US20230098871A1 - Information transmission method and apparatus, and communication device - Google Patents

Information transmission method and apparatus, and communication device Download PDF

Info

Publication number
US20230098871A1
US20230098871A1 US18/061,889 US202218061889A US2023098871A1 US 20230098871 A1 US20230098871 A1 US 20230098871A1 US 202218061889 A US202218061889 A US 202218061889A US 2023098871 A1 US2023098871 A1 US 2023098871A1
Authority
US
United States
Prior art keywords
information
node
data packet
delay
network element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US18/061,889
Inventor
Jianhua Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to US18/061,889 priority Critical patent/US20230098871A1/en
Assigned to GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD. reassignment GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, JIANHUA
Publication of US20230098871A1 publication Critical patent/US20230098871A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/106Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • H04W56/009Closed loop measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0647Synchronisation among TDM nodes
    • H04J3/065Synchronisation among TDM nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0858One way delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays

Definitions

  • Ultra-reliable and low latency communication is an important communication method in the future, of which requirements for an end-to-end communication delay are generally in the millisecond level.
  • a URLLC transmission delay mainly consists of two parts, that is, a transmission delay of an air interface and a transmission delay of a core network.
  • a transmission delay from the core network to an external network is generally not defined.
  • the most valuable and practical method is to measure only a delay between a terminal and the core network. How to accurately measure the delay between the terminal and the core network is a problem to be resolved.
  • Embodiments of this disclosure relate to the field of mobile communication technologies, and in particular, to an information transmission method and apparatus.
  • the transmission delay requirement including an upper limit requirement and/or a lower limit requirement for a transmission delay.
  • An information transmission apparatus provided in an embodiment of this disclosure and applied to a first node, the apparatus including:
  • a transmission unit configured to send a first data packet to a second node, the first data packet being used for measuring a one-way delay, and/or receiving a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
  • An information transmission apparatus provided in the embodiment of this disclosure and applied to a first node, the apparatus including:
  • a transmission unit configured to send a first data packet to a second node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or receiving a second data packet returned by the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • An information transmission apparatus provided in the embodiment of this disclosure and applied to a first node, the apparatus including:
  • a determining unit configured to receive first information sent by a second node, and determine a transmission delay requirement based on the first information, the transmission delay requirement including an upper limit requirement and/or a lower limit requirement for a transmission delay.
  • first information from a core network, the first information being used to determine a first delay threshold and a second delay threshold; and controlling, by the first node, a transmission delay between the first node and a second node to be between the first delay threshold and the second delay threshold.
  • an acquiring unit configured to acquire first information from a core network, the first information being used to determine a first delay threshold and a second delay threshold;
  • a processing unit configured to control a transmission delay between the first node and a second node to be between the first delay threshold and the second delay threshold.
  • a communication device provided in an embodiment of this disclosure includes a processor and a memory.
  • the memory is configured to store a computer program
  • the processor is configured to call and run the computer program stored in the memory to perform the foregoing information transmission method.
  • a chip provided in an embodiment of this disclosure is configured to implement the foregoing information transmission method.
  • the chip includes a processor for calling and running a computer program from a memory, so that a device installed with the chip performs the foregoing information transmission method.
  • a computer-readable storage medium provided in an embodiment of this disclosure is configured to store a computer program, the computer program causing a computer to perform the foregoing information transmission method.
  • a computer program product provided in an embodiment of this disclosure includes a computer program instruction, the computer program instruction causing a computer to perform the foregoing information transmission method.
  • a computer program provided in an embodiment of this disclosure causes, when running on a computer, the computer to perform the foregoing information transmission method.
  • a new protocol layer (that is, a first protocol layer) is established between the terminal and the core network, and information in the protocol layer is used to complete delay measurement; or an SDAP layer protocol and/or a PDCP layer protocol are/is extended between a base station and the terminal, and the information in the protocol layer is used to complete the delay measurement. Therefore, delays of different paths may be measured dynamically.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of this disclosure
  • FIG. 2 is a schematic diagram of a delay according to an embodiment of this disclosure
  • FIG. 3 is a schematic flowchart I of an information transmission method according to an embodiment of this disclosure.
  • FIG. 4 is a schematic diagram I of a user plane protocol stack according to an embodiment of this disclosure.
  • FIG. 5 is a schematic flowchart II of an information transmission method according to an embodiment of this disclosure.
  • FIG. 6 is a schematic flowchart III of an information transmission method according to an embodiment of this disclosure.
  • FIG. 7 is a schematic diagram II of a user plane protocol stack according to an embodiment of this disclosure.
  • FIG. 8 is a schematic flowchart IV of an information transmission method according to an embodiment of this disclosure.
  • FIG. 9 is a schematic flowchart V of an information transmission method according to an embodiment of this disclosure.
  • FIG. 10 is a schematic structural diagram I of an information transmission apparatus according to an embodiment of this disclosure.
  • FIG. 11 is a schematic structural diagram II of an information transmission apparatus according to an embodiment of this disclosure.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of this disclosure.
  • FIG. 13 is a schematic structural diagram of a chip according to an embodiment of this disclosure.
  • FIG. 14 is a schematic block diagram of a communication system according to an embodiment of this disclosure.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal Mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the communication system 100 may include a network device 110 , and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with a terminal device located in the coverage area.
  • the network device 110 may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a NodeB (NB) in a WCDMA system, or an evolved Node B (eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (CRAN), or the network device may be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, a network device in a public land mobile network (PLMN) that evolves in the future, or the like.
  • BTS base transceiver station
  • NB NodeB
  • eNB evolved Node B
  • CRAN cloud radio access network
  • the network device may be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a
  • the communication system 100 further includes at least one terminal device 120 located within the coverage area of the network device 110 .
  • the “terminal device” used herein includes, but is not limited to, connection via a wired line such as a public switched telephone network (PSTN), a digital subscriber line (DSL), a digital cable, and a direct cable; and/or another data connection/network; and/or connection via a wireless interface, such as for a cellular network, a wireless local area network (WLAN), a digital television network such as a DVB-H network, a satellite network, an AM-FM broadcast transmitter; and/or another terminal device configured to receive/send a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • a digital cable and a direct cable
  • a wireless interface such as for a cellular network, a wireless local area network (WLAN), a digital television network such as a DVB-H network, a satellite network, an AM
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • An example of the mobile terminal includes, but is not limited to, a satellite or cellular phone; a personal communications system (PCS) terminal that can combine a cellular radiotelephone with data processing, facsimile, and data communications capabilities; may include a radiotelephone, a pager, Internet/Intranet access, a web browser, a notepad, a calendar, and/or a PDA of the Global Positioning System (GPS) receiver; and a conventional laptop and/or palm-type receiver or other electronic apparatuses including a radiotelephone transceiver.
  • PCS personal communications system
  • the terminal device may be an access terminal, a user equipment (UE), a user unit, a subscriber station, a mobile station, a mobile console, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user apparatus.
  • UE user equipment
  • the terminal device may be an access terminal, a user equipment (UE), a user unit, a subscriber station, a mobile station, a mobile console, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user apparatus.
  • UE user equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device with a wireless communication function, a computing device, or other processing devices connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a 5G network, or a network device in the PLMN that evolves in the future.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • D2D device-to-device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include a plurality of network devices, and the coverage area of each network device may include other numbers of terminal devices, which is not limited in the embodiment of this disclosure.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity and the like, which is not limited in the embodiment of this disclosure.
  • network entities such as a network controller, a mobility management entity and the like, which is not limited in the embodiment of this disclosure.
  • the communication device having a communication function in the network/system in the embodiments of this disclosure may be referred to as a communication device.
  • the communication system 100 shown in FIG. 1 is used as an example.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again.
  • the communication device may also include other devices in the communication system 100 , such as other network entities such as a network controller, a mobility management entity, and the like, which is not limited in the embodiment of this disclosure.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this paper is merely an association relationship describing related objects, which means that there may be three relationships, for example, A and/or B may indicate three cases: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character “/” in this paper generally indicates that the related objects are in an “or” relationship.
  • a transmission delay mainly consists of two parts, that is, a transmission delay t1 of an air interface and a transmission delay t2 of a core network.
  • a transmission delay from the core network to an external network is generally not defined.
  • a URLLC transmission delay is generally in the millisecond level, such as 1 ms, 5 ms, 10 ms, and so on.
  • the delay t1 of the air interface is currently specified as 1 ms, 10 ms, etc., while the transmission delay of the core network includes 1 ms, 2 ms, 5 ms, and the like. It may be learned that the delay of the air interface generally has different levels, and is not flexibly specified to 1 ms, 1.1 ms, 1.2 ms and so on.
  • t1 must be 1 ms; but if t2 is now 3.5 ms, then t1 may be extended to 1.5 ms, which does not make much sense for air interface design, because the transmission delay of the air interface is either 1 ms or 10 ms, 1.5 ms cannot be ensured.
  • the most valuable and practical method for measuring a delay is to measure only the delay between the UE and the core network without measuring t1 and t2. If t1 and t2 are measured specifically, there may be the following two questions.
  • Measurement may bring in additional processing and destroy accuracy of the measurement.
  • a base station needs to perform additional processing actions (for example, attaching a timestamp, calculating the difference between the last timestamp and the current time) on the measured data packet.
  • additional processing actions for example, attaching a timestamp, calculating the difference between the last timestamp and the current time
  • strict time synchronization is further required, which is difficult to realize.
  • FIG. 3 is a schematic flowchart I of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 3 , the information transmission method includes the following step.
  • Step 301 A first node sends a first data packet to a second node, the first data packet being used for measuring a one-way delay, and/or receiving a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
  • the implementation of the first node and the second node may be as follows.
  • the first node is a first core network element, and the second node is a terminal;
  • the first node is the terminal, and the second node is the first core network element
  • the first node is the first core network element, and the second node is a first access network element;
  • the first node is the first access network element, and the second node is the first core network element.
  • a 5G communication system for a physical function of each network element, a 5G communication system is used as an example.
  • the first core network element refers to a UPF
  • the second core network element refers to an SMF
  • a third core network element refers to a PCF
  • a fourth core network element refers to an AMF.
  • the first data packet carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information, the first identification information being used for indicating that the first data packet is used for measurement, the second identification information being used for indicating that the second node returns the second data packet after receiving the first data packet, the first sequence number information being used for identifying the first data packet, and the first timestamp information being used for indicating information about a time at which the first node sends the first data packet.
  • the first sequence number information is, for example, an SN to be used for distinguishing different data packets.
  • the first data packet sent by the first node to the second node may carry the first identification information and/or the second identification information.
  • the second node identifies the first identification information after receiving the first data packet, considers that the first data packet is used for measurement, and immediately returns the second data packet when the second identification information is identified.
  • the first node may calculate information about a round-trip delay between the two nodes according to first timestamp information of sending the first data packet and third timestamp information of receiving the second data packet, and information about the one-way delay may be obtained through dividing the information about the round-trip delay by 2.
  • the first data packet sent by the first node to the second node may carry the first sequence number information.
  • a function of the first sequence number information may be to identify the first data packet, and may also have a same function as the first identification information.
  • the second node identifies the first sequence number information after receiving the first data packet, and immediately returns the second data packet.
  • the first node may calculate information about a round-trip delay between the two nodes according to first timestamp information of sending the first data packet and third timestamp information of receiving the second data packet, and information about the one-way delay may be obtained through dividing the information about the round-trip delay by 2.
  • the first data packet sent by the first node to the second node may carry the first timestamp information of sending the first data packet.
  • the second node may calculate information about the one-way delay between the two nodes according to the first timestamp information of sending the first data packet and second timestamp information of receiving the first data packet.
  • the first data packet sent by the first node to the second node may carry any one or more of the foregoing three kinds of information.
  • the second data packet carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, and second timestamp information, the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
  • the second data packet sent by the second node to the first node may carry any one or more of the foregoing three kinds of information.
  • the method further includes:
  • the third timestamp information being used for indicating information about a time at which the first node receives the second data packet
  • determining information about a delay between the first node and the second node based on the first timestamp information and the second timestamp information or the third timestamp information and the second timestamp information.
  • the following describes how the information in the first data packet and the second data packet is carried in combination with different implementations of the first node and the second node.
  • the first node is a first core network element, and the second node is a terminal;
  • the first protocol layer being located above a GTP-U layer
  • the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above an SDAP layer.
  • the first protocol layer is a new protocol layer
  • the first data packet is transparently transmitted through a 5G-AN, that is, the 5G-AN does not perceive the new protocol layer of the first data packet.
  • the first node is the terminal, and the second node is the first core network element
  • the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above a GTP-U layer.
  • the first protocol layer is a new protocol layer, and the first data packet is transparently transmitted through a 5G-AN, that is, the 5G-AN does not perceive the new protocol layer of the first data packet.
  • the first node is the first core network element, and the second node is a first access network element;
  • the first node is the first access network element, and the second node is the first core network element;
  • an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • the technical solutions of the embodiments of this disclosure further include: the first node acquires a first rule from a second core network element, and reports, based on the first rule, delay information and/or a first notification message obtained through measurement.
  • the first rule on the second core network element side is notified by a third core network element to the second core network element or preconfigured by the second core network element.
  • the first rule herein includes at least one kind of the following:
  • the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node, for example, whether the measurement behavior is triggered by the UPF and/or the UE;
  • the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information
  • third information the third information being used for indicating whether a measurement result is reported for each measurement behavior
  • the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold
  • the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • At least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • the dynamic manner means that the first node receives complete content of at least one kind of information in the first rule; for example, the first node receives at least one kind of information in a QoS rule and the first rule together.
  • the static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • the first indication information is included in a QoS parameter, and is sent by the second node to the first node through establishing a PDU session and/or an update process.
  • the first indication information is a 5QI parameter in the QoS parameter.
  • jitter (fourth/fifth information) corresponding to the parameter is [ ⁇ 3 ms, +5 ms], that is, the end-to-end delay (between the UPF and the UE) is not lower than (50 ⁇ 3) ms and not higher than (50+5) ms.
  • the first node reports, through an N4 interface, delay information and/or a first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the first notification message is used to indicate that the delay information obtained through measurement exceeds a first delay threshold or is lower than a second delay threshold.
  • the UPF reports the delay information and/or the first notification message to the SMF through the N4 interface, and then the SMF determines whether to report the delay information and/or the first notification message to the PCF.
  • the first node carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface;
  • the first node carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element, the second core network element herein being an SMF, and the SMF forwarding the delay information and/or the first notification message to the PCF; or
  • the first node carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, the first core network element herein being a UPF, and the UPF forwarding the delay information and/or the first notification message to the SMF and/or PCF, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the user plane data packet includes a first data stream data packet and/or a second data packet.
  • a first data stream means that a data packet of a certain data stream is only used for reporting.
  • the UE stores content of the delay information and/or the first notification message in a container, and reports the content to an AMF on the N1 interface through the NAS message, the AMF forwarding the content to the PCF, and the PCF further notifying the content to the SMF (if necessary).
  • the UE directly sends the delay information and/or the first notification message to the AMF through an SM-NAS message, where the AMF forwards content of the SM-NAS to the PCF.
  • the first node When the first node is a first access network element, the first node directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the first node reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first node reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • a gNB directly reports the delay information and/or the first notification message to the UPF (a user plane) or SMF (a control plane).
  • FIG. 5 is a schematic flowchart II of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 5 , the information transmission method includes the following step.
  • Step 501 A second node receives a first data packet sent by a first node, the first data packet being used for measuring a one-way delay, and/or sends a second data packet to the second node, the second data packet being used for measuring a round-trip delay.
  • the implementation of the first node and the second node may be as follows.
  • the first node is a first core network element, and the second node is a terminal;
  • the first node is the terminal, and the second node is the first core network element
  • the first node is the first core network element, and the second node is a first access network element;
  • the first node is the first access network element, and the second node is the first core network element.
  • a 5G communication system for a physical function of each network element, a 5G communication system is used as an example.
  • the first core network element refers to a UPF
  • the second core network element refers to an SMF
  • a third core network element refers to a PCF
  • a fourth core network element refers to an AMF.
  • the first data packet carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information, the first identification information being used for indicating that the first data packet is used for measurement, the second identification information being used for indicating that the second node returns the second data packet after receiving the first data packet, the first sequence number information being used for identifying the first data packet, and the first timestamp information being used for indicating information about a time at which the first node sends the first data packet.
  • the first data packet sent by the first node to the second node may carry any one or more of the foregoing three kinds of information.
  • the second data packet carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, and second timestamp information, the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
  • the second data packet sent by the second node to the first node may carry any one or more of the foregoing three kinds of information.
  • the second node after receiving the first data packet sent by the first node, determines information about a delay between the first node and the second node based on the first timestamp information and the second timestamp information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
  • the following describes how the information in the first data packet and the second data packet is carried in combination with different implementations of the first node and the second node.
  • the first node is a first core network element, and the second node is a terminal;
  • the first protocol layer being located above a GTP-U layer
  • the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above an SDAP layer.
  • the first node is the terminal, and the second node is the first core network element
  • the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above a GTP-U layer.
  • the first node is the first core network element, and the second node is a first access network element;
  • the first node is the first access network element, and the second node is the first core network element;
  • the technical solutions of the embodiments of this disclosure further include: the second node acquires a first rule from a second core network element, and reports, based on the first rule, delay information and/or a first notification message obtained through measurement.
  • the first rule on the second core network element side is notified by a third core network element to the second core network element or preconfigured by the second core network element.
  • the first rule herein includes at least one kind of the following:
  • the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node, for example, whether the measurement behavior is triggered by the UPF and/or the UE;
  • the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information
  • third information the third information being used for indicating whether a measurement result is reported for each measurement behavior
  • the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold
  • the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • At least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • the dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • the static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • the first indication information is included in a QoS parameter, and is sent by the second node to the first node through establishing a PDU session and/or an update process.
  • the first indication information is a 5QI parameter in the QoS parameter.
  • jitter (fourth/fifth information) corresponding to the parameter is [ ⁇ 3 ms, +5 ms], that is, the end-to-end delay (between the UPF and the UE) is not lower than (50 ⁇ 3) ms and not higher than (50+5) ms.
  • the second node reports, through an N4 interface, delay information and/or a first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the first notification message is used to indicate that the delay information obtained through measurement exceeds a first delay threshold or is lower than a second delay threshold.
  • the UPF reports the delay information and/or the first notification message to the SMF through the N4 interface, and then the SMF determines whether to report the delay information and/or the first notification message to the PCF.
  • the second node carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface;
  • the second node carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element, the second core network element herein being an SMF, and the SMF forwarding the delay information and/or the first notification message to the PCF; or
  • the second node carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, the first core network element herein being a UPF, and the UPF forwarding the delay information and/or the first notification message to the SMF and/or PCF, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the user plane data packet includes a first data stream data packet and/or a second data packet.
  • a first data stream means that a data packet of a certain data stream is only used for reporting.
  • the UE stores content of the delay information and/or the first notification message in a container, and reports the content to an AMF on the N1 interface through the NAS message, the AMF forwarding the content to the PCF, and the PCF further notifying the content to the SMF (if necessary).
  • the UE directly sends the delay information and/or the first notification message to the AMF through an SM-NAS message, where the AMF forwards content of the SM-NAS to the PCF.
  • the second node When the second node is a first access network element, the second node directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element.
  • the first node reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first node reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • a gNB directly reports the delay information and/or the first notification message to the UPF (a user plane) or SMF (a control plane).
  • FIG. 6 is a schematic flowchart III of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 6 , the information transmission method includes the following step.
  • Step 601 A first node sends a first data packet to a second node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or receiving a second data packet returned by the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • the implementation of the first node and the second node may be as follows.
  • the first node is a first core network element, and the second node is a terminal.
  • the first node is the terminal, and the second node is the first core network element.
  • a 5G communication system for a physical function of each network element, a 5G communication system is used as an example.
  • the first core network element refers to a UPF
  • the second core network element refers to an SMF
  • a third core network element refers to a PCF
  • a fourth core network element refers to an AMF.
  • the first data packet transmitted between the first node and the first access network element carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information
  • the first data packet transmitted between the first access network element and the second node carries at least one kind of the following information: first identification information, second identification information, first sequence number information, first timestamp information, and second timestamp information
  • the first identification information being used for indicating that the first data packet is used for measurement
  • the second identification information being used for indicating that the second node returns a second data packet after receiving the first data packet
  • the first sequence number information being used for identifying the first data packet
  • the first timestamp information being used for indicating information about a time at which the first node sends the first data packet
  • the second timestamp information being used for indicating information about a time at which the first access network element receives the first data packet from the first node and/or information about a time at which the first data packet is sent to the second node.
  • the first sequence number information is, for example, an SN to be used for distinguishing different data packets.
  • the second data packet transmitted between the second node and the first access network element carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, and third timestamp information
  • the second data packet transmitted between the first access network element and the first node carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, third timestamp information, and fourth timestamp information
  • the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information
  • the third timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first access network element and/or information about a time at which the first data packet is received from the first access network element
  • the fourth timestamp information being used for indicating information about a time at which the first access network element sends the second
  • the method further includes:
  • the fifth timestamp information being used for indicating information about a time at which the first node receives the second data packet
  • determining information about a delay between the first node and the first access network element based on the first timestamp information and the second timestamp information or the fourth timestamp information and the fifth timestamp information.
  • the following describes how the information in the first data packet and the second data packet is carried in combination with different implementations of the first node and the second node.
  • the first node is a first core network element, and the second node is a terminal;
  • an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • the first node is the terminal, and the second node is the first core network element
  • an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • the technical solutions of the embodiments of this disclosure further include: the first node acquires a first rule from a second core network element, and reports, based on the first rule, delay information and/or a first notification message obtained through measurement.
  • the first rule on the second core network element side is notified by a third core network element to the second core network element or preconfigured by the second core network element.
  • the first rule herein includes at least one kind of the following:
  • the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node, for example, whether the measurement behavior is triggered by the UPF and/or the UE;
  • the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information
  • third information the third information being used for indicating whether a measurement result is reported for each measurement behavior
