US2975325A - Electron beam deflection system - Google Patents

Electron beam deflection system Download PDF

Info

Publication number
US2975325A
US2975325A US660885A US66088557A US2975325A US 2975325 A US2975325 A US 2975325A US 660885 A US660885 A US 660885A US 66088557 A US66088557 A US 66088557A US 2975325 A US2975325 A US 2975325A
Authority
US
United States
Prior art keywords
plates
magnetic
deflection
electron beam
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US660885A
Inventor
Gundert Eberhard
Vibrans Gerwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US2975325A publication Critical patent/US2975325A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/702Convergence correction arrangements therefor
    • H01J29/705Dynamic convergence systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/702Convergence correction arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/16Picture reproducers using cathode ray tubes
    • H04N9/28Arrangements for convergence or focusing

Definitions

  • This invention relates to electron discharge devices employing electron beams, and more particularly to improved means for effecting deflection of a plurality of electron beams therein.
  • One type of plural electron beam electron discharge device to which the present invention is particularly applicable is a cathode ray tube having three electron beams, and useful for example as a picture display device for color television.
  • the purpose of the three electron beams in such a cathode ray tube is to excite different respective components of the screen of the tube.
  • the three electron beams must be converged to meet at a common point.
  • a deflection system has already been proposed in which each of the two outer electron beams passes between a pair of deflection plates between which are produced both magnetic and electrostatic deflection fields.
  • the deflection plates are so mounted that the magnetic fields produced between the plates deflect the electron beam in a plane parallel to the desired plane of convergence.
  • a principal object of the present invention is to provide an improved electron beam deflection system for an electron discharge device of the multiple electron beam type.
  • Another object is to provide an improved combined electromagnetic and electrostatic electron beam deflection system for a plural electron beam cathode ray tube.
  • Still another object of the invention is to provide an improved electron beam convergence arrangement for cathode ray tubes and the like which is mechanically simple and relatively inexpensive to manufacture, and which provides improved control of the electron beams with a minimum of control equipment.
  • Another object of the present invention is to provide, r
  • Figure 1 is a schematic fragmentary view of one embodiment of a multiple electron beam cathode ray tube constructed in accordance with the present invention
  • Figure 2 is an enlarged semi-schematic illustration of a portion of the structure shown in Figure l, the view being taken in a transverse sectional plane 22 through the neck of the tube of Figure 1.
  • a color cathode ray tube including an envelope 2 having a cylindrical neck portion 4, a transparent viewing end or face plate portion 6, and a substantially conical transitional portion 5.
  • a screen 8 including a layer of phosphorescent material coated on the inner surface of the face plate portion 6.
  • the screen shown is capable of producing light of different colors in response to impingement of electrons thereon and may comprise, for example, a succession of triads of substantially parallel red, green and blue light-producing phosphor stripes, the stripes of one triad being shown to an exaggerated scale in Figure 1 and denoted R, G and B.
  • the screen may also include a layer of conducting material 10 superimposed on the phosphor layer, to which a suitable electron beam accelerating potential may be applied from a suitable bias source, not shown.
  • a plurality of electron guns 12 In the neck of the tube is mounted a plurality of electron guns 12, here shown as three in number, arranged in coplanar relation.
  • the electron beams from the three guns are shown at 14, 16 and 18.
  • the plane of the electron guns is preferably substantially perpendicular to the phosphor stripes of the screen 8.
  • the three electron guns 12 are suitably connected through an insulative tube base 20 to sources of suitable bias potentials, not shown, and a suitable video signal source generally designated 22.
  • horizontal and vertical deflection coils schematically illustrated and designated 24 and 26 respectively, the electron beams eminating from the electron guns 12 are deflected in both horizontal and vertical planes of deflection, thereby to scan a raster on the screen 8.
  • a substantially concentric electron permeable mask or grid 28 Spaced from the screen 8 is a substantially concentric electron permeable mask or grid 28, here shown as a grille of fine wires arranged substantially parallel to the phosphor lines and uniformly spaced to provide one interwire space corresponding to each phosphor line triad.
  • the grille 28 is maintained by a suitable power supply (not shown) at a potential substantially below the potential of screen 8 so that there is a substantial electric accelerating and focusing field between the grille and screen.
  • the three electron beams converge at the locus of the grille 23, and the grille wires are so spaced and positioned with respect to the center of deflection of each electron beam that the beam from each gun impinges only the phosphor stripes of the particular primary color for which it is intended.
  • the three electron beams form the desired polychrome image on screen 8.
  • each outer beam 14, 18 in Figure 1 a pair of magnetic pole pieces or deflection plates 40 and a pair of electrostatic deflection plates 42.
  • T he magnetic deflection plates 40 are made of ferromagnetic material and are disposed generally parallel to the electron beam and so located that the beam passes between them,
  • the magnetic plates 40 may be mounted on any suitable supporting struct'ure.
  • plates 40 are maintained at the same potential as the final electrodes of the electron guns, and therefore plates 40 may conveniently be mounted on transverse plate 44, Which is apertured as at 46 to pass the electron beams and may be common with the final element of the electron beam accelerating and focus means of the electron guns 12.
