to by weight, on a solids basis, of an organic compound, preferably an organic surface active agent such as a foamin agent, emulsifier, detergent, surfactant, or the like.
Examples of organic surface active agents include anoinic surfactants such as sulfated and sulfonated alkyl, aryl, and alkyl-aryl hydrocarbons and alkali metal salts thereof, for example, sodium salts of long chain alkyl sulfates, sodium salts of alkyl naphthalene sulfonic acids, sodium salts of sulfonated abietenes, sodium salts of alkyl benzene sulfonic acids, particularly those in whichthe alkyl group contains from 8-24 carbon atoms, sodium salts of sulfonated mineral oils and sodium salts of sulfosuccinic acid esters such as sodium dioctyl sulfosuccinate.
Examples of non-ionic surfactants include products formed by condensing one or more alkylene oxides of 2 to 4 carbon atoms, such as ethylene oxide or propylene oxide, preferably ethylene oxide alone or with other alkylene oxides, with a relatively hydrophobic compound, such as a fatty alcohol, fatty acid, sterol, a fatty glyceride, a fatty'amine, an aryl amine, a fatty mercaptan, a tall oil, etc. Non-ionic surface active agents also include those products produced by condensing One or more relatively low alkyl alcohol amines (such as methanolamine, ethanolamine, propanolamine, etc.) with a fatty acid, such as lauric acid, palmitic acid, tall oil fatty acid, abietic acid, etc. to produce the corresponding amide. Other typical examples of these categories of the anionic and nonionic surface active agents are described in Surface Active Agents by Schwartz and Perry, Interscience Publishers, New York, in 1949, and The Journal of American Oil Chemists Society, volume 34, No. 4, pages 170- 216 (April 1957).
The various ingredients employed in the compositions of this invention can be used in various proportions depending upon whether the composition is to be used as a bleaching composition, a detergent composition, or the like. However, when all four types of ingredients hereinbefore described are used, the compositions preferably contain on a dry basis from about 1% to about 40% by weight of the oxygen-releasing compound, preferably an alkali metal perborate, and from about 0.1 to about 2.0 mols, per mol of said oxygen-releasing compound, of the useful organic carbonates, from about 0.05 to about 15% of organic surface active agent, and the remainder consisting substantially of the alkaline inorganic metal salts and/or the inert diluent salts different from the oxygen-releasing compound. In the case of aqueous compositions, the ingredients are normally present in the compositions on the same solids basis, but the compositions may contain from to 99% by weight of water.
In a preferred embodiment of this invention, the compositions comprise on a solids basis from about 3 to about 15 by weight of sodium perborate, from about 0.5 to about 1.5 mols, per mol of sodium perborate, of the preferred organic carbonate such as di-ortho-tolyl carbonate, or di-phenyl carbonate or di-isobutyl carbonate, from about 10 to about by weight of sodium tripolyphosphate or a mixture of such phosphate and sodium silicate and the remainder consisting essentially of sodium sulphate. Such compositions are useful as bleaching and/or washing compositions in commercial laundering operations.
In another preferred embodiment of this invention, the compositions comprise on a solid basis from about 3% to 15% by weight of sodium perborate, from about 0.5 to about 1.5 mols, per mol of perborate, of any of the preferred organic carbonates, from about 1.0 to about 20% by weight of an an-ionic wetting agent such as a sodium alkyl benzene sulfonate wherein the alkyl radical has from about 8 to about 24 carbon atoms, preferably sodium dodecylbenzene sulfonate and the remainder consisting substantially of sodium sulfate. Such compositions are useful as household bleaches and/ or sanitizer-s.
In still another preferred embodiment of this invention, the compositions comprise from about 3 to about 15 by weight of sodium perborate, from about 0.5 to about 1.5 mols, per mol of perborate, of any of thepreferred carbonates of this invention and the remainder consist ing substantially of sodium carbonate or mixtures thereof with sodium tripolyphosphate. These compositions are useful as washing and/ or sanitizing agents, particularly in cleaning and sanitizing food processing equipment and containers.
In most instances, the proportions and kind of ingredients in the formulation employed will depend upon the purposes for which the formulation or composition is being used, that is, whether it is being used for bleaching, sanitizing, laundering, etc. Regardless of the use in volved, however, the compositions containing the oxygenreleasing compound and any of the organic carbonates herein defined have definite properties of bleaching and sanitizing in aqueous solutions at temperatures well below the boiling point of water, and these compositions in the dry state also have a tendency to retain their available oxygen content under ordinary storage conditions for prolonged periods of time, that is, for periods up to 6 months and longer.
