US3255670A - Electric tracer for profiling machine tools - Google Patents

Electric tracer for profiling machine tools Download PDF

Info

Publication number
US3255670A
US3255670A US430559A US43055965A US3255670A US 3255670 A US3255670 A US 3255670A US 430559 A US430559 A US 430559A US 43055965 A US43055965 A US 43055965A US 3255670 A US3255670 A US 3255670A
Authority
US
United States
Prior art keywords
tracer
casing
core rod
disc
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US430559A
Inventor
Lasermann Franz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DROOP AND REIN Firma
Original Assignee
DROOP AND REIN Firma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DROOP AND REIN Firma filed Critical DROOP AND REIN Firma
Application granted granted Critical
Publication of US3255670A publication Critical patent/US3255670A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/24Feelers; Feeler units
    • B23Q35/26Feelers; Feeler units designed for a physical contact with a pattern or a model
    • B23Q35/30Feelers; Feeler units designed for a physical contact with a pattern or a model for control of an electrical or electro-hydraulic copying system
    • B23Q35/34Feelers; Feeler units designed for a physical contact with a pattern or a model for control of an electrical or electro-hydraulic copying system in which the feeler varies an electrical characteristic in a circuit, e.g. capacity, frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303416Templet, tracer, or cutter
    • Y10T409/303472Tracer
    • Y10T409/303528Adapted to trigger electrical energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams
    • Y10T74/2107Follower