  • a suitable magnetic field between the magnetic plates 49 is induced by a source ofmagnetomotive force in the form of an electromagnet 50 located outside the tube neck and having poles 52 spaced closely adjacent the neck opposite the magnetic plates.
  • a source ofmagnetomotive force in the form of an electromagnet 50 located outside the tube neck and having poles 52 spaced closely adjacent the neck opposite the magnetic plates.
  • the plates are provided with pole-pieces in the form of integral flanges 54 outstanding from their outer edges adjacent to and conforming substantially in curvature with the inside wall of the tube neck.
  • the plates 40 are inclined or angularly disposed relative to one another so that their inside edges 56 are more closely spaced than their edges adjacent the wall of the tube neck.
  • the relative angular disposition of the platesdi) of each pair is made such that when the plates are magnetically coupled through flanges 54 to the magnet the magnetic field between the plates will be substantially uniform throughout the space between the plates.
  • the disposition of the plates 40 is preferably substantially such that the plane of the three electron guns i2 bisects the angle of intersection of the plates.
  • the magnetic field between the plates thus provides deflection of the electron beam .in the plane of the electron guns.
  • the solenoid 58 of the :e'lectromagnet 5,0 is energized from a suitable potential source through an electromagnetic convergence control 60.
  • Each control 60 is preferably adapted for energizing the solenoid of the related magnet 5! with currents suit- .able for correcting both static misconvergence and dynamicmisconvergence, i.e. misconvergence encountered as a result of scanning. That ,is, each control may beadapted for energizing the related solenoid with a direct current of magnitude adjustable to correct for static misconvergence and additionally an alternating current signal of predetermined wave form such as to correct for .dy-
  • each control 60 can be advantageously associated with the electron beam scanning means including the deflection coils Mend 26 of Figure 1.
  • the electrostatic deflection plates .42 associated with each outer beam are provided for the purpose of deflecting the beam in a direction substantially perpendicular to the direction of deflection by the magnetic plates 4%
  • the plates 42 are made of non-magnetic material, and, for the purpose of achieving uniformity in the electrostatic field throughout the spaces between them, the plates are disposed substantially parallel to one another and to the plane into which the three beams are desired to be converged. Plates 42 are maintained at suitable relative potentials by one or more leads 64 connected through an electrostatic convergence control 66 to suitable sources of potential (not shown) to provide an electrostatic deflection field of the desired intensity.
  • control 66 may be advantageously associated with the electron beam scanning means including deflection coils 24 and 26 of Figure 1.
  • the leads 64- may be brought out of the tube at any convenient location such as the tube base 20.
  • Mounting of the electrostatic deflection plates 42 may be accomplished in any desired manner such as for example by aflixing the plates to the transverse member'44 or any other convenient support structure.
  • the electrostatic deflection plates 42 are preferably attached, as by welding, to the corresponding magnetic deflection plates at their inner edges 56.
  • the plates 42 may have outstanding portions '70 at their outer edges which may be secured, as by welding, to the pole pieces 54 of the magnetic plates 40 to enhance the structural strength and rigidity of the assembly.
  • the present'invention provides a beam deflection or convergence system for plural electron beam electron discharge devices in which sloping or .mutually inclined magnetic deflection plates and separate parallel. non-magnetic electrostatic deflection plates insure optimum linearity and independence of de- Patent of the United States is:
  • Electron beam deflection means for an electron discharge device comprising a pair of magnetic deflection plates straddling the path of the electron beam, said magnetic deflection plates having outturned flanges at one extremity thereof forming pole pieces adapted to magnetically couple to a source of magnetomotive force, the entire opposing surfaces of said magnetic deflection plates straddling the path of the electron beam being continuously, mutually, and angularly inclined to each other with the spacing of said opposing surfaces adjacent said one extremity greater than their spacing remote from said extremity, a pair of electrostatic deflection plates straddling the path of the electron beam between and in a common transverse plane with the pair of magnetic deflection plates, said electrostatic deflection plates being of non-magnetic material and having confronting surfaces substantially parallel to each other and to the path of the electron beam whereby an electrostatic field established therebetween will be-substantially uniform throughout the space .betwen said electrostatic deflection plates,
  • an electron discharge device having means for generating a plurality of electron beams, a pair of magnetlc deflection plates of ferromagnetic material straddling the path of each beam, each pair of said magnetic deflection plates having magnetic pole pieces at one extremity thereof adapted to magnetically couple to a source of magnetomotive force, said magnetic deflection plates being each substantially parallel to the electron beam and having their entire opposing surfaces continuously, mutually, and angularly inclined relative to each other such that the magnetic field induced between said magnetic deflection plates of each pair is substantially uniform throughout the entire space between them, a pair of electrostatic deflection plates straddling the path of each electron beam between and in a common transverse plane with each respective pair of magnetic deflection plates, said electrostatic deflection plates being of non-magnetic material and being substantially parallel to each other and to the direction of beam deflection by the magnetic deflection plates, means securing each magnetic deflection plate to the respective adjacent electrostatic deflection plate, and means for applying a potential difference to said electro