A further understanding of the compositions of this invention and processes for preparing the same will be obtained from the following specific examples which are intended to illustrate the invention but not to limit the scope thereof, parts and percentages being by weight unless otherwise indicated.
Example 1 Dry mixed compositions containing the following ingredients in the percentages given in Table I were prepared by homogeneously blending the ingredients:
TABLE I Example 11 The bleaching acceleration or promotion properties of this invention are further indicated by the following dye-bleaching experiments.-
Ingredient Composition Number Sodium perborate Di-ortho-tolyl carbonate. Di-para-tolyl earbonate- Di-phenyl-carbonate Bis(orth-rnethoxyphenyl) carbonate Di-isobutyl carbonate Sodium tripolyphosphate.
Sodium silicate Sodium dodecylbenzene sulfonate The bleaching activity of compositions 1 through 10 was determined by dissolving 0.35 gram of each composition in 1 liter of water in separate cylindrical receptacles. The receptacles were provided with a mechanical agitator and the solutions therein were agitated and maintained at a temperature of about 60 C. Solutions of compositions 2, 3 and had an available oxygen concentration of parts per million; solutions of compositions 1 and 4 had an available oxygen content of parts per million and solutions 6 through 10 had an available oxygen content of 15 parts per million. The solutions of the compositions contained a mol ratio of sodium perborate to organic carbonate of approximately 1:1.
Twenty 5" x 5" swatches of unbleached, naturally yellowed muslin were analyzed for reflectance (Rd) and (a) and (b) color values on a Gardner Automatic Color Ditference Meter described hereinafter. Two swatches were then placed in each of 10 receptacles containing one of the dissolved compositions and washed for 10 minutes. After this period, the swatches were dried, pressed, and again analyzed on the Gardner Automatic Color Difference Meter. The reflectance ARd (brightening) and bleaching efficiency A(a) and A(b) were calculated by subtracting the readings before and after the washing operation. The loss or consumption of available oxygen was also determined for each solution. The results are summarized in Table II.
TABLE II Loss of Available Oxygen, Percent 1 Composition Number ARd Z A(a) a A(b) 3 l Determined by iodometric titration of spent wash solutions. 2 Positive values indicate degree of increase in reflectance or brightening.
3 Negative values indicate the degree of color disappearance or bleaching.
To two liters of a standard borate-carbonate (pH 10) aqueous buffer solution there was added the following:
0.920 grams of Orange II [p(2-hydroxy-1-naphthylazo)-benzenesulfonic acid] -sodium salt.
To separate 100 milliliter portions of this solution, there was added 0.25 gram of the compositions 1 through 10 of Example I, respectively. The solutions were maintained at 60 C. The initial color concentration was determined in a Bausch and Lomb spectrophotometer by measuring the absorption maximum at 483 millimicrons. Spectrophotometric readings were recorded initially and at 20, 60 and 160 minutes. The results are tabulated in Table III. The rate of bleaching, or rate of disappearance, of the dye color from the solution indicates the bleach promotion activity of the compositions of this invention.
TABLE III Dye Concentration, Percent of Original I (Time in minutes) Composition Number These rseults indicate that the compositions of this invention effectively promote the bleaching of standard dyes when in solution in 60 C. On the other hand, when compositions similar to compositions 1 through 10 but dilfering only in that they did not contain an organic carbonate were evaluated under th above conditions, more than 75% of the color was retained in the solutions after minutes.
Example III g. samples of compositions identical to those described in Example I were stored in open glass vials in a humidity cabinet maintained at 90 F. and a relative humidity of 85% for 8 days. Available oxygen determinations were conducted on a portion of these samples every second day.
The results are given in the following table:
TABLE IV Loss of Available Osygen (percent) Composition Number 2 days 4 days 6 days 8 days By way of contrast, when compositions similar to compositions 1 through 10 were prepared using prior art compounds such as acrylamide, acetamide, malonitrile, benzoic anhydride, phthalic anhydride, and glucos penta-acetate in place of the organic carbonates of compositions 1 through 10, such compositions containing the prior art compounds lost at least 35% of available oxygen after 8 days of storage under the above conditions. Moreover, when compositions containing these prior art compounds were evaluated for bleaching activity under the conditions described in Examples I and II, their bleaching activity was significantly below the bleaching activity of the compositions 1 through 10 when tested at temperatures as low as 60 C.
Surprisingly and unexpectedly, it has been found that organic carbonates, in which R in Formula I represents two organic radicals whose corresponding alcohols (ROH) are characterized in having a pK above about 11.7, are usually inefiicient or ineffective in promoting the bleaching activity of, or the release of oxygen from, oxygen-releasing compounds.