  • the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold
  • the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • At least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • the dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • the static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • the first indication information is included in a QoS parameter. Further, the first indication information is a 5QI parameter in the QoS parameter.
  • the first node When the first node is a first core network element, the first node reports, through an N4 interface, delay information and/or a first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the UPF reports the delay information and/or the first notification message to the SMF through the N4 interface, and then the SMF determines whether to report the delay information and/or the first notification message to the PCF.
  • the first node carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface;
  • the first node carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element;
  • the first node carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the user plane data packet herein includes a first data stream data packet and/or a second data packet.
  • the UE stores content of the delay information and/or the first notification message in a container, and reports the content to an AMF on the N1 interface through the NAS message, the AMF forwarding the content to the PCF, and the PCF further notifying the content to the SMF (if necessary).
  • the UE directly sends the delay information and/or the first notification message to the AMF through an SM-NAS message, where the AMF forwards content of the SM-NAS to the PCF.
  • the first access network element directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the first access network element reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first access network element reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • a gNB directly reports the delay information and/or the first notification message to the UPF (a user plane) or SMF (a control plane).
  • the first node When the first node is a terminal, and the second node is the first core network element, the first node sends the delay information and/or the first notification message to the second node through a user plane, and the second node sends the delay information and/or the first notification message to the second core network element and/or a third core network element.
  • a data packet carrying the delay information and/or the first notification message includes second indication information, and the second node sends the delay information and/or the first notification message to the second core network element and/or the third core network element after obtaining the second indication information.
  • a data packet carrying the delay information and/or a first notification message is transmitted through a first data stream and/or a PDU session, and the second node sends, to the second core network element and/or the third core network element, information in the data packet transmitted through the first data stream and/or the PDU session.
  • the first core network element, the first access network element, and the terminal may selectively attach a corresponding timestamp in the first data packet and/or the second data packet.
  • the first core network element, the first access network element, and the terminal may also calculate corresponding delay information according to the timestamp information in the first data packet and/or the second data packet.
  • a timestamp T1 is attached to the UPF in the downlink direction
  • a timestamp T2 is attached to the base station
  • a timestamp T3 is attached to the UE
  • a timestamp T4 is attached to the base station in the returned uplink direction
  • a time received by the UPF is T5
  • FIG. 8 is a schematic flowchart IV of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 8 , the information transmission method includes the following step.
  • Step 801 A second node receives a first data packet sent by a first node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or send a second data packet to the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • the implementation of the first node and the second node may be as follows.
  • the first node is a first core network element, and the second node is a terminal.
  • the first node is the terminal, and the second node is the first core network element.
  • a 5G communication system for a physical function of each network element, a 5G communication system is used as an example.
  • the first core network element refers to a UPF
  • the second core network element refers to an SMF
  • a third core network element refers to a PCF
  • a fourth core network element refers to an AMF.
  • the first data packet transmitted between the first node and the first access network element carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information
  • the first data packet transmitted between the first access network element and the second node carries at least one kind of the following information: first identification information, second identification information, first sequence number information, first timestamp information, and second timestamp information
  • the first identification information being used for indicating that the first data packet is used for measurement
  • the second identification information being used for indicating that the second node returns a second data packet after receiving the first data packet
  • the first sequence number information being used for identifying the first data packet
  • the first timestamp information being used for indicating information about a time at which the first node sends the first data packet
  • the second timestamp information being used for indicating information about a time at which the first access network element receives the first data packet from the first node and/or information about a time at which the first data packet is sent to the second node.
  • the second node after determining that the first data packet carries the first identification information and/or the second identification information and/or the first sequence number information, the second node encapsulates the second data packet and sends the second data packet to the first node via the first access network element.
  • the second data packet transmitted between the second node and the first access network element carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, and third timestamp information
  • the second data packet transmitted between the first access network element and the first node carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, third timestamp information, and fourth timestamp information
  • the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information
  • the third timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first access network element and/or information about a time at which the first data packet is received from the first access network element
  • the fourth timestamp information being used for indicating information about a time at which the first access network element sends the second data
  • the second node determines delay information between the first node and the second node based on the information carried in the first data packet; and/or determines delay information between the second node and the first access network element; and/or determines delay information between the first node and the first access network element.
  • the second node determines delay information between the first node and the second node based on the first timestamp information and the third timestamp information; and/or determines delay information between the second node and the first access network element based on the second timestamp information and the third timestamp information; and/or determines delay information between the first node and the first access network element based on the first timestamp information and the second timestamp information.
  • the following describes how the information in the first data packet and the second data packet is carried in combination with different implementations of the first node and the second node.
  • the first node is a first core network element, and the second node is a terminal;
  • an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • the first node is the terminal, and the second node is the first core network element
  • an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • the technical solutions of the embodiments of this disclosure further include: the second node acquires a first rule from a second core network element, and reports, based on the first rule, delay information and/or a first notification message obtained through measurement.
  • the first rule on the second core network element side is notified by a third core network element to the second core network element or preconfigured by the second core network element.
  • the first rule herein includes at least one kind of the following:
  • the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node, for example, whether the measurement behavior is triggered by the UPF and/or the UE;
  • the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information
  • third information the third information being used for indicating whether a measurement result is reported for each measurement behavior
  • the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold
  • the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • At least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • the dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • the static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • the first indication information is included in a QoS parameter. Further, the first indication information is a 5QI parameter in the QoS parameter.
  • the second node reports, through an N4 interface, delay information and/or a first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the UPF reports the delay information and/or the first notification message to the SMF through the N4 interface, and then the SMF determines whether to report the delay information and/or the first notification message to the PCF.
  • the second node carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface;
  • the second node carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element;
  • the second node carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the user plane data packet herein includes a first data stream data packet and/or a second data packet.
  • the UE stores content of the delay information and/or the first notification message in a container, and reports the content to an AMF on the N1 interface through the NAS message, the AMF forwarding the content to the PCF, and the PCF further notifying the content to the SMF (if necessary).
  • the UE directly sends the delay information and/or the first notification message to the AMF through an SM-NAS message, where the AMF forwards content of the SM-NAS to the PCF.
  • the first access network element directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the first access network element reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first access network element reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • a gNB directly reports the delay information and/or the first notification message to the UPF (a user plane) or SMF (a control plane).
  • the second node sends the delay information and/or the first notification message to the first node through a user plane, and the first node sends the delay information and/or the first notification message to the second core network element and/or a third core network element.
  • a data packet carrying the delay information and/or the first notification message includes second indication information, and the first node sends the delay information and/or the first notification message to the second core network element and/or the third core network element after obtaining the second indication information.
  • a data packet carrying the delay information and/or a first notification message is transmitted through a first data stream and/or a PDU session, and the first node sends, to the second core network element and/or the third core network element, information in the data packet transmitted through the first data stream and/or the PDU session.
  • the first core network element, the first access network element, and the terminal may selectively attach a corresponding timestamp in the first data packet and/or the second data packet.
  • the first core network element, the first access network element, and the terminal may also calculate corresponding delay information according to the timestamp information in the first data packet and/or the second data packet.
  • a timestamp T1 is attached to the UPF in the downlink direction
  • a timestamp T2 is attached to the base station
  • a timestamp T3 is attached to the UE
  • a timestamp T4 is attached to the base station in the returned uplink direction
  • a time received by the UPF is T5
  • FIG. 9 is a schematic flowchart V of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 9 , the information transmission method includes the following step.
  • Step 901 A first node receives first information sent by a second node, and determines a transmission delay requirement based on the first information, the transmission delay requirement including an upper limit requirement and/or a lower limit requirement for a transmission delay.
  • the second node is a first core network element
  • the first node is a terminal or a first access network element (that is, a base station).
  • the receiving, by a first node, first information sent by a second node includes:
  • the transmission requirement and/or the first indication parameter with a QoS rule are/is sent to the first node by the second node.
  • the second node is notified when the first node determines that delay information does not meet the transmission delay requirement.
  • FIG. 10 is a schematic structural diagram I of an information transmission apparatus according to an embodiment of this disclosure.
  • the apparatus is applied to a first node and includes:
  • a transmission unit 1001 configured to send a first data packet to a second node, the first data packet being used for measuring a one-way delay, and/or receiving a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
  • the first data packet carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information, the first identification information being used for indicating that the first data packet is used for measurement, the second identification information being used for indicating that the second node returns the second data packet after receiving the first data packet, the first sequence number information being used for identifying the first data packet, and the first timestamp information being used for indicating information about a time at which the first node sends the first data packet.
  • the second data packet carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, and second timestamp information, the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
  • the apparatus further includes:
  • a processing unit 1002 configured to determine information about a delay between the first node and the second node based on the first timestamp information and third timestamp information, the third timestamp information being used for indicating information about a time at which the first node receives the second data packet; and/or determine information about a delay between the first node and the second node based on the first timestamp information and the second timestamp information or the third timestamp information and the second timestamp information.
  • the first node is a first core network element, and the second node is a terminal;
  • the first protocol layer being located above a GTP-U layer
  • the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above an SDAP layer.
  • the first node is the terminal, and the second node is the first core network element
  • the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above a GTP-U layer.
  • the first node is the first core network element, and the second node is a first access network element;
  • the first node is the first access network element, and the second node is the first core network element;
  • the apparatus further includes:
  • an acquiring unit 1003 configured to acquire a first rule from a second core network element
  • a reporting unit 1004 configured to report, based on the first rule, delay information and/or a first notification message obtained through measurement.
  • the first rule includes at least one kind of the following:
  • the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node;
  • the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information
  • third information the third information being used for indicating whether a measurement result is reported for each measurement behavior
  • the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold
  • the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • At least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • the dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • the static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • the first indication information is included in a QoS parameter. Further, the first indication information is a 5QI parameter in the QoS parameter.
  • the first node when the first node is a first core network element,
  • the reporting unit 1004 reports, through an N4 interface, the delay information and/or the first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface; or
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element; or
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the user plane data packet includes a first data stream data packet and/or a second data packet.
  • the first node when the first node is a first access network element,
  • the reporting unit 1004 directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the reporting unit 1004 reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or
  • the reporting unit 1004 reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • the apparatus is applied to a first node and includes:
  • a transmission unit 1001 configured to send a first data packet to a second node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or receiving a second data packet returned by the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • the first data packet transmitted between the first node and the first access network element carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information; and the first data packet transmitted between the first access network element and the second node carries at least one kind of the following information: first identification information, second identification information, first sequence number information, first timestamp information, and second timestamp information;
  • the first identification information is used for indicating that the first data packet is used for measurement; the second identification information is used for indicating that the second node returns a second data packet after receiving the first data packet, the first sequence number information is used for identifying the first data packet, the first timestamp information is used for indicating information about a time at which the first node sends the first data packet, and the second timestamp information is used for indicating information about a time at which the first access network element receives the first data packet from the first node and/or information about a time at which the first data packet is sent to the second node.
  • the second data packet transmitted between the second node and the first access network element carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, and third timestamp information; and the second data packet transmitted between the first access network element and the first node carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, third timestamp information, and fourth timestamp information;
  • the second sequence number information is used for identifying the second data packet
  • the second sequence number information is the same as the first sequence number information or has a correspondence with the first sequence number information
  • the third timestamp information is used for indicating information about a time at which the second node sends the second data packet to the first access network element and/or information about a time at which the first data packet is received from the first access network element
  • the fourth timestamp information is used for indicating information about a time at which the first access network element sends the second data packet to the first node and/or information about a time at which the second data packet is received from the second node.
  • the apparatus further includes:
  • a processing unit 1002 configured to: determine information about a delay between the first node and the second node based on the first timestamp information and fifth timestamp information, the fifth timestamp information being used for indicating information about a time at which the first node receives the second data packet; and/or determine information about a delay between the first node and the second node based on the first timestamp information and the third timestamp information or the fifth timestamp information and the third timestamp information; and/or determine information about a delay between the second node and the first access network element based on the second timestamp information and the third timestamp information or the third timestamp information and the fourth timestamp information; and/or information about a delay between the first node and the first access network element based on the first timestamp information and the second timestamp information or the fourth timestamp information and the fifth timestamp information.
  • the first node is a first core network element, and the second node is a terminal;
  • the first node is the terminal, and the second node is the first core network element
  • the apparatus further includes:
  • an acquiring unit 1003 configured to acquire a first rule from a second core network element
  • a reporting unit 1004 configured to report, based on the first rule, delay information and/or a first notification message obtained through measurement.
  • the first rule includes at least one kind of the following:
  • the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node;
  • the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information
  • third information the third information being used for indicating whether a measurement result is reported for each measurement behavior
  • the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold
  • the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • At least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • the dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • the static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • the first indication information is included in a QoS parameter. Further, the first indication information is a 5QI parameter in the QoS parameter.
  • the first node when the first node is a first core network element,
  • the reporting unit 1004 reports, through an N4 interface, the delay information and/or the first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element; or
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the user plane data packet includes a first data stream data packet and/or a second data packet.
  • the first access network element directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • the first access network element reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first access network element reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • the reporting unit 1004 sends the delay information and/or the first notification message to the second node through a user plane, and the second node sends the delay information and/or the first notification message to the second core network element and/or a third core network element.
  • a data packet carrying the delay information and/or the first notification message includes second indication information
  • the second node sends the delay information and/or the first notification message to the second core network element and/or the third core network element after obtaining the second indication information.
  • a data packet carrying the delay information and/or a first notification message is transmitted through a first data stream and/or a PDU session, and the second node sends, to the second core network element and/or the third core network element, information in the data packet transmitted through the first data stream and/or the PDU session.
  • FIG. 11 is a schematic structural diagram II of an information transmission apparatus according to an embodiment of this disclosure.
  • the apparatus is applied to a first node and includes:
  • a determining unit 1101 configured to receive first information sent by a second node, and determine a transmission delay requirement based on the first information, the transmission delay requirement including an upper limit requirement and/or a lower limit requirement for a transmission delay.
  • the determining unit 1101 is configured to: receive the transmission delay requirement from the second node; or store a correspondence between the transmission delay requirement and a first indication parameter, and determine a transmission delay requirement corresponding to the first indication parameter after receiving the first indication parameter.
  • the second node is a first core network element
  • the first node is a terminal or a first access network element
  • the transmission requirement and/or the first indication parameter with a QoS rule are/is sent to the first node by the second node.
  • the apparatus further includes:
  • a notifying unit 1102 configured to notify the second node when it is determined that delay information does not meet the transmission delay requirement.
  • An embodiment of this disclosure further provides an information transmission method, including: acquiring, by a first node, first information from a core network, the first information being used to determine a first delay threshold and a second delay threshold; and controlling, by the first node, a transmission delay between the first node and a second node to be between the first delay threshold and the second delay threshold.
  • the first information includes a first delay offset and a second delay offset, the first delay threshold being determined based on the first delay offset and reference delay information, and the second delay threshold being determined based on the second delay offset and the reference delay information.
  • the first information includes a first delay offset and a second delay offset.
  • the first node receives the first delay threshold and/or the second delay threshold sent by a second core network element.
  • the first node is a first access network element (such as a base station) or a terminal.
  • the second core network element is an SMF.
  • the second node may be any network element different from the first node.
  • an embodiment of this application further provides an information transmission apparatus applied to a first node, the apparatus including:
  • an acquiring unit configured to acquire first information from a core network, the first information being used to determine a first delay threshold and a second delay threshold;
  • a processing unit configured to control a transmission delay between the first node and a second node to be between the first delay threshold and the second delay threshold.
  • the first information includes a first delay offset and a second delay offset, the first delay threshold being determined based on the first delay offset and reference delay information, and the second delay threshold being determined based on the second delay offset and the reference delay information.
  • the acquiring unit is configured to receive, during establishment or modification of a PDU session, the first delay threshold and/or the second delay threshold sent by the second core network element.
  • the first node is a first access network element or a terminal.
  • FIG. 12 is a schematic structural diagram of a communication device 600 according to an embodiment of the present disclosure.
  • the communication device may be a terminal device or a network device.
  • the communication device 600 shown in FIG. 12 includes a processor 610 .
  • the processor 610 may invoke and run a computer program from a memory to implement the method in the embodiment of the present disclosure.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may invoke and run the computer program from the memory 620 to implement the method in the embodiment of the present disclosure.
  • the memory 620 may be a single device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630 , and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive information or data sent by the other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and a quantity of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to the embodiment of the present disclosure, and the communication device 600 may implement a corresponding procedure implemented by the network device in each method of the embodiment of the present disclosure.
  • the communication device 600 may implement a corresponding procedure implemented by the network device in each method of the embodiment of the present disclosure.
  • details are not described herein again.
  • the communication device 600 may specifically be a mobile terminal/terminal device according to the embodiment of the present disclosure, and the communication device 600 may implement a corresponding procedure implemented by the mobile terminal/terminal device in each method of the embodiment of the present disclosure.
  • the communication device 600 may implement a corresponding procedure implemented by the mobile terminal/terminal device in each method of the embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • the chip 700 shown in FIG. 13 includes a processor 710 , and the processor 710 can invoke and run a computer program from a memory to implement the method in the embodiment of the present disclosure.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may invoke and run the computer program from the memory 720 to implement the method in the embodiment of the present disclosure.
  • the memory 720 may be a single device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present disclosure, and the chip may implement the corresponding procedure implemented by the network device in each method of the embodiment of the present disclosure.
  • the chip may implement the corresponding procedure implemented by the network device in each method of the embodiment of the present disclosure.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present disclosure, and the chip can implement the corresponding procedure implemented by the mobile terminal/terminal device in each method of the embodiments of the present disclosure.
  • the chip can implement the corresponding procedure implemented by the mobile terminal/terminal device in each method of the embodiments of the present disclosure.
  • the chip mentioned in the embodiments of the present disclosure may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 14 is a schematic block diagram of a communication system 900 according to an embodiment of the present disclosure. As shown in FIG. 14 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor in the embodiment of the present disclosure may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM synchronous connection dynamic random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the memory in the embodiment of the present disclosure may also be a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDR SDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous connection dynamic random access memory (SLDRAM), and a direct memory bus random access memory (DR RAM), etc.
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • DR RAM direct memory bus random access memory
  • An embodiment of the present disclosure further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present disclosure, and the computer program enables the computer to execute the corresponding procedure implemented by the network device in each method in the embodiment of the present disclosure.
  • the computer program enables the computer to execute the corresponding procedure implemented by the network device in each method in the embodiment of the present disclosure.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal device in the embodiment of the present disclosure, and the computer program enables the computer to execute a corresponding procedure implemented by the mobile terminal/terminal device in each method in the embodiment of the present disclosure.
  • the computer program enables the computer to execute a corresponding procedure implemented by the mobile terminal/terminal device in each method in the embodiment of the present disclosure.
  • An embodiment of the present disclosure further provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present disclosure, and the computer program instruction enables the computer to execute a corresponding procedure implemented by the network device in each method in the embodiment of the present disclosure.
  • the computer program instruction enables the computer to execute a corresponding procedure implemented by the network device in each method in the embodiment of the present disclosure.
  • the computer program product may be applied to a mobile terminal/terminal device in the embodiments of the present disclosure, and the computer program instructions enable the computer to execute a corresponding procedure implemented by the mobile terminal/terminal device in each method in the embodiments of the present disclosure, For brevity, details are not described herein again.
  • the embodiment of the present disclosure further provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present disclosure.
  • the computer program When the computer program is run on a computer, the computer is enabled to execute a corresponding procedure implemented by the network device in each method in the embodiment of the present disclosure.
  • the computer program For brevity, details are not described herein again.
  • the computer program may be applied to a mobile terminal/terminal device in the embodiment of the present disclosure.
  • the computer program When the computer program is run on a computer, the computer is enabled to execute each method in the embodiment of the disclosure by the mobile terminal/terminal device.
  • the mobile terminal/terminal device For brevity, details are not described herein again.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only exemplary.
  • the division of the unit is only a logical function division.
  • a plurality of units or components may be combined or may be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on a plurality of network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the technical solution of the present disclosure is essentially a part that contributes to the prior art or a part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including several instructions that are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present disclosure.
  • the foregoing storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or optical disks, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