Description

March 14, 1961 E. GUNDERT ETAI.
ELECTRON BEAM DEF'LECTION SYSTEM 2 Sheets-Sheet 1 Filed May 22, 1957 men! mwomnom JOmPZOO mozmomm zoo QrPuZw 20mkouJu INVENTORS 2 EBERHARD GUNDERT,
GERWIG VIBRANS Y I THEI TTOR EY.
March 14, 1961 E. GUNDERT ET AL 2,975,325
ELECTRON BEAM DEFLECTION SYSTEM Filed May 22, 1957 2 Sheets-Sheet 2 ELECTROSTATIC CONVERGENCE CONTROL SOURCE STATIC STATIC 60w AND AND DYNAMIC DYNAMIC ELECTROMAGNETIC CONVERGENCE CONTROL SOURCES INVENTORS. EBERHARD GUNDERT,
GERWIG VIBRANS BY Mm THEI ATTORNEY.
2,975,325 Patented Mar. 14, 1961 ELECTRON BEAM DEFLECTION SYSTEM Eberhard Gundert, Ulm (Danube), and Gerwig Vihrans, I Braunschweig, Germany, assignors to General Electric Company, a corporation of New York Filed May 22, 1957, Ser. No. 660,885
Claims priority, application Germany May 26, 1956 .4jcla mss (Cl. 31522) 1 n This invention relates to electron discharge devices employing electron beams, and more particularly to improved means for effecting deflection of a plurality of electron beams therein.
One type of plural electron beam electron discharge device to which the present invention is particularly applicable is a cathode ray tube having three electron beams, and useful for example as a picture display device for color television. The purpose of the three electron beams in such a cathode ray tube is to excite different respective components of the screen of the tube. For good image resolution and proper color fidelity the three electron beams must be converged to meet at a common point. To enable the three electron beams to be properly converged a deflection system has already been proposed in which each of the two outer electron beams passes between a pair of deflection plates between which are produced both magnetic and electrostatic deflection fields. The deflection plates are so mounted that the magnetic fields produced between the plates deflect the electron beam in a plane parallel to the desired plane of convergence. Such an arrangement is described and claimed in the co-pending application of Paul H. Gleichauf, Serial No. 565,859, filed February 16, 1956, now Patent 2,907,915 and assigned to the assignee of the instant application. The present invention provides an improvement over the deflection system described and claimed in the aforesaid co-pending application.
A principal object of the present invention is to provide an improved electron beam deflection system for an electron discharge device of the multiple electron beam type.
Another object is to provide an improved combined electromagnetic and electrostatic electron beam deflection system for a plural electron beam cathode ray tube.
Still another object of the invention is to provide an improved electron beam convergence arrangement for cathode ray tubes and the like which is mechanically simple and relatively inexpensive to manufacture, and which provides improved control of the electron beams with a minimum of control equipment.
Another object of the present invention is to provide, r
in a color television picture tube of the type employing three co-planar electron beams, means for effecting static and dynamic convergence of the electron beams.
These and other objects of the invention will be apparent from the following description taken in conjunction with the accompanying drawing, and the scope of the invention will be defined in the appended claims.
Briefly in accordance with the present invention we provide, in conjunction with each electron beam to be converged, a pair of mutually angularly related magnetic deflection plates and a separatepair of electrostatic deflection plates substantially coincident with the magnetic plates. A magnetic field is formed between the magnetic plates with a polarity such as to deflect the electron beam in a desired direction, and the plates are disposed in such angular relation to one another as to make the intensity of the magnetic field substantially uniform throughout the space between them. This provides maximum linearity of magnetic beam deflection and minimum electron beam distortion. For corresponding uniformity of electrostatic deflection, the electrostatic deflection plates are made of nonmagnetic material and disposed in parallel relation between the magnetic plates. Thus a uniform magnetic and a uniform electrostatic deflection field is formed in which the electron beam will be independently deflected with optimum uniformity in mutually perpendicular directions.
In the drawings: 7
Figure 1 is a schematic fragmentary view of one embodiment of a multiple electron beam cathode ray tube constructed in accordance with the present invention;