Example IV Dry mixed compositions containing the following ingredients in parts by weight given in Table V were prepared by homogeneously blending the ingredients:
no significant bleaching activity took place when evaluated according to the methods above-described.
What is claimed is:
1. A composition consisting essentially of a mixture of (1) an oxygen-releasing compound selected from the group consisting of an organic peroxide and an inorganic per-salt, and (2) from about 0.1 to about 2.0 mols, per mol of said oxygen-releasing compound, of an organic carbonate having the formula:
wherein at least one R is an organic radical such that its corresponding alcohol of the formula ROH has a pK below 11.7 and the other R is a radical selected from the group consisting of (a) an unsubstituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group, (b) a substituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group and se"- lected from the group consisting of nitro-, and methoxysubstituted branched chain aliphatic radicals, (c) an unsubstituted aromatic radical selected from the group consisting of phenyl, benzyl, alpha-naphthyl, and beta-naph: thyl radicals, and (d) a substituted aromatic radical selected from the group consisting of phenyl, benzyl,'alpl1a naphthyl, and beta-naphthyl radicals having nitro-, or alkyl groups as substituents thereon, said alkyl group containing from about 1 to 20 carbon atoms.
2. The composition of claim 1 wherein said oxygenreleasing compound is an alkali-metal perborate and each R is the same organic radical.
3. A composition consisting essentially of a mixture of sodium perborate and from about 0.5 to about 1.5 mols, per mol of said perborate, of di-ortho-tolyl carbonate.
4. A composition consisting essentially of a mixture of sodium perborate and from about 0.5 to about 1.5 mols, per mol of said perborate, of di-para-tolyl carbonate.
5. A composition consisting essentially of a mixture of sodium perborate and from about 0.5 to about 1.5 mols, per mol of said perborate, of diphenyl carbonate.
6. A composition consisting essentially of a mixture of sodium perborate and from about 1.0 to about 2.0 mols, per mol of said perborate, of bis(ortho-methoxyphenyl) carbonate.
7. A composition of matter consisting essentially of a mixture of sodium perborate and from about 1.0 to about TABLE V Composition Number Ingredient (parts by weight) Sodium perborate 4. 0 4. 0 8. 0 6.0
D i-ortho-tolyl carbonate Di-p ara-t olyl carbonate Diphenyl carbonate.
Bis(ortho-n1eth0xyphenyl) carbonate Di-isobutyl carbonate Sodium dodecylbenzene sulfonate Compositions 11 through 20 were separately dissolved in Water to form separate solutions having a concentration of 10 milligrams/ 100 cc. and were evaluated for bleaching activity using the procedures and temperature described in Examples I and II, and for stability using the procedure of Example III. In all instances, the compositions bleached and brightened unbleached muslin and rapidly decolorized dye solutions. Additionally, no compositions lost more than 7% available oxygen when subjected to the procedures described in Example III.
When a sodium perborate solution was evaluated in concentrations identical to the sodium perborate concentrations in the solutions of Examples 11 through 20,
releasing compound, of an organic carbonate having the formula:
wherein R and R are selected from the group consisting radicals having nitro-, or alkyl groups as substituents thereon, said alkyl group containing from about 1 to carbon atoms; at least one of said Rs being characterized in that its corresponding alcohol of the formula ROH has a pK below about 11.7, and (3) from about 40% to about 90% by weight of a detergent builder salt selected from the group consisting of alkali metal phosphates, alkali metal silicates having an alkali metal oxide to silica mol ratio of from about 1:1 to about 1:3.6, alkali metal borates, alkali metal carbonates, alkali metal bicarbonates, alkali metal sulfates and mixtures thereof, said salt being further characterized in being incapable of undergoing an oxidation-reduction reaction with said oxygen-releasing compound.
9. A composition consisting essentially of a mixture of (1) from about 1% to about 40% by weight of an alkali metal perborate, (2) from about 0.1 to about 2.0 mols, per mol of said alkali metal perborate, of an organic carbonate having the formula:
wherein R and R are selected from the group consisting of (a) an unsubstituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group, (b) a substituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group and selected from the group consisting of nitro-, and methoxy-substituted branched chain aliphatic radical, (c) unsubstituted aromatic radical selected from the group consisting of phenyl, benzyl, alpha-naphthyl, and beta-naphthyl radicals and (d) a substituted aromatic radical selected from the group consisting of phenyl, benzyl, alpha-naphthyl, and beta-naphthyl radicals having nitro-, or alkyl groups as substituents thereon, said alkyl group containing from about 1 to 20 carbon atoms; at least one of said Rs being characterized in that its corresponding alcohol of the formula ROH has a pK below about 11.7, and (3) from about 1% ,to about 20% by weight of a non-soap synthetic organic detergent selected from the group consisting of non-soap synthetic anionic surface active agents and non-soap synthetic nonionic surface active agents.
