US2788273A - Pulp manufacture - Google Patents

Pulp manufacture Download PDF

Info

Publication number
US2788273A
US2788273A US392182A US39218253A US2788273A US 2788273 A US2788273 A US 2788273A US 392182 A US392182 A US 392182A US 39218253 A US39218253 A US 39218253A US 2788273 A US2788273 A US 2788273A
Authority
US
United States
Prior art keywords
sodium
solution
sulphide
gaseous
liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US392182A
Inventor
Philip E Shick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mead Corp
Original Assignee
Mead Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mead Corp filed Critical Mead Corp
Priority to US392182A priority Critical patent/US2788273A/en
Priority to US582312A priority patent/US2849292A/en
Application granted granted Critical
Publication of US2788273A publication Critical patent/US2788273A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/02Regeneration of pulp liquors or effluent waste waters of acid, neutral or alkaline sulfite lye
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0064Aspects concerning the production and the treatment of green and white liquors, e.g. causticizing green liquor
    • D21C11/0071Treatment of green or white liquors with gases, e.g. with carbon dioxide for carbonation; Expulsion of gaseous compounds, e.g. hydrogen sulfide, from these liquors by this treatment (stripping); Optional separation of solid compounds formed in the liquors by this treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/12Combustion of pulp liquors

Definitions

  • This invention relates to the manufacture of wood pulp and more particularly to a new and improved process for producing pulp by chemical action on wood or the like in such a way that the necessary chemical reagents may be substantially recovered for reuse.
  • Pulp for the manufacture of paper and the like may be produced from wood by digesting or cooking the wood in the presence of suitable chemical reagents such as sodium sulphite or sodium acid sulphite which will act on or remove those organic constituents of natural woods which tend to bind the cellulose fibers together. If it is attempted to manufacture pulp in this way, the end products of such a cooking or digestion process include substances such as sodium compounds, sulphur compounds and organic substances. The dumping or discarding of such spent end products of the cooking or digestion operations not only is wasteful of the reagents and commercially expensive but also is extremely obnoxious to the area surrounding the mill in which such cooking and digesting processes are carried out.
  • pulp of satisfactory quality and characteristics for the manufacture of paper and the like may be produced from wood by the digestion or cooking thereof with sodium salts of sulphurous acid alone or in combination with other constituents such as carbonates or sulphur dioxide in such a way that the sodium and sulphurous components of the cooking or digestion reagents may be recovered for reuse in the cooking process, thereby eliminating wasteful use of chemicals and the production of obnoxious nuisance conditions in the vicinity of the mill utilizing the process of this invention.
  • Such recovery of the cooking chemicals may be satisfactorily accomplished according to the present invention by utilizing in the operation of this invention controlled combustion, carbonation and sulphiting conditions to convert inorganic constituents of the spent end products of the cooking or digestion operation to suitable fresh cooking mixtures of sodium sulphite and sodium carbonate or bicarbonate or sodium acid sulphite and sulphur dioxide and to eliminate organic and undesirable inorganic substances in an inexpensive and unobnoxious manner.
  • Another object of this invention is to provide a process 2,788,273 Patented Apr. 9, 1957 and apparatus for the recovery of sodium and sulphur compounds from spent pulp cooking liquors of the character described.
  • Still another object of this invention is to produce pulp in the manner described so as to avoid wasteful and nuisance creating exhausting of expensive or obnoxious materials into the atmosphere or streams in the vicinity of the pulp mill.
  • a further object of this invention is the production of pulp in the manner described so that unwanted combustible by-products of the cooking or digestion process may be economically utilized for the production of heat, steam and power.
  • Still another object of this invention is the production of pulp in the manner described so that the pulp produc ing and reagent recovering process may be as nearly as practicable self-productive of the heat and other energy necessary for its use. 7
  • a still further object of this invention is to provide a cyclic process and apparatus therefor for continuous operation in conjunction with pulp manufacture of the character described to achieve substantially complete recovery therefrom of sodium and sulphur compounds for reuse as cooking chemicals.
  • Fig. 1 is a flow sheet or schematic representation of a portion of the various steps and stages of a process and a diagrammatic showing of apparatus embodying and for practicing this invention
  • Fig. 2 is a continuation of the flow sheet or schematic representation of Fig. l, and is shown as a separate figure merely because of the limitations of drawing size;
  • Fig. 3 is a chart of gas requirements and carbon dioxide distribution of a process embodying and for practicing this invention under typical operating conditions for a flue gas containing 16% carbon dioxide (on a dry basis) and an operating temperature of 170 F.;
  • Fig. 4 is a chart of minimum fraction of total carbonation gases to be returned to the furnace when operating a process embodying and for practicing this invention with a minimum total gas throughput.
  • sodium sulphite is used alone as the primary cooking or digesting chemical or whether it is used in combination with sodium bicarbonate is determined by the character of the cellulosic material to be digested as well as by the character of the pulp desired to be produced by the digestion operation.
  • the resultant products of such cooking or digesting process include, in addition to the freed or partially freed cellulosic fibers, fluids which may be referred to as spent liquor containing various inorganic sodium, sulphur, and carbon compounds in addition to organic residues of ligneous or cellulosic origin that have been removed from the wood during cooking.
  • spent liquor containing various inorganic sodium, sulphur, and carbon compounds in addition to organic residues of ligneous or cellulosic origin that have been removed from the wood during cooking.
  • the exact composition of such spent liquor depends upon, among other factors, the
  • Pulp cooking steps In practicing one embodiment of this invention for the manufacture of pulp forpaper making or the like, chips of various hard woods such as gum or poplar, :or chestnut from which the tanninhas been extracted, are charged or introduced into cooking or digestion apparatus well known in the pulp manufacture art such as a so-called rotary digester commonly used in so-callcd netural sulphite semi-chemical cook processes well known in the pulp making industry. These chips of wood may be steamed if desired in the digester. To the digester is then added a liquid which may be designated as cooking liquor in an amount approximately three and one-fourth times the dry weight of the chips in the digester.
  • This cooking liquor contains sodium sulphite .in an amount on-a dry basis approximately 12% to 16% of the dry weight of the chips of wood and sufficient sodium bicarbonate to maintain a neutral pl-I in the digester at the end of the cooking operation, such an amount in this embodiment being approximately 4.8% to 6.4% of the dry weightof the chips.
  • the sodium sulphite is of-a concentration of approximately 40 to 50 grams per liter and the concentration of sodium bicarbonate may be approximately to 20 grams per liter.
  • the digester After the chips and cooking liquor have been introduced into the digester, it is closed as provided for in its well known construction and rotated while it is heated to approximately 100 C. at which time the rotation is stopped and the pressure which has accumulated within the closed digester due to the heating is relieved by releasing the gases to the atmosphere as provided by the well known construction of the rotary digester apparatus. Thereafter the digester is again closed and heated during the course of approximately two to three hours to a temperature of approximately 160 C. and is held at approximately this temperature for approximately three to four hours during which time a pressure of the order of from 75 to 100 pounds per square inch builds up in the closed digester.
  • the liquor blown out of the digester into a suitable storage tank or blown down tank 11 by the action of the pressure which has accumulated in the closed digester and the cooked chips are dumped from the digester to be defibered and washed by common and well known procedures in the pulp making industry.
  • the liquor blown from the digester which, now that cooking is completed, may be designated'as spent liquor, contains approximately 40% to 50% of the original chemicals present in the cooking liquor originally introduced to the digester. Additional amounts of the original chemicals are added to this spent liquor by combining therewith the washings from the cooked chips from the digester.
  • the above steps of the invention are indicated schematically on the drawing by the stage labeledPulp Cooking Steps.
  • pulp may be produced in accordance with this invention as from'either a so-called full chemical cook or as from a semi-chemical cook, the former designation indicating a digestion process in which'substantially all of thematerial binding the cellulose fibers together will be removed orloosened or-rendered ineffective as a binderby the "cooking Chemi ca-ls so that, upon completion of the cooking or digestion step, the cellulose fibers will be but loosely held together, and the latter designation indicating a cooking or digesting process wherein conditions are so controlled that only a portion of the binding material is effected during the cooking or digesting operation thus requiring funther mechanical working or defibering to separate the cellulose fibers sufficiently for use in the manufacture of paper.
  • the cooking or digesting operation above described may be categorized as a so-called neutral sulphite semi-chemical cook, such designation merely indicating to those skilled in the art that the cooking or digesting step of this embodiment is accomplished with sodium sulphite and is very generally of such a character that the pH at the completion of the cooking step will be substantially neutral and that the partially digested cellulosic material will require further mechanical defibering action to separate the cellulose fibers sufiiciently.
  • sulphite cooking liquor prepared according to this invention may be used in the pulping of any of the ligno-cellulosic materials suitable for so-ca-lled sulphite pulp processes. These materials include not only hard woods such as aspen, poplar, oak and chestnut, but also soft woods such as pine, spruce and hemlock as well as various grasses and agricultural residues.
  • the spent liquor after removal from the digester 10 as above, may conveniently be filtered as at 12 to insure freedom from fibers or chips or other undesirable foreign matter, and collected in a storage tank 13.
  • the spent liquor is preferably concentrated before introduction into the next step of the process.
  • any suitable means may be employed for concentrating the spent liquor and apparatus for effecting such concentration may be of well known form, a well known steam operated triple effect evaporator system is shown for purposes of illustra tion as having produced satisfactory results in a process embodying and for practicing this invention.
  • This apparatus comprises evaporators l5, separators 16, pumps 17, condensor l9 and the appropriate conduits and pipe lines as well understood in the art.
  • conduits and/or pipe lines carrying liquid material are indicated in solid lines with direction of fiow'indicated by arrows, whereas conduits and/ or ducts or pipes carrying gaseous or vaporous material are indicated by dotted lines, also with arrows indicating the direction of flow.
  • Small amounts of sodium carbonate may be added to the spent liquor immediately prior to the concentration step (e. g., in the storage tank 13) for the purpose of inhibiting precipitation of solid matter from the spent liquor or scaling of the evaporator surfaces.
  • Spent liquors produced according to the above have been successfullytreated at concentrations above 50% to 65% total solids. For maximum utilization of the heat of combustion in the next step of this process, however, it is desirable to concentrate the spent liquor as far as practical while avoiding precipitation therefrom.
  • the solids content of spent liquor consists of approximately 40% inorganic constituents and approximately 60% organic constituents. Because of the relatively high ash content that combustion of such spent liquors produces, it has been found that spent liquor may not support its own combustion at concentrations lower than approximately 40% to 50% totalsolids.
  • the spent liquors be concentrated in the evaporators to a degree which will admit of the evaporated liquorv supportingits own combustion Combustion steps
  • the concentrated spent liquor is introduced into suitable combustion apparatus 20, wherein the spent liquor is treated under controlled combustion conditions to eliminate organic constituents by oxidation to gaseous carbon compounds and water and to convert sodium and sulphur compounds present into recoverable sodium sulphide, sodium carbonate, and sulphur dioxide.
  • One form of apparatus for satisfactorily accomplishing such controlled combustion step of concentrated spent liquor according to this invention is the well known Wagner spray-type recovery furnace or modifications thereof such as the well known Tomlinson recovery furnace.
  • Such apparatus has means at various points and levels in the sides of the combustion chamber for the controlled introduction of air through controllable air ports, the individual adjustment of which enables the atmosphere within the combustion chamber to be controlled so that reducing or oxidizing conditions are obtained at various levels Within the combustion chamber.
  • air admitting ports near the bottom of the furnace are controlled so that only limited quantities of air are admitted thereby causing the atmosphere at the bottom of the furnace to be of a substantially reducing nature.
  • the air admitting ports at higher levels in the walls of the combustion chamber are controlled so that some excess of air is admitted to maintain an oxidizing atmosphere in the upper portion of the combustion chamber.
  • the concentrated spent liquor from the storage tank 18 is further concentrated and/ or heated by passing through an evaporator 23 in heat exchange relation with hot flue gases from the furnace combustion chamber, and then into the furnace 20 where the liquor is sprayed into the combustion chamber 21 to be first dried and charged and then reduced as it falls to the bottom of the furnace with the gaseous products being oxidized in the upper portion of the furnace.
  • furnace flue gases contain, on a dry basis, approximately 15% to 18% carbon dioxide, 0.5% to 1.5% sulphur dioxide, 2% to 4.5% oxygen, and 79% to 81% nitrogen, with approximately an additional 40% of the gases being made up of water vapor.
  • Molten inorganic compounds may be continuously drawn off from the bottom portion of the furnace. as at 25, in the form of a molten furnace product and are dissolved or leached in water in a solution tank 26 to produce a leach liquor which is pumped to a clarifying or settling tank 27 the dregs of which are returned to a dregs washer 28 and, after washing, to the sewer, with the washings being admixed in the solution tank 26 with leach liquor.
  • This leach liquor or water solution of soluble incombustible products from the furnace is then ready for passage through the counter-current carbonation and stripping apparatus as indicated in Fig. 2.
  • Furnace products in which the active components are present in widely varying proportions may be utilized in subsequent steps of a process embodying; this invention.
  • satisfactory re. sults have been obtained with the above example producing a clarified leach liquor having a specific gravity of 1.230 at 106 F. and the following chemical composition in terms of equivalents of sodium per liter:
  • the line gases at 36 to the bottom of a conventional gas absorption tower 35 packed with wood or ceramic grids.
  • the gases are passed upwardly through the tower to emerge at 37 while a carbonated solution from the carbonation steps described below is introduced into the upper portion of the tower at 38 and passes downwardly in countercurrent contact with the gases to emerge at 39.
  • the solution admitted to the S02 tower 35 at 38 is alkaline and substantially free of spasms sulphur compounds, being primarily composed of sodium carbonate andsodiurn bicarbonate.
  • spasms sulphur compounds being primarily composed of sodium carbonate andsodiurn bicarbonate.
  • the etliuent gases leaving the SOztower at 37- are substantially free of sulphur compounds, being primarily composed of carbon dioxide, which is utilized in the carbonation steps described be low.
  • Apparatus for accomplishing these carbonation and hydrogen sulphide stripping steps may vary widely in its construction and design.
  • four gas-liquid counter-current absorption towers are shown in Fig. 2 at'4l, 42, 4-3, and 44.
  • Suitable apparatus that is designed to effect and promote the chemical reaction of a gaseous phase with a liquid phase, such as a column or tower packed with Well known materials as pieces of coke, carbon rings, or wooden slats which furnish an open structure and large surface area, or a so-cailed bubbleplate column, or a series of splash chambers, may be used.
  • the leach solution has substantial quantities of sodium sulphide as noted above.
  • the carbonated leach solution is substantially free of sulphide and is composed almost entirely of sodium carbonate and bicarbonate.
  • the sulphide originally present in the leach solution before carbonation is stripped out by the carbon dioxide as hydrogen sulphide which is returned to the furnace as hereinafter described to be converted to sulphur dioxide for reuse in the process.
  • Carbonated leach liquor leaving the outlet 54 of tower 44 has a specific gravity of 1.225 at 143 F. and the following composition in terms of equivalents of sodium per liter:
  • This splitting of the gas flow in the top section or first tower is controlled so that substantially all of the hydrogen sulphide contained in gases which pass through tower 41 is reabsorbed by the leach solution in that tower so that the remaining gases in tower 41 are discharged to the atmosphere at 67 without air pollution and without appreciable loss of hydrogen sulphide from the system.
  • By splitting the gas flow at the top section or first tower, according to this invention essentially complete removal of sulphide is effected and only a portion of the carbonation and stripping gases needs to be returned to the furnace as hereinafter described for recombustion therein. That is, the gases containing hydrogen sulphide to be recycled through the furnace are removed from the carbonation tower at 66 at the point in the carbona- 10 tion reaction where hydrogen sulphide concentration in the gases is greatest.
  • the gases released to the atmosphere through stack 67 from the top of tower 41, in the treatment of the foregoing example according to this invention, were found to contain no hydrogen sulphide by odor, by lead acetate test, or by Tutwiler test, and represented approximately 30% to 40% of the total gases introduced into the carbonation and sulphide stripping step, about 60% to 70% of the total gases being returned to the furnace as noted above.
  • Gas flow and distribution It is preferred to keep the gas volume utilized in the car bonation and stripping steps as low as possible for operat-- ing convenience in the towers as well as to maintain at: a practical minimum the volume of gas to be recycled. to the furnace.
  • the minimum amount of gas necessary to accomplish satisfactorily the carbonation and sulphidestripping desired depends, of course, on such considerations as temperature of operation, concentration of sodium sulphide in the leach solution, and the concentration of carbon dioxide in the gas used.
  • a further control is exercised in that a portion only of the flue gases is utilized in the carbonation and stripping steps.
  • the sulphur dioxide in the flue gases is removed therefrom at the tower 35; thereafter a portion only of the remaining gas rich in carbon dioxide is splitoff at 77 to be used in the carbonation step; and finally only a portion of this gas is recycled into the furnace, the remainder being exhausted at 67.
  • the gas volumes at each step of the process are kept within operational limits and are such as to force the various equilibria to the desired point, while yet, by the constant and controlled splitting of gas flow, substantially complete recovery is elfected and the dumping of sulphurous waste products or the exhaustion of obnoxious hydrogen sulphide gas is substantially avoided.
  • the proportion flue gases (from which sulphur dioxide has been removed) which are taken off at 77 for utilization in the carbonation steps is determined to a large extent by the amount of carbon dioxide necessary to effect substantially complete carbonation and stripping. This amount may vary from a volume of gas containing a cnurntity of carbon dioxide from approximately /2 to 3 times the chemical equivalent of total sodium salts present in the leach solution to be carbonated, although satisfactory results have been achieved by using a volume of wmcn will introduce into tower 44 an amount of carbon dioxide corresponding to approximately one to two times thechemical equivalent of total sodium salts 0 once is made to Figs. 3 and 4.
  • an adjusting valve or damper is provided at the stack 67 and another adjusting valve or damper 81 is provided at the gas outlet 66.
  • the control is maintained by first closing the valve 80 until no hydrogen sulphide is exhausted to'the atmosphere from the top of tower 41. That is, hydrogen sulphide emerging from the stack 67 indicates that too much gas is flowing through tower 41 for the leach liquor in the upper portion of the tower to reabsorb all the hydrogen sulphide contained in the gases flowing out of stack 67.
  • valves 80 and 81 provide a simple control for gas distribution in the carbonation steps, as well as controlling the proportion of total flue gases diverted from the stack at 77 and introduced into the carbonation steps.
  • control system permits avoiding a large gaseous excess through-put and keeps the total gas volume as low as possible consistent with satisfactorily complete recovery as noted above.
  • Fig. 3 graphically indicates the carbon dioxide distribution in a process embodying and for practicing this invention under satisfactory operating conditions.
  • the curves of Fig. 3 are drawn plotting moles of CO2 in the total carbonation gases for moles of active chemical against the mole percent of sodium sulphide as percentage of active chemicals in the leach liquor.
  • the curves depict the carbon dioxide distribution with active chemicalti.
  • curve D represents the total carbon dioxide required, with negligible absorption of carbon dioxide in tower 41, for the satisfactory operation described of a process according to this invention. Actually, some absorption of CO2 in tower 41 may occur, and this amount may vary broadly depending on the compositions, size of the tower, etc.
  • Fig. 4 represents a graphic indication of the minimum fraction of total carbonation gases to be returned to the furnace from outlet 66 when operating with a minimum gas volume.
  • the curve shows moles of CO2 in the total gases passing through the carbonation step for 100 moles of active chemical plotted against mole percent of sodium sulphide as percentage of active chemicals in the leach liquor, and reflects essentially the operating conditions achieved by regulating gas through-put as described above through the control of valves 80 and 81.
  • the data in Figs. 3 and 4 are primarily illustrative and, when operating with very high flow rates or towers of restricted size, such values may not be achieved. That is, with lower rates and very large towers, equilibrium conditions are approached.
  • the gas outlet 66 is located in tower 41 at a point where the sulphide concentration of gases diverted through outlet 66 will approach a maximum and also where absorption of carbon dioxide above outlet 66 is minimized and the absorption of hydrogen sulphide enhanced in order to in crease the volume of non-sulphide gases exhausted through stack 76 while maintaining maximum hydrogen sulphide absorption in tower 41 and maximum sulphide concentration in the gases diverted from tower 41 at outlet 66.
  • Inevitable sodium loss may satisfactorily be replenished in the system by the addition of sodium carbonate as a neutralizing agent in the spent liquor storage tank 13 prior to concentration of the spent liquor as described or similar additions to the carbonated solution, or may be replenished, along with sulphur losses, by introducing sodium sulphur compounds into other steps of the process, e. g., adding sodium sulphate into the furnace combustion chamber 21 or fresh sodium sulphide to the leach liquor in tank 27.
  • a method for pulp manufacture comprising the steps of digesting cellulosic material in a cooking liquor containing soditun salts of sulphurous acid and separating the digested cellulosic material from the spent cooking liquor, the steps of concentrating the spent cooking liquor, eliminating the organic constituents of the concentrated liquor in a controlled combustion step with a limited quantity of air, reducing substantially all sodium sulphur compounds in said concentrated liquor to sulphides and oxidizing substantially all non-sodium sulphur compounds in said concentrated liquor to sulphur dioxide during said controlled combustion step, recovering the sodium compounds from said combustion step in concentrated water solution, reacting sodium sulphide in said concentrated water solution with a limited portion of the gaseous products of said combustion step in a direct gasliquid countercurrent carbonation step, exhausting to the atmosphere a limited portion of eflluent gases from said carbonation step substantially free of sulphide, recycling through said combustion step other portions of the efiiuent gases from said carbonization step containing hydrogen sulphide
  • the method of adjusting and controlling the through-put and proportioning of said gaseous phase in said carbonation reaction for substantially complete conversion of sulphide in said liquid phase to carbonate and bicarbonate and substantially complete removal of hydrogen sulphide which comprises the steps of supplying a substantial excess of said gaseous combustion products for introduction of said limited portion thereof into said main reaction stage as said gaseous phase, decreasing the quantity of said gaseous phase flowing through said supplemental reaction stage until said gases exhausted therefrom are substantially free of hydrogen sulphide, increasing the quantity of said gaseous phase introduced into said main reaction stage until said liquid phase upon leaving said main reaction stage is substantially free of sulphide, and exhausting the remainder of said excess of said gaseous combustion products prior to entering said main reaction stage.
  • the method of adjusting and controlling the through-put and proportioning of said gaseous phase in said carbonation reaction for substantially complete conversion of sulphide in said liquid phase to carbonate and bicarbonate and substantially complete removal of hydrogen sulphide which comprises the steps of supplying a substantial excess of said gaseous combustion products for introduction of said limited portion thereof into said main reaction stage as said gaseous phase, adjusting the quantity of said gaseous phase exhausted from said supplemental reaction stage until said exhausted gases are substantially free of hydrogen sulphide, and adjusting the quantity of said gaseous phase Withdrawn after said main reaction stage until said liquid phase upon leaving said main reaction stage is substantially free of sulphide.
  • a method for pulp manufacture comprising the steps of digesting cellulosic material in a cooking liquor containing sodium salts of sulphurous acid and separating the digested cellulosic material from the spent cooking liquor, the recovery steps of oxidizing the organic constituents of said spent cooking liquor in a controlled combustion step with a limited quantity of air, reducing substantially all sodium sulphur compounds in said liquor to sulphides and converting substantially all non-sodium sulphur compounds to sulphur dioxide during said controlled combustion step with resulting efiiuent flue gases containing approximately 12% to 20% carbon dioxide and substantial proportions of sulphur dioxide, recovering sodium salts from said combustion step in concentrated water solution of at least 2 Normal, reacting said solution with a limited portion of said effluent flue gases in a countercurrent carbonation step at a temperature above F.