Figure 2 is an enlarged semi-schematic illustration of a portion of the structure shown in Figure l, the view being taken in a transverse sectional plane 22 through the neck of the tube of Figure 1.
Referring to Figure 1 there is shown a color cathode ray tube including an envelope 2 having a cylindrical neck portion 4, a transparent viewing end or face plate portion 6, and a substantially conical transitional portion 5.
Located at the viewing end of the envelope 2 is a screen 8 including a layer of phosphorescent material coated on the inner surface of the face plate portion 6. The screen shown is capable of producing light of different colors in response to impingement of electrons thereon and may comprise, for example, a succession of triads of substantially parallel red, green and blue light-producing phosphor stripes, the stripes of one triad being shown to an exaggerated scale in Figure 1 and denoted R, G and B. The screen may also include a layer of conducting material 10 superimposed on the phosphor layer, to which a suitable electron beam accelerating potential may be applied from a suitable bias source, not shown.
In the neck of the tube is mounted a plurality of electron guns 12, here shown as three in number, arranged in coplanar relation. The electron beams from the three guns are shown at 14, 16 and 18. The plane of the electron guns is preferably substantially perpendicular to the phosphor stripes of the screen 8. The three electron guns 12 are suitably connected through an insulative tube base 20 to sources of suitable bias potentials, not shown, and a suitable video signal source generally designated 22. By means of horizontal and vertical deflection coils schematically illustrated and designated 24 and 26 respectively, the electron beams eminating from the electron guns 12 are deflected in both horizontal and vertical planes of deflection, thereby to scan a raster on the screen 8. Spaced from the screen 8 is a substantially concentric electron permeable mask or grid 28, here shown as a grille of fine wires arranged substantially parallel to the phosphor lines and uniformly spaced to provide one interwire space corresponding to each phosphor line triad. Preferably the grille 28 is maintained by a suitable power supply (not shown) at a potential substantially below the potential of screen 8 so that there is a substantial electric accelerating and focusing field between the grille and screen. The three electron beams converge at the locus of the grille 23, and the grille wires are so spaced and positioned with respect to the center of deflection of each electron beam that the beam from each gun impinges only the phosphor stripes of the particular primary color for which it is intended. Thus in accordance with color intelligence received from video signal source 22 the three electron beams form the desired polychrome image on screen 8.
To efliect convergence of the three electron beams in accordance with the present invention we provide in con- .namic misconvergence.
junction with each of the beams to be converged, i.e. each outer beam 14, 18 in Figure 1, a pair of magnetic pole pieces or deflection plates 40 and a pair of electrostatic deflection plates 42. T he magnetic deflection plates 40 are made of ferromagnetic material and are disposed generally parallel to the electron beam and so located that the beam passes between them, The magnetic plates 40 may be mounted on any suitable supporting struct'ure. Preferably plates 40 are maintained at the same potential as the final electrodes of the electron guns, and therefore plates 40 may conveniently be mounted on transverse plate 44, Which is apertured as at 46 to pass the electron beams and may be common with the final element of the electron beam accelerating and focus means of the electron guns 12. A suitable magnetic field between the magnetic plates 49 is induced by a source ofmagnetomotive force in the form of an electromagnet 50 located outside the tube neck and having poles 52 spaced closely adjacent the neck opposite the magnetic plates. To enhance the magnetic coupling between the plates 40"and the magnet 50 the plates are provided with pole-pieces in the form of integral flanges 54 outstanding from their outer edges adjacent to and conforming substantially in curvature with the inside wall of the tube neck.
In accordance with the invention the plates 40 are inclined or angularly disposed relative to one another so that their inside edges 56 are more closely spaced than their edges adjacent the wall of the tube neck. The relative angular disposition of the platesdi) of each pair is made such that when the plates are magnetically coupled through flanges 54 to the magnet the magnetic field between the plates will be substantially uniform throughout the space between the plates. The disposition of the plates 40 is preferably substantially such that the plane of the three electron guns i2 bisects the angle of intersection of the plates. The magnetic field between the plates thus provides deflection of the electron beam .in the plane of the electron guns. The solenoid 58 of the :e'lectromagnet 5,0 is energized from a suitable potential source through an electromagnetic convergence control 60. Each control 60 is preferably adapted for energizing the solenoid of the related magnet 5! with currents suit- .able for correcting both static misconvergence and dynamicmisconvergence, i.e. misconvergence encountered as a result of scanning. That ,is, each control may beadapted for energizing the related solenoid with a direct current of magnitude adjustable to correct for static misconvergence and additionally an alternating current signal of predetermined wave form such as to correct for .dy-
To this end'the potential source supplying .each control 60 can be advantageously associated with the electron beam scanning means including the deflection coils Mend 26 of Figure 1.
The electrostatic deflection plates .42 associated with each outer beam are provided for the purpose of deflecting the beam in a direction substantially perpendicular to the direction of deflection by the magnetic plates 4% In accordance with the invention, the plates 42 are made of non-magnetic material, and, for the purpose of achieving uniformity in the electrostatic field throughout the spaces between them, the plates are disposed substantially parallel to one another and to the plane into which the three beams are desired to be converged. Plates 42 are maintained at suitable relative potentials by one or more leads 64 connected through an electrostatic convergence control 66 to suitable sources of potential (not shown) to provide an electrostatic deflection field of the desired intensity. To effect both static and dynamic convergence, control 66 may be advantageously associated with the electron beam scanning means including deflection coils 24 and 26 of Figure 1. The leads 64- may be brought out of the tube at any convenient location such as the tube base 20. Mounting of the electrostatic deflection plates 42 may be accomplished in any desired manner such as for example by aflixing the plates to the transverse member'44 or any other convenient support structure. When both plates 42 are mounted on a common electrically conducting support such as the member 44 one of the plates 42 must be suitably electrically insulated from the support as by means of insulator 6%. For additional mechanical support the electrostatic deflection plates 42 are preferably attached, as by welding, to the corresponding magnetic deflection plates at their inner edges 56. Also the plates 42 may have outstanding portions '70 at their outer edges which may be secured, as by welding, to the pole pieces 54 of the magnetic plates 40 to enhance the structural strength and rigidity of the assembly. a
Thus it may be seen that the present'invention provides a beam deflection or convergence system for plural electron beam electron discharge devices in which sloping or .mutually inclined magnetic deflection plates and separate parallel. non-magnetic electrostatic deflection plates insure optimum linearity and independence of de- Patent of the United States is:
1. Electron beam deflection means for an electron discharge device comprising a pair of magnetic deflection plates straddling the path of the electron beam, said magnetic deflection plates having outturned flanges at one extremity thereof forming pole pieces adapted to magnetically couple to a source of magnetomotive force, the entire opposing surfaces of said magnetic deflection plates straddling the path of the electron beam being continuously, mutually, and angularly inclined to each other with the spacing of said opposing surfaces adjacent said one extremity greater than their spacing remote from said extremity, a pair of electrostatic deflection plates straddling the path of the electron beam between and in a common transverse plane with the pair of magnetic deflection plates, said electrostatic deflection plates being of non-magnetic material and having confronting surfaces substantially parallel to each other and to the path of the electron beam whereby an electrostatic field established therebetween will be-substantially uniform throughout the space .betwen said electrostatic deflection plates,