10. A composition consisting essentially of a mixture of (1) from about 1% to about 40% by weight of an alkali metal perborate, (2) from about 0.1 to about 2.0 mols, per mol of said perborate of an organic carbonate having the formula:
. R1O-( JORz wherein R and R are selected from the group consist ing of (a) an unsubstituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group, (b) a substituted branched chain aliphatic radical having from about 3 to about 10 carbon atoms in the aliphatic group and selected from the group consisting of nitro-, and methoxy-substituted branched chain aliphatic radical, (c) an unsubstituted aromatic radical selected from the group consisting of phenyl,
Cir
12 benzyl, alpha-naphthyl, and bet-a-naphthyl, phenanthryl, and benzquinolyl radicals and (d) a substituted aromatic radical selected from the group consisting of phenyl,
- benzyl, alpha-naphthyl, and beta-naphthyl radicals having nitroor alkyl groups as substituents thereon, said alkyl group containing from about 1 to 20 carbon atoms, (3) from about 40% to about by weight of a detergent builder salt selected from the group consisting of water-soluble, alkali metal phosphates, 'alkali metal silicates having an alkali metal oxide to silica mol ratio of from about 1:1 to about 113.6, alkali metal borates, alkali metal sulfates, alkali metal carbonates, alkali metal bicarbonates, and mixtures thereof, and (4) from about 1% to about 20% by weight of a non-soap synthetic organic detergent selected from the group consisting of nonsoap synthetic anionic surface active agents and non-soap synthetic nonionic surface active agents, said builder salt further characterized as being incapable of undergoing an oxidation-reduction reaction with said perborate.
11. A composition consisting essentially of a mixture of (1) from about 1% to about 40% by weight of sodium perborate, (2) from about 0.1 to about 2.0 mols, per mol of sodium perborate, of an organic carbonate selected from the group consisting of di-ortho-tolyl carbonate, dipara-tolyl carbonate, di-phenyl carbonate, bis-ortho-methoxyphenyl carbonate, and di-isobutyl carbonate, and (3) from about 40% to about 90%, based on the total weight of said mixture, of a detergent builder salt selected from the group consisting of sodium tripolyphosphate, sodium sulfate, sodium carbonate, sodium silicate, and mixtures thereof.
12. A composition consisting essentially of a mixture of (1) from about 1% to about 40% by Weight of sodium perborate, (2) from about 0.1 to about 2.0 mols, per mol of sodium perborate, of an organic carbonate selected from the group consisting of di-ortho-tolyl carbonate, di-para-toly-l carbonate, di-phenyl carbonate, bisortho-methoxyphenyl carbonate, and di-isobutyl carbonate, and (3) from about 0.05% to about 15% by weight of a sodium alkyl benzene sulfonate wherein the alkyl radical has from about 8 to about 24 carbon-atoms.
13. A composition consisting essentially of a-mixture of (1) from about 1% to about 40% by weight of sodium perborate, (2) from about 0.1 to about 2.0 mols, per mol of sodium perborate, of an organic carbonate selected from the group consisting of di-ortho-tolyl carbonate, di-para-tolyl carbonate, di-phenyl carbonate, bis-orthomethoxyphenyl carbonate, and di-isobutyl carbonate, (3) from about 40% to about 90% by weight of a detergent builder salt selected from the group consisting of sodium tripolyphosphate, sodium sulfate, sodium carbonate, sodium silicate, and mixtures thereof, and (4) from about 0.05 to about 15 by weight of a sodium alkyl benzene sulfonate wherein the alkyl radical has from about 8 to about 24 carbon atoms.
References Cited by the Examiner UNITED STATES PATENTS 2,770,639 11/1956 Slocombe et a1. 260-463 2,787,631 4/1957 Stevens 260463 2,837,555 6/1958 Lee 260463 2,916,345 12/1959 Hees 260-463 2,955,905 10/1960 Davies et a1. 252186 XR 2,975,139 3/1961 Kaufmann et a1. 25299 2,983,749 5/1961 Shepherd 260-463 3,017,424 1/1962 Meyer et al. 260463 3,069,218 12/ 1962 Hermes 8-92 XR 0 JULIUS GREENWALD, Primary Examiner.