Definitions

  • LASERMANN ELECTRIC TRACER FOR PROFILING MACHINE TOOLS Filed Feb. 5, 1965 5 Sheets-Sheet 1 lnvenfar: FfLasermcmn A-r-rokNEas June 14, 1966 F.
  • the present invention relates to profiling machine tools and particularly to an electrical tracer for machines of this type. Tracers of this type are suitable for all types of profiling work, particularly for planetary milling, rapid return milling and profile milling. I
  • An object of the invention is to improve the precision of a profiling procedure, so that the errors produced by the tracer during the sensing of a shape, are reduced or completely compensated.
  • an electric tracer for profiling machine tools comprises a tracer point held in a ball'and socket joint and issuing above said joint into a casing, said casing acting on a swash plate for forward movement, four mutually opposite sensing members ar-.
  • the sensing members arranged on the swash plate may be constructed asiron-cored magnets, which are rotatable with the swash plate opposite its armature coil disc attached to the core rod.
  • the ironcored magnets are suitably located with their pole surfaces in a plane parallel to the axis of the tracer casing and the pole surfaces of the iron-cored magnets are suitably located on the surface of a cylindrical jacket, which surrounds the rarmature coil discs.
  • the sensing members arranged on the swach plate consist of quadrants, over which armature coils are arranged on a disc rotatable about the core rod.
  • This disc is rotated by an adjusting motor, secured to the core rod and controlled .by the corrector signals of the sensing members on the core rod, in the sense of a reduction of the deflection error relative to the armature discs.
  • the sensing means on .the core rod preferably consists of an armature disc, which is reciprocably movable between two fixed armature coils in the direction of its axis, during the deflecting movements of the core rod.
  • a mechanical barrier is arranged .on the tracer casing, which barrier while in operation connects casing and core rod, so that the forward movements of the swash plate are prevented.
  • FIGURE 1 is a vertical section through a tracer according to the invention.
  • FIGURE 2 is a section along the line 11-11 of FIG- URE 1;
  • FIGURE 3 is a vertical section through another embodiment of a tracer according to the invention.
  • FIGURE 4 is a section along the line IV-IV of FIGURE 3.
  • the profiling tracer comprises in known manner a tracer point 1, which is fixed in a ball-and-socket joint 2, and issues above the balland-socket joint into :a tracer casing 3.
  • a core rod 4 is arranged within said casing 3, which rod is supportedwith ball sockets and balls 5 on its lower end in the centre of the ball-and-socket joint 2.
  • the casing 3 ends somewhat in the middle of the core rod 4 and is connected during the deflection movements of the tracer point 1 to its annular head 6 arranged on the upper end, only after :a certain forward movement has been covered, against a flange 7 on the core rod. Inthis way, a very delicate, doubled lever transmission is achieved in a very limited space in addition to the forward movement.
  • the annular head 6 on the upper end of the tracer casing 3 is located outwardly free from play against a casing projection 8 of a swash plate 9
  • the swash plate 9 is pivotally arranged on the core rod 4 by means of the ball-and-socket joint 14 and is held in 'its central position by means of a disc washer 11, which is securely connected to the core rod 4, and by means of a cap disc 10 supported by springs 13.
  • armature discs 16 and 17 are arranged near the periphery of the swash plate 9. These four armature discs are located symmetrically to the axis of the tracer.
  • a disc 18 is rotatably fixed to the core rod 4 above the swash plate, on which disc mag netic coils 19 and 20 are arranged in such a way that they lie opposite one another, and are also symmetrical to the axis of the tracer and one of the magnetic. coils being always assigned to an armature disc 16 or 17.
  • Said armature discs and magneic coils form the sensing members which produce sigals when the tracer point 1 is deflected.
  • Two opposite sensing members always form a half-bridge, the second half-"bridge being located in the control part and the variable distance of the armature disc 16 or 17 from the armature coil 19 or 20, producing signal voltages, which correspond in size and polarity to the direction of the tangent of the scanned model contour. Said signal voltages are conveyed to the amplifier and are used for controlling the servo-motors in the X and Y coordinates.
  • the upper end of core rod 4 is also held by a ball 21 secured in ball sockets.
  • the upper support 22 of the core rod issues into a rod 23, which is guided in a fixed bearing 24, so that it may effect only axial movements.
  • a spring 25 is arranged above the rod 23, which spring is also supported against a fixed bearing 26 and presses the bar 23 in line on the bearing of the core rod.
  • An armature disc 27 is secured to the rod 23, which disc is reciprocably movable between two secured armature coils 28 and 29.
  • This armature disc 27 forms with both magnetic coils 28 and 29 another sensing means, the signals of which on the one hand superpose the signals of the sensing members on the swash plate 9 and on the other hand serve to control a motor 30, which is arranged 'near the upper end of the core rod 4 and with a reduction gear 31, the rotatable disc-18 with the armature coils 19 and 20 located thereon, may rotate about a quarter turn according to the signals received by the sensingmembers 27 and 29.
  • a disc casing 32 On the casing 3 is arranged a disc casing 32, by means of its balls 33 or even locking wedges which are set in the casing wall, maybe pressed against the core rod 4.
  • This casing 32 together with the balls 73, forms a mechanical lock, it it is shifted upwards corresponding to the diagrammatical drawing, and connects casing and core rod securely together, so that forward movements of the swash plate 9 are stopped. Such a locking of the forward movements is desired, for planetary milling or rapid return milling.
  • a tracer according to FIGURES ,3 and 4 is essentially constructed in a very similar way to the previously described tracer.
  • the same reference numerals are used for the same parts.
  • the construction of the lower part of the tracer with casing 3 and core rod 4 corresponds to that of the above-described example.