ally, and angularly inclined relative to each other with their spacing at saidone extremity greater than their spacing remote from said extremity, whereby the magnetic field induced between said magnetic deflection plates through coupling at said one extremity is substantially uniform throughout the space between the magnetic deflection plates, a pair of electrostatic deflection plates straddling the path of each electron beam between each respective pair of magnetic deflection plates, said electrostatic deflection plates being of non-magnetic material and being substantially parallel to each other and to the direction of beam deflection by the magnetic deflection plates, and means for applying a potential difference to said electrostatic deflection plates.
3. In an electron discharge device having means for generating a plurality of electron beams, a pair of magnetlc deflection plates of ferromagnetic material straddling the path of each beam, each pair of said magnetic deflection plates having magnetic pole pieces at one extremity thereof adapted to magnetically couple to a source of magnetomotive force, said magnetic deflection plates being each substantially parallel to the electron beam and having their entire opposing surfaces continuously, mutually, and angularly inclined relative to each other such that the magnetic field induced between said magnetic deflection plates of each pair is substantially uniform throughout the entire space between them, a pair of electrostatic deflection plates straddling the path of each electron beam between and in a common transverse plane with each respective pair of magnetic deflection plates, said electrostatic deflection plates being of non-magnetic material and being substantially parallel to each other and to the direction of beam deflection by the magnetic deflection plates, means securing each magnetic deflection plate to the respective adjacent electrostatic deflection plate, and means for applying a potential difference to said electrostatic deflection plates.
4. In combination with an electron discharge device having an envelope and means for generating within the envelope a plurality of separate electron beams having the same general direction, a pair of magnetic deflection plates of ferromagnetic material straddling the path of each electron beam on opposite sides of a common plane of convergence, said magnetic deflection plates having integral outstanding flanges forming magnetic pole pieces at the extremity thereof adjacent said envelope, respective magnets external to said envelope positioned to magnetically couple to the pole pieces of each respective pair of magnetic deflection plates, said magnetic deflection plates being each substantially parallel to the electron beam and having their entire opposing surfaces continuously, mutually, and angularly inclined to each other with their spacing adjacent said pole pieces greater than their spacing remote from said pole pieces, whereby the entire magnetic field induced between each pair of said magnetic deflection plates is substantially uniform throughout the space between them, a pair of electrostatic deflection plates straddling the path of each electron beam between and in a common transverse plane with each respective pair of magnetic deflection plates, said electrostatic deflection plates being of nonmagnetic material and being substantially parallel to each other and to the direction of beam deflection by the magnetic deflection plates, said electrostatic deflection plates having outstanding flanges at one extremity secured to the flanges on the respective magnetic deflection plates, means for applying a potential diiference to said electrostatic deflection plates, and means for scanning said electron beams in a raster.
References Cited in the file of this patent UNITED STATES PATENTS 2,212,640 Hogan Aug, 27, 1940 2,332,881 Woerner Oct. 26, 1943 2,348,853 Schlesinger May 16, 1944 2,711,493 Lawrence June 21, 1955 2,719,242 Friend Sept. 27, 1955 2,742,589 Goodrich Apr. 17, 1956 2,752,520 Morrell June 26, 1956 2,757,301 Jones July 31, 1956 2,769,110 Obert Oct. 30, 1956 2,849,647 Francken Aug. 26, 1958
US660885A 1956-05-26 1957-05-22 Electron beam deflection system Expired - Lifetime US2975325A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2975325X 1956-05-26

Publications (1)

Publication Number Publication Date
US2975325A true US2975325A (en) 1961-03-14

Family

ID=8050746

Family Applications (1)

Application Number Title Priority Date Filing Date
US660885A Expired - Lifetime US2975325A (en) 1956-05-26 1957-05-22 Electron beam deflection system

Country Status (1)

Country Link
US (1) US2975325A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325675A (en) * 1964-08-05 1967-06-13 Paramount Pictures Corp Three in-line gun magnetic convergence system
US3363128A (en) * 1963-10-30 1968-01-09 Cft Cie Francaise De Televisio Convergence system for a tricolor, three-gun television tube
US3453472A (en) * 1967-01-18 1969-07-01 Sylvania Electric Prod Convergence apparatus for multi-gun cathode ray tubes
US3513350A (en) * 1967-04-06 1970-05-19 Sony Corp Convergence deflection system for a color picture tube
US3548248A (en) * 1967-07-19 1970-12-15 Sony Corp Misconvergence compensation for single gun,plural beam type color tv picture tube
US3553523A (en) * 1969-06-12 1971-01-05 Sylvania Electric Prod Convergence means for plural in-line beam cathode ray tube
US3639796A (en) * 1968-03-11 1972-02-01 Sony Corp Color convergence system having elongated magnets perpendicular to plane of plural beams