M. WEINBLATI, Assistant Examiner.

Claims (1)

1. A COMPOSITION CONSISTING ESSENTIALLY OF A MIXTURE OF (1) AN OXYGEN-RELEASING COMPOUND SELECTED FROM THE GROUP CONSISTING OF AN ORGANIC PEROXIDE AND AN INORGANIC PER-SALT; AND (2) FROM ABOUT 0.1 TO ABOUT 2.0 MOLS, PER MOL OF SAID OXYGEN-RELEASING COMPOUND, OF AN ORGANIC CARBONATE HAVING THE FORMULA:
US274857A 1963-04-22 1963-04-22 Compositions containing an oxygen releasing compound and an organic carbonate Expired - Lifetime US3256198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US274857A US3256198A (en) 1963-04-22 1963-04-22 Compositions containing an oxygen releasing compound and an organic carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US274857A US3256198A (en) 1963-04-22 1963-04-22 Compositions containing an oxygen releasing compound and an organic carbonate

Publications (1)

Publication Number Publication Date
US3256198A true US3256198A (en) 1966-06-14

Family

ID=23049890

Family Applications (1)

Application Number Title Priority Date Filing Date
US274857A Expired - Lifetime US3256198A (en) 1963-04-22 1963-04-22 Compositions containing an oxygen releasing compound and an organic carbonate

Country Status (1)

Country Link
US (1) US3256198A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3349035A (en) * 1964-05-12 1967-10-24 Degussa Activated bleaching composition
US3522184A (en) * 1966-05-02 1970-07-28 Kao Corp Granular bleaching agent composition and method for making thereof
US4026798A (en) * 1975-11-28 1977-05-31 Fmc Corporation Peracid treatment of dry cleaning baths
DE2701133A1 (en) * 1977-01-13 1978-07-20 Schuelke & Mayr Gmbh STORABLE MIXTURE THAT RESOLVES A SOLUTION WITH HIGH ANTIMICROBIAL EFFECT WHEN DISCUSSED IN WATER
EP0202698A1 (en) * 1985-05-07 1986-11-26 Akzo Nobel N.V. P-sulphophenyl alkyl carbonates and their use as bleaching activators
EP0210674A2 (en) * 1985-07-03 1987-02-04 Akzo N.V. P-sulphophenyl carbonates and detergent compositions containing them
US4751015A (en) * 1987-03-17 1988-06-14 Lever Brothers Company Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions
US4818426A (en) * 1987-03-17 1989-04-04 Lever Brothers Company Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions
JPH024765A (en) * 1988-03-17 1990-01-09 Unilever Nv Precursor of bleaching agent and use thereof in bleaching agent and/or detergent composition
US4904406A (en) * 1988-03-01 1990-02-27 Lever Brothers Company Quaternary ammonium compounds for use in bleaching systems
US5055217A (en) * 1990-11-20 1991-10-08 Lever Brothers Company, Division Of Conopco, Inc. Polymer protected bleach precursors
EP0484324A2 (en) * 1984-06-21 1992-05-06 The Procter & Gamble Company Cleaning compositions containing bleach activator compounds
US5130045A (en) * 1987-10-30 1992-07-14 The Clorox Company Delayed onset active oxygen bleach composition
US5143641A (en) * 1990-09-14 1992-09-01 Lever Brothers Company, Division Of Conopco, Inc. Ester perhydrolysis by preconcentration of ingredients
US5183918A (en) * 1989-08-25 1993-02-02 Monsanto Company Process for the production of carbonate esters
US5234616A (en) * 1987-10-30 1993-08-10 The Clorox Company Method of laundering clothes using a delayed onset active oxygen bleach composition
US5252770A (en) * 1989-06-05 1993-10-12 Monsanto Company Process for the production of carbonate esters
EP0427224B1 (en) * 1989-11-08 1995-02-01 Kao Corporation Novel polycationic compound and bleach composition containing the same
US5705091A (en) * 1995-09-11 1998-01-06 The Clorox Company Alkoxylated peracid activators
US8729296B2 (en) 2010-12-29 2014-05-20 Ecolab Usa Inc. Generation of peroxycarboxylic acids at alkaline pH, and their use as textile bleaching and antimicrobial agents
US8846107B2 (en) 2010-12-29 2014-09-30 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US8889900B2 (en) 2010-12-29 2014-11-18 Ecolab Usa Inc. Sugar ester peracid on site generator and formulator
US9321664B2 (en) 2011-12-20 2016-04-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
US9518013B2 (en) 2014-12-18 2016-12-13 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US9845290B2 (en) 2014-12-18 2017-12-19 Ecolab Usa Inc. Methods for forming peroxyformic acid and uses thereof