  • a casing 35 is rotatably arranged on ball bearings 34, which casing issues upwardly into a plate 36, which is located at the approximate height of the upper end of the casing, and on which iron-cored magnets 37, 38, 39 and 40 are arranged in such :a way that, in pairs and opposite one another, they subdivide the circular disc 36 into quarter sections.
  • the arrangement of the iron-cored magnets 37 to 40 may be particularly seen from FIGURE 4, which shows a section through this part of the tracer.
  • the pole surfaces 37a, 38a, 39a and 40a of said iron-cored magnets 37 to 40 are arranged in such a way that they are located on a cylindrical jacket surface.
  • This cylindrical jacket surface surrounds a disc 41 with armature discs 42, 43, 44 and 45, which are located opposite the polar surfaces of the iron-cored magnets, always however surrounding about a quarter section of the circular disc 41.
  • armature discs 42 to 45 and the pole surfaces 37a to 40a there is an air gap.
  • the disc 41, on which the armature discs 42 to 45 are arranged, is firmly fixed on the upper end of the core rod 4.
  • the rotatably arranged casing 35 with the plate 36 carrying the iron-cored magnets 37 to 40, is rotatable by means of a small motor 30 through a driving pinion 31 and a belt 46 and may be rotated by mean-s of the motor 30 in the same way as the rotatable disc 18 with the magnets 19 and 20 fixed thereon according to the previously described embodiment.
  • the sensing means 27 to 29 arranged above the core rod 4 is constructed in this embodiment in the same way as in the previously described embodiment.
  • the tracer point 1 is guided to the template in the direction pre-selected by hand (starting thrust).
  • starting thrust When the tracer point 1 is in con-tact with the template, the tracer casing 3, which is securely fixed to the tracer point, is swung over the ball-and-socket joint 2.
  • the annular bead 6 located at the upper end of the tracer casing 3 against the casing projection 8
  • a shifting of the swash plate 9 from the central position is produced, namely about an axis parallel to the tangent of the curved form in the mechanism point of the tracer point.
  • the annular head 6 is located on the upper end of the feeler casing 3 against the flange 7 of the core rod 4 and deflects the core rod. This deflection causes the ball to leave its balland-socket joint so that the bearing distance of the core rod becomes greater.
  • the outer support 22 is put under pressure against the effect of the springZS, and the bearing rod 23 shifts the armature plate 27 secured thereto in line on the upper armature coil 29.
  • the arrangement is such that the armature disc 27 is located very closely above the lower armature coil 28 when the system is in normal position.
  • the armature disc 27 comes after starting into the central position on the contour of the template the starting thrust is released, and the profiling process is started.
  • the signals of the sensing means 27 to 29 are superposed on the signals of the sensing members 16, 19 and 17, 20 in the radial forward deflection, so that they are effective in the sense of a reduction of the deviation; i.e., if the tracer 1 is further deflected and the sensing means 27 to 29 releases a rising negative signal, this value is subtracted from the signal of the direction of movement, which may be seen from the reference, and is added to the signal of the direction displaced for this purpose about
  • the deflection of the tracer point 1 is reduced below the centre position of the axial sensing means 27 to 29, the superimposition results in the opposite sense, it is thus the rising positive signal which is added to the signal of the direction of movement, which is shown in the reference, and subtracted from the signal of the direction displaced for this purpose about 90.
  • the production of the corrector signal by the sensing means 27. to 29 requires an alteration of the deflection of the tracer and therefore also a deviation of the theoretical contour of the template. Since the value on a 360 circuit is not constant according to experience, that is it is conditioned by variable friction values between tracer point and template as well as frictions in the mechanical part of the tracer as well as on deviations from proportionality of the tracer deflection to the released signal, this tracking error may be compensated by a tracer point offset by a small value. In order to reduce the tracking error still further, the corrector signal produced by the sensing means 27 to 29 is still given to the servomotor 30, which shifts the holding disc 18 with the armature coils 19 and 20 in line to a zero tracking error.
  • the tangent of the movement of the tracer point is inclined opposite the tangent of the template in the actual operating position of the tracer point during the profiling process. Both tangents do not correspond
  • the difference of inclination between the actual tangent (of the movement) and the theoretical tangent (of the template) is determined by the sensing means 27 to 29, the error signal of which becomes elfective for correction at two different positions namely once in elfect on the servo motor 30, the error is prevented from exceeding a certain magnitude and in the effect on the sensing members 16, 17 and 19, 29 arranged in the quadrants, a corresponding error is further minimised.
  • An electric tracer for profiling machine tools comprising a tracer point held in a ball and socket joint and issuing above said joint into a casing, said casing acting on a swash plate for forward movement, four mutually opposite sensing members arranged on said swash plate symmetrically to the axis of said casing, said members producing one set of electric signals proportional to the deflection of the tracer point and a core rod disposed along the axis of said casing, an extension of said core rod acting upon sensing means to produce another set of electric signals proportional to its deflection, said other set being superimposed on said set of signals so as to reduce deflection errors of the tracer point.
  • sensing members are constructed as iron-cored magnets which, with the swash plate, are rotatable opposite corresponding armature discs secured on a disc to said core rod.
  • sensing members comprise approximately quartersectioned armature discs above which armature coils are arranged on a disc rotatably fixed to said core rod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Machine Tool Copy Controls (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