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2212640A (en) * 1934-07-07 1940-08-27 Radio Inventions Inc Cathode ray system
US2332881A (en) * 1938-05-31 1943-10-26 Woerner Friedrich Cathode ray tube arrangement
US2711493A (en) * 1951-06-29 1955-06-21 Chromatic Television Lab Inc Direct-view color tube
US2719242A (en) * 1954-07-08 1955-09-27 Rca Corp Beam alignment device for plural beam tubes
US2742589A (en) * 1954-10-25 1956-04-17 Rca Corp Electron beam convergence apparatus
US2752520A (en) * 1953-06-25 1956-06-26 Rca Corp Tri-color kinescope
US2757301A (en) * 1952-07-30 1956-07-31 Westinghouse Electric Corp Three beam gun
US2769110A (en) * 1954-01-21 1956-10-30 Rca Corp Electron beam control means
US2849647A (en) * 1954-03-04 1958-08-26 Philips Corp Color television reproducing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2212640A (en) * 1934-07-07 1940-08-27 Radio Inventions Inc Cathode ray system
US2332881A (en) * 1938-05-31 1943-10-26 Woerner Friedrich Cathode ray tube arrangement
US2348853A (en) * 1938-05-31 1944-05-16 Schlesinger Kurt Cathode ray tube
US2711493A (en) * 1951-06-29 1955-06-21 Chromatic Television Lab Inc Direct-view color tube
US2757301A (en) * 1952-07-30 1956-07-31 Westinghouse Electric Corp Three beam gun
US2752520A (en) * 1953-06-25 1956-06-26 Rca Corp Tri-color kinescope
US2769110A (en) * 1954-01-21 1956-10-30 Rca Corp Electron beam control means
US2849647A (en) * 1954-03-04 1958-08-26 Philips Corp Color television reproducing device
US2719242A (en) * 1954-07-08 1955-09-27 Rca Corp Beam alignment device for plural beam tubes
US2742589A (en) * 1954-10-25 1956-04-17 Rca Corp Electron beam convergence apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363128A (en) * 1963-10-30 1968-01-09 Cft Cie Francaise De Televisio Convergence system for a tricolor, three-gun television tube
US3325675A (en) * 1964-08-05 1967-06-13 Paramount Pictures Corp Three in-line gun magnetic convergence system
US3453472A (en) * 1967-01-18 1969-07-01 Sylvania Electric Prod Convergence apparatus for multi-gun cathode ray tubes
US3513350A (en) * 1967-04-06 1970-05-19 Sony Corp Convergence deflection system for a color picture tube
US3548248A (en) * 1967-07-19 1970-12-15 Sony Corp Misconvergence compensation for single gun,plural beam type color tv picture tube
US3639796A (en) * 1968-03-11 1972-02-01 Sony Corp Color convergence system having elongated magnets perpendicular to plane of plural beams
US3553523A (en) * 1969-06-12 1971-01-05 Sylvania Electric Prod Convergence means for plural in-line beam cathode ray tube

Similar Documents

Publication Publication Date Title
US2188579A (en) Cathode ray tube, more particularly for television purposes
US3448316A (en) Cathode ray tube
US2752520A (en) Tri-color kinescope
US2907915A (en) Cathode ray tube structure including combined electrostatic and magnetic convergence system
US2887598A (en) Plural gun cathode ray tube
US3325675A (en) Three in-line gun magnetic convergence system
US2769110A (en) Electron beam control means
US3363128A (en) Convergence system for a tricolor, three-gun television tube
GB1210341A (en) Raster deviation correction in color cathode ray tubes
US2975325A (en) Electron beam deflection system
US3002120A (en) Beam convergence apparatus for tri-color kinescope
US2923844A (en) Cathode ray tube structure including convergence system
US3164737A (en) Cathode ray tube
US4310776A (en) Cathode-ray tube
US4339694A (en) Flat cathode ray tube
US2847598A (en) Electron gun structure for plural beam tubes
US2790920A (en) Apparatus for control of electron beam cross section
US2898493A (en) Method and apparatus for controlling electron beams
US3243645A (en) Post deflection focusing cathode ray tube for color television images of high brightness and low raster distortion
US2763804A (en) Cathode ray tube device
US2806164A (en) Beam convergence apparatus for tri-color kinescopes
GB1254064A (en) Electron beam correction apparatus for a color picture tube
US3411029A (en) Color television picture tube
US3789258A (en) Electron beam and deflection yoke alignment for producing convergence of plural in-line beams
US2907908A (en) Apparatus for preventing distortion in plural beam cathode ray tubes