US2275646A - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
US2275646A
US2275646A US285066A US28506639A US2275646A US 2275646 A US2275646 A US 2275646A US 285066 A US285066 A US 285066A US 28506639 A US28506639 A US 28506639A US 2275646 A US2275646 A US 2275646A
Authority
US
United States
Prior art keywords
transmission line
antenna
length
radiating
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US285066A
Inventor
Harold O Peterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US285066A priority Critical patent/US2275646A/en
Application granted granted Critical
Publication of US2275646A publication Critical patent/US2275646A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • H01Q19/175Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements arrayed along the focal line of a cylindrical focusing surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • Patented Mar. 10, 1942 AN TENNA.
  • An object of the present invention is to obtain Q improved directivity in an ultra short wave antenna system.
  • Another object of the present invention is to provide a directive antenna having a symmetri cal radiating system and which may be energized from a single sided coaxial feeder.
  • Another object of the present invention is to provide an antenna system which does not require transformers for coupling between a coaxial transmission line and a symmetrical radiating system.
  • Still another object of the present invention is the provision of an antenna structure which is mechanically secure and is safeguarded against lightning strokes.
  • the present invention features an antenna array within a parabolic reflector in order to obtain a directional radiation pattern.
  • metallic partitions are provided within the reflector between the antennae.
  • I may use conical radiating elements.
  • the elements of the array are each energized by transmission lines of equal length thereby assuring proper phase relationship for any frequency within the band. Furthermore, by a proper proportioning of the dimensions I avoid the use of conventional frequency-discriminatory impedance matching circuits between the elements of the antenna and the transmission line connected thereto.
  • Figure 1 shows in section an elevation of my improved antenna system
  • Figure 2 shows a horizontal sectional view of the form of my invention shown in Figure 1
  • Figure 3 shows a modification of the form of my invention shown in Figure 1 inwhich impedance matching means are employed between the ladiating element and the transmission line energizing the radiating element
  • Figure 4 I have shown'a further modification of my invention in which a single sided transmission line is coupled to a symmetrical radiating system
  • Figure 5 shows in enlarged section a portion of Figure 4,
  • reference numerals l I indicateradiating elements of my antenna array. These radiating elements are placed at the focus of parabolic reflector 2. The parabolic reflector is closed at the ends by plates 3, 3. To successive ones of the radiating elements I are connected transmission lines 4, 5, 6 and 1. These line sections are of equal length and at their points of junction are connected to transmission line [0 through linesections 8 and 9 which are also of equal length. It will, therefore, be seen that the total length of connections between transmission line 10 and each of the radiating elements is the same. Therefore, the phase relationships are maintained constant no matter what frequency is applied to the transmission line.
  • Figure ,2 shows more clearly the relationship between the parabolic reflector 2 and the radiating element I.
  • the length of the operating wave at its apex is connected to central conductor l5 of transmission line 5 within pedestal 3i.
  • is considerably .less than a quarter of the length of the operating wave.
  • the impedance of the transmission line is smoothly transformed to a value equal to that of the radiator without affecting the band width by gradually tapering the central conductor I5 into radiator l.
  • is likewise tapered. By arranging a constant change of ratio of the diameter of the central conductor and inner surface of the pedestal, a smooth transformation of impedance is obtained. While Figure 3 shows only one radiating element, of course, any desired number may be used and the transmission lines are preferably connected together in the same way as described with reference to Figure 1. With this form of connection and; utilizing this In this ure 1.
  • shape 'of radiating element an extremely broad frequency band may be covered with substantially uniform response.
  • FIG. l and I have shown a balanced or symmetrical radiating system substituted for the single sided radiating elements shown in Fig-
  • the radiating system within each compartment of the reflector comprises a pair of quarter wave rods 4H, 43. These are energized in an opposing phase relationship at their adjacent ends by a phase inverting circuit within cylinder ll.
  • This coupling and inverting circuit includes two cylindrical members i5 and iBhaving equal diameters and being somewhat greater than a quarter of the operating wave-length in length.