An information transmission method and apparatus are provided. The method comprises: a first node sends a first data packet to a second node, the first data packet carrying at least one of the following information: first identifier information, first sequence number information, and first timestamp information, wherein the first identifier information is used for instructing the second node returns a second data packet after receiving the first data packet; the first sequence number information is used for identifying the first data packet; and the first timestamp information is used for instructing the first node to send time information of the first data packet.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a continuation application of U.S. application Ser. No. 17/156,440 filed on Jan. 22, 2021, which is a continuation of International Patent Application No. PCT/CN2018/099263 filed on Aug. 7, 2018, the contents of which are hereby incorporated by reference in their entirety.
  • BACKGROUND
  • Ultra-reliable and low latency communication (URLLC) is an important communication method in the future, of which requirements for an end-to-end communication delay are generally in the millisecond level. A URLLC transmission delay mainly consists of two parts, that is, a transmission delay of an air interface and a transmission delay of a core network. A transmission delay from the core network to an external network is generally not defined. However, during delay measurement, the most valuable and practical method is to measure only a delay between a terminal and the core network. How to accurately measure the delay between the terminal and the core network is a problem to be resolved.
  • SUMMARY
  • Embodiments of this disclosure relate to the field of mobile communication technologies, and in particular, to an information transmission method and apparatus.
  • An information transmission method provided in an embodiment of this disclosure includes:
  • sending, by a first node, a first data packet to a second node, the first data packet being used for measuring a one-way delay, and/or receiving a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
  • The information transmission method provided in the embodiment of this disclosure includes:
  • sending, by a first node, a first data packet to a second node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or receiving a second data packet returned by the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • The information transmission method provided in the embodiment of this disclosure includes:
  • receiving, by a first node, first information sent by a second node, and determining a transmission delay requirement based on the first information, the transmission delay requirement including an upper limit requirement and/or a lower limit requirement for a transmission delay.
  • An information transmission apparatus provided in an embodiment of this disclosure and applied to a first node, the apparatus including:
  • a transmission unit configured to send a first data packet to a second node, the first data packet being used for measuring a one-way delay, and/or receiving a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
  • An information transmission apparatus provided in the embodiment of this disclosure and applied to a first node, the apparatus including:
  • a transmission unit configured to send a first data packet to a second node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or receiving a second data packet returned by the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • An information transmission apparatus provided in the embodiment of this disclosure and applied to a first node, the apparatus including:
  • a determining unit configured to receive first information sent by a second node, and determine a transmission delay requirement based on the first information, the transmission delay requirement including an upper limit requirement and/or a lower limit requirement for a transmission delay.
  • The information transmission method provided in the embodiment of this disclosure includes:
  • acquiring, by a first node, first information from a core network, the first information being used to determine a first delay threshold and a second delay threshold; and controlling, by the first node, a transmission delay between the first node and a second node to be between the first delay threshold and the second delay threshold.
  • The information transmission apparatus provided in the embodiment of this disclosure includes:
  • an acquiring unit configured to acquire first information from a core network, the first information being used to determine a first delay threshold and a second delay threshold; and
  • a processing unit configured to control a transmission delay between the first node and a second node to be between the first delay threshold and the second delay threshold.
  • A communication device provided in an embodiment of this disclosure includes a processor and a memory. The memory is configured to store a computer program, and the processor is configured to call and run the computer program stored in the memory to perform the foregoing information transmission method.
  • A chip provided in an embodiment of this disclosure is configured to implement the foregoing information transmission method.
  • Specifically, the chip includes a processor for calling and running a computer program from a memory, so that a device installed with the chip performs the foregoing information transmission method.
  • A computer-readable storage medium provided in an embodiment of this disclosure is configured to store a computer program, the computer program causing a computer to perform the foregoing information transmission method.
  • A computer program product provided in an embodiment of this disclosure includes a computer program instruction, the computer program instruction causing a computer to perform the foregoing information transmission method.
  • A computer program provided in an embodiment of this disclosure causes, when running on a computer, the computer to perform the foregoing information transmission method.
  • According to the technical solution of the embodiment of this disclosure, a new protocol layer (that is, a first protocol layer) is established between the terminal and the core network, and information in the protocol layer is used to complete delay measurement; or an SDAP layer protocol and/or a PDCP layer protocol are/is extended between a base station and the terminal, and the information in the protocol layer is used to complete the delay measurement. Therefore, delays of different paths may be measured dynamically.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings described here are used to provide a further understanding of the present disclosure and constitute a part of the present disclosure. The schematic embodiments of the present disclosure and the description thereof are used to explain the present disclosure, and do not constitute an improper limitation on the present disclosure. In the accompanying drawings:
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of this disclosure;
  • FIG. 2 is a schematic diagram of a delay according to an embodiment of this disclosure;
  • FIG. 3 is a schematic flowchart I of an information transmission method according to an embodiment of this disclosure;
  • FIG. 4 is a schematic diagram I of a user plane protocol stack according to an embodiment of this disclosure;
  • FIG. 5 is a schematic flowchart II of an information transmission method according to an embodiment of this disclosure;
  • FIG. 6 is a schematic flowchart III of an information transmission method according to an embodiment of this disclosure;
  • FIG. 7 is a schematic diagram II of a user plane protocol stack according to an embodiment of this disclosure;
  • FIG. 8 is a schematic flowchart IV of an information transmission method according to an embodiment of this disclosure;
  • FIG. 9 is a schematic flowchart V of an information transmission method according to an embodiment of this disclosure;
  • FIG. 10 is a schematic structural diagram I of an information transmission apparatus according to an embodiment of this disclosure;
  • FIG. 11 is a schematic structural diagram II of an information transmission apparatus according to an embodiment of this disclosure;
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of this disclosure;
  • FIG. 13 is a schematic structural diagram of a chip according to an embodiment of this disclosure; and
  • FIG. 14 is a schematic block diagram of a communication system according to an embodiment of this disclosure.
  • DETAILED DESCRIPTION
  • The technical solutions in the embodiments of the present disclosure will be described below with reference to the accompanying drawings in the embodiments of the present disclosure. Obviously, the described embodiments are part of the embodiments of the present disclosure, but not all of the embodiments. Based on the embodiments in the present disclosure, all other embodiments obtained by a person of ordinary skill in the art without creative efforts shall fall within the protection scope of the present disclosure.
  • The technical solutions in the embodiments of the present disclosure can be applied to various communication systems, for example, a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, and a wideband code division multiple access (WCDMA) system, a general packet radio service (GPRS), a long term evolution (LTE) system, an LTE frequency division duplex (FDD) system, an LTE time division duplex (TDD), a universal Mobile telecommunication system (UMTS), a worldwide interoperability for microwave access (WiMAX) communication system or a 5G system, etc.
  • For example, a communication system 100 applied in the embodiment of this disclosure is shown in FIG. 1 . The communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or a terminal). The network device 110 may provide communication coverage for a specific geographic area, and may communicate with a terminal device located in the coverage area. Optionally, the network device 110 may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a NodeB (NB) in a WCDMA system, or an evolved Node B (eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (CRAN), or the network device may be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, a network device in a public land mobile network (PLMN) that evolves in the future, or the like.
  • The communication system 100 further includes at least one terminal device 120 located within the coverage area of the network device 110. The “terminal device” used herein includes, but is not limited to, connection via a wired line such as a public switched telephone network (PSTN), a digital subscriber line (DSL), a digital cable, and a direct cable; and/or another data connection/network; and/or connection via a wireless interface, such as for a cellular network, a wireless local area network (WLAN), a digital television network such as a DVB-H network, a satellite network, an AM-FM broadcast transmitter; and/or another terminal device configured to receive/send a communication signal; and/or an Internet of Things (IoT) device. A terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”. An example of the mobile terminal includes, but is not limited to, a satellite or cellular phone; a personal communications system (PCS) terminal that can combine a cellular radiotelephone with data processing, facsimile, and data communications capabilities; may include a radiotelephone, a pager, Internet/Intranet access, a web browser, a notepad, a calendar, and/or a PDA of the Global Positioning System (GPS) receiver; and a conventional laptop and/or palm-type receiver or other electronic apparatuses including a radiotelephone transceiver. The terminal device may be an access terminal, a user equipment (UE), a user unit, a subscriber station, a mobile station, a mobile console, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user apparatus. The access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device with a wireless communication function, a computing device, or other processing devices connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a 5G network, or a network device in the PLMN that evolves in the future.
  • Optionally, device-to-device (D2D) communication may be performed between the terminal devices 120.
  • Optionally, the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • FIG. 1 exemplarily shows one network device and two terminal devices. Optionally, the communication system 100 may include a plurality of network devices, and the coverage area of each network device may include other numbers of terminal devices, which is not limited in the embodiment of this disclosure.
  • Optionally, the communication system 100 may further include other network entities such as a network controller, a mobility management entity and the like, which is not limited in the embodiment of this disclosure.
  • It should be understood that the device having a communication function in the network/system in the embodiments of this disclosure may be referred to as a communication device. The communication system 100 shown in FIG. 1 is used as an example. The communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again. The communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, and the like, which is not limited in the embodiment of this disclosure.
  • It should be understood that the terms “system” and “network” are often used interchangeably herein. The term “and/or” in this paper is merely an association relationship describing related objects, which means that there may be three relationships, for example, A and/or B may indicate three cases: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character “/” in this paper generally indicates that the related objects are in an “or” relationship.
  • In order to facilitate understanding of the technical solutions of the embodiments of this disclosure, related technologies of the embodiments of this disclosure are described below.
  • Referring to FIG. 2 , a transmission delay mainly consists of two parts, that is, a transmission delay t1 of an air interface and a transmission delay t2 of a core network. A transmission delay from the core network to an external network is generally not defined.
  • At present, a URLLC transmission delay is generally in the millisecond level, such as 1 ms, 5 ms, 10 ms, and so on. The delay t1 of the air interface is currently specified as 1 ms, 10 ms, etc., while the transmission delay of the core network includes 1 ms, 2 ms, 5 ms, and the like. It may be learned that the delay of the air interface generally has different levels, and is not flexibly specified to 1 ms, 1.1 ms, 1.2 ms and so on. For example, if the transmission delay of URLLC is 5 ms and t2=4 ms, then t1 must be 1 ms; but if t2 is now 3.5 ms, then t1 may be extended to 1.5 ms, which does not make much sense for air interface design, because the transmission delay of the air interface is either 1 ms or 10 ms, 1.5 ms cannot be ensured.
  • According to the foregoing characteristics, the most valuable and practical method for measuring a delay is to measure only the delay between the UE and the core network without measuring t1 and t2. If t1 and t2 are measured specifically, there may be the following two questions.
  • 1. As mentioned in the previous paragraph, this does not make much sense. Even if t1 is extended by less than 1 ms, the delay of the air interface still needs to follow the requirement of 1 ms.
  • 2. Measurement may bring in additional processing and destroy accuracy of the measurement. During the measurement, a base station needs to perform additional processing actions (for example, attaching a timestamp, calculating the difference between the last timestamp and the current time) on the measured data packet. In addition, strict time synchronization is further required, which is difficult to realize.
  • Since the URLLC experiment is in a low level (millisecond level), any error in the additional processing action or a smile may affect the accuracy and value of the measurement.
  • In general, there are two methods for calculating a delay from a CN gateway to the UE.
  • 1. The CN gateway sends a data packet to the UE, and measures a round-trip time of the data packet, where t=round-trip delay/2.
  • 2. The CN gateway attaches a timestamp t01 when sending the data packet, and when the UE calculates t=t02−t01 according to the time t02 when receiving the data packet.
  • Because the delay t2 is generally set to a fixed value, such as 1 ms, 2 ms, 5 ms, t1=t/set t2, or t1=T1 (a UPF timestamp)−T2 (a UE timestamp) is simply calculated. In this way, it may be estimated whether there is a qualitative change at the time t1, otherwise only a change of less than 1 ms does not require any change on the RAN side.
  • FIG. 3 is a schematic flowchart I of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 3 , the information transmission method includes the following step.
  • Step 301: A first node sends a first data packet to a second node, the first data packet being used for measuring a one-way delay, and/or receiving a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
  • In the embodiment of this disclosure, the implementation of the first node and the second node may be as follows.
  • (1) The first node is a first core network element, and the second node is a terminal;
  • (2) The first node is the terminal, and the second node is the first core network element;
  • (3) The first node is the first core network element, and the second node is a first access network element; and
  • (4) The first node is the first access network element, and the second node is the first core network element.
  • In the embodiment of this disclosure, for a physical function of each network element, a 5G communication system is used as an example. The first core network element refers to a UPF, the second core network element refers to an SMF, a third core network element refers to a PCF, and a fourth core network element refers to an AMF.
  • In the embodiment of this disclosure, the first data packet carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information, the first identification information being used for indicating that the first data packet is used for measurement, the second identification information being used for indicating that the second node returns the second data packet after receiving the first data packet, the first sequence number information being used for identifying the first data packet, and the first timestamp information being used for indicating information about a time at which the first node sends the first data packet.
  • In the embodiment of this disclosure, the first sequence number information is, for example, an SN to be used for distinguishing different data packets.
  • In the embodiment of this disclosure, the first data packet sent by the first node to the second node may carry the first identification information and/or the second identification information. The second node identifies the first identification information after receiving the first data packet, considers that the first data packet is used for measurement, and immediately returns the second data packet when the second identification information is identified. The first node may calculate information about a round-trip delay between the two nodes according to first timestamp information of sending the first data packet and third timestamp information of receiving the second data packet, and information about the one-way delay may be obtained through dividing the information about the round-trip delay by 2.
  • In the embodiment of this disclosure, the first data packet sent by the first node to the second node may carry the first sequence number information. A function of the first sequence number information may be to identify the first data packet, and may also have a same function as the first identification information. The second node identifies the first sequence number information after receiving the first data packet, and immediately returns the second data packet. The first node may calculate information about a round-trip delay between the two nodes according to first timestamp information of sending the first data packet and third timestamp information of receiving the second data packet, and information about the one-way delay may be obtained through dividing the information about the round-trip delay by 2.
  • In the embodiment of this disclosure, the first data packet sent by the first node to the second node may carry the first timestamp information of sending the first data packet. After receiving the first data packet, the second node may calculate information about the one-way delay between the two nodes according to the first timestamp information of sending the first data packet and second timestamp information of receiving the first data packet.
  • In the embodiment of this disclosure, the first data packet sent by the first node to the second node may carry any one or more of the foregoing three kinds of information.
  • In an implementation, the second data packet carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, and second timestamp information, the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
  • In the embodiment of this disclosure, the second data packet sent by the second node to the first node may carry any one or more of the foregoing three kinds of information.
  • In an implementation, after the first node receives the second data packet sent by the second node, the method further includes:
  • determining information about a delay between the first node and the second node based on the first timestamp information and third timestamp information, the third timestamp information being used for indicating information about a time at which the first node receives the second data packet; and/or
  • determining information about a delay between the first node and the second node based on the first timestamp information and the second timestamp information or the third timestamp information and the second timestamp information.
  • The following describes how the information in the first data packet and the second data packet is carried in combination with different implementations of the first node and the second node.
  • (1) The first node is a first core network element, and the second node is a terminal;
  • information carried in the first data packet being added through a first protocol layer of the first node, the first protocol layer being located above a GTP-U layer; and
  • information carried in the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above an SDAP layer.
  • Referring to FIG. 4 , the first protocol layer is a new protocol layer, and the first data packet is transparently transmitted through a 5G-AN, that is, the 5G-AN does not perceive the new protocol layer of the first data packet.
  • (2) The first node is the terminal, and the second node is the first core network element;
  • information carried in the first data packet being added through a first protocol layer of the first node, the first protocol layer being located above an SDAP layer; and
  • information carried in the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above a GTP-U layer.
  • Referring to FIG. 4, the first protocol layer is a new protocol layer, and the first data packet is transparently transmitted through a 5G-AN, that is, the 5G-AN does not perceive the new protocol layer of the first data packet.