June 14, 1966 F. LASERMANN ELECTRIC TRACER FOR PROFILING MACHINE TOOLS Filed Feb. 5, 1965 5 Sheets-Sheet 1 lnvenfar: FfLasermcmn A-r-rokNEas June 14, 1966 F. LASERMANN 3,255,670
ELECTRIC TRACER FOR PROFILING MACHINE TOOLS Filed Feb. 5, 1965 5 Sheets-Sheet 2 Fig. 2
Fig. 4
Inventor.- ELczser/mlnn f org/W ATTORNEHS June 14, 1966 F. LASERMANN ELECTRIC TRACER FOR PROFILING MACHINE TOOLS 5 Sheets-Sheet 5 Filed Feb. 5, 1965 Fig. 3
lnvenior: F. Lasermcm United States Patent O 9 Claims. or. 90-62) The present invention relates to profiling machine tools and particularly to an electrical tracer for machines of this type. Tracers of this type are suitable for all types of profiling work, particularly for planetary milling, rapid return milling and profile milling. I
An object of the invention is to improve the precision of a profiling procedure, so that the errors produced by the tracer during the sensing of a shape, are reduced or completely compensated.
According to the present invntion, an electric tracer for profiling machine tools comprises a tracer point held in a ball'and socket joint and issuing above said joint into a casing, said casing acting on a swash plate for forward movement, four mutually opposite sensing members ar-.
ranged on said swash plate symmetrically to the axis of said casing, said members producing one set of electric signals proportional to the deflection of the tracer point and a core rod disposed along the axis of said casing, an extension of said core rod acting upon sensing means to produce another set of electric signals proportional to its deflection, said other set being superimposed on said one set of signals so as to reduce deflection errors of the tracer point. The sensing members arranged on the swash plate may be constructed asiron-cored magnets, which are rotatable with the swash plate opposite its armature coil disc attached to the core rod. The ironcored magnets are suitably located with their pole surfaces in a plane parallel to the axis of the tracer casing and the pole surfaces of the iron-cored magnets are suitably located on the surface of a cylindrical jacket, which surrounds the rarmature coil discs.
According to another embodiment of the invention, the sensing members arranged on the swach plate consist of quadrants, over which armature coils are arranged on a disc rotatable about the core rod. This disc is rotated by an adjusting motor, secured to the core rod and controlled .by the corrector signals of the sensing members on the core rod, in the sense of a reduction of the deflection error relative to the armature discs. The sensing means on .the core rod preferably consists of an armature disc, which is reciprocably movable between two fixed armature coils in the direction of its axis, during the deflecting movements of the core rod. A mechanical barrier is arranged .on the tracer casing, which barrier while in operation connects casing and core rod, so that the forward movements of the swash plate are prevented.
The invention may be understood more fully from the following description of specific embodiments with referece to the accompanying drawings wherein:
FIGURE 1 is a vertical section through a tracer according to the invention;
FIGURE 2 is a section along the line 11-11 of FIG- URE 1;
FIGURE 3 is a vertical section through another embodiment of a tracer according to the invention;
FIGURE 4 is a section along the line IV-IV of FIGURE 3.
The profiling tracer according to the invention comprises in known manner a tracer point 1, which is fixed in a ball-and-socket joint 2, and issues above the balland-socket joint into :a tracer casing 3. A core rod 4 is arranged within said casing 3, which rod is supportedwith ball sockets and balls 5 on its lower end in the centre of the ball-and-socket joint 2. The casing 3 ends somewhat in the middle of the core rod 4 and is connected during the deflection movements of the tracer point 1 to its annular head 6 arranged on the upper end, only after :a certain forward movement has been covered, against a flange 7 on the core rod. Inthis way, a very delicate, doubled lever transmission is achieved in a very limited space in addition to the forward movement.
The annular head 6 on the upper end of the tracer casing 3 is located outwardly free from play against a casing projection 8 of a swash plate 9 The swash plate 9 is pivotally arranged on the core rod 4 by means of the ball-and-socket joint 14 and is held in 'its central position by means of a disc washer 11, which is securely connected to the core rod 4, and by means of a cap disc 10 supported by springs 13.
Approximately quadrant- shaped armature discs 16 and 17 are arranged near the periphery of the swash plate 9. These four armature discs are located symmetrically to the axis of the tracer. A disc 18 is rotatably fixed to the core rod 4 above the swash plate, on which disc mag netic coils 19 and 20 are arranged in such a way that they lie opposite one another, and are also symmetrical to the axis of the tracer and one of the magnetic. coils being always assigned to an armature disc 16 or 17. Said armature discs and magneic coils form the sensing members which produce sigals when the tracer point 1 is deflected. Two opposite sensing members always form a half-bridge, the second half-"bridge being located in the control part and the variable distance of the armature disc 16 or 17 from the armature coil 19 or 20, producing signal voltages, which correspond in size and polarity to the direction of the tangent of the scanned model contour. Said signal voltages are conveyed to the amplifier and are used for controlling the servo-motors in the X and Y coordinates.
The upper end of core rod 4 is also held by a ball 21 secured in ball sockets. The upper support 22 of the core rod issues into a rod 23, which is guided in a fixed bearing 24, so that it may effect only axial movements. A spring 25 is arranged above the rod 23, which spring is also supported against a fixed bearing 26 and presses the bar 23 in line on the bearing of the core rod. An armature disc 27 is secured to the rod 23, which disc is reciprocably movable between two secured armature coils 28 and 29. This armature disc 27 forms with both magnetic coils 28 and 29 another sensing means, the signals of which on the one hand superpose the signals of the sensing members on the swash plate 9 and on the other hand serve to control a motor 30, which is arranged 'near the upper end of the core rod 4 and with a reduction gear 31, the rotatable disc-18 with the armature coils 19 and 20 located thereon, may rotate about a quarter turn according to the signals received by the sensingmembers 27 and 29.
On the casing 3 is arranged a disc casing 32, by means of its balls 33 or even locking wedges which are set in the casing wall, maybe pressed against the core rod 4. This casing 32, together with the balls 73, forms a mechanical lock, it it is shifted upwards corresponding to the diagrammatical drawing, and connects casing and core rod securely together, so that forward movements of the swash plate 9 are stopped. Such a locking of the forward movements is desired, for planetary milling or rapid return milling. I
A tracer according to FIGURES ,3 and 4 is essentially constructed in a very similar way to the previously described tracer. The same reference numerals are used for the same parts. The construction of the lower part of the tracer with casing 3 and core rod 4 corresponds to that of the above-described example. of the casing 3, a casing 35 is rotatably arranged on ball bearings 34, which casing issues upwardly into a plate 36, which is located at the approximate height of the upper end of the casing, and on which iron-cored magnets 37, 38, 39 and 40 are arranged in such :a way that, in pairs and opposite one another, they subdivide the circular disc 36 into quarter sections. The arrangement of the iron-cored magnets 37 to 40 may be particularly seen from FIGURE 4, which shows a section through this part of the tracer. The pole surfaces 37a, 38a, 39a and 40a of said iron-cored magnets 37 to 40 are arranged in such a way that they are located on a cylindrical jacket surface. This cylindrical jacket surface surrounds a disc 41 with armature discs 42, 43, 44 and 45, which are located opposite the polar surfaces of the iron-cored magnets, always however surrounding about a quarter section of the circular disc 41. Between the armature discs 42 to 45 and the pole surfaces 37a to 40a, there is an air gap. The disc 41, on which the armature discs 42 to 45 are arranged, is firmly fixed on the upper end of the core rod 4.
The rotatably arranged casing 35, with the plate 36 carrying the iron-cored magnets 37 to 40, is rotatable by means of a small motor 30 through a driving pinion 31 and a belt 46 and may be rotated by mean-s of the motor 30 in the same way as the rotatable disc 18 with the magnets 19 and 20 fixed thereon according to the previously described embodiment.
The sensing means 27 to 29 arranged above the core rod 4 is constructed in this embodiment in the same way as in the previously described embodiment.
The function of the first tracer described-above is explained more clearly later. The function of the second tracer described above is similar in every respect:
The tracer point 1 is guided to the template in the direction pre-selected by hand (starting thrust). When the tracer point 1 is in con-tact with the template, the tracer casing 3, which is securely fixed to the tracer point, is swung over the ball-and-socket joint 2. At the same time, by means of the free-from-play addition of the annular bead 6 located at the upper end of the tracer casing 3 against the casing projection 8, a shifting of the swash plate 9 from the central position is produced, namely about an axis parallel to the tangent of the curved form in the mechanism point of the tracer point. Let it be assumed that the tracer point 1 is swung outwardly to the left, then the swash plate 9 tilts about an axis, which stands vertical on the plane of the drawing in the centre of the balland-socket'joint 14, and the right armature disc 16 approaches the opposite armature coil 19 from its normal position, the left armature disc 18 is removed from the opposite armature coil 19, and said coordinate-data sensing members the deliver corresponding signal voltages.
If the tracer point 1 is deflected further, the annular head 6 is located on the upper end of the feeler casing 3 against the flange 7 of the core rod 4 and deflects the core rod. This deflection causes the ball to leave its balland-socket joint so that the bearing distance of the core rod becomes greater. The outer support 22 is put under pressure against the effect of the springZS, and the bearing rod 23 shifts the armature plate 27 secured thereto in line on the upper armature coil 29. The arrangement is such that the armature disc 27 is located very closely above the lower armature coil 28 when the system is in normal position. If, through a deflection of the tracer point 1 the armature disc 27 comes after starting into the central position on the contour of the template the starting thrust is released, and the profiling process is started. The signal of the sensing means 27 to 29 produced when the centre position of the armature disc 7.7 is reached, thus shows the way to the servo-motors for On the upper end the X and Y coordinates even to the signals produced by the sensing members 19, 20 on the swash plate.