Landscapes

  • Treating Waste Gases (AREA)

Description

United States Patent PULP MANUFACTURE Philip E. Shick, Chillicothe, Ohio, assignor to The Mead Corporation, Dayton, Ohio, a corporation of Ohio Application November 16, 1953, Serial No. 392,182
21 Claims. (Cl. 92-2) This invention relates to the manufacture of wood pulp and more particularly to a new and improved process for producing pulp by chemical action on wood or the like in such a way that the necessary chemical reagents may be substantially recovered for reuse.
This application is a continuation-in-part of my copending application Serial No. 125,003, filed November 2, 1949, and now abandoned.
Pulp for the manufacture of paper and the like may be produced from wood by digesting or cooking the wood in the presence of suitable chemical reagents such as sodium sulphite or sodium acid sulphite which will act on or remove those organic constituents of natural woods which tend to bind the cellulose fibers together. If it is attempted to manufacture pulp in this way, the end products of such a cooking or digestion process include substances such as sodium compounds, sulphur compounds and organic substances. The dumping or discarding of such spent end products of the cooking or digestion operations not only is wasteful of the reagents and commercially expensive but also is extremely obnoxious to the area surrounding the mill in which such cooking and digesting processes are carried out.
In accordance with the present invention it has been discovered that pulp of satisfactory quality and characteristics for the manufacture of paper and the like may be produced from wood by the digestion or cooking thereof with sodium salts of sulphurous acid alone or in combination with other constituents such as carbonates or sulphur dioxide in such a way that the sodium and sulphurous components of the cooking or digestion reagents may be recovered for reuse in the cooking process, thereby eliminating wasteful use of chemicals and the production of obnoxious nuisance conditions in the vicinity of the mill utilizing the process of this invention. Such recovery of the cooking chemicals may be satisfactorily accomplished according to the present invention by utilizing in the operation of this invention controlled combustion, carbonation and sulphiting conditions to convert inorganic constituents of the spent end products of the cooking or digestion operation to suitable fresh cooking mixtures of sodium sulphite and sodium carbonate or bicarbonate or sodium acid sulphite and sulphur dioxide and to eliminate organic and undesirable inorganic substances in an inexpensive and unobnoxious manner.
Accordingly it is one object of this invention to produce pulp of satisfactory properties for the manufacture of paper or the like from cellulosic materials by the chemical digestion of such cellulosic materials to remove therefrom or to render ineffective as binders therein components of the cellulosic materials which tend to bind the cellulose fibers together, and to produce such pulp in the manner described so that the chemicals used in the cooking or digestion process may be economically recovered for reuse as cooking or digesting chemicals.
Another object of this invention is to provide a process 2,788,273 Patented Apr. 9, 1957 and apparatus for the recovery of sodium and sulphur compounds from spent pulp cooking liquors of the character described.
Still another object of this invention is to produce pulp in the manner described so as to avoid wasteful and nuisance creating exhausting of expensive or obnoxious materials into the atmosphere or streams in the vicinity of the pulp mill.
A further object of this invention is the production of pulp in the manner described so that unwanted combustible by-products of the cooking or digestion process may be economically utilized for the production of heat, steam and power.
Still another object of this invention is the production of pulp in the manner described so that the pulp produc ing and reagent recovering process may be as nearly as practicable self-productive of the heat and other energy necessary for its use. 7
A still further object of this invention is to provide a cyclic process and apparatus therefor for continuous operation in conjunction with pulp manufacture of the character described to achieve substantially complete recovery therefrom of sodium and sulphur compounds for reuse as cooking chemicals.
Other objects and advantages of the invention will be clear from the following description, the accompanying drawing and the appended claims.
In the drawing,
Fig. 1 is a flow sheet or schematic representation of a portion of the various steps and stages of a process and a diagrammatic showing of apparatus embodying and for practicing this invention;
Fig. 2 is a continuation of the flow sheet or schematic representation of Fig. l, and is shown as a separate figure merely because of the limitations of drawing size;
Fig. 3 is a chart of gas requirements and carbon dioxide distribution of a process embodying and for practicing this invention under typical operating conditions for a flue gas containing 16% carbon dioxide (on a dry basis) and an operating temperature of 170 F.; and
Fig. 4 is a chart of minimum fraction of total carbonation gases to be returned to the furnace when operating a process embodying and for practicing this invention with a minimum total gas throughput.
In the preparation of cellulosic pulp from wood for the purpose of paper manufacture and the like, it is necessary to soften or remove from the wood or other cellulosic materials components thereof such as lignin and the like which tend to bind the cellulose fibers together. One satisfactory way of accomplishing this is by a chemical cooking or digestion process in which all or part of the binding material is removed or loosened or rendered ineffective as a binder by the action thereon under heat and pressure of sodium sulphite alone or of sodium sulphitc in combination with suitable substances such as sodium bicarbonate. Whether sodium sulphite is used alone as the primary cooking or digesting chemical or whether it is used in combination with sodium bicarbonate is determined by the character of the cellulosic material to be digested as well as by the character of the pulp desired to be produced by the digestion operation.
The resultant products of such cooking or digesting process include, in addition to the freed or partially freed cellulosic fibers, fluids which may be referred to as spent liquor containing various inorganic sodium, sulphur, and carbon compounds in addition to organic residues of ligneous or cellulosic origin that have been removed from the wood during cooking. The exact composition of such spent liquor depends upon, among other factors, the
was es 1 type of wood digested and the particular composition of cooking liquor employed.
Pulp cooking steps In practicing one embodiment of this invention for the manufacture of pulp forpaper making or the like, chips of various hard woods such as gum or poplar, :or chestnut from which the tanninhas been extracted, are charged or introduced into cooking or digestion apparatus well known in the pulp manufacture art such as a so-called rotary digester commonly used in so-callcd netural sulphite semi-chemical cook processes well known in the pulp making industry. These chips of wood may be steamed if desired in the digester. To the digester is then added a liquid which may be designated as cooking liquor in an amount approximately three and one-fourth times the dry weight of the chips in the digester. This cooking liquor contains sodium sulphite .in an amount on-a dry basis approximately 12% to 16% of the dry weight of the chips of wood and sufficient sodium bicarbonate to maintain a neutral pl-I in the digester at the end of the cooking operation, such an amount in this embodiment being approximately 4.8% to 6.4% of the dry weightof the chips. The sodium sulphite is of-a concentration of approximately 40 to 50 grams per liter and the concentration of sodium bicarbonate may be approximately to 20 grams per liter.
After the chips and cooking liquor have been introduced into the digester, it is closed as provided for in its well known construction and rotated while it is heated to approximately 100 C. at which time the rotation is stopped and the pressure which has accumulated within the closed digester due to the heating is relieved by releasing the gases to the atmosphere as provided by the well known construction of the rotary digester apparatus. Thereafter the digester is again closed and heated during the course of approximately two to three hours to a temperature of approximately 160 C. and is held at approximately this temperature for approximately three to four hours during which time a pressure of the order of from 75 to 100 pounds per square inch builds up in the closed digester. Thereafter the liquor is blown out of the digester into a suitable storage tank or blown down tank 11 by the action of the pressure which has accumulated in the closed digester and the cooked chips are dumped from the digester to be defibered and washed by common and well known procedures in the pulp making industry. The liquor blown from the digester, which, now that cooking is completed, may be designated'as spent liquor, contains approximately 40% to 50% of the original chemicals present in the cooking liquor originally introduced to the digester. Additional amounts of the original chemicals are added to this spent liquor by combining therewith the washings from the cooked chips from the digester. The above steps of the invention are indicated schematically on the drawing by the stage labeledPulp Cooking Steps.
Although this description of one preferred embodiment-of this invention relates particularly to cooking or digesting steps of the character just described, the methods and processes of this invention are suitable for cooking or digestion operations which vary somewhat from that just described. For example, pulp may be produced in accordance with this invention as from a socalled acid sulphite cook in which the primary cooking chemicals are sodium acid sulphite and sulphurdioxide instead of the sodium sulphite and sodium bicarbonate mixture suggested above for a cooking or digesting process falling within the general class designated generally as a neutral sulphite cook. Furthermore, "pulp may be produced in accordance with this invention as from'either a so-called full chemical cook or as from a semi-chemical cook, the former designation indicating a digestion process in which'substantially all of thematerial binding the cellulose fibers together will be removed orloosened or-rendered ineffective as a binderby the "cooking Chemi ca-ls so that, upon completion of the cooking or digestion step, the cellulose fibers will be but loosely held together, and the latter designation indicating a cooking or digesting process wherein conditions are so controlled that only a portion of the binding material is effected during the cooking or digesting operation thus requiring funther mechanical working or defibering to separate the cellulose fibers sufficiently for use in the manufacture of paper. The cooking or digesting operation above described, then, may be categorized as a so-called neutral sulphite semi-chemical cook, such designation merely indicating to those skilled in the art that the cooking or digesting step of this embodiment is accomplished with sodium sulphite and is very generally of such a character that the pH at the completion of the cooking step will be substantially neutral and that the partially digested cellulosic material will require further mechanical defibering action to separate the cellulose fibers sufiiciently.
Furthermore, 'in addition to the types of wood suggested in theparticular description of one cooking or digestion operation above, sulphite cooking liquor prepared according to this invention may be used in the pulping of any of the ligno-cellulosic materials suitable for so-ca-lled sulphite pulp processes. These materials include not only hard woods such as aspen, poplar, oak and chestnut, but also soft woods such as pine, spruce and hemlock as well as various grasses and agricultural residues.
Concentration steps The spent liquor, after removal from the digester 10 as above, may conveniently be filtered as at 12 to insure freedom from fibers or chips or other undesirable foreign matter, and collected in a storage tank 13. The spent liquor is preferably concentrated before introduction into the next step of the process. Although any suitable means may be employed for concentrating the spent liquor and apparatus for effecting such concentration may be of well known form, a well known steam operated triple effect evaporator system is shown for purposes of illustra tion as having produced satisfactory results in a process embodying and for practicing this invention. This apparatus comprises evaporators l5, separators 16, pumps 17, condensor l9 and the appropriate conduits and pipe lines as well understood in the art. In this connection it should be noted that, throughout Figs. 1 and 2, conduits and/or pipe lines carrying liquid material are indicated in solid lines with direction of fiow'indicated by arrows, whereas conduits and/ or ducts or pipes carrying gaseous or vaporous material are indicated by dotted lines, also with arrows indicating the direction of flow. Small amounts of sodium carbonate may be added to the spent liquor immediately prior to the concentration step (e. g., in the storage tank 13) for the purpose of inhibiting precipitation of solid matter from the spent liquor or scaling of the evaporator surfaces.
Spent liquors produced according to the above have been successfullytreated at concentrations above 50% to 65% total solids. For maximum utilization of the heat of combustion in the next step of this process, however, it is desirable to concentrate the spent liquor as far as practical while avoiding precipitation therefrom. The solids content of spent liquor consists of approximately 40% inorganic constituents and approximately 60% organic constituents. Because of the relatively high ash content that combustion of such spent liquors produces, it has been found that spent liquor may not support its own combustion at concentrations lower than approximately 40% to 50% totalsolids. Although more dilute spent liquor may satisfactorily be treated in the next step of this process with heat from oil or coal burning furnaces as is common in so-called rotary furnace operation, it is economically desirable and preferred in the practicing of this invention that the spent liquors be concentrated in the evaporators to a degree which will admit of the evaporated liquorv supportingits own combustion Combustion steps After adequate concentration, the concentrated spent liquor is introduced into suitable combustion apparatus 20, wherein the spent liquor is treated under controlled combustion conditions to eliminate organic constituents by oxidation to gaseous carbon compounds and water and to convert sodium and sulphur compounds present into recoverable sodium sulphide, sodium carbonate, and sulphur dioxide.