  • (3) The first node is the first core network element, and the second node is a first access network element;
  • information carried in the first data packet being added through a GTP-U layer of the first node; and
  • information carried in the second data packet being added through a GTP-U layer of the second node.
  • (4) The first node is the first access network element, and the second node is the first core network element;
  • information carried in the first data packet being added through a GTP-U layer of the first node; and
  • information carried in the second data packet being added through a GTP-U layer of the second node.
  • Referring to FIG. 4 , an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • The technical solutions of the embodiments of this disclosure further include: the first node acquires a first rule from a second core network element, and reports, based on the first rule, delay information and/or a first notification message obtained through measurement. The first rule on the second core network element side is notified by a third core network element to the second core network element or preconfigured by the second core network element.
  • The first rule herein includes at least one kind of the following:
  • first information, the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node, for example, whether the measurement behavior is triggered by the UPF and/or the UE;
  • second information, the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information;
  • third information, the third information being used for indicating whether a measurement result is reported for each measurement behavior;
  • fourth information, the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold; and
  • fifth information, the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • In the embodiment of this disclosure, at least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • The dynamic manner means that the first node receives complete content of at least one kind of information in the first rule; for example, the first node receives at least one kind of information in a QoS rule and the first rule together.
  • The static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • Further, the first indication information is included in a QoS parameter, and is sent by the second node to the first node through establishing a PDU session and/or an update process. For example, the first indication information is a 5QI parameter in the QoS parameter. For example, when the QoS parameter is delivered to the base station and the UE, 5QI=3 in the QoS parameter, that is, an end-to-end delay is 50 ms, and jitter (fourth/fifth information) corresponding to the parameter is [−3 ms, +5 ms], that is, the end-to-end delay (between the UPF and the UE) is not lower than (50−3) ms and not higher than (50+5) ms.
  • (1) When the first node is a first core network element,
  • the first node reports, through an N4 interface, delay information and/or a first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule. For example, the first notification message is used to indicate that the delay information obtained through measurement exceeds a first delay threshold or is lower than a second delay threshold.
  • Specifically, the UPF reports the delay information and/or the first notification message to the SMF through the N4 interface, and then the SMF determines whether to report the delay information and/or the first notification message to the PCF.
  • (2) When the first node is a terminal,
  • the first node carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface; or
  • the first node carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element, the second core network element herein being an SMF, and the SMF forwarding the delay information and/or the first notification message to the PCF; or
  • the first node carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, the first core network element herein being a UPF, and the UPF forwarding the delay information and/or the first notification message to the SMF and/or PCF, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • In the foregoing solution, the user plane data packet includes a first data stream data packet and/or a second data packet. A first data stream means that a data packet of a certain data stream is only used for reporting.
  • Specifically, the UE stores content of the delay information and/or the first notification message in a container, and reports the content to an AMF on the N1 interface through the NAS message, the AMF forwarding the content to the PCF, and the PCF further notifying the content to the SMF (if necessary). Alternatively, the UE directly sends the delay information and/or the first notification message to the AMF through an SM-NAS message, where the AMF forwards content of the SM-NAS to the PCF.
  • (3) When the first node is a first access network element, the first node directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • Herein, the first node reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first node reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element. Specifically, a gNB directly reports the delay information and/or the first notification message to the UPF (a user plane) or SMF (a control plane).
  • FIG. 5 is a schematic flowchart II of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 5 , the information transmission method includes the following step.
  • Step 501: A second node receives a first data packet sent by a first node, the first data packet being used for measuring a one-way delay, and/or sends a second data packet to the second node, the second data packet being used for measuring a round-trip delay.
  • In the embodiment of this disclosure, the implementation of the first node and the second node may be as follows.
  • (1) The first node is a first core network element, and the second node is a terminal;
  • (2) The first node is the terminal, and the second node is the first core network element;
  • (3) The first node is the first core network element, and the second node is a first access network element; and
  • (4) The first node is the first access network element, and the second node is the first core network element.
  • In the embodiment of this disclosure, for a physical function of each network element, a 5G communication system is used as an example. The first core network element refers to a UPF, the second core network element refers to an SMF, a third core network element refers to a PCF, and a fourth core network element refers to an AMF.
  • In the embodiment of this disclosure, the first data packet carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information, the first identification information being used for indicating that the first data packet is used for measurement, the second identification information being used for indicating that the second node returns the second data packet after receiving the first data packet, the first sequence number information being used for identifying the first data packet, and the first timestamp information being used for indicating information about a time at which the first node sends the first data packet.
  • In the embodiment of this disclosure, the first data packet sent by the first node to the second node may carry any one or more of the foregoing three kinds of information.
  • In the embodiment of this disclosure, the second data packet carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, and second timestamp information, the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
  • In the embodiment of this disclosure, the second data packet sent by the second node to the first node may carry any one or more of the foregoing three kinds of information.
  • In an implementation, after receiving the first data packet sent by the first node, the second node determines information about a delay between the first node and the second node based on the first timestamp information and the second timestamp information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
  • The following describes how the information in the first data packet and the second data packet is carried in combination with different implementations of the first node and the second node.
  • (1) The first node is a first core network element, and the second node is a terminal;
  • information carried in the first data packet being added through a first protocol layer of the first node, the first protocol layer being located above a GTP-U layer; and
  • information carried in the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above an SDAP layer.
  • (2) The first node is the terminal, and the second node is the first core network element;
  • information carried in the first data packet being added through a first protocol layer of the first node, the first protocol layer being located above an SDAP layer; and
  • information carried in the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above a GTP-U layer.
  • (3) The first node is the first core network element, and the second node is a first access network element;
  • information carried in the first data packet being added through a GTP-U layer of the first node; and
  • information carried in the second data packet being added through a GTP-U layer of the second node.
  • (4) The first node is the first access network element, and the second node is the first core network element;
  • information carried in the first data packet being added through a GTP-U layer of the first node; and
  • information carried in the second data packet being added through a GTP-U layer of the second node.
  • The technical solutions of the embodiments of this disclosure further include: the second node acquires a first rule from a second core network element, and reports, based on the first rule, delay information and/or a first notification message obtained through measurement. The first rule on the second core network element side is notified by a third core network element to the second core network element or preconfigured by the second core network element.
  • The first rule herein includes at least one kind of the following:
  • first information, the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node, for example, whether the measurement behavior is triggered by the UPF and/or the UE;
  • second information, the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information;
  • third information, the third information being used for indicating whether a measurement result is reported for each measurement behavior;
  • fourth information, the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold; and
  • fifth information, the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • In the embodiment of this disclosure, at least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • The dynamic manner means that the first node receives complete content of at least one kind of information in the first rule; and
  • The static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • Further, the first indication information is included in a QoS parameter, and is sent by the second node to the first node through establishing a PDU session and/or an update process. For example, the first indication information is a 5QI parameter in the QoS parameter. For example, when the QoS parameter is delivered to the base station and the UE, 5QI=3 in the QoS parameter, that is, an end-to-end delay is 50 ms, and jitter (fourth/fifth information) corresponding to the parameter is [−3 ms, +5 ms], that is, the end-to-end delay (between the UPF and the UE) is not lower than (50−3) ms and not higher than (50+5) ms.
  • (1) When the second node is a first core network element,
  • the second node reports, through an N4 interface, delay information and/or a first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • For example, the first notification message is used to indicate that the delay information obtained through measurement exceeds a first delay threshold or is lower than a second delay threshold.
  • Specifically, the UPF reports the delay information and/or the first notification message to the SMF through the N4 interface, and then the SMF determines whether to report the delay information and/or the first notification message to the PCF.
  • (2) When the second node is a terminal,
  • the second node carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface; or
  • the second node carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element, the second core network element herein being an SMF, and the SMF forwarding the delay information and/or the first notification message to the PCF; or
  • the second node carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, the first core network element herein being a UPF, and the UPF forwarding the delay information and/or the first notification message to the SMF and/or PCF, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • In the foregoing solution, the user plane data packet includes a first data stream data packet and/or a second data packet. A first data stream means that a data packet of a certain data stream is only used for reporting.
  • Specifically, the UE stores content of the delay information and/or the first notification message in a container, and reports the content to an AMF on the N1 interface through the NAS message, the AMF forwarding the content to the PCF, and the PCF further notifying the content to the SMF (if necessary). Alternatively, the UE directly sends the delay information and/or the first notification message to the AMF through an SM-NAS message, where the AMF forwards content of the SM-NAS to the PCF.
  • (3) When the second node is a first access network element, the second node directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element.
  • Herein, the first node reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first node reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element. Specifically, a gNB directly reports the delay information and/or the first notification message to the UPF (a user plane) or SMF (a control plane).
  • FIG. 6 is a schematic flowchart III of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 6 , the information transmission method includes the following step.
  • Step 601: A first node sends a first data packet to a second node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or receiving a second data packet returned by the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • In the embodiment of this disclosure, the implementation of the first node and the second node may be as follows.
  • (1) The first node is a first core network element, and the second node is a terminal.
  • (2) The first node is the terminal, and the second node is the first core network element.
  • In the embodiment of this disclosure, for a physical function of each network element, a 5G communication system is used as an example. The first core network element refers to a UPF, the second core network element refers to an SMF, a third core network element refers to a PCF, and a fourth core network element refers to an AMF.
  • In the embodiment of this disclosure, the first data packet transmitted between the first node and the first access network element carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information, and the first data packet transmitted between the first access network element and the second node carries at least one kind of the following information: first identification information, second identification information, first sequence number information, first timestamp information, and second timestamp information; the first identification information being used for indicating that the first data packet is used for measurement; the second identification information being used for indicating that the second node returns a second data packet after receiving the first data packet, the first sequence number information being used for identifying the first data packet, the first timestamp information being used for indicating information about a time at which the first node sends the first data packet, and the second timestamp information being used for indicating information about a time at which the first access network element receives the first data packet from the first node and/or information about a time at which the first data packet is sent to the second node.
  • In the embodiment of this disclosure, the first sequence number information is, for example, an SN to be used for distinguishing different data packets.
  • In an implementation, the second data packet transmitted between the second node and the first access network element carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, and third timestamp information, and the second data packet transmitted between the first access network element and the first node carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, third timestamp information, and fourth timestamp information; the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information, the third timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first access network element and/or information about a time at which the first data packet is received from the first access network element, and the fourth timestamp information being used for indicating information about a time at which the first access network element sends the second data packet to the first node and/or information about a time at which the second data packet is received from the second node.
  • In the embodiment of this disclosure, after the first node receives the second data packet sent by the first access network element, the method further includes:
  • determining information about a delay between the first node and the second node based on the first timestamp information and fifth timestamp information, the fifth timestamp information being used for indicating information about a time at which the first node receives the second data packet; and/or
  • determining information about a delay between the first node and the second node based on the first timestamp information and the third timestamp information or the fifth timestamp information and the third timestamp information; and/or
  • determining information about a delay between the second node and the first access network element based on the second timestamp information and the third timestamp information or the third timestamp information and the fourth timestamp information; and/or
  • determining information about a delay between the first node and the first access network element based on the first timestamp information and the second timestamp information or the fourth timestamp information and the fifth timestamp information.
  • The following describes how the information in the first data packet and the second data packet is carried in combination with different implementations of the first node and the second node.
  • (1) The first node is a first core network element, and the second node is a terminal;
  • information carried in the first data packet transmitted between the first node and the first access network element being added through a GTP-U layer of the first node;
  • information carried in the first data packet transmitted between the first access network element and the second node being added through an SDAP layer and/or a PDCP layer of the first access network element;
  • information carried in the second data packet transmitted between the second node and the first access network element being added through an SDAP layer and/or a PDCP layer of the second node; and
  • information carried in the second data packet transmitted between the first access network element and the first node being added through a GTP-U layer of the first access network element.
  • Referring to FIG. 7 , an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • (2) The first node is the terminal, and the second node is the first core network element;
  • information carried in the first data packet transmitted between the first node and the first access network element being added through an SDAP layer and/or a PDCP layer of the first node;
  • information carried in the first data packet transmitted between the first access network element and the second node being added through a GTP-U layer of the first access network element;
  • information carried in the second data packet transmitted between the second node and the first access network element being added through a GTP-U layer of the second node; and
  • information carried in the second data packet transmitted between the first access network element and the first node being added through an SDAP layer and/or a PDCP layer of the first access network element.
  • Referring to FIG. 7 , an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • The technical solutions of the embodiments of this disclosure further include: the first node acquires a first rule from a second core network element, and reports, based on the first rule, delay information and/or a first notification message obtained through measurement. The first rule on the second core network element side is notified by a third core network element to the second core network element or preconfigured by the second core network element.
  • The first rule herein includes at least one kind of the following:
  • first information, the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node, for example, whether the measurement behavior is triggered by the UPF and/or the UE;
  • second information, the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information;
  • third information, the third information being used for indicating whether a measurement result is reported for each measurement behavior;
  • fourth information, the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold; and
  • fifth information, the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • In the foregoing technical, at least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • The dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • The static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • In the foregoing solution, the first indication information is included in a QoS parameter. Further, the first indication information is a 5QI parameter in the QoS parameter.
  • (1) When the first node is a first core network element, the first node reports, through an N4 interface, delay information and/or a first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • Specifically, the UPF reports the delay information and/or the first notification message to the SMF through the N4 interface, and then the SMF determines whether to report the delay information and/or the first notification message to the PCF.
  • (2) When the first node is a terminal,
  • the first node carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface; or
  • the first node carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element; or
  • the first node carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • The user plane data packet herein includes a first data stream data packet and/or a second data packet.
  • Specifically, the UE stores content of the delay information and/or the first notification message in a container, and reports the content to an AMF on the N1 interface through the NAS message, the AMF forwarding the content to the PCF, and the PCF further notifying the content to the SMF (if necessary). Alternatively, the UE directly sends the delay information and/or the first notification message to the AMF through an SM-NAS message, where the AMF forwards content of the SM-NAS to the PCF.