As soon as the profiling process has started, an almost tangential movement, opposite the direction of movement, of the signal voltages of the sensing members is produced on the swash plate by the friction of the tracer point on the template. Consequently, the tracer point is deflected more or less after each inclination of the con tour on the template. When the tracer is deflected the armature disc 27 also moves from its centre position and in an upward movement gives a negative signal rising from nil or in a downward movement a positive signal rising from nil. The signals of the sensing means 27 to 29 are superposed on the signals of the sensing members 16, 19 and 17, 20 in the radial forward deflection, so that they are effective in the sense of a reduction of the deviation; i.e., if the tracer 1 is further deflected and the sensing means 27 to 29 releases a rising negative signal, this value is subtracted from the signal of the direction of movement, which may be seen from the reference, and is added to the signal of the direction displaced for this purpose about When the deflection of the tracer point 1 is reduced below the centre position of the axial sensing means 27 to 29, the superimposition results in the opposite sense, it is thus the rising positive signal which is added to the signal of the direction of movement, which is shown in the reference, and subtracted from the signal of the direction displaced for this purpose about 90.
The production of the corrector signal by the sensing means 27. to 29 requires an alteration of the deflection of the tracer and therefore also a deviation of the theoretical contour of the template. Since the value on a 360 circuit is not constant according to experience, that is it is conditioned by variable friction values between tracer point and template as well as frictions in the mechanical part of the tracer as well as on deviations from proportionality of the tracer deflection to the released signal, this tracking error may be compensated by a tracer point offset by a small value. In order to reduce the tracking error still further, the corrector signal produced by the sensing means 27 to 29 is still given to the servomotor 30, which shifts the holding disc 18 with the armature coils 19 and 20 in line to a zero tracking error.
By means of the cited error effects, the tangent of the movement of the tracer point is inclined opposite the tangent of the template in the actual operating position of the tracer point during the profiling process. Both tangents do not correspond The difference of inclination between the actual tangent (of the movement) and the theoretical tangent (of the template) is determined by the sensing means 27 to 29, the error signal of which becomes elfective for correction at two different positions namely once in elfect on the servo motor 30, the error is prevented from exceeding a certain magnitude and in the effect on the sensing members 16, 17 and 19, 29 arranged in the quadrants, a corresponding error is further minimised.
It will be understood that the above-described embodiments are intended to be only by way of illustrative example and that modifications may be made in various ways apparent to those skilled in the art without departing from the scope of the invention, and that this is limited only by the appended claims.
I claim:
1. An electric tracer for profiling machine tools comprising a tracer point held in a ball and socket joint and issuing above said joint into a casing, said casing acting on a swash plate for forward movement, four mutually opposite sensing members arranged on said swash plate symmetrically to the axis of said casing, said members producing one set of electric signals proportional to the deflection of the tracer point and a core rod disposed along the axis of said casing, an extension of said core rod acting upon sensing means to produce another set of electric signals proportional to its deflection, said other set being superimposed on said set of signals so as to reduce deflection errors of the tracer point.
2. An electric tracer according to claim 1, wherein said sensing members are constructed as iron-cored magnets which, with the swash plate, are rotatable opposite corresponding armature discs secured on a disc to said core rod. 1
3. An electric tracer according to claim 2, wherein said iron-cored magnets are arranged with their pole surfaces in a plane parallel to the axis of said tracer casing.
4. An electric tracer according to claim 3, wherein the pole surfaces of the iron-cored magnets are located on the surface of a cylindrical jacket, which surrounds the said disc and said armature discs.
5. An electric tracer according to claim 1, wherein said sensing members comprise approximately quartersectioned armature discs above which armature coils are arranged on a disc rotatably fixed to said core rod.
6. An electric tracer according to claim 5, wherein said disc is rotatable by a servo motor securely fixed to said core rod and controlled by corrector signals from said sensing means, said signals being in the sense of an extension of the deflection error opposite the deflection disc.
7. An electric tracer according to claim 5, wherein said disc is rotatable by a servo motor securely fixed to said casing and controlled by corrector signals from said sensing means said signals being in the sense of an extension of the deflection error opposite the deflection operation, whereby 'the forward movement of the swash plate is locked.
No references cited.
WILLIAM W. DYER, JR, Primary Examiner.
G. A. DOST, Assistant Examiner.