One form of apparatus for satisfactorily accomplishing such controlled combustion step of concentrated spent liquor according to this invention is the well known Wagner spray-type recovery furnace or modifications thereof such as the well known Tomlinson recovery furnace. Such apparatus has means at various points and levels in the sides of the combustion chamber for the controlled introduction of air through controllable air ports, the individual adjustment of which enables the atmosphere within the combustion chamber to be controlled so that reducing or oxidizing conditions are obtained at various levels Within the combustion chamber. In practicing this invention such air admitting ports near the bottom of the furnace are controlled so that only limited quantities of air are admitted thereby causing the atmosphere at the bottom of the furnace to be of a substantially reducing nature. The air admitting ports at higher levels in the walls of the combustion chamber are controlled so that some excess of air is admitted to maintain an oxidizing atmosphere in the upper portion of the combustion chamber.
The concentrated spent liquor from the storage tank 18 is further concentrated and/ or heated by passing through an evaporator 23 in heat exchange relation with hot flue gases from the furnace combustion chamber, and then into the furnace 20 where the liquor is sprayed into the combustion chamber 21 to be first dried and charged and then reduced as it falls to the bottom of the furnace with the gaseous products being oxidized in the upper portion of the furnace.
It has been found advantageous in practicing this invention to limit the excess of combustion air introduced into the furnace in order to limit the volume of flue gases produced by the furnace while still obtaining the complete chemical conversion desired. For example, too little excess air produces incomplete combustion of the organic constituents, whereas too great an excess may produce substantial quantities of sulphur trioxide (instead of sulphur dioxide) or sodium sulphate (instead of sodium sulphide) not desired for the subsequent steps of this process. Also too great an excess dilutes the carbon dioxide in the furnace flue gases disadvantageously in terms of the carbonation step to be described below. It has been found that 5 to excess of air over the stoichiometric amount is necessary for complete combustion, although up to 25% of excess air is preferred. It has been found that the combustion air admitted to the furnace should be controlled so as to provide substantially complete reduction of sodium sulphur compounds to the sulphide at the bottom of the furnace while maintaining a carbon dioxide concentration in the effluent flue gases of approximately 12% to 18%, although 14% to 18% is preferred. Satisfactory results have been obtained according to this invention with furnace operating temperatures within the range of 800 C. to 1100 0, although temperatures approximately 950 C. are preferred.
A further influence on furnace operation is exercised by the recycled gases containing hydrogen sulphide returned to the furnace for combustion therein as described below. For example, satisfactory results have been obtained by controlling furnace operation with the concentrated spent liquor described above so that the furnace flue gases contain, on a dry basis, approximately 15% to 18% carbon dioxide, 0.5% to 1.5% sulphur dioxide, 2% to 4.5% oxygen, and 79% to 81% nitrogen, with approximately an additional 40% of the gases being made up of water vapor.
Molten inorganic compounds may be continuously drawn off from the bottom portion of the furnace. as at 25, in the form of a molten furnace product and are dissolved or leached in water in a solution tank 26 to produce a leach liquor which is pumped to a clarifying or settling tank 27 the dregs of which are returned to a dregs washer 28 and, after washing, to the sewer, with the washings being admixed in the solution tank 26 with leach liquor. This leach liquor or water solution of soluble incombustible products from the furnace is then ready for passage through the counter-current carbonation and stripping apparatus as indicated in Fig. 2.
Furnace products in which the active components are present in widely varying proportions may be utilized in subsequent steps of a process embodying; this invention. For purposes of illustration, however, satisfactory re. sults have been obtained with the above example producing a clarified leach liquor having a specific gravity of 1.230 at 106 F. and the following chemical composition in terms of equivalents of sodium per liter:
Thus, satisfactory results have been achieved according to this invention utilizing a concentrated. spent liquor in which the active inorganic constitutents are present in such molar proportions as approximately 12 moles of sodium sulphite to 4 moles of sodium carbonate. After treatment as described in the controlled combustion step under oxidizing and reducing conditions, such spent liquor yields a molten furnace product having molar proportions of approximately 12 moles of sodium carbonate, 7 moles of sodium sulphide, to 1 mole of sodium sulphate. Substantially the remainder of the combined sulphur introduced into the furnace with the concentrated spent liquor is oxidized in the furnace to gaseous sulphur dioxide and becomes a part of the furnace flue gases as noted above.
Sulphur dioxide absorption Such gaseous furnace products leaving the furnace combustion chamber as flue gases at 30, as optionally aided by forced draft fan 22 and after having preferably although optionally been passed through the heat exchange tubes of a boiler or evaporator 23 conventionally associated with a recovery furnace for the purpose of utilizing the excess heat contained in these gases to further concentrate and/ or preheat incoming spent liquor, are conducted to the sulphur dioxide absorption apparatus. This apparatus may be any suitable well known equipment for scrubbing, absorbing, or otherwise removing sulphur dioxide from a gaseous mixture by absorption thereof in a liquid.
Satisfactory results have been obtained by introducing the line gases at 36 to the bottom of a conventional gas absorption tower 35 packed with wood or ceramic grids. The gases are passed upwardly through the tower to emerge at 37 while a carbonated solution from the carbonation steps described below is introduced into the upper portion of the tower at 38 and passes downwardly in countercurrent contact with the gases to emerge at 39. According to this invention, the solution admitted to the S02 tower 35 at 38 is alkaline and substantially free of spasms sulphur compounds, being primarily composed of sodium carbonate andsodiurn bicarbonate. Thus sulphur dioxidein the furnace flue gases is readily absorbed by the carbonate solution toproduce a sodium sulphite solution appropriatefor reuse as a cooking liquor in the digestion step of "the process. Also, the etliuent gases leaving the SOztower at 37- are substantially free of sulphur compounds, being primarily composed of carbon dioxide, which is utilized in the carbonation steps described be low.
Using the above example as illustrative, satisfactory results have been obtained with gases leaving the S32 tower at '37 having a composition, on a dry basis, of approximately 14% to i7% carbon dioxide, 4.5% to oxygen, and 78.5% to 81% nitrogen at a temperature of approximately 170 to 174 F. Satisfactory results have been obtained with sulphited liquor leaving the SO: tower at 39 having a specific gravity of 1.220 at 145 F. and a composition, in terms of equivalents of sodium per liter, of:
NazSOs 1.20 NasCOaand Nail- CO3 3.00 NazSaOs 0.16 NH2SO4 0.40
Total- 4.76
Carbonation and stripping steps The clarified leach liquor described above in the clarifyingorscttling tank 27 is introduced through pipe line 46 to counter-current carbonation and stripping apparatus where it is reacted with gases rich in carbon dioxide so that substantially all the sodium sulphide present in the leach-liquor is carbonated-or converted into sodium carbonate and/ or sodium bicarbonate by carbon dioxide in the furnace flue'gas. The gases, during this carbonation step, strip oif and carry away in the form of hydrogen sulphide the sulphur originally present as sodium sulphide in the leach liquor.
Apparatus for accomplishing these carbonation and hydrogen sulphide stripping steps may vary widely in its construction and design. As one form of apparatus embodying and for practicing this invention, four gas-liquid counter-current absorption towers are shown in Fig. 2 at'4l, 42, 4-3, and 44. Suitable apparatus that is designed to effect and promote the chemical reaction of a gaseous phase with a liquid phase, such as a column or tower packed with Well known materials as pieces of coke, carbon rings, or wooden slats which furnish an open structure and large surface area, or a so-cailed bubbleplate column, or a series of splash chambers, may be used. Because, however, of its simplicity of construction and operationand because of its ability to handle relatively large volumes of gases at low pressures and correspondingly low pumping requirements, a series of cylindrical towers filled with a packing well known to chemical engineers as Raschig rings has been found satisfactory, although it will be understood that a single tower or a greater or lesser number may be used depending upon various operating conditions such as quantityof liquid and gas through-put, convenience of placement in plant design, etc. Satisfactory results have been obtained according to this invention with the towers 41-44- being each approximately 50 feet high, two feet in diameter, and packed with two-inch Raschig rings for the processingaccording to this invention of approximately 350 pounds per hour of total sodium compounds in leach solutions of the approximate compositions stated when operating under the preferred conditions described.
For satisfactorily eificient removal of sulphide with a desirably limited volume of gas, the towers are operated in counter-current fashion so that leach solution being treated comes into contactlast with gases very low in or free of hydrogen sulphide, while the last contact of gases .is withasolution Whichishigh in sulphide content.
Thus the leach solution frorn settling tank 2 7 iS intro: duced by pipe 4t) into the top of the first tower 41 at St and proceeds downwardly through that tower to the outlet 51, thence to the inlet' 52 at the top of tower 4 2, downwardly through that tower to the outlet 53, and so on until the carbonated leach solution finally emerges from the bottom of the last tower 44 at the outlet 54 thereof to be introduced into the S02 tower at 33 as hereinbefore described. When entering the top of tower 41, the leach solution has substantial quantities of sodium sulphide as noted above. Upon leaving the last tower 44, the carbonated leach solution is substantially free of sulphide and is composed almost entirely of sodium carbonate and bicarbonate. The sulphide originally present in the leach solution before carbonation is stripped out by the carbon dioxide as hydrogen sulphide which is returned to the furnace as hereinafter described to be converted to sulphur dioxide for reuse in the process.
A number of chemical reactions take'place during these interchanges between the gas and the leach solution in the column. In the first portion of the columns Where the fresh leach solution is meeting gases which have already passed most of the way through the column, carbon dioxide and some hydrogen sulphide are absorbed relatively rapidly-by the descending leach solution until any sodium hydroxide present is converted to sodium carbonate or sodium sulphide. Essentially all the sodium sulphide originally present in the leach solution is then converted to sodium hydrosulphide and a portion of the sodium carbonate is converted to sodium bicarbonate. These reactions are suggested as follows:
As these reactions progress and as the sulphide-containing leach solution moves through the carbonation towers, there occurs a decrease in the pH of the solution, a decrease in the rates of absorption of the gases and, in particular, an increase in the partial pressure or escaping tendency of hydrogen sulphide from the solution. Thus, a point is reached after a fairly short contact of the untreated leach solution with effluent gases rich in hydrogen sulphide where carbon dioxide absorption in to solution continues while hydrogen sulphide is simultaneously given up to the rising gases. This major stage of the carbonationand stripping operation, which occurs over most of the extent of the columns, may be conveniently represented as follows:
Additionally there may be some further increase in the proportion of bicarbonate in the solution as suggested by the reactions:
It should be noted that the normal and expected-theoretical equilibrium conditions and their effects on rate of exchange or reaction for either the absorption of carbon dioxide or the stripping of hydrogen sulphide separately are altered in interdependent fashion as the solution and gases pass through the described apparatus by reason of the continuously varying concentrations of these two components in both the liquid and gaseous phases within the towers. Such interdependentvvariations and interrelation of the equilibrium conditions and rates of exchange may be determined within the necessary requirements of operational accuracy by simple measurements of small scale trials, should it be desired to construct somemodification of the carbonationandstrippound-moles per hour or 4.6 equivalents per hour of carbon dioxide. Such gases proceed upwardly through tower 44 to emerge at the outlet 61 at the top thereof and proceed thence to the inlet 62 of tower 43 and so in counter-current fashion as indicated in Fig. 2. A leach liquor having the above composition is discharged from tower 41 having a specific gravity of 1.205 at 146 F. and the following composition as equivalents of sodium per liter:
NazCos 2.53 NaHCO3 0.61
NaHS 1.59
NazSzOs 0.12 NazSOa 0.01 NazSOa -a 0.38
Total 5.24
Carbonated leach liquor leaving the outlet 54 of tower 44 has a specific gravity of 1.225 at 143 F. and the following composition in terms of equivalents of sodium per liter:
NazCOs 3.69
NaHCOs 0.85
NaHS 0.03
Na2S203 0.12 NazSOs 0.02
Na2S04 0.38
Total 5.09
It has been discovered that the equilibrium conditions within the counter-current carbonation and stripping towers are such as to favor, under the operating conditions described, the reabsorption of hydrogen sulphide in the top portion of tower 41i. e., that portion of the stripping step in which the sulphide-rich or exciting stripping gases contact the sulphide-rich or entering leach solution. Therefore, in order to increase hydrogen sulphide concentration in gases recycled through the furnace and reduce recycled gas volume, only a portion of the stripping gases passes through this top section of the first tower. As noted in Fig. 2, all stripping gases enter tower 41 at the gas inlet 65 thereof, but a substantial portion of these gases is removed from tower 41 almost immediately at the gas outlet 66 thereof for recycling through the furnace 20--i. e., without contacting a substantial portion of solution in the tower. A portion only of the gases admitted to tower 41 contacts the leach liquor therein and passes upwardly through the tower to be exhausted to the atmosphere through a stack 67.
This splitting of the gas flow in the top section or first tower is controlled so that substantially all of the hydrogen sulphide contained in gases which pass through tower 41 is reabsorbed by the leach solution in that tower so that the remaining gases in tower 41 are discharged to the atmosphere at 67 without air pollution and without appreciable loss of hydrogen sulphide from the system. By splitting the gas flow at the top section or first tower, according to this invention, essentially complete removal of sulphide is effected and only a portion of the carbonation and stripping gases needs to be returned to the furnace as hereinafter described for recombustion therein. That is, the gases containing hydrogen sulphide to be recycled through the furnace are removed from the carbonation tower at 66 at the point in the carbona- 10 tion reaction where hydrogen sulphide concentration in the gases is greatest.
The carbonated leach solution emerging from the bottom of tower 44 is introduced into the S02 tower, as noted above, where the sodium carbonate therein is converted to sodium sulphite, and the thus sulphited solution leaves the S02 tower at 39 and is introduced through pipe 70 to a finished liquor storage tank 71 from which the finished liquor is withdrawn as desired for reuse as a fresh cooking liquor for introduction into the digester 10 in the pulp cooking step of the process. The sulphite concentration in this finished liquor may be enhanced in known manner as desirede. g., by the addition of sulphur dioxide from a sulphur burnerto bring the recovered finished liquor up to the desired composition for a fresh cooking liquor.
H 25' recycling steps That portion of the gases emerging from outlet 66 in tower 41 rich in hydrogen sulphide is recycled through the upper or oxidizing portion of the furnace combustion chamber 21, as indicated in Fig. 2, where the hydrogen sulphide is substantially all oxidized to sulphur dioxide which is admixed in the flue gases to be absorbed with other sulphur dioxide in the flue gases in the S02 tower 35. Satisfactory results have been obtained with gases emerging from outlet 66 at tower 41, to be recycled through the furnace, containing, on a dry basis, approximately 10.5% to 13.5% hydrogen sulphide, 7.5% to 9.5% carbon dioxide, and 79% to 80% oxygen and nitrogen. The gases released to the atmosphere through stack 67 from the top of tower 41, in the treatment of the foregoing example according to this invention, were found to contain no hydrogen sulphide by odor, by lead acetate test, or by Tutwiler test, and represented approximately 30% to 40% of the total gases introduced into the carbonation and sulphide stripping step, about 60% to 70% of the total gases being returned to the furnace as noted above.
Gas flow and distribution It is preferred to keep the gas volume utilized in the car bonation and stripping steps as low as possible for operat-- ing convenience in the towers as well as to maintain at: a practical minimum the volume of gas to be recycled. to the furnace. The minimum amount of gas necessary to accomplish satisfactorily the carbonation and sulphidestripping desired depends, of course, on such considerations as temperature of operation, concentration of sodium sulphide in the leach solution, and the concentration of carbon dioxide in the gas used. As noted above, it is preferred to utilize but a limited excess of air in the combustion step for the purpose, among others, of maintaining the carbon dioxide concentration in the flue gases as high as possible. According to this invention a further control is exercised in that a portion only of the flue gases is utilized in the carbonation and stripping steps.
For example, the total effluent flue gases from the furnace are passed, as noted above, through the S02 tower 35 for the removal of sulphur dioxide. Gases leaving tower 35 at the outlet 37 pass through a blower and thence to a discharge stack 76. A portion only of these discharged gases, however, is taken off at 77, and it is this diverted portion which is introduced into tower 44 at the gas inlet 60 to be utilized in the carbonation and stripping step. For the compositions and operating conditions herein described, a volume of flue gases corresponding to approximately 10% to 20% of the total flue gases produced by the furnace in the combustion step has been found satisfactory for use in the carbonation and stripping step. It has been found that, if a gas volume substantially in excess of 5% to 25% of the original total flue gases is recycled through the furnace from the gas outlet 66 in tower 41, it may upset furnace operation.
Thus, according to this invention, the sulphur dioxide in the flue gases is removed therefrom at the tower 35; thereafter a portion only of the remaining gas rich in carbon dioxide is splitoff at 77 to be used in the carbonation step; and finally only a portion of this gas is recycled into the furnace, the remainder being exhausted at 67. Thus the gas volumes at each step of the process are kept within operational limits and are such as to force the various equilibria to the desired point, while yet, by the constant and controlled splitting of gas flow, substantially complete recovery is elfected and the dumping of sulphurous waste products or the exhaustion of obnoxious hydrogen sulphide gas is substantially avoided.
It has been found that satisfactory results are obtained if the carbonation and hydrogen sulphide stripping steps of a process embodying this invention are performed at a somewhat elevated temperature in order to introduce favorable equilibrium conditions and desirably high rates of absorption of carbon dioxide by the sulphide-rich leach solution. For example, too low a temperature in the carbonation step may result in a precipitation therein of sodium bicarbonate. If a higher tem perature is provided by introducing steam into the gas flow, too high a temperature may mean the introduction of too much steam which, apparently, acts as a diluent of the desired gaseous carbon dioxide concentration. A higher temperature, however, favorably affects the partial pressure of hydrogen sulphide. Satisfactory results have been obtained according to this invention with operating temperatures in the carbonation step maintained within the range of 120 F. to 200 F, with 160 F. to 170 F. beingpreferred. In this connection, in the examples above noted, satisfactory results have been obtained with the leach solution having a temperature of approximately 114 F. upon introduction thereof into the top of tower 41, with the portion of the flue gases intro duced into the bottom of tower 44 having a temperature of approximately 170 to 174 ,F. In the same example, the temperature of the gases withdrawn from tower 41 at 66 ranged from 152 to 158 F, while the temperature of gases exhausted from the top of tower 431 through stack 67 was approximately 104 to 108 F.
Also, in order to force the carbonation and stripping equilibria to a satisfactory point, it has been found deenable to maintain a high concentration of sodium salts in the leach solution introduced into tower 41. This is accomplished according to this invention by limiting the amount of Water utilized in dissolving the molten furnace product in solution tank 26. Satisfactory results have been obtained where the total sodium concentration in the leach solution is in excess of approximately 2 Normal, but total sodium concentrations within the range of 4 to 6 Normal are preferred, the desirable upper limit being set by the solubility limits of the compounds present during the carbonation and stripping steps. It has also been noted that the rate of hydrogen sulphide stripping increases with increasing bicarbonate concentration and, in the temperature range indicated, approaches satisfactory ratcs of stripping with bicarbonate concentrations from approximately 0.2 to 1 Normal.
Satisfactory control of the split flow of gas referred to above depends upon a number of factors. The proportion flue gases (from which sulphur dioxide has been removed) which are taken off at 77 for utilization in the carbonation steps is determined to a large extent by the amount of carbon dioxide necessary to effect substantially complete carbonation and stripping. This amount may vary from a volume of gas containing a cnurntity of carbon dioxide from approximately /2 to 3 times the chemical equivalent of total sodium salts present in the leach solution to be carbonated, although satisfactory results have been achieved by using a volume of wmcn will introduce into tower 44 an amount of carbon dioxide corresponding to approximately one to two times thechemical equivalent of total sodium salts 0 once is made to Figs. 3 and 4.
present in. the leach solution introduced to the top of tower 41. For the compositions and operating conditions described above, a volume of flue gases corresponding to approximately 10% to 20% of the total flue gases produced in the combustion step has been found satisfactory.
According to this invention, in order conveniently to regulate and control the split flow of gases noted above in the top section or first tower 41 an adjusting valve or damper is provided at the stack 67 and another adjusting valve or damper 81 is provided at the gas outlet 66. The control is maintained by first closing the valve 80 until no hydrogen sulphide is exhausted to'the atmosphere from the top of tower 41. That is, hydrogen sulphide emerging from the stack 67 indicates that too much gas is flowing through tower 41 for the leach liquor in the upper portion of the tower to reabsorb all the hydrogen sulphide contained in the gases flowing out of stack 67.
With valve 80 closed sufficiently that the gases exhausted through stack 67 contain substantially no hydrogen sulphide, valve 81 in outlet 66 is opened until analysis shows the carbonated solution emerging from outlet 54 of tower 44 contains substantially no sulphide. That is, controlling valve 81 controls the entire gaseous throughput through the carbonation steps. If there is not sufficient gaseous through-put, there will not be complete carbonation and some sodium sulphide will emerge from the outlet 54.
Thus the adjustment of valves 80 and 81 provides a simple control for gas distribution in the carbonation steps, as well as controlling the proportion of total flue gases diverted from the stack at 77 and introduced into the carbonation steps. At the same time, such control system permits avoiding a large gaseous excess through-put and keeps the total gas volume as low as possible consistent with satisfactorily complete recovery as noted above.
For a further understanding of the theoretical considerations relating to the control of carbonation gas, refer- It will be noted that Fig. 3 graphically indicates the carbon dioxide distribution in a process embodying and for practicing this invention under satisfactory operating conditions. The curves of Fig. 3 are drawn plotting moles of CO2 in the total carbonation gases for moles of active chemical against the mole percent of sodium sulphide as percentage of active chemicals in the leach liquor. The curves depict the carbon dioxide distribution with active chemicalti. e., the sum of sodium sulphide and sodium carbonate in the leach liquor) at a concentration of 5 Normal total sodium, an operating temperature of approximately to F., a total absolute pressure of about 1 atmosphere, and a flue gas composition of about 16% carbon dioxide on a dry basis or 10 mole percent on a wet basis. Under such conditions the equilibrium partial pressure relationships in the carbonation step may-be stated as follows:
Molar percentage l0 (NaI-IS) (Natl-I00 Thus an increase in leach liquor concentration, an increase in temperature, or a decrease in carbon dioxide concentration will decrease the quantity of carbon dioxide required by decreasing the conversion of carbonate to bicarbonate. Thus, the quantity of carbon dioxide shown on Fig. 3 between the stoichiometric curve A and curve B represents,,generally speaking, the carbon dioxide used to convert a portion of the carbonate to bicarbonate. The portion ofFig. 3 between curves B and C represents the carbon dioxide return to the furnace with that portion of the flue gas containing hydrogen sulphide recycled from outlet 66 in tolwer 41. The portionjof .Fig. 3 between our es C and D represents the carbon dioxide enteringthe top e ti n .s fi t t w 4.1 at. heses i stes and may increased.
13 generally be considered an excess to provide proper socalled driving force in the carbonation steps. Thus, curve D represents the total carbon dioxide required, with negligible absorption of carbon dioxide in tower 41, for the satisfactory operation described of a process according to this invention. Actually, some absorption of CO2 in tower 41 may occur, and this amount may vary broadly depending on the compositions, size of the tower, etc.
Fig. 4 represents a graphic indication of the minimum fraction of total carbonation gases to be returned to the furnace from outlet 66 when operating with a minimum gas volume. The curve shows moles of CO2 in the total gases passing through the carbonation step for 100 moles of active chemical plotted against mole percent of sodium sulphide as percentage of active chemicals in the leach liquor, and reflects essentially the operating conditions achieved by regulating gas through-put as described above through the control of valves 80 and 81. it will be understood, of course, that the data in Figs. 3 and 4 are primarily illustrative and, when operating with very high flow rates or towers of restricted size, such values may not be achieved. That is, with lower rates and very large towers, equilibrium conditions are approached. As liquor rates are increased or tower sizes reduced, however, the relative proportions of gas to liquor, for both total gas flow as well as that portion returned to the furnace must be For many operating conditions, therefore, actual operating flow rates may be from 50% to 100% greater than the minimum values noted in Figs. 3 and 4.
In view of the above considerations, the gas outlet 66 in tower 41 is located substantially at a point in tower 41 where the hydrogen sulphide concentration in the gas re moved for recycling through the furnace approaches a maximum value in order to reduce as much as practicable the total volume of recycling gases. Such volume reduction or maintaining high sulphide concentration, is aided to a considerable degree by the reabsorption of hydrogen sulphide in tower 41 and the resulting exhaustion through stack 67 of a portion of the total gas throughput containing substantially no hydrogen sulphide and primarily gases which it is not desired to recycle through the furnace. Accordingly, since there may be some absorption of carbon dioxide in the upper portion of tower 41 and since such absorption of carbon dioxide may diminish the amount of hydrogen sulphide which is reabsorbed by the leach liquor in the upper portions of tower 41, the gas outlet 66 is located in tower 41 at a point where the sulphide concentration of gases diverted through outlet 66 will approach a maximum and also where absorption of carbon dioxide above outlet 66 is minimized and the absorption of hydrogen sulphide enhanced in order to in crease the volume of non-sulphide gases exhausted through stack 76 while maintaining maximum hydrogen sulphide absorption in tower 41 and maximum sulphide concentration in the gases diverted from tower 41 at outlet 66.
' If it is desired to utilize this invention in connection with pulp cooking steps using a cooking liquor containing sodium acid sulphite instead of sodium sulphite, the absorption of sulphur dioxide by the carbonated leach solution at tower 35 and/or the introduction of additional sulphur dioxide is controlled so that sufiicient gas is absorbed into the solution to convert substantially all the carbonates therein to sodium acid sulphite instead of ma mixture of sodium sulphite and sodium bicarbonate as with a neutral sulphite pulp cooking liquor. Spent liquors from such acid sulphite cooking steps are then treated substantially as described above for conversion to a sulphide solution, carbonation, etc., for recovery therefrom of sodium and sulphur compounds according to this invention.
Additional quantities of sulphur dioxide are added to the liquor. either during its passage through tower 35 or thereafter to adjust the sulphite and sulphur dioxide compositions of the sulphited liquor for reuse as a fresh cooking liquor for neutral or acid sulphite digesting steps as desired and to replenish in the system inevitable sulphur losses. Such additional sulphur dioxide may be derived in known manner from a sulphur burner or from sulphur dioxide contained in the so-called blow-off" encountered in practicing an acid sulphite cooking or digestion step. Inevitable sodium loss may satisfactorily be replenished in the system by the addition of sodium carbonate as a neutralizing agent in the spent liquor storage tank 13 prior to concentration of the spent liquor as described or similar additions to the carbonated solution, or may be replenished, along with sulphur losses, by introducing sodium sulphur compounds into other steps of the process, e. g., adding sodium sulphate into the furnace combustion chamber 21 or fresh sodium sulphide to the leach liquor in tank 27.
While the methods and forms of apparatus herein described constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to these precise methods and forms of apparatus, and that changes may be made therein without departing from the scope of the invention which is defined in the appended claims.
What is claimed is:
1. In a method for pulp manufacture comprising the steps of digesting cellulosic material in a cooking liquor containing soditun salts of sulphurous acid and separating the digested cellulosic material from the spent cooking liquor, the steps of concentrating the spent cooking liquor, eliminating the organic constituents of the concentrated liquor in a controlled combustion step with a limited quantity of air, reducing substantially all sodium sulphur compounds in said concentrated liquor to sulphides and oxidizing substantially all non-sodium sulphur compounds in said concentrated liquor to sulphur dioxide during said controlled combustion step, recovering the sodium compounds from said combustion step in concentrated water solution, reacting sodium sulphide in said concentrated water solution with a limited portion of the gaseous products of said combustion step in a direct gasliquid countercurrent carbonation step, exhausting to the atmosphere a limited portion of eflluent gases from said carbonation step substantially free of sulphide, recycling through said combustion step other portions of the efiiuent gases from said carbonization step containing hydrogen sulphide for oxidizing said hydrogen sulphide to sulphur dioxide, and absorbing sulphur dioxide from said recycled portion of said gases into the liquid product of said carbonation step to form a fresh cooking liquor containing sodium salts of sulphurous acid.
2. In a sodium and sulphur recovery process for treating spent cooking liquor from pulp digestion steps of the character described, the steps of recovering sodium sulphide and a gaseous mixture of carbon dioxide and sulphur dioxide from said spent cooking liquor by oxidiz"- tion and reduction thereof under controlled conditions utilizing a limited excess of air, reacting a solution of said sodium sulphide in direct countercurrent fashion with a limited portion of said gaseous mixture containing carbon dioxide for converting substantially all sulphides in said solution to carbonates and bicarbonates and removing sulphides from said solution in the form of hydrogen sulphide in a said gaseous mixture, exhausting to the atmosphere a limited portion of said gaseous mixture from said countercurrent carbonation step substantially free of hydrogen sulphide, recycling through said oxidization step other portions of said gaseous mixture from said carbonation step containing said hydrogen sulphide to oxidize substantially all said hydrogen sulphide to sulphur dioxide, absorbing said sulphur dioxide into said solution of carbonates and bicarbonates to produce a gaseous mixture substantially free of sulphur compounds, and adding in said absorption step an additional quantity of sulphur dioxide to yield a fresh cooking liquor mixture including sodium salts said pulp digestion step.
3. In a process of pulp manufacture of the character described, the recovery steps of reacting in a direct gasllquid countercurrent carbonation step a solution of sodium sulphide recovered in oxidization and reduction steps from spent cooking liquor with a mixture of gases including carbon dioxide produced in said oxidization step for converting sulphides insaid solution to carbonates and bicarbonates, removing sulphur from said solution in the form of gaseous hydrogen sulphide as a gaseous product of said carbonation step, recycling said gaseous hydrogen sulphide through said oxidization step to convert said hydrogen sulphide to gaseous sulphur dioxide, absorbing said sulphur dioxide into said solution of carhonates and bicarbonates for reuse as pulp cooking liquor, and exhausting to the atmosphere a limited portion of efliuent gases from said carbonation step substantially free of hydrogen sulphide.
4. In a cyclic process for recovering from spent liquor from pulp digestion steps of the character described sodium and sulphur compounds for reuse as fresh cookmg liquor, the steps of reducing sodium sulphur compounds in said spent liquor to sodium sulphide, oxidizing non-sodium sulphur compounds and carbonaceous material in said spent liquor to a gaseous mixture containing sulphur dioxide and carbon dioxide in a controlled combustion step with a limited quantity of air, reacting a solution of said sodium sulphide in a direct gas-liquid countercurrent carbonation step with a limited portion of said gaseous mixture containing carbon dioxide for converting said sodium sulphide to a solution of sodium carbonate and bicarbonate, removing from said carbonation step as a product thereof gaseous hydrogen sulphide, and recycling said gaseous hydrogen sulphide through said combustion step effecting oxidization of said hydrogen sulphide to sulphur dioxide, and absorbing in said sodium carbonate and bicarbonate gaseous sulphur dioxide from said combustion step to form fresh cooking liquor for reuse in said pulp digestion step.
5. In a cyclic process for recovering from spent liquor from pulp digestion steps of the character described sodium and sulphur compounds for reuse as fresh cooking liquor, the steps of reducing sodium sulphur compounds in said spent liquor to sodium sulphide, oxidizing nonsodium sulphur compounds and carbonaceous material in said spent liquor to gaseous mixture containing sulphur dioxide and carbon dioxide in a controlled combustion step with a limited quantity of air, reacting a solution of said sodium sulphide in a direct gas-liquid countercurrent carbonation step with a limited portion of said gaseous mixture containing carbon dioxide and substantially free of sulphurous acid of a compositionsuitable for reuse in of sulphur dioxide for converting said solution to a solution of sodium carbonate and bicarbonate, removing as a product of said carbonation step gaseous hydrogen sulphide, recycling said gaseous hydrogen sulphide through said combustion step for oxidizing said hydrogen sulphide to sulphur dioxide, absorbing in said solution of sodium carbonate and bicarbonate said gaseous sulphur dioxide from said combustion step to form fresh cooking liquor, and exhausting from said carbonation step a limited portion of said gaseous mixture substantially free of hydrogen sulphide.
6. In a cyclic process of recovering from spent liquor from pulp digestion steps of the character described sodium and sulphur compounds for reuse as fresh cool:- ing liquor, the steps of reducing sodium sulphur compounds in said spent liquor to sodium sulphide, oxidizing non-sodium sulphur compounds and carbonaceous material in said spent liquor to a gaseous mixture containing sulphur dioxide and carbon dioxide in a controlled combustion step with a limited quantity of air, reacting a solution of said sodium sulphide in a direct gas-liquid countercurrent earbonation step with a limited portion of said gaseous mixture containing carbon dioxide and 16 substantially free of sulphur dioxide for converting said solution of sodium sulphide to a solution of sodium carbonate and bicarbonate, absorbing in said solution of sodium carbonate and bicarbonate gaseous sulphur dioxide produced in said combustion step to form said gaseous mixture substantially free of sulphur dioxide for use in said carbonation step, exhausting to the atmosphere after said absorption step a portion of said gaseous mixture substantially free of sulphur compounds, exhausting to the atmosphere after said carbonation step another portion of said gaseous mixture substantially free of sulphur compounds, removing as a gaseous product of said carbonation step hydrogen sulphide admixed with the remainder of said gaseous mixture, and recycling said admixture through said combustion step effecting oxidization of said hydrogen sulphide to sulphur dioxide for absorption in said absorption step by said solution of sodium carbonate and bicarbonate to form a fresh cooking liquor for reuse in said pulp digestion step.
7. In a cyclic recovery process of the character described in which a solution of sodium sulphide anda gaseous mixture containing sulphur dioxide and carbon dioxide are produced by controlled oxidization and reduction of spent pulp cooking liquor, the steps of passing said solution of sodium sulphide in continuous direct gas-liquid countercurrent contact with a limited portion of said gaseous mixture containing carbon dioxide and from which sulphur dioxide has been removed, absorbing carbon dioxide from said gaseous mixture into said solution for carbonation reaction therein to produce'a solution of sodium carbonate and bicarbonate and gaseous hydrogen sulphide, stripping said gaseous hydrogen sulphide out of said solution as a gaseous product of said reaction mixed with said gaseous mixture, reabsorbing from a portion of said gaseous mixture hydrogen sulphide into said sodium sulphide solution prior to said carbonation reaction, recycling the remainder of said gaseous mixture including hydrogen sulphide through said oxidization step for converting said hydrogen sulphide to sulphur dioxide, and absorbing into said solution of sodium carbonate and bicarbonate sulphur dioxide produced in said oxidization step to form fresh cooking liquor for reuse in said pulp digestion step.
8. In a cyclic recovery process of the character described in which a solution of sodium sulphide and a gaseous mixture containing sulphur dioxide and carbon dioxide are produced by controlled oxidization and reduction of spent pulp cooking liquor, the steps of passing said solution of sodium sulphide in continuous direct gasliquid countercurrent contact with a limited portion of said gaseous mixture containing carbon dioxide and from which sulphur dioxide has been removed, absorbing carbon dioxide from said gaseous mixture into saidsolution for carbonation reaction therein to produce a solution of sodium carbonate and bicarbonate and gaseous hydrogen sulphide, stripping said gaseous hydrogen sulphide out of said solution as a gaseous product of said reaction mixed with said gaseous mixture, reabsorbing from a portion of said gaseous mixture hydrogen 'sulphide into said sodium sulphide solution'prior to said carbonation reaction, recycling the remainder of said gaseous mixture including hydrogen sulphide through said oxidization step for converting said hydrogensulphide to sulphur dioxide, and absorbing into said solution of sodium carbonate and bicarbonate, sulphur dioxide produced in said oxidization step to form fresh cooking liquor for reuse in said pulp digestion step, and exhausting to the atmosphere a portion of said gaseous mixture from which said hydrogen sulphide has been reabsorbed by said solution of sodium sulphide.
9. In a cyclic process for recovering from ,spent pulp cooking liquors of the character described sodium and sulphur compounds for reuse in a fresh cookingliquor, the steps of (A) reducing sodium sulphur compounds in said spent liquor to odium s lph de, (B) oxidizing reams non-sodium sulphur compounds and carbonaceous material in said spent liquor to a gaseous mixture containing sulphur dioxide and carbon dioxide in a controlled combustion step with a limited quantity of air, (C) absorbing sulphur dioxide from said gaseous mixture into a solution of sodium carbonate and bicarbonate produced in step D below producing a gaseous mixture containing carbon dioxide and substantially free of sulphur dioxide, (D) reacting a solution of said sodium sulphide produced in step A above in a direct gas-liquid continuous countercurrent carbonation step with a limited portion of said gaseous mixture from step C above substantially free of sulphur dioxide for converting said solution of sodium sulphide to a solution of sodium carbonate and bicarbonate, (E) stripping from the liquid phase in said carbonation step D as a product thereof a gaseous mixture containing hydrogen sulphide, (F) recycling said hydrogen sulphide from said carbonation and stripping steps D and E through said oxidation step B effecting oxidation of said hydrogen sulphide to sulphur dioxide for absorption in step C above by said solution of sodium carbonate and bicarbonate produced in said carbonation step D to form a fresh pulp cooking liquor.
10. In a cyclic process for recovering from spent pulp cooking liquors of the character described sodium and sulphur compounds for reuse in a fresh cooking liquor, the steps of (A) reducing sodium sulphur compounds in said spent liquor to sodium sulphide, (B) oxidizing nonsodium sulphur compounds and carbonaceous material in said spent liquor to a gaseous mixture containing sulphur dioxide and carbon dioxide in a controlled combustion step with a limited quantity of air, (C) absorbing sulphur dioxide from said gaseous mixture into a solution of sodium carbonate and bicarbonate produced in step D below producing a gaseous mixture containing carbon dioxide and substantially free of sulphur dioxide, (D) reacting a solution of said sodium sulphide produced in step A above in a direct gas-liquid continuous countercurrent carbonation step with a limited portion of said gaseous mixture from step C above substantially free of sulphur dioxide for converting said solution of sodium sulphide to a solution of sodium carbonate and bicar' bonate, (E) stripping from the liquid phase in said carbonation step D as a product thereof a gaseous mixture containing hydrogen sulphide, (F) reabsorbing said hydrogen sulphide from a limited portion of said gaseous mixture into said solution of sodium sulphide prior to said converting thereof to sodium carbonate and bicarbonate in said carbonation step D, and (G) recycling the remainder of said gaseous mixture from said carbonation and stripping steps D and E containing hydrogen sulphide through said oxidation step B eifecting oxidation of said hydrogen sulphide to sulphur dioxide for absorption in step C by said solution of sodium carbonate and bicarbonate produced in said carbonation step D to form a fresh pulp cooking liquor.
11. In a cyclic process for recovering from spent pulp cooking liquors of the character described sodium and sulphur compounds for reuse in a fresh cooking liquor, the steps of (A) reducing sodium sulphur compounds in said spent liquor to sodium sulphide, (B) oxidizing nonsodium sulphur compounds and carbonaceous material in said spent liquor to a gaseous mixture containing sulphur dioxide and carbon dioxide in a controlled combustion step with a limited quantity of air, (C) absorbing sulphur dioxide from said gaseous mixture into a solution of sodium carbonate and bicarbonate produced in step D below producing a gaseous mixture containing carbon dioxide and substantially free of sulphur dioxide, (D) reacting a solution of said sodium sulphide produced in step A above in a direct gas-liquid continuous countercurrent carbonation step with a limited portion of said gaseous mixture from step C above substantially free of sulphur dioxide for converting said solution of sodium sulphide to a solution of sodium carbonate and bicarbonate, (E) exhausting to the atmosphere other portions of said gaseous mixture from step C above substantially free of sulphur dioxide, (1 stripping from the liquid phase in said carbonation step D as a product thereof a gaseous mixture containing hydrogen sulphide, (G) reabsorbing a limited portion of said hydrogen sulphide from said mixture into said solution of sodium sulphide prior to said converting thereof to sodium carbonate and bicarbonate in said carbonation step D, (H) exhausting to the atmosphere a limited portion of the efiluent gaseous mixture from said carbonation and stripping steps D and F from which hydrogen sulphide has been reabsorbed in step G, (1) recycling the remainder of said effluent gaseous mixture from said carbonation and stripping steps D and F containing hydrogen sulphide through said oxidization step B effecting oxidization of said hydrogen sulphide to sulphur dioxide for absorption in step C above by said solution of sodium carbonate and bicarbonate produced in said carbonation step D to form a fresh pulp cooking liquor.
12. In a process of the character described for recovering sodium and sulphur from pulp manufacturing spent cooking liquors by combustion thereof and a carbonation reaction of a solution of solid combustion products including sodium sulphide as a liquid reaction phase with a limited portion of gaseous combustion products including carbon dioxide as a gaseous reaction phase, the controlled carbonation and stripping steps which comprise reacting said sodium sulphide liquid phase with said limited portion of said carbon dioxide gaseous phase in countercurrent manner with direct contact between said gaseous and liquid phases producing hydrogen sulphide as a product of said carbonation reaction, stripping said hydrogen sulphide out of said liquid phase into said gaseous phase, thereafter reabsorbing a portion of said hydrogen sulphide from said gaseous phase into a portion of said liquid phase prior to the completion therein of said carbonation reaction, exhausting from said reaction a portion of said gaseous phase from which hydrogen sulphide has been reabsorbed into said liquid phase, and withdrawing from said reaction prior to said reabsorbing step other portions of said gaseous phase containing hydrogen sulphide effecting substantially complete conversion of sulphide in said liquid phase to carbonate and bicarbonate.
13. 'In a process of the character described for recovering sodium and sulphur from pulp manufacturing spent cooking liquors by combustion thereof and a carbonation reaction of a solution of solid combustion products including sodium sulphide as a liquid reaction phase with a limited portion of gaseous combustion products including carbon dioxide as a gaseous reaction phase, the carbonation and stripping steps which comprise reacting said sulphide liquid phase with said limited portion of said gaseous phase in countercurrent manner with direct contact between said gaseous and liquid phases producing hydrogen sulphide as a product of said carbonation re action in a main reaction stage, said gaseous phase first contacting portions of said liquid phase leaving said main reaction stage and last contacting portions of said liquid phase entering said main reaction stage, stripping said hydrogen sulphide out of said liquid phase into said gaseous phase, thereafter in a supplemental reaction stage reabsorbing said hydrogen sulphide from a portion of said gaseous phase into portions of said liquid phase prior to the entry thereof into said main reaction stage, exhausting after said supplemental reaction stage a portion of said gaseous phase from which said hydrogen sulphide has been reabsorbed into said liquid phase, and Withdrawing after said main reaction stage other portions of said gaseous phase containing hydrogen sulphide prior to the entry thereof into said supplemental reaction stage efiecting substantially complete removal of sulphide from said liquid phase.
14, In a process according to claim 13, the method of adjusting and controlling the through-put and proportioning of said gaseous phase in said carbonation reaction for substantially complete conversion of sulphide in said liquid phase to carbonate and bicarbonate and substantially complete removal of hydrogen sulphide, which comprises the steps of supplying a substantial excess of said gaseous combustion products for introduction of said limited portion thereof into said main reaction stage as said gaseous phase, decreasing the quantity of said gaseous phase flowing through said supplemental reaction stage until said gases exhausted therefrom are substantially free of hydrogen sulphide, increasing the quantity of said gaseous phase introduced into said main reaction stage until said liquid phase upon leaving said main reaction stage is substantially free of sulphide, and exhausting the remainder of said excess of said gaseous combustion products prior to entering said main reaction stage.
15. In a process according to claim 13, the method of adjusting and controlling the through-put and proportioning of said gaseous phase in said carbonation reaction for substantially complete conversion of sulphide in said liquid phase to carbonate and bicarbonate and substantially complete removal of hydrogen sulphide, which comprises the steps of supplying a substantial excess of said gaseous combustion products for introduction of said limited portion thereof into said main reaction stage as said gaseous phase, adjusting the quantity of said gaseous phase exhausted from said supplemental reaction stage until said exhausted gases are substantially free of hydrogen sulphide, and adjusting the quantity of said gaseous phase Withdrawn after said main reaction stage until said liquid phase upon leaving said main reaction stage is substantially free of sulphide.
16. In a method for pulp manufacture comprising the steps of digesting cellulosic material in a cooking liquor containing sodium salts of sulphurous acid and separating the digested cellulosic material from the spent cooking liquor, the steps of concentrating the spent cooking liquor, eliminating the organic constituents of the concentrated liquor in a controlled combustion step with a limited quantity of air, reducing substantially all sodium sulphur compounds in said concentrated liquor to sulphides and converting substantially all non-sodium sulphur compounds of said concentrated liquor to sulphur dioxide during said controlled combustion step, recovering the sodium compounds resulting from said combustion step in concentrated Water solution, reacting the resulting solution of sulphides with a limited portion of the gaseous products of said combustion step in a gasliquid carbonation step, recycling the sulphur compounds contained in the gaseous product of said carbonation step through said combustion step for oxidizing said gaseous product to sulphur dioxide, and absorbing sulphur dioxide from said oxidized gaseous products into the liquid product of said carbonation step to form a fresh cooking liquor.
17. In a sodium and sulphur recovery process for treating spent liquors from a pulp manufacture digestion step of the character described, the steps of recovering sodium sulphide from said spent liquor by oxidation and reduction thereof under controlled conditions utilizing a limited excess quantity of air, reacting a solution of said sodium sulphide at a controlled rate in counter-current fashion with a limited portion of a gaseous mixture product of said oxidizing and reducing steps to convert substantially all sulphides contained in said solution to carbonates and bicarbonates and to remove sulphides contained in said solution in the form of gaseous hydrogen sulphide in said gaseous mixture, recycling said gaseous mixture including hydrogen sulphide through said oxidation step to convert substantially all hydrogen sulphide contained therein to sulphur dioxide, absorbing said sulphur dioxide into said solution of carbonates and bicarbonates to produce a gaseous mixture substantially free of sulphur 2%) dioxide, and adding in said absorption step an additional quantity of sulphur dioxide to yield a cooking liquor mixture including sodium sulphite and sodium bicarbonate of a composition suitable for reuse in said pulp manufacture digestion step.
18. In a sodium and sulphur recovery process for treating spent liquors from a pulp manufacture digestion step of the character described, the steps of recovering sodium sulphide from said spent liquor by oxidation and reduction thereof under controlled conditions utilizing a limited excess quantity of air, reacting a solution of said sodium sulphide at a controlled rate in countercurrent fashion with a limited portion of a gaseous mix' ture product of said oxidizing and reducing steps to convert substantially all sulphides contained in said solution to carbonates and bicarbonates and to remove sulphides contained in said solution in the form of gaseous hydrogen sulphide in said gaseous mixture, recycling said gaseous mixture including hydrogen sulphide through said oxidation step to convert substantially all hydrogen sulphide contained therein to sulphur dioxide, absorbing said sulphur dioxide into said solution of carbonates and bicarbonates to produce a gaseous mixture substantially free of sulphur dioxide, and adding in said absorption step an additional quantity of sulphur dioxide to yield a cooking liquor mixture including sodium acid sulphite and sulphur dioxide of a composition suitable for reuse in said pulp manufacture digestion step.
19. In a method for pulp manufacture comprising the steps of digesting cellulosic material in a cooking liquor containing sodium salts of sulphurous acid and separating the digested cellulosic material from the spent cooking liquor, the recovery steps of oxidizing the organic constituents of said spent cooking liquor in a controlled combustion step with a limited quantity of air, reducing substantially all sodium sulphur compounds in said liquor to sulphides and converting substantially all non-sodium sulphur compounds to sulphur dioxide during said controlled combustion step with resulting efiiuent flue gases containing approximately 12% to 20% carbon dioxide and substantial proportions of sulphur dioxide, recovering sodium salts from said combustion step in concentrated water solution of at least 2 Normal, reacting said solution with a limited portion of said effluent flue gases in a countercurrent carbonation step at a temperature above F. but less than 200 F, recycling through said combustion step less than 30% of said cfiiuent gases after said countercurrent carbonation step for oxidizing gaseous sulphur compounds from said carbonation step to sulphur dioxide, and absorbing sulphur dioxide from said recycled gases into the liquid product of said carbonation step to form a fresh cooking liquor.
20. in a method of pulp manufacture comprising the steps of digesting cellulosic material in a cooking liquor containing sodium salts of sulphurous acid and separating the digested cellulosic material from the spent cooking liquor, the recovery steps of oxidizing organic constituents of said spent cooking liquor to carbon dioxide in a controlled combustion step with a limited quantity of air, reducing substantially all sodium sulphur compounds in said liquor to sulphides and oxidizing substantially all non-sodium sulphur compounds to sulphur dioxide during said controlled combustion step with resulting effiuent flue gases containing approximately 12% to 20% carbon dioxide and substantial proportions of sulphur dioxide, recovering sodium salts from said combustion step in concentratcd water solution of at least 2 Normal at elevated temperature effecting complete solution of said salts, reacting said concentrated solution with a limited portion only of said efiiuent fiue gases in a direct countercurrent gasliquid carbonation step at a temperature substantially within the range of120 to 200 F., recycling through said oxidizing combustion step less than 30% of said effiuent gases after said countercurrent carbonation reaction oxiavsaevs dizing substantially all gaseous sulphur compounds there in to sulphur dioxide, and absorbing sulphur dioxide directly from said recycled gases into the liquid product of said carbonation step to form a fresh cooking liquor.
21. In a sodium and sulphur recovery process for treating spent liquor from a pulp manufacture process of the character described, the steps of subjecting said spent liquor to oxidation and reduction steps to produce sodium sulphide and flue gases including carbon dioxide, reacting in a countercurrent gas-liquid carbonation step a solution of said sodium sulphide With said line gas carbon dioxide for converting sulphide in said solution to carbonate and bicarbonate, removing sulphur from said solution in the form of gaseous hydrogen sulphide as a gaseous product of said countercurrent carbonation step, recycling said hydrogen sulphide through said oxidation step for oxidizing said gaseous hydrogen sulphide to gaseous sulphur dioxide, and absorbing said gaseous sulphur dioxide into said solution of carbonate and bicarbonate for reuse as cooking liquid in said pulp manufacture process.
References Cited in the file of this patent UNITED STATES PATENTS 1,795,754 Bradley Mar. 10, 1931 1,833,313 Bradley et al. Nov. 24, 1931 1,864,619 Richter June 28, 1932 1,915,315 Hofiman June 27, 1933 1,978,258 Textor Aug. 11, 1934 $3 3178??? Bradley Dec. 11, 1934 2,248,109 Morrison July 8, 1941 2,257,533 Reich Sept. 30, 1941 2,644,748 Cunningham July 7, 1953 7 676,88a Goddard Apr. 27, 1954 FOREIGN PATENTS 87,098 Sweden Aug. 11, 1936

Claims (1)

  1. 3. IN A PROCESS OF PULP MANUFACTURE OF THE CHARACTER DESCRIBED, THE RECOVERY STEPS OF REACTING IN A DIRECT GASLIQUID COUNTERCURRENT CARBONATION STEP A SOLUTION OF SODIUM SULPHIDE RECOVERED IN OXIDIZATION AND REDUCTION STEPS FROM SPENT COOKING LIQUOR WITH A MIXTURE OF GASES INCLUDING CARBON DIOXIDE PRODUCED IN SAID OXIDIZATION STEP FOR CONVERTING SULPHIDES IN SAID SOLUTION TO CARBONATES AND BICARBONATES, REMOVING SULPHUR FROM SAID SOLUTION IN THE FORM OF GASEOUS HYDROGEN SULPHIDE AS A GASEOUS PRODUCT OF SAID CARBONATION STEP, RECYCLING SAID GASEOUS HYDROGEN SULPHIDE THROUGH SAID OXIDIZATION STEP TO CONVERT SAID HYDROGEN SULPHIDE TO GASEOUS SULPHUR DIOXIDE, ABSORBING SAID SULPHUR DIOXIDE INTO SAID SOLUTION OF CA RBONATES AND BICARBONATES FOR REUSE AS PULP COOKING LIQUOR, AND EXHAUSTING TO THE ATMOSPHERE A LIMITED PORTION OF EFFLUENT GASES FROM SAID CARBONATION STEP SUBSTANTIALLY FREE OF HYDROGEN SULPHIDE.
US392182A 1953-11-16 1953-11-16 Pulp manufacture Expired - Lifetime US2788273A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US392182A US2788273A (en) 1953-11-16 1953-11-16 Pulp manufacture
US582312A US2849292A (en) 1953-11-16 1956-04-09 Pulp manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US392182A US2788273A (en) 1953-11-16 1953-11-16 Pulp manufacture

Publications (1)

Publication Number Publication Date
US2788273A true US2788273A (en) 1957-04-09

Family

ID=23549591

Family Applications (1)

Application Number Title Priority Date Filing Date
US392182A Expired - Lifetime US2788273A (en) 1953-11-16 1953-11-16 Pulp manufacture

Country Status (1)

Country Link
US (1) US2788273A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3026240A (en) * 1959-05-04 1962-03-20 Babcock & Wilcox Co Chemical recovery system
DE1133235B (en) * 1958-08-06 1962-07-12 Prvni Brnenska Strojirna Zd Y Process for regenerating sodium bisulphite or neutral sulphite pulp waste liquors
US3647363A (en) * 1969-08-06 1972-03-07 Owens Illinois Inc Recovery of sulfur values from flue gases with oxidized neutral sulfite green liquor
US4153670A (en) * 1976-09-15 1979-05-08 Rockwell International Corporation Method of treating an alkali metal sulfide liquor
US20110170207A1 (en) * 2003-05-20 2011-07-14 Donnelly Corporation Exterior sideview mirror system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1795754A (en) * 1926-09-02 1931-03-10 Bradley Mckeefe Corp Production of chemical pulp, etc.
US1833313A (en) * 1924-01-14 1931-11-24 Bradley Mckeefe Corp Treatment of residual liquors
US1864619A (en) * 1925-09-30 1932-06-28 Brown Co Cyclic process of fiber liberation
US1915315A (en) * 1929-06-17 1933-06-27 Walter F Hoffman Recovery of waste liquors
US1970258A (en) * 1929-10-18 1934-08-14 Northwest Paper Company Manufacture of pulp
US1983789A (en) * 1928-01-23 1934-12-11 Bradley Mckeefe Corp Production of pulp and treatment of residual liquors, etc.
US2248109A (en) * 1938-10-19 1941-07-08 Standard Oil Dev Co Regeneration of sulphur solvents
US2257533A (en) * 1939-03-22 1941-09-30 Gustave T Reich Apparatus for the treatment of gases
US2644748A (en) * 1946-11-04 1953-07-07 Chempatents Inc Sulfite waste treatment process
US2676883A (en) * 1949-04-02 1954-04-27 Harold O Goddard Waste sulfite liquor recovery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1833313A (en) * 1924-01-14 1931-11-24 Bradley Mckeefe Corp Treatment of residual liquors
US1864619A (en) * 1925-09-30 1932-06-28 Brown Co Cyclic process of fiber liberation
US1795754A (en) * 1926-09-02 1931-03-10 Bradley Mckeefe Corp Production of chemical pulp, etc.
US1983789A (en) * 1928-01-23 1934-12-11 Bradley Mckeefe Corp Production of pulp and treatment of residual liquors, etc.
US1915315A (en) * 1929-06-17 1933-06-27 Walter F Hoffman Recovery of waste liquors
US1970258A (en) * 1929-10-18 1934-08-14 Northwest Paper Company Manufacture of pulp
US2248109A (en) * 1938-10-19 1941-07-08 Standard Oil Dev Co Regeneration of sulphur solvents
US2257533A (en) * 1939-03-22 1941-09-30 Gustave T Reich Apparatus for the treatment of gases
US2644748A (en) * 1946-11-04 1953-07-07 Chempatents Inc Sulfite waste treatment process
US2676883A (en) * 1949-04-02 1954-04-27 Harold O Goddard Waste sulfite liquor recovery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1133235B (en) * 1958-08-06 1962-07-12 Prvni Brnenska Strojirna Zd Y Process for regenerating sodium bisulphite or neutral sulphite pulp waste liquors
US3026240A (en) * 1959-05-04 1962-03-20 Babcock & Wilcox Co Chemical recovery system
DE1196489B (en) * 1959-05-04 1965-07-08 Babcock & Wilcox Co Process for the recovery of chemicals from a lye containing alkali, especially sodium salts of sulphurous acid
US3647363A (en) * 1969-08-06 1972-03-07 Owens Illinois Inc Recovery of sulfur values from flue gases with oxidized neutral sulfite green liquor
US4153670A (en) * 1976-09-15 1979-05-08 Rockwell International Corporation Method of treating an alkali metal sulfide liquor
US20110170207A1 (en) * 2003-05-20 2011-07-14 Donnelly Corporation Exterior sideview mirror system

Similar Documents

Publication Publication Date Title
US4431617A (en) Methods for removing malodorous sulfur compounds from pulp mill flue gases and the like by using green liquor
US3366535A (en) Process for regenerating waste liquor for reuse in kraft pulping operation
RU2126863C1 (en) Method of separating out of sulfur compounds (versions)
US4148684A (en) Methods for recovery and recycling of chemicals from sodium sulfite and sodium bisulfite pulping operations
US3826710A (en) Carbonation system for recovery of sodium base pulping liquor
US2238456A (en) Purification of magnesium base liquors
US2788273A (en) Pulp manufacture
US3560329A (en) Process for low sulfide chemical recovery
US2285876A (en) Waste sulphite liquor recovery
US4241041A (en) Methods for the recovery of sulfur components from flue gas and recycle sodium sulfite by reduction-smelting and carbonating to strip hydrogen sulfide
US1864619A (en) Cyclic process of fiber liberation
US2849292A (en) Pulp manufacture
JPH04241185A (en) Method for adjusting sulfidity in the course of treatment of cellulose sulfate
US3888967A (en) Method and apparatus for oxidizing sulphide-containing aqueous solutions
US2993753A (en) Sodium sulphite liquor recovery
EP0670000B1 (en) Method for acidification of soap with sodium bisulphite solution
US4336102A (en) Method for recovery and reuse of ammonia in ammonia-base sulfite cooking liquors
EP0738343B1 (en) A method of recovering energy and chemicals from black liquor
US3650889A (en) Pollution controlled polysulfide recovery process
CN1328234C (en) SO2 acidifying process of producing coarse phenol and co-producing anhydrous sodium sulfite
US2429143A (en) Manufacture of ethyl alcohol from sulphite residual liquor
US5366716A (en) Method for recovering sulphur dioxide from the chemical circulation of a sulphate pulp mill
US1833313A (en) Treatment of residual liquors
US3026240A (en) Chemical recovery system
US1973557A (en) Production of pulp, etc.