  • (3) The first access network element directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • The first access network element reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first access network element reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • Specifically, a gNB directly reports the delay information and/or the first notification message to the UPF (a user plane) or SMF (a control plane).
  • (4) When the first node is a terminal, and the second node is the first core network element, the first node sends the delay information and/or the first notification message to the second node through a user plane, and the second node sends the delay information and/or the first notification message to the second core network element and/or a third core network element. (4.1) Further, a data packet carrying the delay information and/or the first notification message includes second indication information, and the second node sends the delay information and/or the first notification message to the second core network element and/or the third core network element after obtaining the second indication information. (4.2) Alternatively, a data packet carrying the delay information and/or a first notification message is transmitted through a first data stream and/or a PDU session, and the second node sends, to the second core network element and/or the third core network element, information in the data packet transmitted through the first data stream and/or the PDU session.
  • In the foregoing solution, the first core network element, the first access network element, and the terminal may selectively attach a corresponding timestamp in the first data packet and/or the second data packet. On the other hand, the first core network element, the first access network element, and the terminal may also calculate corresponding delay information according to the timestamp information in the first data packet and/or the second data packet. For example, if a timestamp T1 is attached to the UPF in the downlink direction, a timestamp T2 is attached to the base station, a timestamp T3 is attached to the UE, and a timestamp T4 is attached to the base station in the returned uplink direction, and a time received by the UPF is T5, a round-trip delay is D1=T5−T1, a one-way delay is D2=T3−T1; an air interface delay is D3=T3−T2 or D4=T4−T3; a core network delay is D5=T5−T4 or D6=T2−T3.
  • FIG. 8 is a schematic flowchart IV of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 8 , the information transmission method includes the following step.
  • Step 801: A second node receives a first data packet sent by a first node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or send a second data packet to the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • In the embodiment of this disclosure, the implementation of the first node and the second node may be as follows.
  • (1) The first node is a first core network element, and the second node is a terminal.
  • (2) The first node is the terminal, and the second node is the first core network element.
  • In the embodiment of this disclosure, for a physical function of each network element, a 5G communication system is used as an example. The first core network element refers to a UPF, the second core network element refers to an SMF, a third core network element refers to a PCF, and a fourth core network element refers to an AMF.
  • In the embodiment of this disclosure, the first data packet transmitted between the first node and the first access network element carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information, and the first data packet transmitted between the first access network element and the second node carries at least one kind of the following information: first identification information, second identification information, first sequence number information, first timestamp information, and second timestamp information; the first identification information being used for indicating that the first data packet is used for measurement; the second identification information being used for indicating that the second node returns a second data packet after receiving the first data packet, the first sequence number information being used for identifying the first data packet, the first timestamp information being used for indicating information about a time at which the first node sends the first data packet, and the second timestamp information being used for indicating information about a time at which the first access network element receives the first data packet from the first node and/or information about a time at which the first data packet is sent to the second node.
  • In an implementation, after determining that the first data packet carries the first identification information and/or the second identification information and/or the first sequence number information, the second node encapsulates the second data packet and sends the second data packet to the first node via the first access network element.
  • Specifically, the second data packet transmitted between the second node and the first access network element carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, and third timestamp information, and the second data packet transmitted between the first access network element and the first node carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, third timestamp information, and fourth timestamp information; the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information, the third timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first access network element and/or information about a time at which the first data packet is received from the first access network element, and the fourth timestamp information being used for indicating information about a time at which the first access network element sends the second data packet to the first node and/or information about a time at which the second data packet is received from the second node.
  • In the embodiment of this disclosure, the second node determines delay information between the first node and the second node based on the information carried in the first data packet; and/or determines delay information between the second node and the first access network element; and/or determines delay information between the first node and the first access network element.
  • Specifically, after receiving the first data packet sent by the first node via the first access network element, the second node determines delay information between the first node and the second node based on the first timestamp information and the third timestamp information; and/or determines delay information between the second node and the first access network element based on the second timestamp information and the third timestamp information; and/or determines delay information between the first node and the first access network element based on the first timestamp information and the second timestamp information.
  • The following describes how the information in the first data packet and the second data packet is carried in combination with different implementations of the first node and the second node.
  • (1) The first node is a first core network element, and the second node is a terminal;
  • information carried in the first data packet transmitted between the first node and the first access network element being added through a GTP-U layer of the first node;
  • information carried in the first data packet transmitted between the first access network element and the second node being added through an SDAP layer and/or a PDCP layer of the first access network element;
  • information carried in the second data packet transmitted between the second node and the first access network element being added through an SDAP layer and/or a PDCP layer of the second node; and
  • information carried in the second data packet transmitted between the first access network element and the first node being added through a GTP-U layer of the first access network element.
  • Referring to FIG. 7 , an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • (2) The first node is the terminal, and the second node is the first core network element;
  • information carried in the first data packet transmitted between the first node and the first access network element being added through an SDAP layer and/or a PDCP layer of the first node;
  • information carried in the first data packet transmitted between the first access network element and the second node being added through a GTP-U layer of the first access network element;
  • information carried in the second data packet transmitted between the second node and the first access network element being added through a GTP-U layer of the second node; and
  • information carried in the second data packet transmitted between the first access network element and the first node being added through an SDAP layer and/or a PDCP layer of the first access network element.
  • Referring to FIG. 7 , an access layer protocol on the UE and the 5G-AN side includes an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer from top to bottom.
  • The technical solutions of the embodiments of this disclosure further include: the second node acquires a first rule from a second core network element, and reports, based on the first rule, delay information and/or a first notification message obtained through measurement. The first rule on the second core network element side is notified by a third core network element to the second core network element or preconfigured by the second core network element.
  • The first rule herein includes at least one kind of the following:
  • first information, the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node, for example, whether the measurement behavior is triggered by the UPF and/or the UE;
  • second information, the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information;
  • third information, the third information being used for indicating whether a measurement result is reported for each measurement behavior;
  • fourth information, the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold; and
  • fifth information, the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • In the foregoing technical, at least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • The dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • The static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • In the foregoing solution, the first indication information is included in a QoS parameter. Further, the first indication information is a 5QI parameter in the QoS parameter.
  • (1) When the second node is a first core network element,
  • the second node reports, through an N4 interface, delay information and/or a first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • Specifically, the UPF reports the delay information and/or the first notification message to the SMF through the N4 interface, and then the SMF determines whether to report the delay information and/or the first notification message to the PCF.
  • (2) When the second node is a terminal,
  • the second node carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface; or
  • the second node carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element; or
  • the second node carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • The user plane data packet herein includes a first data stream data packet and/or a second data packet.
  • Specifically, the UE stores content of the delay information and/or the first notification message in a container, and reports the content to an AMF on the N1 interface through the NAS message, the AMF forwarding the content to the PCF, and the PCF further notifying the content to the SMF (if necessary). Alternatively, the UE directly sends the delay information and/or the first notification message to the AMF through an SM-NAS message, where the AMF forwards content of the SM-NAS to the PCF.
  • (3) The first access network element directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • The first access network element reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first access network element reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • Specifically, a gNB directly reports the delay information and/or the first notification message to the UPF (a user plane) or SMF (a control plane).
  • (4) When the second node is the terminal, and the first node is the first core network element,
  • the second node sends the delay information and/or the first notification message to the first node through a user plane, and the first node sends the delay information and/or the first notification message to the second core network element and/or a third core network element.
  • Further, a data packet carrying the delay information and/or the first notification message includes second indication information, and the first node sends the delay information and/or the first notification message to the second core network element and/or the third core network element after obtaining the second indication information. Alternatively, a data packet carrying the delay information and/or a first notification message is transmitted through a first data stream and/or a PDU session, and the first node sends, to the second core network element and/or the third core network element, information in the data packet transmitted through the first data stream and/or the PDU session.
  • In the foregoing solution, the first core network element, the first access network element, and the terminal may selectively attach a corresponding timestamp in the first data packet and/or the second data packet. On the other hand, the first core network element, the first access network element, and the terminal may also calculate corresponding delay information according to the timestamp information in the first data packet and/or the second data packet. For example, if a timestamp T1 is attached to the UPF in the downlink direction, a timestamp T2 is attached to the base station, a timestamp T3 is attached to the UE, and a timestamp T4 is attached to the base station in the returned uplink direction, and a time received by the UPF is T5, a round-trip delay is D1=T5−T1, a one-way delay is D2=T3−T1; an air interface delay is D3=T3−T2 or D4=T4−T3; a core network delay is D5=T5−T4 or D6=T2−T3.
  • FIG. 9 is a schematic flowchart V of an information transmission method according to an embodiment of this disclosure. As shown in FIG. 9 , the information transmission method includes the following step.
  • Step 901: A first node receives first information sent by a second node, and determines a transmission delay requirement based on the first information, the transmission delay requirement including an upper limit requirement and/or a lower limit requirement for a transmission delay.
  • In an implementation, the second node is a first core network element, and the first node is a terminal or a first access network element (that is, a base station).
  • Herein, the receiving, by a first node, first information sent by a second node includes:
  • receiving, by the first node, the transmission delay requirement from the second node; or
  • storing, by the first node, a correspondence between the transmission delay requirement and a first indication parameter, and after receiving the first indication parameter, determining, by the first node, a transmission delay requirement corresponding to the first indication parameter.
  • In the foregoing solution, the transmission requirement and/or the first indication parameter with a QoS rule are/is sent to the first node by the second node.
  • In an implementation, the second node is notified when the first node determines that delay information does not meet the transmission delay requirement.
  • FIG. 10 is a schematic structural diagram I of an information transmission apparatus according to an embodiment of this disclosure.
  • In an disclosure example, the apparatus is applied to a first node and includes:
  • a transmission unit 1001 configured to send a first data packet to a second node, the first data packet being used for measuring a one-way delay, and/or receiving a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
  • In an implementation, the first data packet carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information, the first identification information being used for indicating that the first data packet is used for measurement, the second identification information being used for indicating that the second node returns the second data packet after receiving the first data packet, the first sequence number information being used for identifying the first data packet, and the first timestamp information being used for indicating information about a time at which the first node sends the first data packet.
  • In an implementation, the second data packet carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, and second timestamp information, the second sequence number information being used for identifying the second data packet, the second sequence number information being the same as the first sequence number information or having a correspondence with the first sequence number information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
  • In an implementation, the apparatus further includes:
  • a processing unit 1002 configured to determine information about a delay between the first node and the second node based on the first timestamp information and third timestamp information, the third timestamp information being used for indicating information about a time at which the first node receives the second data packet; and/or determine information about a delay between the first node and the second node based on the first timestamp information and the second timestamp information or the third timestamp information and the second timestamp information.
  • In an implementation, the first node is a first core network element, and the second node is a terminal;
  • information carried in the first data packet being added through a first protocol layer of the first node, the first protocol layer being located above a GTP-U layer; and
  • information carried in the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above an SDAP layer.
  • In an implementation, the first node is the terminal, and the second node is the first core network element;
  • information carried in the first data packet being added through a first protocol layer of the first node, the first protocol layer being located above an SDAP layer; and
  • information carried in the second data packet being added through a first protocol layer of the second node, the first protocol layer being located above a GTP-U layer.
  • In an implementation, the first node is the first core network element, and the second node is a first access network element;
  • information carried in the first data packet being added through a GTP-U layer of the first node; and
  • information carried in the second data packet being added through a GTP-U layer of the second node.
  • In an implementation, the first node is the first access network element, and the second node is the first core network element;
  • information carried in the first data packet being added through a GTP-U layer of the first node; and
  • information carried in the second data packet being added through a GTP-U layer of the second node.
  • In an implementation, the apparatus further includes:
  • an acquiring unit 1003 configured to acquire a first rule from a second core network element; and
  • a reporting unit 1004 configured to report, based on the first rule, delay information and/or a first notification message obtained through measurement.
  • In an implementation, the first rule includes at least one kind of the following:
  • first information, the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node;
  • second information, the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information;
  • third information, the third information being used for indicating whether a measurement result is reported for each measurement behavior;
  • fourth information, the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold; and
  • fifth information, the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • In an implementation, at least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • The dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • The static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • In an implementation, the first indication information is included in a QoS parameter. Further, the first indication information is a 5QI parameter in the QoS parameter.
  • In an implementation, when the first node is a first core network element,
  • the reporting unit 1004 reports, through an N4 interface, the delay information and/or the first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • In an implementation, when the first node is a terminal,
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports the delay information and/or the first notification message to the second core network element through an N1 interface; or
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element; or
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • In an implementation, the user plane data packet includes a first data stream data packet and/or a second data packet.
  • In an implementation, when the first node is a first access network element,
  • the reporting unit 1004 directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • Further, the reporting unit 1004 reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or
  • the reporting unit 1004 reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • In an disclosure example, the apparatus is applied to a first node and includes:
  • a transmission unit 1001 configured to send a first data packet to a second node via a first access network element, the first data packet being used for measuring a one-way transmission delay, and/or receiving a second data packet returned by the second node via the first access network element, the second data packet being used for measuring a round-trip transmission delay.
  • In an implementation, the first data packet transmitted between the first node and the first access network element carries at least one kind of the following information: first identification information, second identification information, first sequence number information, and first timestamp information; and the first data packet transmitted between the first access network element and the second node carries at least one kind of the following information: first identification information, second identification information, first sequence number information, first timestamp information, and second timestamp information; where
  • the first identification information is used for indicating that the first data packet is used for measurement; the second identification information is used for indicating that the second node returns a second data packet after receiving the first data packet, the first sequence number information is used for identifying the first data packet, the first timestamp information is used for indicating information about a time at which the first node sends the first data packet, and the second timestamp information is used for indicating information about a time at which the first access network element receives the first data packet from the first node and/or information about a time at which the first data packet is sent to the second node.