Claims (1)

1. AN ELECTRIC TRACER FOR PROFILING MACHINE TOOLS COMPRISING A TRACER POINT HELD IN A BALL AND SOCKET JOINT AND ISSUING ABOVE SAID JOINT INTO A CASING, SAID CASING ACTING ON A SWASH PLATE FOR FORWARD MOVEMENT, FOUR MUTUALLY OPPOSITE SENSING MEMBERS ARRANGED ON SAID SWASH PLATE SYMMETRICALLY TO THE AXIS OF SAID CASING, SAID MEMBERS PRODUCING ONE SET OF ELECTRIC SIGNALS PROPORTIONAL TO THE DEFLECTION OF THE TRACER POINT AND A CORE ROD DISPOSED ALONG THE AXIS OF SAID CASING, AN EXTENSION OF SAID CORE ROD ACTING UPON SENSING MEANS TO PRODUCE ANOTHER SET OF ELECTRIC SIGNALS PROPORTIONAL TO ITS DEFLECTION, SAID OTHER SET BEING SUPERIMPOSED ON SAID SET OF SIGNALS SO AS TO REDUCE DEFLECTION ERRORS OF THE TRACER POINT.
US430559A 1964-07-09 1965-02-05 Electric tracer for profiling machine tools Expired - Lifetime US3255670A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DED0044883 1964-07-09