US9926214B2 (en) 2012-03-30 2018-03-27 Ecolab Usa Inc. Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water
US10031081B2 (en) 2013-03-05 2018-07-24 Ecolab Usa Inc. Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring
US10165774B2 (en) 2013-03-05 2019-01-01 Ecolab Usa Inc. Defoamer useful in a peracid composition with anionic surfactants
US10893674B2 (en) 2013-03-05 2021-01-19 Ecolab Usa Inc. Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids
US11040902B2 (en) 2014-12-18 2021-06-22 Ecolab Usa Inc. Use of percarboxylic acids for scale prevention in treatment systems
US11185893B2 (en) 2019-05-31 2021-11-30 Ecolab Usa Inc. Peracid compositions with conductivity monitoring capability
US11260040B2 (en) 2018-06-15 2022-03-01 Ecolab Usa Inc. On site generated performic acid compositions for teat treatment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2770639A (en) * 1955-01-17 1956-11-13 Monsanto Chemicals Method of producing aliphatic and alicyclic carbonates
US2787631A (en) * 1954-05-05 1957-04-02 Columbia Southern Chem Corp Carbonate preparation
US2837555A (en) * 1956-09-20 1958-06-03 Dow Chemical Co Preparation of carbonate esters
US2916345A (en) * 1959-12-08 Process for dyeing articles of polyeth-
US2955905A (en) * 1955-07-27 1960-10-11 Lever Brothers Ltd Peroxide-ester bleaching process and compositions
US2975139A (en) * 1956-10-02 1961-03-14 Fmc Corp Laundering method and composition therefor
US2983749A (en) * 1958-11-10 1961-05-09 Callery Chemical Co Preparation of benzyl carbonates
US3017424A (en) * 1957-04-08 1962-01-16 Bayer Ag Process for the production of diarylcarbonates
US3069218A (en) * 1959-06-30 1962-12-18 Hermes Julius Dyed acrylonitrile containing textile having controlled shrinkage and processes for forming same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916345A (en) * 1959-12-08 Process for dyeing articles of polyeth-
US2787631A (en) * 1954-05-05 1957-04-02 Columbia Southern Chem Corp Carbonate preparation
US2770639A (en) * 1955-01-17 1956-11-13 Monsanto Chemicals Method of producing aliphatic and alicyclic carbonates
US2955905A (en) * 1955-07-27 1960-10-11 Lever Brothers Ltd Peroxide-ester bleaching process and compositions
US2837555A (en) * 1956-09-20 1958-06-03 Dow Chemical Co Preparation of carbonate esters
US2975139A (en) * 1956-10-02 1961-03-14 Fmc Corp Laundering method and composition therefor
US3017424A (en) * 1957-04-08 1962-01-16 Bayer Ag Process for the production of diarylcarbonates
US2983749A (en) * 1958-11-10 1961-05-09 Callery Chemical Co Preparation of benzyl carbonates
US3069218A (en) * 1959-06-30 1962-12-18 Hermes Julius Dyed acrylonitrile containing textile having controlled shrinkage and processes for forming same

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3349035A (en) * 1964-05-12 1967-10-24 Degussa Activated bleaching composition
US3522184A (en) * 1966-05-02 1970-07-28 Kao Corp Granular bleaching agent composition and method for making thereof
US4026798A (en) * 1975-11-28 1977-05-31 Fmc Corporation Peracid treatment of dry cleaning baths
DE2701133A1 (en) * 1977-01-13 1978-07-20 Schuelke & Mayr Gmbh STORABLE MIXTURE THAT RESOLVES A SOLUTION WITH HIGH ANTIMICROBIAL EFFECT WHEN DISCUSSED IN WATER
EP0484324A3 (en) * 1984-06-21 1992-08-26 The Procter & Gamble Company Cleaning compositions containing bleach activator compounds
EP0484324A2 (en) * 1984-06-21 1992-05-06 The Procter & Gamble Company Cleaning compositions containing bleach activator compounds
US5043089A (en) * 1985-05-07 1991-08-27 Akzo N.V. P-sulphophenyl alkyl carbonates and detergent compositions and detergent additives containing these compounds
EP0202698A1 (en) * 1985-05-07 1986-11-26 Akzo Nobel N.V. P-sulphophenyl alkyl carbonates and their use as bleaching activators
US4686061A (en) * 1985-07-03 1987-08-11 Akzo Nv P-sulphophenyl carbonates and detergent compositions and detergent additives containing these compounds
EP0210674A3 (en) * 1985-07-03 1988-03-02 Akzo N.V. P-sulphophenyl carbonates and detergent compositions containing them
EP0210674A2 (en) * 1985-07-03 1987-02-04 Akzo N.V. P-sulphophenyl carbonates and detergent compositions containing them
US4818426A (en) * 1987-03-17 1989-04-04 Lever Brothers Company Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions
US4751015A (en) * 1987-03-17 1988-06-14 Lever Brothers Company Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions
US5130045A (en) * 1987-10-30 1992-07-14 The Clorox Company Delayed onset active oxygen bleach composition
US5234616A (en) * 1987-10-30 1993-08-10 The Clorox Company Method of laundering clothes using a delayed onset active oxygen bleach composition
US4904406A (en) * 1988-03-01 1990-02-27 Lever Brothers Company Quaternary ammonium compounds for use in bleaching systems
JPH024765A (en) * 1988-03-17 1990-01-09 Unilever Nv Precursor of bleaching agent and use thereof in bleaching agent and/or detergent composition
JPH062724B2 (en) * 1988-03-17 1994-01-12 ユニリーバー・ナームローゼ・ベンノートシヤープ Bleach precursors and their use in bleach and / or detergent compositions
US5252770A (en) * 1989-06-05 1993-10-12 Monsanto Company Process for the production of carbonate esters
US5183918A (en) * 1989-08-25 1993-02-02 Monsanto Company Process for the production of carbonate esters
EP0427224B1 (en) * 1989-11-08 1995-02-01 Kao Corporation Novel polycationic compound and bleach composition containing the same
US5143641A (en) * 1990-09-14 1992-09-01 Lever Brothers Company, Division Of Conopco, Inc. Ester perhydrolysis by preconcentration of ingredients
US5055217A (en) * 1990-11-20 1991-10-08 Lever Brothers Company, Division Of Conopco, Inc. Polymer protected bleach precursors
US5705091A (en) * 1995-09-11 1998-01-06 The Clorox Company Alkoxylated peracid activators
US9763442B2 (en) 2010-12-29 2017-09-19 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US10201156B2 (en) 2010-12-29 2019-02-12 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US8858895B2 (en) 2010-12-29 2014-10-14 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US8877254B2 (en) 2010-12-29 2014-11-04 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US8889900B2 (en) 2010-12-29 2014-11-18 Ecolab Usa Inc. Sugar ester peracid on site generator and formulator
US8933263B2 (en) 2010-12-29 2015-01-13 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US9192909B2 (en) 2010-12-29 2015-11-24 Ecolab USA, Inc. Sugar ester peracid on site generator and formulator
US10827751B2 (en) 2010-12-29 2020-11-10 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US9365509B2 (en) 2010-12-29 2016-06-14 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US9505715B2 (en) 2010-12-29 2016-11-29 Ecolab Usa Inc. Sugar ester peracid on site generator and formulator
US11311011B2 (en) 2010-12-29 2022-04-26 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US8729296B2 (en) 2010-12-29 2014-05-20 Ecolab Usa Inc. Generation of peroxycarboxylic acids at alkaline pH, and their use as textile bleaching and antimicrobial agents
US11678664B2 (en) 2010-12-29 2023-06-20 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US9861101B2 (en) 2010-12-29 2018-01-09 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US9883672B2 (en) 2010-12-29 2018-02-06 Ecolab Usa Inc. Sugar ester peracid on site generator and formulator
US10477862B2 (en) 2010-12-29 2019-11-19 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US11330818B2 (en) 2010-12-29 2022-05-17 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US10010075B2 (en) 2010-12-29 2018-07-03 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US10244751B2 (en) 2010-12-29 2019-04-02 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US8846107B2 (en) 2010-12-29 2014-09-30 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US9902627B2 (en) 2011-12-20 2018-02-27 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
US9321664B2 (en) 2011-12-20 2016-04-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
US10023484B2 (en) 2012-03-30 2018-07-17 Ecolab Usa Inc. Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water
US10017403B2 (en) 2012-03-30 2018-07-10 Ecolab Usa Inc. Use of peracetic acid/hydrogen peroxide and peroxide-reducing enzymes for treatment of drilling fluids, frac fluids, flowback water and disposal water
US9926214B2 (en) 2012-03-30 2018-03-27 Ecolab Usa Inc. Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water
US11939241B2 (en) 2012-10-05 2024-03-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