  • the cylinder "iii may conveniently be an extension or the outer casing 5 of the concentric cable transmission line.
  • the inner conductor 15 of the coaxial transmission ,line is connected to the end of cylinder; Mi and the two radiating elements d5, 35 are directly connected to the adjacentends of cylinders 25 and 46.
  • Within outer cylinder 81 are also located two shorting plates 4'3 and 45 making contact between the. inner surface of cylinder 5? and the outer surfaces of cylinders '35 and d6.
  • adjustable in their positionand are adjusted to a position a quarter of the length of the operating wave distant from the adjacent ends of cylinders 55 and M3. Adjusted to this position the impedance of the'outer shell at points e, e to the operating frequency may be made very high compared with the impedance of the eoncentric feeder line 5, l5 and the impedance of the antenna elements 4! at those'points By a.
  • connection lines 8 and 9 may or may not exactlyagree with the impedance of the transmission line it, ii. If not, an additional section of transmission line 60, 61 may, therefore, be interposed between these two lines.
  • FIG 6 is shown the adaptation of the conical radiating elements to the structure shown in Figure 5 fortransforming from a single sided cable to a symmetrical circuit. It is not believed necessary to describe this figure in any detail since the distinction between this and Figure 5 is the use of the conical radiators having a length equal to three-eighths of the operating ited thereto but that modifications may be made within the scope of the invention.
  • a directive antenna system comprising a cylindrical reflector divided longitudinally into a series of separate chambers and a radiating element within each of said chambers, each of said radiating elements comprising a dipole antenna having a pair of adjacent ends and means for energizing said dipole from a coaxial transmission line having an outer sheath and an inner conductor comprising a supportingshell surrounding a portion of said transmission line and attached
  • These shorting plates are at one end to said reflector, said shell having a length greater than half the length of the operating wave, an auxiliary conductor within said shell connected to the inner conductor of said transmission line, and having a'diameter equal to the diameter of the outer sheath'of said transmission line, the adjacent ends of said dipole passing through apertures in said supporting shell and connected to the adjacent ends of said sheath and said auxiliary conductor, and means for connecting the inner surface of said supporting shell to the outer surface of said sheath and auxiliary conductor at points a distance equal to a quarter of the length of the operating wave from said adjacent ends
  • a directive antenna system comprising a cylindrical reflector divided longitudinally into a series of separate chambers and a radiating element within each of said chambers, each of said radiating elements comprising a dipole antenna parallel to the axis of said reflector having a pair of adjacent ends, and means for energizing said dipole from a coaxial transmission line having an outer sheath and an inner conductor comprising a a supporting shell surrounding a portion of said transmission line, and attached at one end to said reflector, said shell having alength greater than half the length of the operating wave, an, auxiliary conductor within said shell connected to the inner conductor of said transmission line and having a diameter equal to the diameter of the outer sheath of said transmission line, the adjacent ends of said dipole passing through apertures in said supporting shell and connected to the adjacent ends of said sheath and saidauxiliary conductor, and means for connecting the inner surface of said supporting shell to the outer surface of said sheath and auxiliary conductor at points a distance equal to a quarter of the lengthof the operating Wave from said adjacent
  • Means for feeding energy to'a pair of adjacent ends of a dipole antenna from a coaxial transmission line having an outer sheath and an inner conductor comprising a supporting shell surrounding a portion of said transmission line, said shell having a length greater than half the length of the operating wave, an auxiliary conductor within said shell connectedto the inner conductor of said transmission line and having a diameter equal to the diameter of the outer sheath of said transmission line, the adjacent ends of said dipole passing through apertures in, said supporting shell and connected to the adjacent ends of said sheath and said auxiliary conductor, and means for connecting the inner surface of said supporting shell to the outer surface of said sheath and auxiliary conductor at HAROLD o.
  • PETERSON Means for feeding energy to'a pair of adjacent ends of a dipole antenna from a coaxial transmission line having an outer sheath and an inner conductor comprising a supporting shell surrounding a portion of said transmission line, said shell having a length greater than half the length of the operating wave, an auxiliary conductor within said shell connectedto the