Publications (1)

Publication Number Publication Date
US3255670A true US3255670A (en) 1966-06-14

Family

ID=7048620

Family Applications (1)

Application Number Title Priority Date Filing Date
US430559A Expired - Lifetime US3255670A (en) 1964-07-09 1965-02-05 Electric tracer for profiling machine tools

Country Status (4)

Country Link
US (1) US3255670A (en)
DE (1) DE1502067B2 (en)
FR (1) FR1444285A (en)
GB (1) GB1083736A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3491625A (en) * 1967-06-29 1970-01-27 Precision Heat Treatment Co In Floating tool holder
US3763753A (en) * 1971-09-07 1973-10-09 Eastman Kodak Co Photographic apparatus
US4508437A (en) * 1983-08-01 1985-04-02 Polaroid Corporation Method and apparatus for exposing and viewing at same station
US4526453A (en) * 1983-05-02 1985-07-02 Polaroid Corporation Method of and apparatus for distinguishing between exposed and unexposed film units
US4561742A (en) * 1984-09-04 1985-12-31 Polaroid Corporation Disk camera using single format film unit having multiple images
US4569578A (en) * 1984-09-04 1986-02-11 Polaroid Corporation Disk camera having disk carrying peel-apart film units

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127084A (en) * 1978-03-24 1979-10-02 Toshiaki Hosoi Profiling device
DE3115231C3 (en) * 1981-04-15 1994-02-24 Heyligenstaedt & Co Copy control device for cutting machine tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3491625A (en) * 1967-06-29 1970-01-27 Precision Heat Treatment Co In Floating tool holder
US3763753A (en) * 1971-09-07 1973-10-09 Eastman Kodak Co Photographic apparatus
US4526453A (en) * 1983-05-02 1985-07-02 Polaroid Corporation Method of and apparatus for distinguishing between exposed and unexposed film units
US4508437A (en) * 1983-08-01 1985-04-02 Polaroid Corporation Method and apparatus for exposing and viewing at same station
US4561742A (en) * 1984-09-04 1985-12-31 Polaroid Corporation Disk camera using single format film unit having multiple images
US4569578A (en) * 1984-09-04 1986-02-11 Polaroid Corporation Disk camera having disk carrying peel-apart film units

Also Published As

Publication number Publication date
GB1083736A (en) 1967-09-20
FR1444285A (en) 1966-07-01
DE1502067B2 (en) 1971-12-23
DE1502067A1 (en) 1969-10-30

Similar Documents

Publication Publication Date Title
US3255670A (en) Electric tracer for profiling machine tools
JPH0675814B2 (en) Computer numerical control lathe
US3735231A (en) Linear magnetic drive system
US2559575A (en) Electrical control system
US3122970A (en) Certificate of correction
KR101954295B1 (en) Machining Method and Machine-Tool Control Device
JP2752625B2 (en) Ultra-precision machining method and apparatus for finishing irregular rotating surfaces and performing servo-controlled machining
US3292495A (en) Tracer system for machine tools
US3842236A (en) Process to control the movement of a workpiece with respect to a beam of a stock processing machine operating by means of controllable power irradiation
GB505470A (en) Improvements in and relating to electrically controlled copying systems for milling and like machines
US3940073A (en) Apparatus for wrapping a compound-curved conductor bar
US3114295A (en) Copying machine tool
US3573546A (en) Template copying apparatus
JPS6056857A (en) Automatic tracer head adjusting method
JP4743649B2 (en) Curved surface polishing apparatus and curved surface polishing method
US3301543A (en) Oxygen jet cutting machines
US3778122A (en) System for contact-free, axially stabilized and radially centered positioning of a rotating shaft, particularly of an operating machine for low temperatures
US2558360A (en) Method and means for electrical welding chiefly in the production of metal containers
US2597730A (en) Dual bridge motor control circuit
US3062266A (en) Control of traversing right angle attachment for radial draw former
US3215914A (en) Fast and slow dual photo-cell bridge plural servo-motor control for duplicating machines
JP2750739B2 (en) Industrial robot controller
US20200198016A1 (en) Machine tool
US3499155A (en) Photoelectric kerf and lead compensator having two concentric pivotably mounted housings for compensation in two directions
JPH0366549A (en) Correcting method for straightness