US11180385B2 (en) 2012-10-05 2021-11-23 Ecolab USA, Inc. Stable percarboxylic acid compositions and uses thereof
US10031081B2 (en) 2013-03-05 2018-07-24 Ecolab Usa Inc. Peroxycarboxylic acid compositions suitable for inline optical or conductivity monitoring
US10165774B2 (en) 2013-03-05 2019-01-01 Ecolab Usa Inc. Defoamer useful in a peracid composition with anionic surfactants
US11026421B2 (en) 2013-03-05 2021-06-08 Ecolab Usa Inc. Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids
US11206826B2 (en) 2013-03-05 2021-12-28 Ecolab Usa Inc. Defoamer useful in a peracid composition with anionic surfactants
US10893674B2 (en) 2013-03-05 2021-01-19 Ecolab Usa Inc. Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids
US10233149B2 (en) 2014-12-18 2019-03-19 Ecolab Usa Inc. Methods for forming peroxyformic acid and uses thereof
US9845290B2 (en) 2014-12-18 2017-12-19 Ecolab Usa Inc. Methods for forming peroxyformic acid and uses thereof
US11040902B2 (en) 2014-12-18 2021-06-22 Ecolab Usa Inc. Use of percarboxylic acids for scale prevention in treatment systems
US10834924B2 (en) 2014-12-18 2020-11-17 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US9518013B2 (en) 2014-12-18 2016-12-13 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US10709131B2 (en) 2014-12-18 2020-07-14 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US11772998B2 (en) 2014-12-18 2023-10-03 Ecolab Usa Inc. Use of percarboxylic acids for scale prevention in treatment systems
US10542751B2 (en) 2014-12-18 2020-01-28 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US11325887B2 (en) 2014-12-18 2022-05-10 Ecolab Usa Inc. Methods for forming peroxyformic acid and uses thereof
US10433547B2 (en) 2014-12-18 2019-10-08 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US10899707B2 (en) 2014-12-18 2021-01-26 Ecolab Usa Inc. Methods for forming peroxyformic acid and uses thereof
US11684067B2 (en) 2014-12-18 2023-06-27 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US11771673B2 (en) 2018-06-15 2023-10-03 Ecolab Usa Inc. On site generated performic acid compositions for teat treatment
US11260040B2 (en) 2018-06-15 2022-03-01 Ecolab Usa Inc. On site generated performic acid compositions for teat treatment
US11185893B2 (en) 2019-05-31 2021-11-30 Ecolab Usa Inc. Peracid compositions with conductivity monitoring capability

Similar Documents

Publication Publication Date Title
US3256198A (en) Compositions containing an oxygen releasing compound and an organic carbonate
US4086175A (en) Activated bleaching process and compositions therefor
US4025453A (en) Activated bleaching process and compositions therefor
US5302309A (en) Pourable sulfone diperoxycarboxylic acid compositions
EP0086511A1 (en) Oxygen-bleach-containing liquid detergent compositions
US3686127A (en) Detergent bleach
US4086177A (en) Activated bleaching process and compositions therefor
NO176613B (en) Bleaching composition which, when dissolved in aqueous environment, gives a mixture of hydrophobic and cationic peroxyacids
DE2060762A1 (en) Preparations for the production of cold bleach liquors, in particular washing liquors with a cold bleaching effect
US3850832A (en) Washing, rinsing and cleansing agent compositions containing furan-maleic anhydride copolymer sequestering agents
US3245913A (en) Bleaching compositions containing acyl sulfonamides
SE461658B (en) STABILIZED BLEACH AND LAUNDRY COMPOSITION AND ITS APPLICATION IN LAUNDRY PROCEDURES
DE2243307C2 (en) Solid detergents and washing auxiliaries with a content of anti-graying additives
US3640874A (en) Bleaching and detergent compositions
US3715184A (en) Method of activating per-compounds and solid activated per-compound compositions
US3763047A (en) Detergent compositions
KR960000199B1 (en) Detergent composition
US4115309A (en) Compositions and method for activating oxygen utilizing cyclic ester-anhydrides of α-hydroxycarboxylic acids
US3558497A (en) Laundry detergent compositions containing a perborate and a peroxymonopersulfate
US3990983A (en) Builder compositions
US4003700A (en) Cleaning fabrics
US3756776A (en) Bleaching process and composition
US2362401A (en) Detergent compositions
CA1207956A (en) Peroxyacid bleaching and laundering composition
EP0083560B1 (en) Substituted-butanediperoxoic acid and process for bleaching