  • In an implementation, the second data packet transmitted between the second node and the first access network element carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, and third timestamp information; and the second data packet transmitted between the first access network element and the first node carries at least one kind of the following information: first identification information, second identification information, second sequence number information, first timestamp information, second timestamp information, third timestamp information, and fourth timestamp information; where
  • the second sequence number information is used for identifying the second data packet, the second sequence number information is the same as the first sequence number information or has a correspondence with the first sequence number information, the third timestamp information is used for indicating information about a time at which the second node sends the second data packet to the first access network element and/or information about a time at which the first data packet is received from the first access network element, and the fourth timestamp information is used for indicating information about a time at which the first access network element sends the second data packet to the first node and/or information about a time at which the second data packet is received from the second node.
  • In an implementation, the apparatus further includes:
  • a processing unit 1002 configured to: determine information about a delay between the first node and the second node based on the first timestamp information and fifth timestamp information, the fifth timestamp information being used for indicating information about a time at which the first node receives the second data packet; and/or determine information about a delay between the first node and the second node based on the first timestamp information and the third timestamp information or the fifth timestamp information and the third timestamp information; and/or determine information about a delay between the second node and the first access network element based on the second timestamp information and the third timestamp information or the third timestamp information and the fourth timestamp information; and/or information about a delay between the first node and the first access network element based on the first timestamp information and the second timestamp information or the fourth timestamp information and the fifth timestamp information.
  • In an implementation, the first node is a first core network element, and the second node is a terminal;
  • information carried in the first data packet transmitted between the first node and the first access network element being added through a GTP-U layer of the first node;
  • information carried in the first data packet transmitted between the first access network element and the second node being added through an SDAP layer and/or a PDCP layer of the first access network element;
  • information carried in the second data packet transmitted between the second node and the first access network element being added through an SDAP layer and/or a PDCP layer of the second node; and
  • information carried in the second data packet transmitted between the first access network element and the first node being added through a GTP-U layer of the first access network element.
  • In an implementation, the first node is the terminal, and the second node is the first core network element;
  • information carried in the first data packet transmitted between the first node and the first access network element being added through an SDAP layer and/or a PDCP layer of the first node;
  • information carried in the first data packet transmitted between the first access network element and the second node being added through a GTP-U layer of the first access network element;
  • information carried in the second data packet transmitted between the second node and the first access network element being added through a GTP-U layer of the second node; and
  • information carried in the second data packet transmitted between the first access network element and the first node being added through an SDAP layer and/or a PDCP layer of the first access network element.
  • In an implementation, the apparatus further includes:
  • an acquiring unit 1003 configured to acquire a first rule from a second core network element; and
  • a reporting unit 1004 configured to report, based on the first rule, delay information and/or a first notification message obtained through measurement.
  • In an implementation, the first rule includes at least one kind of the following:
  • first information, the first information being used for indicating whether a measurement behavior for delay information is triggered by the first node and/or the second node;
  • second information, the second information being used for indicating a measurement period or a measurement time point corresponding to the measurement behavior for the delay information;
  • third information, the third information being used for indicating whether a measurement result is reported for each measurement behavior;
  • fourth information, the fourth information including a delay exceeding a first delay threshold and/or a delay being lower than a second delay threshold; and
  • fifth information, the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
  • In an implementation, at least one kind of information in the first rule is sent to the first node in a dynamic manner or in a static manner.
  • The dynamic manner means that the first node receives complete content of at least one kind of information in the first rule.
  • The static manner means that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information.
  • In an implementation, the first indication information is included in a QoS parameter. Further, the first indication information is a 5QI parameter in the QoS parameter.
  • In an implementation, when the first node is a first core network element,
  • the reporting unit 1004 reports, through an N4 interface, the delay information and/or the first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • In an implementation, when the first node is a terminal,
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a first container of a NAS message, and reports
  • the delay information and/or the first notification message to the second core network element through an N1 interface; or
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a NAS message, and reports the delay information and/or the first notification message to the second core network element; or
  • the reporting unit 1004 carries the delay information and/or the first notification message obtained through measurement in a user plane data packet, and reports the delay information and/or the first notification message to the first core network element, where
  • the first notification message is used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
  • In an implementation, the user plane data packet includes a first data stream data packet and/or a second data packet.
  • In an implementation, the first access network element directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule. The first access network element reports, through a control plane data packet, the delay information and/or the first notification message obtained through measurement to the second core network element; or the first access network element reports, through a user plane data packet, the delay information and/or the first notification message obtained through measurement to the first core network element.
  • In an implementation, when the first node is the terminal, and the second node is the first core network element,
  • the reporting unit 1004 sends the delay information and/or the first notification message to the second node through a user plane, and the second node sends the delay information and/or the first notification message to the second core network element and/or a third core network element.
  • In an implementation, a data packet carrying the delay information and/or the first notification message includes second indication information, and the second node sends the delay information and/or the first notification message to the second core network element and/or the third core network element after obtaining the second indication information.
  • In an implementation, a data packet carrying the delay information and/or a first notification message is transmitted through a first data stream and/or a PDU session, and the second node sends, to the second core network element and/or the third core network element, information in the data packet transmitted through the first data stream and/or the PDU session.
  • Those skilled in the art should understand that the related description of the foregoing information transmission apparatus in the embodiment of this disclosure may be understood by referring to the related description of the information transmission method in the embodiment of this disclosure.
  • FIG. 11 is a schematic structural diagram II of an information transmission apparatus according to an embodiment of this disclosure. In an application example, the apparatus is applied to a first node and includes:
  • a determining unit 1101 configured to receive first information sent by a second node, and determine a transmission delay requirement based on the first information, the transmission delay requirement including an upper limit requirement and/or a lower limit requirement for a transmission delay.
  • In an implementation, the determining unit 1101 is configured to: receive the transmission delay requirement from the second node; or store a correspondence between the transmission delay requirement and a first indication parameter, and determine a transmission delay requirement corresponding to the first indication parameter after receiving the first indication parameter.
  • In an implementation, the second node is a first core network element, and the first node is a terminal or a first access network element.
  • In an implementation, the transmission requirement and/or the first indication parameter with a QoS rule are/is sent to the first node by the second node.
  • In an implementation, the apparatus further includes:
  • a notifying unit 1102 configured to notify the second node when it is determined that delay information does not meet the transmission delay requirement.
  • An embodiment of this disclosure further provides an information transmission method, including: acquiring, by a first node, first information from a core network, the first information being used to determine a first delay threshold and a second delay threshold; and controlling, by the first node, a transmission delay between the first node and a second node to be between the first delay threshold and the second delay threshold.
  • In an implementation, the first information includes a first delay offset and a second delay offset, the first delay threshold being determined based on the first delay offset and reference delay information, and the second delay threshold being determined based on the second delay offset and the reference delay information. In another implementation, the first information includes a first delay offset and a second delay offset.
  • During establishment or modification of a PDU session, the first node receives the first delay threshold and/or the second delay threshold sent by a second core network element. The first node is a first access network element (such as a base station) or a terminal. The second core network element is an SMF. The second node may be any network element different from the first node.
  • Correspondingly, an embodiment of this application further provides an information transmission apparatus applied to a first node, the apparatus including:
  • an acquiring unit configured to acquire first information from a core network, the first information being used to determine a first delay threshold and a second delay threshold; and
  • a processing unit configured to control a transmission delay between the first node and a second node to be between the first delay threshold and the second delay threshold.
  • In an implementation, the first information includes a first delay offset and a second delay offset, the first delay threshold being determined based on the first delay offset and reference delay information, and the second delay threshold being determined based on the second delay offset and the reference delay information.
  • In an implementation, the acquiring unit is configured to receive, during establishment or modification of a PDU session, the first delay threshold and/or the second delay threshold sent by the second core network element.
  • In an implementation, the first node is a first access network element or a terminal.
  • FIG. 12 is a schematic structural diagram of a communication device 600 according to an embodiment of the present disclosure. The communication device may be a terminal device or a network device. The communication device 600 shown in FIG. 12 includes a processor 610. The processor 610 may invoke and run a computer program from a memory to implement the method in the embodiment of the present disclosure.
  • Optionally, as shown in FIG. 12 , the communication device 600 may further include a memory 620. The processor 610 may invoke and run the computer program from the memory 620 to implement the method in the embodiment of the present disclosure.
  • The memory 620 may be a single device independent of the processor 610, or may be integrated in the processor 610.
  • Optionally, as shown in FIG. 12 , the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive information or data sent by the other devices.
  • The transceiver 630 may include a transmitter and a receiver. The transceiver 630 may further include antennas, and a quantity of antennas may be one or more.
  • Optionally, the communication device 600 may specifically be a network device according to the embodiment of the present disclosure, and the communication device 600 may implement a corresponding procedure implemented by the network device in each method of the embodiment of the present disclosure. For brevity, details are not described herein again.
  • Optionally, the communication device 600 may specifically be a mobile terminal/terminal device according to the embodiment of the present disclosure, and the communication device 600 may implement a corresponding procedure implemented by the mobile terminal/terminal device in each method of the embodiment of the present disclosure. For brevity, details are not described herein again.
  • FIG. 13 is a schematic structural diagram of a chip according to an embodiment of the present disclosure. The chip 700 shown in FIG. 13 includes a processor 710, and the processor 710 can invoke and run a computer program from a memory to implement the method in the embodiment of the present disclosure.
  • Optionally, as shown in FIG. 13 , the chip 700 may further include a memory 720. The processor 710 may invoke and run the computer program from the memory 720 to implement the method in the embodiment of the present disclosure.
  • The memory 720 may be a single device independent of the processor 710, or may be integrated in the processor 710.
  • Optionally, the chip 700 may further include an input interface 730. The processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • Optionally, the chip 700 may further include an output interface 740. The processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • Optionally, the chip may be applied to the network device in the embodiment of the present disclosure, and the chip may implement the corresponding procedure implemented by the network device in each method of the embodiment of the present disclosure. For brevity, details are not described herein again.
  • Optionally, the chip can be applied to the mobile terminal/terminal device in the embodiments of the present disclosure, and the chip can implement the corresponding procedure implemented by the mobile terminal/terminal device in each method of the embodiments of the present disclosure. For brevity, details are not described herein again.
  • It should be understood that the chip mentioned in the embodiments of the present disclosure may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 14 is a schematic block diagram of a communication system 900 according to an embodiment of the present disclosure. As shown in FIG. 14 , the communication system 900 includes a terminal device 910 and a network device 920.
  • The terminal device 910 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method, and the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method. For brevity, details are not described herein again.
  • It should be understood that, the processor in the embodiment of the present disclosure may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software. The above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programming logic devices, discrete gate or transistor logic devices, discrete hardware components. Various methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed. The general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in combination with the embodiments of the present disclosure may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor. The software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like. The storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • It can be understood that, the memory in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory. The non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM) or flash memory. The volatile memory may be a random access memory (RAM), which is used as an external cache. By way of example, but not limitation, many forms of RAM are available, such as a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDR SDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous connection dynamic random access memory (SLDRAM), and a direct memory bus random access memory (DR RAM). It should be noted that the memory of the systems and methods described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • It should be understood that, the foregoing memory is exemplary but not restrictive. For example, the memory in the embodiment of the present disclosure may also be a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDR SDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous connection dynamic random access memory (SLDRAM), and a direct memory bus random access memory (DR RAM), etc. That is, the memories in the embodiments of the present disclosure are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present disclosure further provides a computer-readable storage medium for storing a computer program.
  • Optionally, the computer-readable storage medium may be applied to the network device in the embodiment of the present disclosure, and the computer program enables the computer to execute the corresponding procedure implemented by the network device in each method in the embodiment of the present disclosure. For brevity, details are not described herein again.
  • Optionally, the computer-readable storage medium may be applied to the mobile terminal/terminal device in the embodiment of the present disclosure, and the computer program enables the computer to execute a corresponding procedure implemented by the mobile terminal/terminal device in each method in the embodiment of the present disclosure. For brevity, details are not described herein again.
  • An embodiment of the present disclosure further provides a computer program product, including computer program instructions.
  • Optionally, the computer program product may be applied to the network device in the embodiment of the present disclosure, and the computer program instruction enables the computer to execute a corresponding procedure implemented by the network device in each method in the embodiment of the present disclosure. For brevity, details are not described herein again.
  • Optionally, the computer program product may be applied to a mobile terminal/terminal device in the embodiments of the present disclosure, and the computer program instructions enable the computer to execute a corresponding procedure implemented by the mobile terminal/terminal device in each method in the embodiments of the present disclosure, For brevity, details are not described herein again.
  • The embodiment of the present disclosure further provides a computer program.
  • Optionally, the computer program may be applied to a network device in the embodiment of the present disclosure. When the computer program is run on a computer, the computer is enabled to execute a corresponding procedure implemented by the network device in each method in the embodiment of the present disclosure. For brevity, details are not described herein again.
  • Optionally, the computer program may be applied to a mobile terminal/terminal device in the embodiment of the present disclosure. When the computer program is run on a computer, the computer is enabled to execute each method in the embodiment of the disclosure by the mobile terminal/terminal device. For brevity, details are not described herein again.
  • A person of ordinary skill in the art may realize that the units and algorithm steps of each example described in combination with the embodiments disclosed herein can be implemented by electronic hardware or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the present disclosure.
  • A person skilled in the art may clearly understand that, for the convenience and brevity of description, the specific working processes of the systems, devices, and units described above may refer to the corresponding processes in the foregoing method embodiments, and details are not described herein again.
  • In the several embodiments provided in the present disclosure, it should be understood that, the disclosed systems, devices, and methods may be implemented in other ways. For example, the device embodiments described above are only exemplary. For example, the division of the unit is only a logical function division. In actual implementation, there may be another division manner. For example, a plurality of units or components may be combined or may be integrated into another system, or some features can be ignored or not implemented. In addition, the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on a plurality of network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • In addition, each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • If the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • Based on this understanding, the technical solution of the present disclosure is essentially a part that contributes to the prior art or a part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including several instructions that are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present disclosure. The foregoing storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or optical disks, and other media that can store program codes.
  • The above is only a specific implementation of the present disclosure, but the scope of protection of the present disclosure is not limited to this. Any person skilled in the art can easily think that changes or replacements within the technical scope disclosed in the present disclosure should be covered by the protection scope of this disclosure. Therefore, the protection scope of the present disclosure shall be subject to the protection scope of the claims.