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Description

- March 10, 1942. H: O PETERSON 2,275,646
ANTENNA Filed July 18, 1939 2 Sheets-Sheet l INV EN TOR. TERSON BY ATTORNEY.
March 10, 1942. H O. PETERSQN 2,275,646
ANTENNA Filed July 18, 1939 2 Sheets-Sheet 2 INVEN TOR.
ATTORNEY.
Patented Mar. 10, 1942 AN TENNA.
Harold 0. Peterson, Riverhead, N. Y., assignor to Radio Corporation of America, a corporation of Delaware Application July 18, 1939, Serial No. 285,066
3 Claims.
and, more particularly, with ultra short wave directive antennas.
An object of the present invention is to obtain Q improved directivity in an ultra short wave antenna system. 1
Another object of the present invention is to provide a directive antenna having a symmetri cal radiating system and which may be energized from a single sided coaxial feeder.
Another object of the present invention is to provide an antenna system which does not require transformers for coupling between a coaxial transmission line and a symmetrical radiating system.
Still another object of the present invention is the provision of an antenna structure which is mechanically secure and is safeguarded against lightning strokes.
The present invention features an antenna array within a parabolic reflector in order to obtain a directional radiation pattern. In order to further increase directivity by reducing random phase relationship between the signals radiated from the various antennae of the array metallic partitions are provided within the reflector between the antennae.
As another feature of the invention in order to obtain as wide a frequency band as possible I may use conical radiating elements. The elements of the array are each energized by transmission lines of equal length thereby assuring proper phase relationship for any frequency within the band. Furthermore, by a proper proportioning of the dimensions I avoid the use of conventional frequency-discriminatory impedance matching circuits between the elements of the antenna and the transmission line connected thereto.
.As still a further feature of the invention I provide a mechanically strong and electrically efficient means for transforming from a single sided coaxial cable to a symmetrical radiating circuit.
Other objects and features of the invention will become apparent by reference to the following detailed description which is accompanied by drawings in which Figure 1 shows in section an elevation of my improved antenna system; Figure 2 shows a horizontal sectional view of the form of my invention shown in Figure 1; Figure 3 shows a modification of the form of my invention shown in Figure 1 inwhich impedance matching means are employed between the ladiating element and the transmission line energizing the radiating element; in Figure 4 I have shown'a further modification of my invention in which a single sided transmission line is coupled to a symmetrical radiating system; Figure 5 shows in enlarged section a portion of Figure 4,
have placed metallic partitions 13.
while Figure 6 shows a modification of the form shown in Figure 5. 1
Referring, now, to Figure 1 reference numerals l, I indicateradiating elements of my antenna array. These radiating elements are placed at the focus of parabolic reflector 2. The parabolic reflector is closed at the ends by plates 3, 3. To successive ones of the radiating elements I are connected transmission lines 4, 5, 6 and 1. These line sections are of equal length and at their points of junction are connected to transmission line [0 through linesections 8 and 9 which are also of equal length. It will, therefore, be seen that the total length of connections between transmission line 10 and each of the radiating elements is the same. Therefore, the phase relationships are maintained constant no matter what frequency is applied to the transmission line. Between each of the radiating elements I These metallic partitions confine the signal radiated from each of the radiating elements into a definite area and thus a uniform phase relationship is obtained in the area immediately beyond the open side of the reflector. Due to this uniform phase relationship an improvement in directivity is obtained. In other words, less response is obtained for directions away from the main lobe of the directive diagram.
Figure ,2 shows more clearly the relationship between the parabolic reflector 2 and the radiating element I.
In Figure 3 I have shown a modification of a portion of the embodiment. shown in Figure 1. The same form of radiating element l is utilized as described with reference to Figure 1. Also, the radiating elements are each confined between partitions l3, I3. as before described. modification the radiating element I, having 'a length approximately equal to three-eighths of,
the length of the operating wave at its apex, is connected to central conductor l5 of transmission line 5 within pedestal 3i. The height of this pedestal 3| is considerably .less than a quarter of the length of the operating wave.
The impedance of the transmission line is smoothly transformed to a value equal to that of the radiator without affecting the band width by gradually tapering the central conductor I5 into radiator l. The diameter of the inner surface of pedestal 3| is likewise tapered. By arranging a constant change of ratio of the diameter of the central conductor and inner surface of the pedestal, a smooth transformation of impedance is obtained. While Figure 3 shows only one radiating element, of course, any desired number may be used and the transmission lines are preferably connected together in the same way as described with reference to Figure 1. With this form of connection and; utilizing this In this ure 1.
shape 'of radiating element an extremely broad frequency band may be covered with substantially uniform response.
In Figures l and I have shown a balanced or symmetrical radiating system substituted for the single sided radiating elements shown in Fig- The radiating system within each compartment of the reflector comprises a pair of quarter wave rods 4H, 43. These are energized in an opposing phase relationship at their adjacent ends by a phase inverting circuit within cylinder ll. This coupling and inverting circuit includes two cylindrical members i5 and iBhaving equal diameters and being somewhat greater than a quarter of the operating wave-length in length. The cylinder "iii may conveniently be an extension or the outer casing 5 of the concentric cable transmission line. The inner conductor 15 of the coaxial transmission ,line is connected to the end of cylinder; Mi and the two radiating elements d5, 35 are directly connected to the adjacentends of cylinders 25 and 46. Within outer cylinder 81 are also located two shorting plates 4'3 and 45 making contact between the. inner surface of cylinder 5? and the outer surfaces of cylinders '35 and d6. adjustable in their positionand are adjusted to a position a quarter of the length of the operating wave distant from the adjacent ends of cylinders 55 and M3. Adjusted to this position the impedance of the'outer shell at points e, e to the operating frequency may be made very high compared with the impedance of the eoncentric feeder line 5, l5 and the impedance of the antenna elements 4! at those'points By a.
proper choice of the ratio of diameters of cylinder ll and cylinders 45, iii, the concentric ,'H1'18 and the coupling circuit may be made. to
have the same impedance as the antenna'elements as viewed at points i, i. Each of the plurality of balanced radiating systems just described with reference to Figure 5 is, as shown in Figure '4, connected to transmission line l8, 1 l by uniform length connections. Thus, as previously described, a uniform phase relationship is maintained'throughout. The final impedance at the junction of connection lines 8 and 9 may or may not exactlyagree with the impedance of the transmission line it, ii. If not, an additional section of transmission line 60, 61 may, therefore, be interposed between these two lines. By a choice of proper dimensions of the taper of inner conductor El with respect to the diameter of the outer conductor 59, the impedance may be made to match perfectly. The distance m is ordinarily fixed at several quarter wavelengths of the operating wave. With this form of impedance matching structure no restriction in the band width of the antenna itself is obtained.
In Figure 6 is shown the adaptation of the conical radiating elements to the structure shown in Figure 5 fortransforming from a single sided cable to a symmetrical circuit. It is not believed necessary to describe this figure in any detail since the distinction between this and Figure 5 is the use of the conical radiators having a length equal to three-eighths of the operating ited thereto but that modifications may be made within the scope of the invention.
I claim:
1. A directive antenna system comprising a cylindrical reflector divided longitudinally into a series of separate chambers and a radiating element within each of said chambers, each of said radiating elements comprising a dipole antenna having a pair of adjacent ends and means for energizing said dipole from a coaxial transmission line having an outer sheath and an inner conductor comprising a supportingshell surrounding a portion of said transmission line and attached These shorting plates are at one end to said reflector, said shell having a length greater than half the length of the operating wave, an auxiliary conductor within said shell connected to the inner conductor of said transmission line, and having a'diameter equal to the diameter of the outer sheath'of said transmission line, the adjacent ends of said dipole passing through apertures in said supporting shell and connected to the adjacent ends of said sheath and said auxiliary conductor, and means for connecting the inner surface of said supporting shell to the outer surface of said sheath and auxiliary conductor at points a distance equal to a quarter of the length of the operating wave from said adjacent ends.
2. A directive antenna system comprising a cylindrical reflector divided longitudinally into a series of separate chambers and a radiating element within each of said chambers, each of said radiating elements comprising a dipole antenna parallel to the axis of said reflector having a pair of adjacent ends, and means for energizing said dipole from a coaxial transmission line having an outer sheath and an inner conductor comprising a a supporting shell surrounding a portion of said transmission line, and attached at one end to said reflector, said shell having alength greater than half the length of the operating wave, an, auxiliary conductor within said shell connected to the inner conductor of said transmission line and having a diameter equal to the diameter of the outer sheath of said transmission line, the adjacent ends of said dipole passing through apertures in said supporting shell and connected to the adjacent ends of said sheath and saidauxiliary conductor, and means for connecting the inner surface of said supporting shell to the outer surface of said sheath and auxiliary conductor at points a distance equal to a quarter of the lengthof the operating Wave from said adjacent ends.
3. Means for feeding energy to'a pair of adjacent ends of a dipole antenna from a coaxial transmission line having an outer sheath and an inner conductor comprising a supporting shell surrounding a portion of said transmission line, said shell having a length greater than half the length of the operating wave, an auxiliary conductor within said shell connectedto the inner conductor of said transmission line and having a diameter equal to the diameter of the outer sheath of said transmission line, the adjacent ends of said dipole passing through apertures in, said supporting shell and connected to the adjacent ends of said sheath and said auxiliary conductor, and means for connecting the inner surface of said supporting shell to the outer surface of said sheath and auxiliary conductor at HAROLD o. PETERSON.
US285066A 1939-07-18 1939-07-18 Antenna Expired - Lifetime US2275646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US285066A US2275646A (en) 1939-07-18 1939-07-18 Antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US285066A US2275646A (en) 1939-07-18 1939-07-18 Antenna

Publications (1)

Publication Number Publication Date
US2275646A true US2275646A (en) 1942-03-10

Family

ID=23092591

Family Applications (1)

Application Number Title Priority Date Filing Date
US285066A Expired - Lifetime US2275646A (en) 1939-07-18 1939-07-18 Antenna

Country Status (1)

Country Link
US (1) US2275646A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421988A (en) * 1944-01-22 1947-06-10 Rca Corp Directive antenna
US2452767A (en) * 1946-04-02 1948-11-02 John D Kraus Broad-band antenna
US2455403A (en) * 1945-01-20 1948-12-07 Rca Corp Antenna
US2457638A (en) * 1946-09-27 1948-12-28 Rca Corp Phase splitting coupling for coaxial transmission lines
US2465245A (en) * 1945-03-03 1949-03-22 Westinghouse Electric Corp Terminus for concentric transmission lines
US2470016A (en) * 1945-09-14 1949-05-10 Roger E Clapp Antenna
US2478242A (en) * 1944-11-04 1949-08-09 Roger E Clapp Antenna
US2478913A (en) * 1944-02-07 1949-08-16 Stromberg Carlson Co Dipole antenna
US2479272A (en) * 1945-12-10 1949-08-16 Robert M Silliman Antenna
US2480182A (en) * 1945-09-19 1949-08-30 Us Sec War Antenna
US2491493A (en) * 1944-02-07 1949-12-20 Stromberg Carlson Co Dipole antenna
US2500178A (en) * 1942-01-16 1950-03-14 Sperry Corp Ultra high frequency antenna structure
US2513498A (en) * 1945-10-11 1950-07-04 Wireless aerial system
US2514020A (en) * 1945-11-16 1950-07-04 Rca Corp Upsilon-dipole antenna
US2514821A (en) * 1945-09-29 1950-07-11 Rca Corp Antenna system
US2520945A (en) * 1943-08-18 1950-09-05 Sperry Corp Wave transmission apparatus
US2524993A (en) * 1945-09-14 1950-10-10 Victor H Rumsey Antenna
US2578973A (en) * 1946-12-11 1951-12-18 Belmont Radio Corp Antenna array
US2583953A (en) * 1946-03-29 1952-01-29 John D Kraus Electrical apparatus
US2597392A (en) * 1946-01-07 1952-05-20 Us Sec War Antenna
US2602895A (en) * 1946-04-25 1952-07-08 Sperry Corp Ultrahigh-frequency antenna apparatus
US2615132A (en) * 1946-06-05 1952-10-21 Victor H Rumsey Directive broad band slot antenna system
US2659003A (en) * 1946-04-30 1953-11-10 Dorne Arthur Antenna mountable in small spaces
US2986736A (en) * 1956-06-26 1961-05-30 Rines Robert Harvey Radio-frequency-energy transmission-line system and antenna
US3727231A (en) * 1971-09-24 1973-04-10 Collins Radio Co Collinear dipole antenna
FR2539557A1 (en) * 1983-01-13 1984-07-20 Lerc Lab Etudes Rech Chim BROADBAND ANTENNA
US20040203284A1 (en) * 2003-04-11 2004-10-14 Kathrein-Werke Kg. Connecting device for connecting at least two antenna element devices, which are arranged offset with respect to one another, of an antenna arrangement

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500178A (en) * 1942-01-16 1950-03-14 Sperry Corp Ultra high frequency antenna structure
US2520945A (en) * 1943-08-18 1950-09-05 Sperry Corp Wave transmission apparatus
US2421988A (en) * 1944-01-22 1947-06-10 Rca Corp Directive antenna
US2478913A (en) * 1944-02-07 1949-08-16 Stromberg Carlson Co Dipole antenna
US2491493A (en) * 1944-02-07 1949-12-20 Stromberg Carlson Co Dipole antenna
US2478242A (en) * 1944-11-04 1949-08-09 Roger E Clapp Antenna
US2455403A (en) * 1945-01-20 1948-12-07 Rca Corp Antenna
US2465245A (en) * 1945-03-03 1949-03-22 Westinghouse Electric Corp Terminus for concentric transmission lines
US2524993A (en) * 1945-09-14 1950-10-10 Victor H Rumsey Antenna
US2470016A (en) * 1945-09-14 1949-05-10 Roger E Clapp Antenna
US2480182A (en) * 1945-09-19 1949-08-30 Us Sec War Antenna
US2514821A (en) * 1945-09-29 1950-07-11 Rca Corp Antenna system
US2513498A (en) * 1945-10-11 1950-07-04 Wireless aerial system
US2514020A (en) * 1945-11-16 1950-07-04 Rca Corp Upsilon-dipole antenna
US2479272A (en) * 1945-12-10 1949-08-16 Robert M Silliman Antenna
US2597392A (en) * 1946-01-07 1952-05-20 Us Sec War Antenna
US2583953A (en) * 1946-03-29 1952-01-29 John D Kraus Electrical apparatus
US2452767A (en) * 1946-04-02 1948-11-02 John D Kraus Broad-band antenna
US2602895A (en) * 1946-04-25 1952-07-08 Sperry Corp Ultrahigh-frequency antenna apparatus
US2659003A (en) * 1946-04-30 1953-11-10 Dorne Arthur Antenna mountable in small spaces
US2615132A (en) * 1946-06-05 1952-10-21 Victor H Rumsey Directive broad band slot antenna system
US2457638A (en) * 1946-09-27 1948-12-28 Rca Corp Phase splitting coupling for coaxial transmission lines
US2578973A (en) * 1946-12-11 1951-12-18 Belmont Radio Corp Antenna array
US2986736A (en) * 1956-06-26 1961-05-30 Rines Robert Harvey Radio-frequency-energy transmission-line system and antenna
US3727231A (en) * 1971-09-24 1973-04-10 Collins Radio Co Collinear dipole antenna
FR2539557A1 (en) * 1983-01-13 1984-07-20 Lerc Lab Etudes Rech Chim BROADBAND ANTENNA
EP0116487A1 (en) * 1983-01-13 1984-08-22 Laboratoire D'etudes Et De Recherches Chimiques L.E.R.C. S.A. Grouns plane antenna
US20040203284A1 (en) * 2003-04-11 2004-10-14 Kathrein-Werke Kg. Connecting device for connecting at least two antenna element devices, which are arranged offset with respect to one another, of an antenna arrangement
WO2004091037A1 (en) * 2003-04-11 2004-10-21 Kathrein-Werke Kg Connection device for the connection of at least two radiator devices of an antenna arrangement, whereby said radiator devices are arranged in an offset position in relation to each other
US6949993B2 (en) 2003-04-11 2005-09-27 Kathrein-Werke Kg Connecting device for connecting at least two antenna element devices, which are arranged offset with respect to one another, of an antenna arrangement

Similar Documents

Publication Publication Date Title
US2275646A (en) Antenna
US2455403A (en) Antenna
US3568204A (en) Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
US2556094A (en) High-frequency apparatus
US2321454A (en) Multiple section antenna
US3273158A (en) Multi-polarized tracking antenna
US4369449A (en) Linearly polarized omnidirectional antenna
US3789416A (en) Shortened turnstile antenna
US2846678A (en) Dual frequency antenna
US2199375A (en) Antenna
US2352977A (en) Self-compensating video antenna
US2611869A (en) Aerial system
US2425585A (en) Wave-signal antenna
US2967300A (en) Multiple band antenna
US2411976A (en) Broad band radiator
US2290800A (en) Antenna
US2947988A (en) Traveling wave antenna
US2971193A (en) Multiple slot antenna having radiating termination
US2726388A (en) Antenna system combinations and arrays
US2556046A (en) Directional antenna system
US2512137A (en) Antenna
US3134979A (en) Tapered ladder log periodic antenna
US3056960A (en) Broadband tapered-ladder type antenna
US2471515A (en) Antenna
US2632851A (en) Electromagnetic radiating or receiving apparatus