Claims (20)

1. An information transmission method, comprising:
sending, by a first node, a first data packet to a second node, the first data packet being used for measuring a one-way delay, and
receiving, by the first node, a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
2. The method according to claim 1, wherein the first data packet carries at least one kind of the following information: first identification information, first sequence number information, and first timestamp information, the first identification information being used for indicating that the first data packet is used for measurement, the first sequence number information being used for identifying the first data packet, and the first timestamp information being used for indicating information about a time at which the first node sends the first data packet.
3. The method according to claim 2, wherein the second data packet carries at least one kind of the following information: first identification information, second sequence number information, and second timestamp information, the second sequence number information being used for identifying the second data packet, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
4. The method according to claim 3, wherein after the first node receives the second data packet sent by the second node, the method further comprises:
determining information about a delay between the first node and the second node based on the first timestamp information and third timestamp information, the third timestamp information being used for indicating information about a time at which the first node receives the second data packet; and/or
determining information about a delay between the first node and the second node based on the first timestamp information and the second timestamp information or the third timestamp information and the second timestamp information.
5. The method according to claim 1, wherein the first node is a first core network element, and the second node is a first access network element;
information carried in the first data packet being added through a General Packet Radio Service (GPRS) Tunneling Protocol (GTP)-User plan (GTP-U) layer of the first node; and
information carried in the second data packet being added through a GTP-U layer of the second node.
6. The method according to claim 1, wherein the method further comprises:
acquiring, by the first node, a first rule from a second core network element, and reporting, based on the first rule, delay information and/or a first notification message obtained through measurement.
7. The method according to claim 6, wherein the first rule comprises:
fifth information, the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
8. The method according to claim 7, wherein at least one kind of information comprised in the first rule is sent to the first node in a dynamic manner or in a static manner;
the dynamic manner meaning that the first node receives complete content of at least one kind of information in the first rule; and
the static manner meaning that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information,
wherein the first indication information is comprised in a Quality of Service (QoS) parameter,
wherein the first indication information is a 5QI parameter in the QoS parameter.
9. The method according to claim 6, wherein when the first node is a first core network element,
the first node reports, through an N4 interface, the delay information and/or the first notification message obtained through measurement to the second core network element and/or the third core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
10. An information transmission method, comprising:
receiving, by a second node, a first data packet from a first node, the first data packet being used for measuring a one-way delay, and
sending, by the second node, a second data packet to the first node, the second data packet being used for measuring a round-trip delay.
11. The method according to claim 10, wherein the first data packet carries at least one kind of the following information: first identification information, first sequence number information, and first timestamp information, the first identification information being used for indicating that the first data packet is used for measurement, the first sequence number information being used for identifying the first data packet, and the first timestamp information being used for indicating information about a time at which the first node sends the first data packet.
12. The method according to claim 11, wherein the second data packet carries at least one kind of the following information: first identification information, second sequence number information, and second timestamp information, the second sequence number information being used for identifying the second data packet, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
13. The method according to claim 12, wherein after receiving, by the second node, the first data packet from the first node, the method further comprises:
determining information about a delay between the first node and the second node based on the first timestamp information and the second timestamp information, the second timestamp information being used for indicating information about a time at which the second node sends the second data packet to the first node and/or information about a time at which the first data packet is received from the first node.
14. The method according to claim 10, wherein the first node is a first core network element, and the second node is a first access network element;
information carried in the first data packet being added through a General Packet Radio Service (GPRS) Tunneling Protocol (GTP)-User plan (GTP-U) layer of the first node; and
information carried in the second data packet being added through a GTP-U layer of the second node.
15. The method according to claim 10, wherein the method further comprises:
acquiring, by the second node, a first rule from a second core network element, and reporting, based on the first rule, delay information and/or a first notification message obtained through measurement.
16. The method according to claim 15, wherein the first rule comprises:
fifth information, the fifth information being used for indicating to report a corresponding measurement result when delay information obtained through measurement exceeds the first delay threshold or is lower than the second delay threshold.
17. The method according to claim 16, wherein at least one kind of information comprised in the first rule is sent to the first node in a dynamic manner or in a static manner;
the dynamic manner meaning that the first node receives complete content of at least one kind of information in the first rule; and
the static manner meaning that the first node stores a correspondence between at least one kind of information in the first rule and first indication information, and the first node receives the first indication information, and determines at least one kind of information in the first rule based on the first indication information,
wherein the first indication information is comprised in a Quality of Service (QoS) parameter,
wherein the first indication information is a 5QI parameter in the QoS parameter.
18. The method according to claim 15, wherein when the second node is a first access network element,
the second node directly reports the delay information and/or the first notification message obtained through measurement to the first core network element or the second core network element, the first notification message being used for indicating that the measurement behavior does not satisfy at least one item in the first rule.
19. An information transmission apparatus applied to a first node, the apparatus comprising:
a transceiver, configured to send a first data packet to a second node, the first data packet being used for measuring a one-way delay, and receive a second data packet returned by the second node, the second data packet being used for measuring a round-trip delay.
20. An information transmission apparatus applied to a second node, the apparatus comprising:
a transceiver, configured to receive a first data packet from a first node, the first data packet being used for measuring a one-way delay, and send a second data packet to the first node, the second data packet being used for measuring a round-trip delay.
US18/061,889 2018-08-07 2022-12-05 Information transmission method and apparatus, and communication device Abandoned US20230098871A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/061,889 US20230098871A1 (en) 2018-08-07 2022-12-05 Information transmission method and apparatus, and communication device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/099263 WO2020029097A1 (en) 2018-08-07 2018-08-07 Information transmission method and apparatus, and communication device
US17/156,440 US11558843B2 (en) 2018-08-07 2021-01-22 Information transmission method and apparatus, and communication device
US18/061,889 US20230098871A1 (en) 2018-08-07 2022-12-05 Information transmission method and apparatus, and communication device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/156,440 Continuation US11558843B2 (en) 2018-08-07 2021-01-22 Information transmission method and apparatus, and communication device

Publications (1)

Publication Number Publication Date
US20230098871A1 true US20230098871A1 (en) 2023-03-30

Family

ID=69413795

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/156,440 Active 2038-09-23 US11558843B2 (en) 2018-08-07 2021-01-22 Information transmission method and apparatus, and communication device
US18/061,889 Abandoned US20230098871A1 (en) 2018-08-07 2022-12-05 Information transmission method and apparatus, and communication device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/156,440 Active 2038-09-23 US11558843B2 (en) 2018-08-07 2021-01-22 Information transmission method and apparatus, and communication device

Country Status (11)

Country Link
US (2) US11558843B2 (en)
EP (2) EP4191963A1 (en)
JP (1) JP2021536167A (en)
KR (1) KR20210041041A (en)
CN (2) CN111787566B (en)
AU (1) AU2018436187A1 (en)
BR (1) BR112021001951A2 (en)
CA (1) CA3108685A1 (en)
MX (1) MX2021001452A (en)
TW (1) TW202032950A (en)
WO (1) WO2020029097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210367683A1 (en) * 2019-02-14 2021-11-25 Huawei Technologies Co.,Ltd. Delay measurement method, network device, and terminal device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205428B (en) * 2020-08-28 2024-03-01 华为技术有限公司 Method and device for determining air interface time delay
CN112702759B (en) * 2020-12-09 2023-03-14 深圳市日海飞信信息系统技术有限公司 Vertical industry-oriented data link performance testing method and system
CN114765690B (en) * 2020-12-31 2023-09-12 华为技术有限公司 Data packet transmission method, communication device and storage medium
US11706821B2 (en) * 2021-02-12 2023-07-18 Verizon Patent And Licensing Inc. Systems and methods for facilitating connection to a data network in an interworking core network
CN113419885B (en) * 2021-06-18 2023-05-26 杭州海康威视数字技术股份有限公司 Data integrity processing method and device and electronic equipment
WO2023003392A1 (en) * 2021-07-21 2023-01-26 Samsung Electronics Co., Ltd. Node in wireless communication system and method performed by thereof
CN113992297B (en) * 2021-12-06 2022-05-03 网络通信与安全紫金山实验室 Method and device for determining network time delay, electronic equipment and storage medium
WO2023174198A1 (en) * 2022-03-16 2023-09-21 华为技术有限公司 Latency control method, application server, and communication system
WO2024090357A1 (en) * 2022-10-25 2024-05-02 京セラ株式会社 Communication control method and network device
CN117998537A (en) * 2022-11-03 2024-05-07 维沃移动通信有限公司 Information determining method and communication equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100459529C (en) * 2005-09-12 2009-02-04 华为技术有限公司 Time delay characteristic measuring method in data communication network
US20100228824A1 (en) * 2009-03-06 2010-09-09 Cisco Technology, Inc. Distributed server selection for online collaborative computing sessions
JP5257313B2 (en) * 2009-09-25 2013-08-07 富士通株式会社 Delay time measuring apparatus, delay time measuring program and method
US8199665B2 (en) * 2009-11-30 2012-06-12 Samsung Electronics Co., Ltd Apparatus and method for scheduling service based on network delay
US8626151B2 (en) * 2010-06-25 2014-01-07 At&T Mobility Ii Llc Proactive latency-based end-to-end technology survey and fallback for mobile telephony
CN101902370A (en) * 2010-07-21 2010-12-01 中兴通讯股份有限公司 Device, system and method for measuring frame delay
CN102655463A (en) * 2011-03-02 2012-09-05 中兴通讯股份有限公司 LMP (Link Manager Protocol)-based network link delay measurement method and device
CN102710464B (en) * 2012-06-06 2015-04-15 清华大学 Fine-grained single-flow delay detection method based on reference delay insertion structure
CN104009878A (en) * 2013-02-21 2014-08-27 中国移动通信集团公司 Method and apparatus for measuring network transmission delay
CN106162728B (en) * 2015-04-01 2020-11-17 中兴通讯股份有限公司 Method and terminal for measuring and reporting data transmission delay between access networks
WO2017034274A1 (en) * 2015-08-21 2017-03-02 Samsung Electronics Co., Ltd. Method for reporting latency of packet transmission in communication network
US20210297893A1 (en) * 2018-07-10 2021-09-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and Network Nodes for Handling End-to-End Delays for Voice Calls in a Communication Network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210367683A1 (en) * 2019-02-14 2021-11-25 Huawei Technologies Co.,Ltd. Delay measurement method, network device, and terminal device

Also Published As

Publication number Publication date
CN111386722A (en) 2020-07-07
EP3826354A4 (en) 2021-07-21
CA3108685A1 (en) 2020-02-13
BR112021001951A2 (en) 2021-04-27
WO2020029097A1 (en) 2020-02-13
US11558843B2 (en) 2023-01-17
TW202032950A (en) 2020-09-01
EP4191963A1 (en) 2023-06-07
EP3826354A1 (en) 2021-05-26
CN111787566B (en) 2022-03-18
MX2021001452A (en) 2021-04-12
AU2018436187A1 (en) 2021-03-18
US20210144663A1 (en) 2021-05-13
EP3826354B1 (en) 2023-01-11
JP2021536167A (en) 2021-12-23
CN111787566A (en) 2020-10-16
KR20210041041A (en) 2021-04-14

Similar Documents

Publication Publication Date Title
US11558843B2 (en) Information transmission method and apparatus, and communication device
EP3852482A1 (en) Resource establishing method, and device
JP7301962B2 (en) Policy decision method and device, terminal
WO2019242712A1 (en) Capability interaction method and related device
CN111741479B (en) Strategy determination method and device, terminal, chip and computer storage medium
WO2021030965A1 (en) Method and apparatus for relay selection, and terminal device
KR20210108368A (en) Resource scheduling method, terminal device and network device
US20220167213A1 (en) Method and device for resource coordination
US20220061075A1 (en) Information transmission method and apparatus, and network device
WO2020258191A1 (en) Access control method and apparatus and terminal
CN113412665A (en) Session setting method, network equipment and user equipment
EP3823366A1 (en) Method and device for determining synchronization source priority, and computer storage medium
WO2021087827A1 (en) Method for activating or updating pusch path loss rs and device
WO2020043011A1 (en) Ui display method, terminal device and apparatus
CN111837419B (en) Data transmission method, terminal equipment and network equipment
WO2021022428A1 (en) Wireless communication method, terminal device and network device
WO2021003733A1 (en) Resource sharing method and apparatus, and terminal and network device
WO2020113520A1 (en) Connection establishing method, network device, and terminal device
WO2020000174A1 (en) Core network selection method and apparatus, terminal device and network device
US11265950B2 (en) Communication method, network device, and terminal device
WO2021026842A1 (en) Wireless communication method, network device and terminal device
CN111869297A (en) Bearer configuration method and device, and network equipment
US20210243833A1 (en) Radio communication method, terminal device and network device
US20230071186A1 (en) Method and apparatus for obtaining system message, and terminal device, and network device
US20230422079A1 (en) Data packet transmission method, communication device, computer-readable storage medium and computer program product

Legal Events

Date Code Title Description
AS Assignment

Owner name: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, JIANHUA;REEL/FRAME:061981/0824

Effective date: 20201102

STPP Information on status: patent application and granting procedure in general

Free format text: SENT TO CLASSIFICATION CONTRACTOR

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION