US20220081145A1 - Semi-automatic case forming, holding and sealing machine - Google Patents

Semi-automatic case forming, holding and sealing machine Download PDF

Info

Publication number
US20220081145A1
US20220081145A1 US17/446,026 US202117446026A US2022081145A1 US 20220081145 A1 US20220081145 A1 US 20220081145A1 US 202117446026 A US202117446026 A US 202117446026A US 2022081145 A1 US2022081145 A1 US 2022081145A1
Authority
US
United States
Prior art keywords
case
conveyors
machine
spaced apart
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/446,026
Inventor
William Yiu Tong Chu
Ruiqi CHENG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wexxar Packaging Inc
Original Assignee
Wexxar Packaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wexxar Packaging Inc filed Critical Wexxar Packaging Inc
Priority to US17/446,026 priority Critical patent/US20220081145A1/en
Assigned to WEXXAR PACKAGING INC. reassignment WEXXAR PACKAGING INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHU, WILLIAM YIU TONG, CHENG, RUIQI
Publication of US20220081145A1 publication Critical patent/US20220081145A1/en
Priority to US17/948,767 priority patent/US20230068955A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B49/00Devices for folding or bending wrappers around contents
    • B65B49/14Folders forming part of, or attached to, conveyors for partially-wrapped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/26Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks
    • B65B43/265Opening, erecting or setting-up boxes, cartons or carton blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/02Machines characterised by incorporation of means for making the containers or receptacles
    • B65B5/024Machines characterised by incorporation of means for making the containers or receptacles for making containers from preformed blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/04Applying separate sealing or securing members, e.g. clips
    • B65B51/06Applying adhesive tape
    • B65B51/067Applying adhesive tape to the closure flaps of boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B57/00Automatic control, checking, warning, or safety devices
    • B65B57/02Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of binding or wrapping material, containers, or packages
    • B65B57/08Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of binding or wrapping material, containers, or packages and operating to stop, or to control the speed of, the machine as a whole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B57/00Automatic control, checking, warning, or safety devices
    • B65B57/18Automatic control, checking, warning, or safety devices causing operation of audible or visible alarm signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B59/00Arrangements to enable machines to handle articles of different sizes, to produce packages of different sizes, to vary the contents of packages, to handle different types of packaging material, or to give access for cleaning or maintenance purposes
    • B65B59/003Arrangements to enable adjustments related to the packaging material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B59/00Arrangements to enable machines to handle articles of different sizes, to produce packages of different sizes, to vary the contents of packages, to handle different types of packaging material, or to give access for cleaning or maintenance purposes
    • B65B59/005Adjustable conveying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B2210/00Specific aspects of the packaging machine
    • B65B2210/04Customised on demand packaging by determining a specific characteristic, e.g. shape or height, of articles or material to be packaged and selecting, creating or adapting a packaging accordingly, e.g. making a carton starting from web material

Definitions

  • This application relates generally to case formers and, more specifically, to a case forming machine and system that facilitates formation and filling of cases of different sizes on an as needed basis.
  • case former and case sealer In the packaging industry, products are packed by different type of case formers and case sealers before they are shipped to the consumers.
  • One common type of case former and case sealer is semi-automatic case former and case sealer. This type of case former and sealer needs an operator to unfold the case blanks, use the handle to adjust the conveyors so as to match the case size and put the case between the conveyors to fold the bottom of the case.
  • the semi-automatic case sealer also needs an operator to use 2 handles to adjust conveyors to match the case size in order to grip the case sides by the conveyors firmly and another adjustment of the top tape applicator by handle is needed to allow the top tape applicator to touch the top flaps of the case.
  • the semi-automatic case sealer is ready to apply adhesive tapes on top and bottom of the case.
  • the operator has to repeat the above-mentioned adjustments again.
  • the problems of this type of semi-automatic case former and case sealer are numerous. Firstly, many adjustments are needed to form different type of cases, which is time consuming. Secondly, the adjustments are carried out by the operator, in other words, the operator may have the chance to adjust it too tight or too loose and finally affect the result of case forming and sealing. Thirdly, if the user wants to avoid adjustment problems, more semi-automatic case formers and case sealers may be needed in order to handle many different sizes of cases, adding undesired cost.
  • case former and case sealer Another type of case former and case sealer is the fully automatic case former and case sealer. This type of machine, to some extent, solve the problem of reliance on the operator to stop the machine to do the adjustments.
  • the fully automatic case former and case sealer uses many sensors to detect and measure the width and height of the cases when they enter the machine.
  • One objective is to provide a single semi-automatic random case forming, case holding and sealing machine to complete the adjustment of random cases by one single adjustment process without the intervention of the operator manually moving components or using sensors that directly evaluate case size.
  • a semi-automatic case handling machine includes a case holding and forming section, including: spaced apart walls that are movable laterally to adapt to different case widths, spaced apart bottom major flap kickers for moving bottom major flaps of a case upward, the bottom major flap kickers movable with the side walls, and a bottom minor flap kicker movable axially to adapt different case lengths.
  • a case sealing section is axially downstream of the case holding and forming section, the case sealing section including: a bottom taper, an upper taper, the upper taper movable vertically to adapt to different case widths, and a pair of spaced apart conveyors for moving cases past the bottom taper and the upper taper for taping, wherein the spaced apart conveyors are movable laterally to adapt to different case widths.
  • An adjustment system includes a memory storing a plurality of machine set ups, wherein each machine set up includes data corresponding to (i) lateral positions for the spaced apart walls, the spaced apart bottom major flap kickers and the spaced apart conveyors, (ii) axial position for the bottom minor flap kicker and (iii) vertical position for the upper taper.
  • a method is provided of forming, loading and taping a case using a semi-automated case handling machine that includes a plurality of components that are position adjustable based upon case size to be formed, loaded and taped.
  • the method involves: scanning a code associated with a pick tray holding one or more items to be loaded into a case; and automatically moving the plurality of components to respective positions corresponding to a case size associated with the scanned code, in preparation for forming, loading and taping the case.
  • a method is provided of forming, loading and taping a case using a semi-automated case handling machine that includes a plurality of components that are position adjustable based upon case size to be formed, loaded and taped.
  • the method involves: inputting a case size code to a controller of the machine; and the controller automatically effecting movement of the plurality of components to respective positions corresponding to a case size associated with the case size code, in preparation for forming, loading and taping the case.
  • a semi-automatic case forming, case holding and sealing machine includes a case forming device, a case holding device and a case sealing device.
  • the case forming device, case holding device and case sealing device is connected by two devices, one is by the two connection flat plates mounted on the top of the inward or outward conveyors and the parallel conveyors. Another device is by the connection blocks mounted on the two long shafts, the two long shafts are connected with the inward or outward conveyors and the parallel conveyors.
  • the case forming device connected with the case sealing device to form a single case forming and sealing machine.
  • the characteristic of the semi-automatic case forming and sealing machine is no operator adjustment or sensors are needed to adjust cases size in order to form and seal random cases.
  • the semi-automatic case forming, case holding and sealing machine includes a case forming device, a case holding device and a case sealing device.
  • the case forming device composed of a digital code reader holder holding a digital code reader which can be a barcode or QR code reader, mounted at the front of the machine, a PLC mounted at the bottom the case forming device, a case side flaps adjustment device, a bottom flaps adjustment device.
  • the side flaps adjustment device is composed of two inward or outward conveyors and two inward or outward conveyors covers, one horizontal long shaft.
  • the horizontal long shaft is mounted in the horizontal rectangular hollow bar and the horizontal rectangular hollow bar is mounted on the top of the front supporting let with wheel.
  • the two inward or outward conveyors are mounted in the inward or backward conveyors covers.
  • the two inward or outward conveyors move along the horizontal long shaft inward or outward to grasp the sides of the case firmly and at the front of the two inward or backward conveyors covers, two connection flat plates are mounted.
  • the case sealing device is linked with the case forming device by these two connection flat plates.
  • the case holding device includes two long kicker bars, on each of the long kicker bars, there is a set of kickers mounted.
  • the case holding device is mounted at the bottom of the inward or outward conveyors. After a case is placed in the space created by the inward or outward conveyors and the square hollow metal device in accordance with the case size, the two long kicker bars of the inward or outward conveyors will kick the bottom major flaps of the case to close and the kicker bars will hold the closed position for the operator to fill products into the case.
  • a bottom flaps adjustment device includes one bottom minor flap kicker, a forward or backward motor, a long shaft mounted with the forward or backward motor and a square hollow metal device.
  • the forward or backward motor is mounted in the rectangular bar, the rectangular bar is mounted at the center position of the case forming device, the forward or backward motor is connected with a long shaft, and this forward and backward motor with long shaft is mounted on a square hollow metal device.
  • the bottom minor flap kicker is mounted at the top of the square hollow metal device.
  • the forward or backward motor moves the long shaft and the long shaft moves the hollow square metal device and the hollow square metal device will move the bottom minor flap kicker forward or backward based on the various case sizes.
  • the operator uses the digital code reader to scan the digital code, then the inward or backward conveyors and the square hollow metal device will adjust the case size of the case forming device simultaneously to form a case space that matches the case being used.
  • the bottom minor flaps kicker will bend or fold the bottom minor flaps and the two long kicker bars of the case holding device, which are mounted on the inward or backward conveyors, will kick the bottom major flaps to close and maintain the bottom flaps in a closed position for the operator to fill in products before the case is moved to the case sealing device to seal the bottom and top of the case.
  • the case sealing device includes an inward or outward case size adjustment device, and a top tape applicator adjustment device.
  • the inward or outward case size adjustment device includes a set of parallel conveyors, two long shafts, one side motor mounted at the side of the case sealing device, and one side motor belt. At the middle of the supporting frame, the side motor is mounted.
  • the side motor is connected with a rectangular plate and the big sprocket is located on the top of the side motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted.
  • the big sprocket is directly controlled by the side motor and links with the side motor belt.
  • the side motor belt is also connected with the two sprockets. A cover will cover the big sprocket.
  • the action of the side motor will drive the big sprocket and the side motor belt.
  • the side motor belt which is linked with the two long shafts by the sprockets mounted on the top end of the long shafts, starts to move.
  • the two long shafts are connected with the two parallel conveyors and the inward and outward conveyors. The movement of the side motor controls the inward or outward movement of both the inward or outward conveyors and the parallel conveyors simultaneously.
  • the top tape applicator adjustment device is composed of one top tape applicator, one top motor, one top motor belt, two vertical shafts, one top tape applicator supporting bar, and one HMI.
  • the top motor drives the top motor belt to move and the top motor belt is linked with the two vertical shafts and the top tape applicator supporting bar is mounted on the two vertical shafts.
  • the upward or downward movement of the top tape applicator supporting bar controls the upward and downward movement of the top tape applicator based on the case size.
  • One HMI used to enter cases size information is mounted on the top of the top bar and one bottom tape applicator is used to seal the bottom case flaps.
  • the two parallel conveyors of the case sealing device are connected with two long shafts.
  • the motor mounted at the side of the case sealing machine moves based on the case size information received, it will drive the side motor belt which is connected with the two long shafts to move and, as the two long shafts are mounted with the two inward or outward conveyors and two parallel conveyors, both the inward or outward conveyors and the parallel conveyors move inward or outward at the same time, controlled by the side motor.
  • two connection flat plates are mounted to connect the two sets of conveyors together. The two connection flat plates help to effect the inward and outward movement of the two sets of conveyors.
  • the top motor controls the top tape applicator movement.
  • the top motor linked with a top motor belt, drives the top motor belt to move.
  • two vertical long shafts are connected with the top motor belt, the two vertical long shafts are connected with the top tape applicator by the top tape applicator supporting bar, so the two vertical long shafts will move the top tape applicator downward or upward based on the case size information received.
  • the whole case size setting is done within one minute by one instruction and no operator is needed to manually adjust the machine.
  • no digital code reader is needed. All applicable case sizes are pre-entered into the PLC with the HMI and each applicable case size is assigned a reference number in the HMI. Once the operator decides which case size will be used, the operator just needs to press the case size number on the HMI then the semi-automatic case forming, holding and sealing machine will adjust the machine to match with the case size chosen, and the operator only needs to pick the correct case and put it in the machine to fold and hold the bottom flaps closed for goods to fill in.
  • FIG. 1 is a perspective view of the semi-automatic case forming, case holding and sealing machine
  • FIG. 2 is a side view of the semi-automatic case forming, case holding and sealing machine
  • FIG. 3 is a top view of the semi-automatic case forming, case holding and sealing machine
  • FIG. 4 is a perspective view of the forward or backward motor
  • FIG. 5 is a perspective view of the inward or outward conveyors and the parallel conveyors
  • FIG. 6 is a perspective view of the side motor
  • FIG. 7 is a perspective view of the side motor and the two long shafts
  • FIGS. 8-9 is different view of the mechanism of the forward or backward motor and the side motor
  • FIG. 9A is an enlarged view of region 9 A of FIG. 9 ;
  • FIG. 10 is a perspective view of the case sealing device.
  • the semi-automatic case forming, case holding and sealing machine 1 includes case forming device 2 , case holding 4 and case sealing device 3 .
  • a barcode reader holder 21 is mounted on the middle of the horizontal hollow rectangular bar 22 .
  • a horizontal shaft 221 is mounted inside the horizontal hollow rectangular bar 22 .
  • the horizontal shaft 221 is used to connect with the two inward or outward conveyors 25 and let the inward or outward conveyors 25 to move along the horizontal shaft 221 smoothly.
  • a front supporting leg with wheel 23 is mounted at the bottom of the horizontal hollow rectangular bar 22 .
  • two inward or outward conveyors 25 are mounted.
  • two inward or outward conveyors covers 24 are installed to cover the inward or outward conveyors 25 .
  • two long kicker bars 41 are mounted, and on each of the two long kicker bars 41 , there is a set of kickers 42 to kick the bottom major flaps to close and maintain a closed condition.
  • a rectangular bar 27 is mounted. Inside the rectangular bar 27 , a long shaft 28 connected with the forward and backward motor 29 is mounted. On the long shaft 28 , a rectangular block with 4 wheels 293 is mounted.
  • This long shaft 28 is connected with a square hollow metal device 291 .
  • the rectangular block with 4 wheels 293 is mounted on the square hollow metal device 291 .
  • the square hollow metal device 291 is bigger than the rectangular bar 27 and is mounted at the outside of the rectangular bar 27 .
  • a bottom minor flap kicker 292 is mounted on the top side of the square hollow metal device 291 .
  • the case forming device 2 is connected with the case sealing device 3 by two connection flat plates 5 .
  • One end of each of the two connection flat plates 5 is mounted on the top side of a respective one of the inward or outward conveyors covers 24 and the other end are mounted on the top side of one of the two parallel conveyors 31 .
  • the two parallel conveyors 31 are positioned on the supporting frame 34 and the supporting frame 34 is mounted on the four supporting legs with wheels 32 .
  • two long shafts 33 are connected with the parallel conveyors 31 .
  • the connection blocks 332 are used to mount the two inward or outward conveyors 25
  • the connection blocks 333 are used to mount the parallel conveyors 31 .
  • connection blocks 332 , 333 can move along the long shafts 33 .
  • they can cause the inward and outward conveyors 25 and the parallel conveyors 31 to move along the two long shafts 33 and the horizontal shaft 221 at the same time and accomplish the task of adjusting inward and outward conveyors 25 and the parallel conveyors 31 to grasp the case sides firmly.
  • a side motor 35 is mounted.
  • the side motor 35 is connected with a rectangular plate 352 and the big sprocket 353 is located on the top of the side motor 35 .
  • two sprockets 354 are mounted.
  • the big sprocket 353 is directly controlled by the side motor 35 and are linked with the side motor belt 351 .
  • the side motor belt 351 is also connected with two sprockets 354 .
  • a cover 355 covers the big sprocket 353 . The action of the side motor 35 will drive the big sprocket and the side motor belt 351 .
  • the side motor belt 351 also links with the two long shafts 33 by the sprockets 331 mounted on the top of the long shafts 33 .
  • the two long shafts 33 are connected with the two parallel conveyors 31 and the inward and outward conveyors 25 .
  • the movement of the side motor 35 controls the inward or outward movement of both the inward or outward conveyors 25 and the parallel conveyors 31 at the same time.
  • a bottom tape applicator 7 is installed between the two parallel conveyors 31 .
  • two vertical hollow bars 36 are mounted at the two sides of the supporting frame 34 . Inside the two vertical hollow bars 36 , two vertical shafts 361 are mounted and the two vertical shafts 361 are linked with a top tape applicator supporting bar 61 .
  • top tape applicator supporting bar 61 At both ends of the top tape applicator supporting bar 61 , there are two plates 611 . On the plates 611 , each carry 4 wheels 612 . These wheels 612 help the top tape applicator supporting bar 61 move along the two vertical shafts 361 upward or downward smoothly.
  • a top tape applicator 6 is mounted at the center of the top tape applicator supporting bar 61 .
  • a top bar 362 is connected on the two ends of the vertical hollow bars 36 .
  • the top motor 37 At the bottom side of the top bar 362 , the top motor 37 is mounted to drive the top motor belt 371 and the top motor belt 371 is connected with the two vertical shafts 361 by the sprocket 363 .
  • the top motor 37 is like the side motor 35 .
  • the top motor 37 is connected with a rectangular plate 372 and the big sprocket 373 on the top of the top motor 37 .
  • two sprockets 374 are mounted at the two sides of the front end of the rectangular plate 372 .
  • the big sprocket 373 directly link with the top motor 37 by the top motor belt 371 .
  • the top motor belt 371 is also connected with the two sprockets 374 .
  • a cover 375 covers the big sprocket 373 .
  • a HMI arm 81 is mounted on the top side of the top bar 362 .
  • the HMI arm 81 is movable, so that the HMI 8 mounted on HMI arm 81 can move based on the need of the operator.
  • the PLC When in work, an operator will use the digital code reader to scan the digital code attached on a pick tray, then the PLC will, based on the pre-stored information for the scanned digital code, instruct the forward and backward motor 29 , the side motor 35 and the top motor 37 to adjust the semi-automatic case forming case holding and sealing machine and, in some embodiments, the control of the machine will also output an indication (e.g., visual) to communicate to the operator the case size needed for the items in the pick tray.
  • the forward and backward motor 29 which is connected with the long shaft 28 , will move. This forward and backward motor 29 with long shaft 28 is connected with a square hollow metal device 291 .
  • a bottom minor flap kicker 292 is mounted on the top side of the square hollow metal device 291 .
  • the movement of the forward and backward motor 29 causes the movement of square hollow metal device 291 along the long shaft 28 forward or backward.
  • a rectangular block with 4 wheels 293 is mounted inside the square hollow metal device 291 , which can make the square hollow metal device 291 move smoothly forward or backward.
  • the bottom minor flap kicker 292 mounted on the square hollow metal device 291 , is also moved and achieves the adjustment of the case size.
  • the side motor 35 also drives the side motor belt 351 to work.
  • the two sides of the side motor belt 351 are linked with the sprockets 331 which are located on the two long shafts 33 and the connection blocks 332 , 333 mounted on the two long shafts 33 are also linked with the two inward or outward conveyors 25 and the two parallel conveyors 31 .
  • the two parallel conveyors 31 of the case sealing device 3 are connected with the two inward or outward conveyors covers 24 of the case forming device 2 by two connection flat plates 5 . Then, the movement of the side motor 35 will finally cause the two inward or outward conveyors 25 and the two parallel conveyors 31 to move inward or outward simultaneously.
  • the top motor 37 will drive the top motor belt 371 and the top motor belt 371 is connected with the two sprockets 363 located on the top of the two vertical shafts 361 .
  • the two vertical shafts 361 are also connected with the top tape applicator supporting bar 61 .
  • the top tape applicator supporting bar 61 also moves upward or downward.
  • the forward and backward motor 29 the side motor 35 and the top motor 37 receive instructions and work at the same time to adjust the square hollow metal device 291 , the inward or backward conveyors 25 and parallel conveyors 31 and the top tape applicator supporting bar 61 .
  • the case size adjustment is done within a minute and a case space matched with the adjustment is ready to put the folded case blank in.
  • FIGS. 2-3 show the side and top view of the semi-automatic case forming, case holding and sealing machine 1 .
  • a barcode reader holder 21 is mounted on the middle of the horizontal hollow rectangular bar 22 .
  • two inward or outward conveyors covers 24 are mounted. Inside the two inward or outward conveyors covers 24 , two inward or outward conveyors 25 (not shown) are installed.
  • two long kicker bars 41 are mounted and on the long kicker bars 41 , two sets of kickers 42 are mounted to kick the bottom major flaps to close and maintain the closed condition.
  • a rectangular bar 27 is mounted.
  • the square hollow metal device 291 is mounted at the outside of the rectangular bar 27 .
  • a bottom minor flap kicker 292 is mounted on the top side of the square hollow metal device 291 .
  • Both the two inward or outward conveyors covers 24 and the two parallel conveyors 31 are connected by the two connection flat plates 5 .
  • the two parallel conveyors 31 are mounted on the supporting frame 34 and the supporting frame 34 mounted on the four supporting legs with wheels 32 .
  • two long shafts 33 are connected with the parallel conveyors 31 .
  • two vertical hollow bars 36 are mounted.
  • a top bar 362 are mounted at the top of the two vertical hollow bars 36 .
  • the top motor 37 is mounted and on the top side of the top bar 362 , a HMI 8 is mounted.
  • FIG. 4 is a perspective view of the forward or backward motor 29 .
  • the forward or backward motor 29 is connected with the long shaft 28 and is mounted in the square hollow metal device 291 .
  • a rectangular block with 4 wheels 293 is mounted in the square hollow metal device 291 , and causes the square hollow metal device 291 move smoothly along the rectangular bar 27 .
  • the square hollow metal device 291 is mounted outside the rectangular bar 27 .
  • FIG. 5 is a perspective view of the inward or outward conveyors and the parallel conveyors.
  • a horizontal shaft 221 is mounted inside the horizontal hollow rectangular bar 22 .
  • the horizontal shaft 221 is used to connect with the two inward or outward conveyors 25 and the inward or outward conveyors 25 to move along the horizontal shaft 221 smoothly.
  • the two long kicker bars 41 and two sets of kickers 42 are mounted at the bottom of the inward or outward conveyors 25 .
  • FIG. 6 is a perspective view of the side motor.
  • the side motor 35 is connected with a rectangular plate 352 with the big sprocket 353 located on the top of the side motor 35 .
  • two sprockets 354 are mounted at the two sides of the front end of the rectangular plate 352 .
  • the big sprocket 353 are [DL1] directly controlled by the side motor 35 and link with the side motor belt 351 (not shown in here).
  • the side motor belt 351 is also connected with the two sprockets 354 .
  • a cover 355 covers the big sprocket 353 . In operation, the side motor 35 will drive the big sprocket 353 , the two sprockets 354 and the side motor belt 351 to rotate.
  • the two ends of the side motor belt 351 are linked with the two sprockets 331 mounted on the two long shafts 33 so the two long shafts 33 are also moved.
  • the movement of the two long shafts 33 will make the two parallel conveyors 31 to move inward or outward because the parallel conveyors are connected with the two long shafts 33 .
  • FIG. 7 is a perspective view of the side motor and the two long shafts.
  • the front supporting leg with wheel 23 has the horizontal hollow rectangular bar 22 mounted on the top.
  • no digital code reader holder 21 is installed, all applicable cases size are pre-entered into the PLC with the HMI and each applicable case size is assigned a reference number in the HMI.
  • a rectangular bar 27 is mounted.
  • the square hollow metal device 291 is bigger than the rectangular bar 27 , it is mounted outside the rectangular bar 27 with the forward and backward motor 29 and the long shaft 28 mounted inside the rectangular bar 27 (not shown in here).
  • the bottom minor flap kicker 292 is mounted on the top of the square hollow metal device 291 .
  • This square hollow metal device 291 can move smoothly forward or backward along this rectangular bar 27 controlled by the forward and backward motor 29 because inside the square hollow metal device 291 , a rectangular block with 4 wheels 293 is mounted.
  • a rectangular flat plate with “/ ⁇ ” shape hollow 9 is mounted, which is used for the known bottom flaps kickers 26 to move along the hollow area to adjust the kicking bottom flaps kicking position.
  • two long shafts 33 are mounted and parallel to each other.
  • two sprockets 331 are located at one end of the two long shafts 33 . These sprockets 331 are used to connect with the side motor belt 351 .
  • connection blocks 332 are used to connect the two inward or outward conveyors 25
  • the connection blocks 333 are used to mount with the parallel conveyors 31 .
  • connection blocks 332 , 333 can move along the long shafts 33 .
  • the two sprockets 331 of the long shafts 33 are linked with the side motor belt 351 .
  • the sprockets 331 of the long shafts 33 are connected by the side motor belt 351 to the two sprockets 354 and big sprocket 353 of the side motor 35 .
  • FIG. 8-9 is a different view of the mechanism of the forward or backward motor and the side motor.
  • FIG. 8 is the perspective view of the forward or backward motor 29 and the side motor.
  • the hollow part of the horizontal hollow rectangular bar 22 permits mounting the horizontal shaft 221 .
  • the forward and backward motor 29 with long shaft 28 is connected with a square hollow metal device 291 .
  • a rectangular block with 5 wheels 293 is mounted inside the square hollow metal device 291 to make the movement of the square hollow metal device 291 smooth.
  • the square hollow metal device 291 is bigger than the rectangular bar 27 and is mounted at the outside of the rectangular bar 27 .
  • FIG. 9 is the bottom view of the forward or backward motor and the side motor.
  • FIG. 10 is a perspective view of the case sealing device.
  • the two vertical hollow bars 36 are mounted at the two sides of the supporting frame 34 .
  • two vertical shafts 361 are mounted and the two vertical shafts 361 are linked with a top tape applicator supporting bar 61 .
  • At both ends of the top tape applicator supporting bar 61 there are two plates 611 .
  • On the plates 611 each carry 4 wheels 612 . These wheels 612 help the top tape applicator supporting bar 61 move smoothly along the two vertical shafts 361 upward or downward.
  • top tape applicator 6 is mounted.
  • a top bar 362 connected two ends of the vertical hollow bars 36 .
  • the top motor 37 is mounted and the top motor 37 is mounted to drive the top motor belt 371 .
  • the top motor belt 371 is connected with the two vertical shafts 361 at the sprocket 363 .
  • the top motor 37 is like the side motor 35 .
  • the top motor 37 is connected with a rectangular plate 372 and the big sprocket 373 on the top of the top motor 37 .
  • two sprockets 374 are mounted.
  • the big sprocket 373 directly links with the top motor 37 by the top motor belt 371 .
  • the top motor belt 371 is also connected with the two sprockets 374 .
  • a cover 375 will cover the big sprocket 373 .
  • a HMI arm 81 is mounted on the top side of the top bar 362 .
  • the HMI arm 81 is movable, so that the HMI 8 mounted on HMI arm 81 can move.
  • a semi-automatic case forming, holding and sealing machine includes three devices, the first one is the case forming device, the second one is the case holding device and the third one is the case sealing device.
  • a single semi-automatic random case forming, holding and sealing machine can carry out the work of forming, holding and sealing random size cases without multiple adjustments of both the semi-automatic case former and case sealer by the operator. All the operator needs to do is to put the right case into the case forming device to grasp the side walls of the case, then the case holding device will fold the bottom major flaps, hold the bottom flaps folded case for the operator to fill the bottom flaps folded case with goods.
  • semi-automatic case forming, holding and sealing machine has a digital code reader holder mounted at the front of the machine to hold a digital code reader. This digital code reader is one embodiment.
  • the data of random case sizes are pre-entered into the PLC of the semi-automatic case forming and sealing machine (e.g., in memory) before the machine starts to work.
  • the digital code reader reads the code (e.g., the scannable code on one of the pick trays T traveling along a tray conveyance path Cl alongside the machine opposite the operator side of the machine), it will trigger the e-commerce software to provide the case size to the PLC and the appropriate light bulb (or other annunciator) A, which may be associated with each case rack CR proximate the operator side of the machine, will flash to indicate which case size is needed (where the different case racks hold different case sizes).
  • the machine will adjust the case forming, holding and sealing devices to match with the selected case size before the machine starts to work.
  • no digital code reader is needed. All applicable case sizes are pre-entered into the PLC with the HMI and each applicable case size is assigned a reference number in the HMI. Once the operator decides which case size will be used, the operator just needs to press the case size number on the HMI then the semi-automatic case forming, holding and sealing machine will adjust the machine to match with the case size chosen and the operator only needs to pick the correct case and put it in the machine to fold and hold the bottom flaps closed for goods to fill in.
  • the case forming device includes a case side flaps adjustment device, a bottom flaps adjustment device, a case holding device and a PLC mounted at the bottom of the case forming device.
  • a forward or backward motor is connected with a bottom minor flap kicker by a square metal hollow device.
  • the square metal hollow device is mounted on the outside of the rectangular bar. Based on case size information, the forward or backward motor will move the bottom minor flap kicker to move forward or backward to adjust the length of the case size and the holding device includes a two long kicker bars and on the two long kicker bars, two sets of kickers will bend the bottom major flaps and the two sets of kickers will kick the bottom major flaps to close.
  • the case holding device is mounted in the inward or outward conveyors, to close the bottom flaps of different cases and maintain the closed bottom flaps of the case for operator to fill in goods before sending the case to the sealing device to seal the bottom and top of the case.
  • the two inward or outward conveyors are mounted in the two inward or outward conveyor covers.
  • a case sealing device is connected with the case forming device by two connection flat plates and formed a single semi-automatic random case forming and sealing machine. These two connection flat plates are mounted on the top of the two inward and backward conveyors covers of the case forming device and two parallel conveyors of the case sealing device separately. It makes the two set of conveyors move simultaneously.
  • the movement of the two sets of conveyors is controlled by a side motor mounted at the side of the case sealing device.
  • the case sealing device includes a set of parallel conveyors to grip the two sides of the case, a side motor to control the inward and outward movement of the parallel conveyors and the inward or outward conveyors and one top tape applicator, one bottom tape applicator to seal the top and bottom flaps of the case, one top motor and one HMI.
  • controller is intended to broadly encompass any circuit (e.g., solid state, application specific integrated circuit (ASIC), an electronic circuit, a combinational logic circuit, a field programmable gate array (FPGA)), processor(s) (e.g., shared, dedicated, or group—including hardware or software that executes code), software, firmware and/or other components, including the aforementioned PLC and HMI, or a combination of some or all of the above, that carries out the control and/or processing functions of the device or the control and/or processing functions of any component thereof.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Exemplary aspects of the invention include, but are not limited to, the following:
  • a semi-automatic case forming, case holding and sealing machine includes a case forming device, a case holding device and a case sealing device.
  • a case forming device as defined in aspect X2 wherein the case side flaps adjustment device is composed of two inward or outward conveyors, two inward or outward conveyors covers, one horizontal long shaft and two connection flat plates.
  • the horizontal long shaft is mounted in the horizontal rectangular hollow bar and the horizontal rectangular hollow bar is mounted on the top of the front supporting leg with wheel.
  • the two inward or outward conveyors are mounted in the inward or backward conveyors covers.
  • the two inward or outward conveyors are connected with the horizontal long shaft, which is mounted in the horizontal rectangular hallow bar, and move along the horizontal long shaft inward or outward to grasp the sides of the case.
  • At the top front of the two inward or backward conveyors covers two connection flat plates are mounted.
  • the case sealing device is connected with the case forming device by these two connection flat plates.
  • the rectangular block with 4 wheels is located on the long shaft and is mounted in the square hollow metal device.
  • the forward or backward motor is connected with the long shaft.
  • the long shaft is mounted in the square hollow metal device.
  • the forward or backward motor with the long shaft is mounted in the rectangular bar.
  • the rectangular bar is mounted at the center position of the case forming device.
  • the bottom minor flap kicker is mounted.
  • the forward or backward motor moves the long shaft and the long shaft moves the square hollow metal device as it is connected with the long shaft and the hollow square metal device will move the bottom minor flap kicker forward or backward based on the case size.
  • the case holding device is mounted at the bottom of the inward or outward conveyors.
  • the two sets of kickers mounted on the two long kicker bars can kick the bottom major flaps of a case to close and maintain the closed position.
  • the side motor is mounted at the side of the case sealing device.
  • two long shafts are mounted and parallel to each other.
  • the inward or outward case size adjustment device as defined in aspect X7 wherein the two long shaft has a sprocket mounted on one end of the long shaft.
  • the sprocket is used to connect with the side motor belt.
  • On each of the long shaft there are two connection blocks, the connection blocks are used to mount the two inward or outward conveyors and the parallel conveyors.
  • the side motor is connected with a rectangular plate and the big sprocket located on the top of the side motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted.
  • the big sprocket is directly controlled by the side motor and link with the side motor belt.
  • the side motor belt is also connected with the two sprockets.
  • a cover will cover the big sprocket. In operation, the side motor will drive the big sprocket to rotate.
  • the big sprocket is linked with side motor belt.
  • the big sprocket When the side motor belt starts to move, the big sprocket also moves and drives the side motor belt to rotate.
  • the two sprockets are linked with the side motor belt and they also move.
  • the two ends of the side motor belt are linked with the two long shafts by two sprockets so the side motor belt drives the two long shafts to move.
  • the movement of the two long shafts will make the two parallel conveyors and the inward or outward conveyors to move inward or outward.
  • a case sealing device as defined in aspect X6 wherein the top tape applicator adjustment device is composed of one top tape applicator, one top motor, one top motor belt, two vertical shafts, one top tape applicator supporting bar, one top bar, one HMI.
  • the two vertical hollow bars are mounted at the two sides of the supporting frame. Inside the two vertical hollow bars, two vertical shafts are mounted and the two vertical shafts are linked with a top tape applicator supporting bar. At the center of the top tape applicator supporting bar, top tape applicator is mounted.
  • a top bar connected two ends of the vertical hollow bars.
  • the top motor is mounted to drive the top motor belt.
  • the top motor belt is connected with the two vertical shafts by the sprocket.
  • a HMI arm is mounted on the top side of the top bar.
  • the HMI arm is movable, so that the HMI mounted on HMI arm can move.
  • a top tape applicator adjustment device as defined in aspect X10 wherein the top motor is connected with a rectangular plate and the big sprocket is mounted on the top of the top motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted. The big sprocket is directly linked with the top motor by the top motor belt. The top motor belt is also connected with the two sprockets. A cover will cover the big sprocket.
  • a semi-automatic case forming, case holding and sealing machine includes a case forming device, a case holding device and a case sealing device.
  • a case forming device as defined in aspect X13 wherein the case side flaps adjustment device is composed of two inward or outward conveyors, two inward or outward conveyors covers, one horizontal long shaft and two connection flat plates.
  • the horizontal long shaft is mounted in the horizontal rectangular hollow bar and the horizontal rectangular hollow bar is mounted on the top of the front supporting leg with wheel.
  • the two inward or outward conveyors are mounted in the inward or backward conveyors covers.
  • the two inward or outward conveyors are connected with the horizontal long shaft which is mounted in the horizontal rectangular hallow bar, and move along the horizontal long shaft inward or outward to grasp the sides of the case.
  • At the top front of the two inward or backward conveyors covers two connection flat plates are mounted.
  • the case sealing device is connected with the case forming device by these two connection flat plates.
  • the rectangular block with 4 wheels is located on the long shaft and is mounted in the square hollow metal device.
  • the forward or backward motor is connected with the long shaft.
  • the long shaft is mounted in the square hollow metal device.
  • the forward or backward motor with the long shaft is mounted in the rectangular bar.
  • the rectangular bar is mounted at the center position of the case forming device.
  • the bottom minor kicker is mounted.
  • the forward or backward motor moves the long shaft and the long shaft moves the square hollow metal device as it is connected with the long shaft and the hollow square metal device will move the bottom minor flap kicker forward or backward based on the case size.
  • the case holding device is mounted at the bottom of the inward or outward conveyors.
  • the two sets of kickers mounted on the two long kicker bars can kick the bottom major flaps of a case to close and maintain the closed position.
  • the side motor is mounted at the side of the case sealing device.
  • two long shafts are mounted and parallel to each other.
  • the inward or outward case size adjustment device as defined in aspect X18 wherein the two long shaft has a sprocket mounted on one end of the long shaft.
  • the sprocket is used to connect with the side motor belt.
  • On each of the long shaft there are two connection blocks, the connection blocks are used to mount the two inward or outward conveyors and the parallel conveyors.
  • the side motor is connected with a rectangular plate and the big sprocket located on the top of the side motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted.
  • the big sprocket is directly controlled by the side motor and link with the side motor belt.
  • the side motor belt is also connected with the two sprockets.
  • a cover will cover the big sprocket. In operation, the side motor will drive the big sprocket to rotate.
  • the big sprocket is linked with side motor belt.
  • the big sprocket When the side motor belt starts to move, the big sprocket also moves and drives the side motor belt to rotate.
  • the two sprockets are linked with the side motor belt and they also move.
  • the two ends of the side motor belt are linked with the two long shafts by two sprockets so the side motor belt drives the two long shafts to move.
  • the movement of the two long shafts will make the two parallel conveyors and the inward or outward conveyors to move inward or outward.
  • a case sealing device as defined in aspect X17 wherein the top tape applicator adjustment device is composed of one top tape applicator, one top motor, one top motor belt, two vertical shafts, one top tape applicator supporting bar, one top bar, one HMI.
  • the two vertical hollow bars are mounted at the two sides of the supporting frame. Inside the two vertical hollow bars, two vertical shafts are mounted and the two vertical shafts are linked with a top tape applicator supporting bar. At the center of the top tape applicator supporting bar, top tape applicator is mounted.
  • a top bar connected two ends of the vertical hollow bars.
  • the top motor is mounted to drive the top motor belt.
  • the top motor belt is connected with the two vertical shafts by the sprocket.
  • a HMI arm is mounted on the top side of the top bar.
  • the HMI arm is movable, so that the HMI mounted on HMI arm can move.
  • a top tape applicator adjustment device as defined in aspect X21 wherein the top motor is connected with a rectangular plate and the big sprocket is mounted on the top of the top motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted. The big sprocket is directly linked with the top motor by the top motor belt. The top motor belt is also connected with the two sprockets. A cover will cover the big sprocket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Package Closures (AREA)

Abstract

A semi-automatic case handling machine includes a case holding and forming section with laterally movable spaced apart walls, bottom major flap kickers movable with the walls, and a bottom minor flap kicker movable axially. A case sealing section of the machine includes a bottom taper for taping bottom major flaps, an upper taper for taping upper major flaps, the upper taper movable vertically, and a pair of spaced apart conveyors for moving cases past the bottom taper and the upper taper for taping, wherein the spaced apart conveyors are movable laterally. An adjustment system includes a memory storing a plurality of machine set ups, wherein each machine set up includes data corresponding to (i) lateral positions for the spaced apart walls, the spaced apart bottom major flap kickers and the spaced apart conveyors, (ii) axial position for the bottom minor flap kicker and (iii) vertical position for the upper taper.

Description

    TECHNICAL FIELD
  • This application relates generally to case formers and, more specifically, to a case forming machine and system that facilitates formation and filling of cases of different sizes on an as needed basis.
  • BACKGROUND
  • In the packaging industry, products are packed by different type of case formers and case sealers before they are shipped to the consumers. One common type of case former and case sealer is semi-automatic case former and case sealer. This type of case former and sealer needs an operator to unfold the case blanks, use the handle to adjust the conveyors so as to match the case size and put the case between the conveyors to fold the bottom of the case. Similarly, the semi-automatic case sealer also needs an operator to use 2 handles to adjust conveyors to match the case size in order to grip the case sides by the conveyors firmly and another adjustment of the top tape applicator by handle is needed to allow the top tape applicator to touch the top flaps of the case. After the two adjustments, the semi-automatic case sealer is ready to apply adhesive tapes on top and bottom of the case. When different sizes of cases are used, then the operator has to repeat the above-mentioned adjustments again. The problems of this type of semi-automatic case former and case sealer are numerous. Firstly, many adjustments are needed to form different type of cases, which is time consuming. Secondly, the adjustments are carried out by the operator, in other words, the operator may have the chance to adjust it too tight or too loose and finally affect the result of case forming and sealing. Thirdly, if the user wants to avoid adjustment problems, more semi-automatic case formers and case sealers may be needed in order to handle many different sizes of cases, adding undesired cost.
  • Another type of case former and case sealer is the fully automatic case former and case sealer. This type of machine, to some extent, solve the problem of reliance on the operator to stop the machine to do the adjustments. The fully automatic case former and case sealer uses many sensors to detect and measure the width and height of the cases when they enter the machine.
  • The problems of this type of fully automatic case former and case sealer are that, first of all, because various sensors are used to detect the case size, it takes time to transmit the information back to the PLC and then get the instruction to adjust the conveyors and top tape applicator. Secondly, the accuracy of sensors may be affected by dust, mis-mounting of the sensors. Thirdly, sensors are more expensive and it makes the price of the fully automatic case former and case sealer higher than the semi-automatic case former and case sealer.
  • It would be desirable to provide a machine and system that is more readily adaptable to the need to form different size cases in an undefined sequence.
  • SUMMARY
  • One objective is to provide a single semi-automatic random case forming, case holding and sealing machine to complete the adjustment of random cases by one single adjustment process without the intervention of the operator manually moving components or using sensors that directly evaluate case size.
  • In one aspect, a semi-automatic case handling machine includes a case holding and forming section, including: spaced apart walls that are movable laterally to adapt to different case widths, spaced apart bottom major flap kickers for moving bottom major flaps of a case upward, the bottom major flap kickers movable with the side walls, and a bottom minor flap kicker movable axially to adapt different case lengths. A case sealing section is axially downstream of the case holding and forming section, the case sealing section including: a bottom taper, an upper taper, the upper taper movable vertically to adapt to different case widths, and a pair of spaced apart conveyors for moving cases past the bottom taper and the upper taper for taping, wherein the spaced apart conveyors are movable laterally to adapt to different case widths. An adjustment system includes a memory storing a plurality of machine set ups, wherein each machine set up includes data corresponding to (i) lateral positions for the spaced apart walls, the spaced apart bottom major flap kickers and the spaced apart conveyors, (ii) axial position for the bottom minor flap kicker and (iii) vertical position for the upper taper.
  • In another aspect, a method is provided of forming, loading and taping a case using a semi-automated case handling machine that includes a plurality of components that are position adjustable based upon case size to be formed, loaded and taped. The method involves: scanning a code associated with a pick tray holding one or more items to be loaded into a case; and automatically moving the plurality of components to respective positions corresponding to a case size associated with the scanned code, in preparation for forming, loading and taping the case.
  • In a further aspect, a method is provided of forming, loading and taping a case using a semi-automated case handling machine that includes a plurality of components that are position adjustable based upon case size to be formed, loaded and taped. The method involves: inputting a case size code to a controller of the machine; and the controller automatically effecting movement of the plurality of components to respective positions corresponding to a case size associated with the case size code, in preparation for forming, loading and taping the case.
  • A semi-automatic case forming, case holding and sealing machine includes a case forming device, a case holding device and a case sealing device. The case forming device, case holding device and case sealing device is connected by two devices, one is by the two connection flat plates mounted on the top of the inward or outward conveyors and the parallel conveyors. Another device is by the connection blocks mounted on the two long shafts, the two long shafts are connected with the inward or outward conveyors and the parallel conveyors. Through these two devices, the case forming device connected with the case sealing device to form a single case forming and sealing machine. The characteristic of the semi-automatic case forming and sealing machine is no operator adjustment or sensors are needed to adjust cases size in order to form and seal random cases.
  • In one embodiment, the semi-automatic case forming, case holding and sealing machine includes a case forming device, a case holding device and a case sealing device. The case forming device composed of a digital code reader holder holding a digital code reader which can be a barcode or QR code reader, mounted at the front of the machine, a PLC mounted at the bottom the case forming device, a case side flaps adjustment device, a bottom flaps adjustment device. The side flaps adjustment device is composed of two inward or outward conveyors and two inward or outward conveyors covers, one horizontal long shaft. The horizontal long shaft is mounted in the horizontal rectangular hollow bar and the horizontal rectangular hollow bar is mounted on the top of the front supporting let with wheel. The two inward or outward conveyors are mounted in the inward or backward conveyors covers. The two inward or outward conveyors move along the horizontal long shaft inward or outward to grasp the sides of the case firmly and at the front of the two inward or backward conveyors covers, two connection flat plates are mounted. The case sealing device is linked with the case forming device by these two connection flat plates.
  • The case holding device includes two long kicker bars, on each of the long kicker bars, there is a set of kickers mounted. The case holding device is mounted at the bottom of the inward or outward conveyors. After a case is placed in the space created by the inward or outward conveyors and the square hollow metal device in accordance with the case size, the two long kicker bars of the inward or outward conveyors will kick the bottom major flaps of the case to close and the kicker bars will hold the closed position for the operator to fill products into the case.
  • A bottom flaps adjustment device includes one bottom minor flap kicker, a forward or backward motor, a long shaft mounted with the forward or backward motor and a square hollow metal device. The forward or backward motor is mounted in the rectangular bar, the rectangular bar is mounted at the center position of the case forming device, the forward or backward motor is connected with a long shaft, and this forward and backward motor with long shaft is mounted on a square hollow metal device. At the top of the square hollow metal device, the bottom minor flap kicker is mounted. The forward or backward motor moves the long shaft and the long shaft moves the hollow square metal device and the hollow square metal device will move the bottom minor flap kicker forward or backward based on the various case sizes. In operation, the operator uses the digital code reader to scan the digital code, then the inward or backward conveyors and the square hollow metal device will adjust the case size of the case forming device simultaneously to form a case space that matches the case being used. When the operator opens a folded case and puts it in the case forming device, the bottom minor flaps kicker will bend or fold the bottom minor flaps and the two long kicker bars of the case holding device, which are mounted on the inward or backward conveyors, will kick the bottom major flaps to close and maintain the bottom flaps in a closed position for the operator to fill in products before the case is moved to the case sealing device to seal the bottom and top of the case.
  • The case sealing device includes an inward or outward case size adjustment device, and a top tape applicator adjustment device. The inward or outward case size adjustment device includes a set of parallel conveyors, two long shafts, one side motor mounted at the side of the case sealing device, and one side motor belt. At the middle of the supporting frame, the side motor is mounted. The side motor is connected with a rectangular plate and the big sprocket is located on the top of the side motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted. The big sprocket is directly controlled by the side motor and links with the side motor belt. In addition, the side motor belt is also connected with the two sprockets. A cover will cover the big sprocket. The action of the side motor will drive the big sprocket and the side motor belt. The side motor belt, which is linked with the two long shafts by the sprockets mounted on the top end of the long shafts, starts to move. The two long shafts are connected with the two parallel conveyors and the inward and outward conveyors. The movement of the side motor controls the inward or outward movement of both the inward or outward conveyors and the parallel conveyors simultaneously.
  • The top tape applicator adjustment device is composed of one top tape applicator, one top motor, one top motor belt, two vertical shafts, one top tape applicator supporting bar, and one HMI. The top motor drives the top motor belt to move and the top motor belt is linked with the two vertical shafts and the top tape applicator supporting bar is mounted on the two vertical shafts. Finally, the upward or downward movement of the top tape applicator supporting bar controls the upward and downward movement of the top tape applicator based on the case size. One HMI used to enter cases size information is mounted on the top of the top bar and one bottom tape applicator is used to seal the bottom case flaps.
  • The two parallel conveyors of the case sealing device are connected with two long shafts. When the motor mounted at the side of the case sealing machine moves based on the case size information received, it will drive the side motor belt which is connected with the two long shafts to move and, as the two long shafts are mounted with the two inward or outward conveyors and two parallel conveyors, both the inward or outward conveyors and the parallel conveyors move inward or outward at the same time, controlled by the side motor. In addition, on the top of the two inward or backward conveyors of the case forming device and the parallel conveyors of the case sealing device, two connection flat plates are mounted to connect the two sets of conveyors together. The two connection flat plates help to effect the inward and outward movement of the two sets of conveyors.
  • At the same time, the top motor controls the top tape applicator movement. The top motor, linked with a top motor belt, drives the top motor belt to move. At the two sides of the top motor belt, two vertical long shafts are connected with the top motor belt, the two vertical long shafts are connected with the top tape applicator by the top tape applicator supporting bar, so the two vertical long shafts will move the top tape applicator downward or upward based on the case size information received. Finally, the whole case size setting is done within one minute by one instruction and no operator is needed to manually adjust the machine.
  • In another embodiment, no digital code reader is needed. All applicable case sizes are pre-entered into the PLC with the HMI and each applicable case size is assigned a reference number in the HMI. Once the operator decides which case size will be used, the operator just needs to press the case size number on the HMI then the semi-automatic case forming, holding and sealing machine will adjust the machine to match with the case size chosen, and the operator only needs to pick the correct case and put it in the machine to fold and hold the bottom flaps closed for goods to fill in.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of the semi-automatic case forming, case holding and sealing machine;
  • FIG. 2 is a side view of the semi-automatic case forming, case holding and sealing machine;
  • FIG. 3 is a top view of the semi-automatic case forming, case holding and sealing machine;
  • FIG. 4 is a perspective view of the forward or backward motor;
  • FIG. 5 is a perspective view of the inward or outward conveyors and the parallel conveyors;
  • FIG. 6 is a perspective view of the side motor;
  • FIG. 7 is a perspective view of the side motor and the two long shafts;
  • FIGS. 8-9 is different view of the mechanism of the forward or backward motor and the side motor;
  • FIG. 9A is an enlarged view of region 9A of FIG. 9; and
  • FIG. 10 is a perspective view of the case sealing device.
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1-10, a perspective view of the semi-automatic case forming, case holding and sealing machine 1 is shown. The semi-automatic case forming, case holding and sealing machine 1 includes case forming device 2, case holding 4 and case sealing device 3. At the front part of the case forming device 2, a barcode reader holder 21 is mounted on the middle of the horizontal hollow rectangular bar 22. Inside the horizontal hollow rectangular bar 22, a horizontal shaft 221 is mounted. The horizontal shaft 221 is used to connect with the two inward or outward conveyors 25 and let the inward or outward conveyors 25 to move along the horizontal shaft 221 smoothly. At the bottom of the horizontal hollow rectangular bar 22, a front supporting leg with wheel 23 is mounted. At the two sides of the horizontal hollow rectangular bar 22, two inward or outward conveyors 25 are mounted. On the two inward or outward conveyors 25, two inward or outward conveyors covers 24 are installed to cover the inward or outward conveyors 25. Below the two inward or outward conveyors 25, two long kicker bars 41 are mounted, and on each of the two long kicker bars 41, there is a set of kickers 42 to kick the bottom major flaps to close and maintain a closed condition. At the middle of the front supporting leg with wheel 23, a rectangular bar 27 is mounted. Inside the rectangular bar 27, a long shaft 28 connected with the forward and backward motor 29 is mounted. On the long shaft 28, a rectangular block with 4 wheels 293 is mounted. This long shaft 28 is connected with a square hollow metal device 291. The rectangular block with 4 wheels 293 is mounted on the square hollow metal device 291. The square hollow metal device 291 is bigger than the rectangular bar 27 and is mounted at the outside of the rectangular bar 27. On the top side of the square hollow metal device 291, a bottom minor flap kicker 292 is mounted.
  • The case forming device 2 is connected with the case sealing device 3 by two connection flat plates 5. One end of each of the two connection flat plates 5 is mounted on the top side of a respective one of the inward or outward conveyors covers 24 and the other end are mounted on the top side of one of the two parallel conveyors 31. The two parallel conveyors 31 are positioned on the supporting frame 34 and the supporting frame 34 is mounted on the four supporting legs with wheels 32. At the front end and back end of the two parallel conveyors 31, two long shafts 33 are connected with the parallel conveyors 31. On each of the long shaft 33, there are two connection blocks, the connection blocks 332 are used to mount the two inward or outward conveyors 25, and the connection blocks 333 are used to mount the parallel conveyors 31. These connection blocks 332, 333 can move along the long shafts 33. Through the work of the two connection flat plates 5 and the connection blocks 332, 333 mounted on the two long shafts 33, they can cause the inward and outward conveyors 25 and the parallel conveyors 31 to move along the two long shafts 33 and the horizontal shaft 221 at the same time and accomplish the task of adjusting inward and outward conveyors 25 and the parallel conveyors 31 to grasp the case sides firmly.
  • At the middle of the supporting frame 34, a side motor 35 is mounted. The side motor 35 is connected with a rectangular plate 352 and the big sprocket 353 is located on the top of the side motor 35. At the two sides of the front end of the rectangular plate 352, two sprockets 354 are mounted. The big sprocket 353 is directly controlled by the side motor 35 and are linked with the side motor belt 351. In addition, the side motor belt 351 is also connected with two sprockets 354. A cover 355 covers the big sprocket 353. The action of the side motor 35 will drive the big sprocket and the side motor belt 351. The side motor belt 351 also links with the two long shafts 33 by the sprockets 331 mounted on the top of the long shafts 33. The two long shafts 33 are connected with the two parallel conveyors 31 and the inward and outward conveyors 25. As a result, the movement of the side motor 35 controls the inward or outward movement of both the inward or outward conveyors 25 and the parallel conveyors 31 at the same time. Between the two parallel conveyors 31, a bottom tape applicator 7 is installed. At the two sides of the supporting frame 34, two vertical hollow bars 36 are mounted. Inside the two vertical hollow bars 36, two vertical shafts 361 are mounted and the two vertical shafts 361 are linked with a top tape applicator supporting bar 61. At both ends of the top tape applicator supporting bar 61, there are two plates 611. On the plates 611, each carry 4 wheels 612. These wheels 612 help the top tape applicator supporting bar 61 move along the two vertical shafts 361 upward or downward smoothly. At the center of the top tape applicator supporting bar 61, a top tape applicator 6 is mounted. A top bar 362 is connected on the two ends of the vertical hollow bars 36. At the bottom side of the top bar 362, the top motor 37 is mounted to drive the top motor belt 371 and the top motor belt 371 is connected with the two vertical shafts 361 by the sprocket 363. The top motor 37 is like the side motor 35. The top motor 37 is connected with a rectangular plate 372 and the big sprocket 373 on the top of the top motor 37. At the two sides of the front end of the rectangular plate 372, two sprockets 374 are mounted. The big sprocket 373 directly link with the top motor 37 by the top motor belt 371. The top motor belt 371 is also connected with the two sprockets 374. A cover 375 covers the big sprocket 373. On the top side of the top bar 362, a HMI arm 81 is mounted. The HMI arm 81 is movable, so that the HMI 8 mounted on HMI arm 81 can move based on the need of the operator.
  • When in work, an operator will use the digital code reader to scan the digital code attached on a pick tray, then the PLC will, based on the pre-stored information for the scanned digital code, instruct the forward and backward motor 29, the side motor 35 and the top motor 37 to adjust the semi-automatic case forming case holding and sealing machine and, in some embodiments, the control of the machine will also output an indication (e.g., visual) to communicate to the operator the case size needed for the items in the pick tray. In detail, the forward and backward motor 29, which is connected with the long shaft 28, will move. This forward and backward motor 29 with long shaft 28 is connected with a square hollow metal device 291. On the top side of the square hollow metal device 291, a bottom minor flap kicker 292 is mounted. The movement of the forward and backward motor 29 causes the movement of square hollow metal device 291 along the long shaft 28 forward or backward. Inside the square hollow metal device 291, a rectangular block with 4 wheels 293 is mounted, which can make the square hollow metal device 291 move smoothly forward or backward. The bottom minor flap kicker 292, mounted on the square hollow metal device 291, is also moved and achieves the adjustment of the case size. At the same time, the side motor 35 also drives the side motor belt 351 to work. The two sides of the side motor belt 351 are linked with the sprockets 331 which are located on the two long shafts 33 and the connection blocks 332, 333 mounted on the two long shafts 33 are also linked with the two inward or outward conveyors 25 and the two parallel conveyors 31. The two parallel conveyors 31 of the case sealing device 3 are connected with the two inward or outward conveyors covers 24 of the case forming device 2 by two connection flat plates 5. Then, the movement of the side motor 35 will finally cause the two inward or outward conveyors 25 and the two parallel conveyors 31 to move inward or outward simultaneously. At the same time, the top motor 37 will drive the top motor belt 371 and the top motor belt 371 is connected with the two sprockets 363 located on the top of the two vertical shafts 361. The two vertical shafts 361 are also connected with the top tape applicator supporting bar 61. As a result, when the two vertical shafts 361 move upward or downward controlled by the top motor 37, the top tape applicator supporting bar 61 also moves upward or downward. As the forward and backward motor 29, the side motor 35 and the top motor 37 receive instructions and work at the same time to adjust the square hollow metal device 291, the inward or backward conveyors 25 and parallel conveyors 31 and the top tape applicator supporting bar 61. The case size adjustment is done within a minute and a case space matched with the adjustment is ready to put the folded case blank in.
  • FIGS. 2-3 show the side and top view of the semi-automatic case forming, case holding and sealing machine 1. In FIGS. 2 & 3, at the front end, a barcode reader holder 21 is mounted on the middle of the horizontal hollow rectangular bar 22. At the two sides of the horizontal hollow rectangular bar 22, two inward or outward conveyors covers 24 are mounted. Inside the two inward or outward conveyors covers 24, two inward or outward conveyors 25 (not shown) are installed. Below the two inward or outward conveyors two long kicker bars 41 are mounted and on the long kicker bars 41, two sets of kickers 42 are mounted to kick the bottom major flaps to close and maintain the closed condition. At the middle of the front supporting leg with wheel 23, a rectangular bar 27 is mounted. The square hollow metal device 291 is mounted at the outside of the rectangular bar 27. On the top side of the square hollow metal device 291, a bottom minor flap kicker 292 is mounted. Both the two inward or outward conveyors covers 24 and the two parallel conveyors 31 are connected by the two connection flat plates 5. The two parallel conveyors 31 are mounted on the supporting frame 34 and the supporting frame 34 mounted on the four supporting legs with wheels 32. At the front end and back end of the two parallel conveyors 31, two long shafts 33 are connected with the parallel conveyors 31. At the two sides of the supporting frame 34, two vertical hollow bars 36 are mounted. At the top of the two vertical hollow bars 36, a top bar 362 are mounted. At the bottom side of the top bar 362, the top motor 37 is mounted and on the top side of the top bar 362, a HMI 8 is mounted.
  • FIG. 4 is a perspective view of the forward or backward motor 29. The forward or backward motor 29 is connected with the long shaft 28 and is mounted in the square hollow metal device 291. On the long shaft 28, a rectangular block with 4 wheels 293 is mounted in the square hollow metal device 291, and causes the square hollow metal device 291 move smoothly along the rectangular bar 27. The square hollow metal device 291 is mounted outside the rectangular bar 27.
  • FIG. 5 is a perspective view of the inward or outward conveyors and the parallel conveyors. Inside the horizontal hollow rectangular bar 22, a horizontal shaft 221 is mounted. The horizontal shaft 221 is used to connect with the two inward or outward conveyors 25 and the inward or outward conveyors 25 to move along the horizontal shaft 221 smoothly. At the bottom of the inward or outward conveyors 25, the two long kicker bars 41 and two sets of kickers 42 are mounted.
  • FIG. 6 is a perspective view of the side motor. The side motor 35 is connected with a rectangular plate 352 with the big sprocket 353 located on the top of the side motor 35. At the two sides of the front end of the rectangular plate 352, two sprockets 354 are mounted. The big sprocket 353 are [DL1] directly controlled by the side motor 35 and link with the side motor belt 351 (not shown in here). In addition, the side motor belt 351 is also connected with the two sprockets 354. A cover 355 covers the big sprocket 353. In operation, the side motor 35 will drive the big sprocket 353, the two sprockets 354 and the side motor belt 351 to rotate. The two ends of the side motor belt 351 are linked with the two sprockets 331 mounted on the two long shafts 33 so the two long shafts 33 are also moved. The movement of the two long shafts 33 will make the two parallel conveyors 31 to move inward or outward because the parallel conveyors are connected with the two long shafts 33.
  • FIG. 7 is a perspective view of the side motor and the two long shafts. At the front part of the case forming device 2, the front supporting leg with wheel 23 has the horizontal hollow rectangular bar 22 mounted on the top. In this FIG. 7, no digital code reader holder 21 is installed, all applicable cases size are pre-entered into the PLC with the HMI and each applicable case size is assigned a reference number in the HMI. Once the operator decides what case size is needed, the operator just needs to press the case size number on the HMI, then the semi-automatic case forming, holding and sealing machine will adjust the machine to match with the case size chosen and the operator only needs to pick the correct case and put it in the machine to fold and hold the bottom flaps closed for goods to fill in. At the middle of the front supporting leg with wheel 23, a rectangular bar 27 is mounted. As the square hollow metal device 291 is bigger than the rectangular bar 27, it is mounted outside the rectangular bar 27 with the forward and backward motor 29 and the long shaft 28 mounted inside the rectangular bar 27 (not shown in here). On the top of the square hollow metal device 291, the bottom minor flap kicker 292 is mounted. This square hollow metal device 291 can move smoothly forward or backward along this rectangular bar 27 controlled by the forward and backward motor 29 because inside the square hollow metal device 291, a rectangular block with 4 wheels 293 is mounted. Between the case forming device 2 and case sealing device 3, a rectangular flat plate with “/ \” shape hollow 9 is mounted, which is used for the known bottom flaps kickers 26 to move along the hollow area to adjust the kicking bottom flaps kicking position. At the front side and end side of the case sealing device 3, two long shafts 33 are mounted and parallel to each other. At one end of the two long shafts 33, two sprockets 331 are located. These sprockets 331 are used to connect with the side motor belt 351. On each of the long shaft 33, there are two connection blocks, the connection blocks 332 are used to connect the two inward or outward conveyors 25, and the connection blocks 333 are used to mount with the parallel conveyors 31. These connection blocks 332, 333 can move along the long shafts 33. The two sprockets 331 of the long shafts 33 are linked with the side motor belt 351. Through the work of the two connection flat plates 4 and the connection blocks 332, 333 mounted on the two long shafts 33, they can bring the inward and outward conveyors 25 and the parallel conveyors 31 move along the two long shafts 33 at the same time. The sprockets 331 of the long shafts 33 are connected by the side motor belt 351 to the two sprockets 354 and big sprocket 353 of the side motor 35.
  • FIG. 8-9 is a different view of the mechanism of the forward or backward motor and the side motor. In FIG. 8 and FIG. 9, no digital code reader holder is mounted. FIG. 8 is the perspective view of the forward or backward motor 29 and the side motor. In this FIG. 8, the hollow part of the horizontal hollow rectangular bar 22 permits mounting the horizontal shaft 221. The forward and backward motor 29 with long shaft 28 is connected with a square hollow metal device 291. Inside the square hollow metal device 291, a rectangular block with 5 wheels 293 is mounted to make the movement of the square hollow metal device 291 smooth. The square hollow metal device 291 is bigger than the rectangular bar 27 and is mounted at the outside of the rectangular bar 27. Behind the rectangular flat plate with “/ \” shape hollow 9, two long shafts 33 are mounted and parallel to each other. At one end of the two long shafts 33, two sprockets 331 are located. These sprockets 331 are used to connect with the side motor belt 351 and work with the sprockets 354 and big sprocket 353. Each long shaft 33 includes two connection blocks, the connection blocks 332 are used to connect the two inward or outward conveyors 25, the connection blocks 333 are used to mount with the parallel conveyors 31. These connection blocks 332, 333 can move along the long shafts 33. Through the work of the side motor 35, it will control the movement of the inward or outward conveyors 25 and the parallel conveyors 31. FIG. 9 is the bottom view of the forward or backward motor and the side motor.
  • FIG. 10 is a perspective view of the case sealing device. The two vertical hollow bars 36 are mounted at the two sides of the supporting frame 34. Inside the two vertical hollow bars 36, two vertical shafts 361 are mounted and the two vertical shafts 361 are linked with a top tape applicator supporting bar 61. At both ends of the top tape applicator supporting bar 61, there are two plates 611. On the plates 611, each carry 4 wheels 612. These wheels 612 help the top tape applicator supporting bar 61 move smoothly along the two vertical shafts 361 upward or downward. At the center of the top tape applicator supporting bar 61, top tape applicator 6 is mounted. A top bar 362 connected two ends of the vertical hollow bars 36. At the bottom side of the top bar 362, the top motor 37 is mounted and the top motor 37 is mounted to drive the top motor belt 371. The top motor belt 371 is connected with the two vertical shafts 361 at the sprocket 363. The top motor 37 is like the side motor 35. The top motor 37 is connected with a rectangular plate 372 and the big sprocket 373 on the top of the top motor 37. At the two sides of the front end of the rectangular plate 372, two sprockets 374 are mounted. The big sprocket 373 directly links with the top motor 37 by the top motor belt 371. The top motor belt 371 is also connected with the two sprockets 374. A cover 375 will cover the big sprocket 373. On the top side of the top bar 362, a HMI arm 81 is mounted. The HMI arm 81 is movable, so that the HMI 8 mounted on HMI arm 81 can move.
  • Thus, a semi-automatic case forming, holding and sealing machine includes three devices, the first one is the case forming device, the second one is the case holding device and the third one is the case sealing device. Through the cooperation of the three devices, a single semi-automatic random case forming, holding and sealing machine can carry out the work of forming, holding and sealing random size cases without multiple adjustments of both the semi-automatic case former and case sealer by the operator. All the operator needs to do is to put the right case into the case forming device to grasp the side walls of the case, then the case holding device will fold the bottom major flaps, hold the bottom flaps folded case for the operator to fill the bottom flaps folded case with goods. After filling the case, the operator will push the case into the case sealing device to seal both the top and bottom flaps of the case. In one embodiment, semi-automatic case forming, holding and sealing machine has a digital code reader holder mounted at the front of the machine to hold a digital code reader. This digital code reader is one embodiment. The data of random case sizes are pre-entered into the PLC of the semi-automatic case forming and sealing machine (e.g., in memory) before the machine starts to work. Once the digital code reader reads the code (e.g., the scannable code on one of the pick trays T traveling along a tray conveyance path Cl alongside the machine opposite the operator side of the machine), it will trigger the e-commerce software to provide the case size to the PLC and the appropriate light bulb (or other annunciator) A, which may be associated with each case rack CR proximate the operator side of the machine, will flash to indicate which case size is needed (where the different case racks hold different case sizes). The machine will adjust the case forming, holding and sealing devices to match with the selected case size before the machine starts to work.
  • In embodiments, no digital code reader is needed. All applicable case sizes are pre-entered into the PLC with the HMI and each applicable case size is assigned a reference number in the HMI. Once the operator decides which case size will be used, the operator just needs to press the case size number on the HMI then the semi-automatic case forming, holding and sealing machine will adjust the machine to match with the case size chosen and the operator only needs to pick the correct case and put it in the machine to fold and hold the bottom flaps closed for goods to fill in.
  • The case forming device includes a case side flaps adjustment device, a bottom flaps adjustment device, a case holding device and a PLC mounted at the bottom of the case forming device. At the bottom of the semi-automatic case forming and sealing machine, a forward or backward motor is connected with a bottom minor flap kicker by a square metal hollow device. The square metal hollow device is mounted on the outside of the rectangular bar. Based on case size information, the forward or backward motor will move the bottom minor flap kicker to move forward or backward to adjust the length of the case size and the holding device includes a two long kicker bars and on the two long kicker bars, two sets of kickers will bend the bottom major flaps and the two sets of kickers will kick the bottom major flaps to close. The case holding device is mounted in the inward or outward conveyors, to close the bottom flaps of different cases and maintain the closed bottom flaps of the case for operator to fill in goods before sending the case to the sealing device to seal the bottom and top of the case. The two inward or outward conveyors are mounted in the two inward or outward conveyor covers. At the front end of the case forming device of the semi-automatic case forming and sealing machine, a case sealing device is connected with the case forming device by two connection flat plates and formed a single semi-automatic random case forming and sealing machine. These two connection flat plates are mounted on the top of the two inward and backward conveyors covers of the case forming device and two parallel conveyors of the case sealing device separately. It makes the two set of conveyors move simultaneously. The movement of the two sets of conveyors is controlled by a side motor mounted at the side of the case sealing device. The case sealing device includes a set of parallel conveyors to grip the two sides of the case, a side motor to control the inward and outward movement of the parallel conveyors and the inward or outward conveyors and one top tape applicator, one bottom tape applicator to seal the top and bottom flaps of the case, one top motor and one HMI.
  • As used herein, the term controller is intended to broadly encompass any circuit (e.g., solid state, application specific integrated circuit (ASIC), an electronic circuit, a combinational logic circuit, a field programmable gate array (FPGA)), processor(s) (e.g., shared, dedicated, or group—including hardware or software that executes code), software, firmware and/or other components, including the aforementioned PLC and HMI, or a combination of some or all of the above, that carries out the control and/or processing functions of the device or the control and/or processing functions of any component thereof.
  • Exemplary aspects of the invention include, but are not limited to, the following:
  • X1. A semi-automatic case forming, case holding and sealing machine includes a case forming device, a case holding device and a case sealing device.
  • X2. A semi-automatic case forming, case holding and sealing machine as defined in aspect X1 wherein the case forming device includes a digital code reader holder mounted at the front of the machine, a PLC mounted at the bottom of the machine, a digital code reader, a case side flaps adjustment device, a bottom flaps adjustment device.
  • X3. A case forming device as defined in aspect X2 wherein the case side flaps adjustment device is composed of two inward or outward conveyors, two inward or outward conveyors covers, one horizontal long shaft and two connection flat plates. The horizontal long shaft is mounted in the horizontal rectangular hollow bar and the horizontal rectangular hollow bar is mounted on the top of the front supporting leg with wheel. The two inward or outward conveyors are mounted in the inward or backward conveyors covers. The two inward or outward conveyors are connected with the horizontal long shaft, which is mounted in the horizontal rectangular hallow bar, and move along the horizontal long shaft inward or outward to grasp the sides of the case. At the top front of the two inward or backward conveyors covers, two connection flat plates are mounted. The case sealing device is connected with the case forming device by these two connection flat plates.
  • X4. A case forming device as defined in aspect X2, wherein the bottom flaps adjustment device includes one bottom minor flap kicker, a forward or backward motor, a long shaft, a square hollow metal device and a rectangular block with 4 wheels. The rectangular block with 4 wheels is located on the long shaft and is mounted in the square hollow metal device. The forward or backward motor is connected with the long shaft. The long shaft is mounted in the square hollow metal device. The forward or backward motor with the long shaft is mounted in the rectangular bar. The rectangular bar is mounted at the center position of the case forming device. At the top of the square hollow metal device, the bottom minor flap kicker is mounted. The forward or backward motor moves the long shaft and the long shaft moves the square hollow metal device as it is connected with the long shaft and the hollow square metal device will move the bottom minor flap kicker forward or backward based on the case size.
  • X5. A semi-automatic case forming, case holding and sealing machine as defined in aspect X1 wherein the case holding device includes two long kicker bars and two sets of kickers. The case holding device is mounted at the bottom of the inward or outward conveyors. The two sets of kickers mounted on the two long kicker bars can kick the bottom major flaps of a case to close and maintain the closed position.
  • X6. A semi-automatic case forming, case holding and sealing machine as defined in aspect X1 wherein the case sealing device includes an inward or outward case size adjustment device, a top tape applicator adjustment device.
  • X7. A case sealing device as defined in aspect X6 wherein the inward or outward case size adjustment device included a set of parallel conveyors, two long shafts, one side motor belt, one side motor. The side motor is mounted at the side of the case sealing device. At the front side and end side of the case sealing device, two long shafts are mounted and parallel to each other.
  • X8. The inward or outward case size adjustment device as defined in aspect X7 wherein the two long shaft has a sprocket mounted on one end of the long shaft. The sprocket is used to connect with the side motor belt. On each of the long shaft, there are two connection blocks, the connection blocks are used to mount the two inward or outward conveyors and the parallel conveyors.
  • X9. The inward or outward case size adjustment device defined in aspect X7 wherein the side motor includes a rectangular plate, a big sprocket, two sprockets and a cover. The side motor is connected with a rectangular plate and the big sprocket located on the top of the side motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted. The big sprocket is directly controlled by the side motor and link with the side motor belt. The side motor belt is also connected with the two sprockets. A cover will cover the big sprocket. In operation, the side motor will drive the big sprocket to rotate. The big sprocket is linked with side motor belt. When the side motor belt starts to move, the big sprocket also moves and drives the side motor belt to rotate. The two sprockets are linked with the side motor belt and they also move. The two ends of the side motor belt are linked with the two long shafts by two sprockets so the side motor belt drives the two long shafts to move. The movement of the two long shafts will make the two parallel conveyors and the inward or outward conveyors to move inward or outward.
  • X10. A case sealing device as defined in aspect X6 wherein the top tape applicator adjustment device is composed of one top tape applicator, one top motor, one top motor belt, two vertical shafts, one top tape applicator supporting bar, one top bar, one HMI. The two vertical hollow bars are mounted at the two sides of the supporting frame. Inside the two vertical hollow bars, two vertical shafts are mounted and the two vertical shafts are linked with a top tape applicator supporting bar. At the center of the top tape applicator supporting bar, top tape applicator is mounted. A top bar connected two ends of the vertical hollow bars. At the bottom side of the top bar, the top motor is mounted to drive the top motor belt. The top motor belt is connected with the two vertical shafts by the sprocket. On the top side of the top bar, a HMI arm is mounted. The HMI arm is movable, so that the HMI mounted on HMI arm can move.
  • X11. A top tape applicator adjustment device as defined in aspect X10 wherein the top motor is connected with a rectangular plate and the big sprocket is mounted on the top of the top motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted. The big sprocket is directly linked with the top motor by the top motor belt. The top motor belt is also connected with the two sprockets. A cover will cover the big sprocket.
  • X12. A semi-automatic case forming, case holding and sealing machine includes a case forming device, a case holding device and a case sealing device.
  • X13. A semi-automatic case forming, case holding and sealing machine as defined in aspect X12 wherein the case forming device include a case side flaps adjustment device, a bottom flaps adjustment device and a PLC mounted at the bottom of the machine.
  • X14. A case forming device as defined in aspect X13 wherein the case side flaps adjustment device is composed of two inward or outward conveyors, two inward or outward conveyors covers, one horizontal long shaft and two connection flat plates. The horizontal long shaft is mounted in the horizontal rectangular hollow bar and the horizontal rectangular hollow bar is mounted on the top of the front supporting leg with wheel. The two inward or outward conveyors are mounted in the inward or backward conveyors covers. The two inward or outward conveyors are connected with the horizontal long shaft which is mounted in the horizontal rectangular hallow bar, and move along the horizontal long shaft inward or outward to grasp the sides of the case. At the top front of the two inward or backward conveyors covers, two connection flat plates are mounted. The case sealing device is connected with the case forming device by these two connection flat plates.
  • X15. A case forming device as defined in aspect X13, wherein the bottom flaps adjustment device includes one bottom minor flap kicker, a forward or backward motor, a long shaft, a square hollow metal device and a rectangular block with 4 wheels. The rectangular block with 4 wheels is located on the long shaft and is mounted in the square hollow metal device. The forward or backward motor is connected with the long shaft. The long shaft is mounted in the square hollow metal device. The forward or backward motor with the long shaft is mounted in the rectangular bar. The rectangular bar is mounted at the center position of the case forming device. At the top of the square hollow metal device, the bottom minor kicker is mounted. The forward or backward motor moves the long shaft and the long shaft moves the square hollow metal device as it is connected with the long shaft and the hollow square metal device will move the bottom minor flap kicker forward or backward based on the case size.
  • X16. A semi-automatic case forming, case holding and sealing machine as defined in aspect X12 wherein the case holding device includes two long kicker bars and two sets of kickers. The case holding device is mounted at the bottom of the inward or outward conveyors. The two sets of kickers mounted on the two long kicker bars can kick the bottom major flaps of a case to close and maintain the closed position.
  • X17. A semi-automatic case forming, case holding and sealing machine as defined in aspect X12 wherein the case sealing device includes an inward or outward case size adjustment device, a top tape applicator adjustment device.
  • X18. A case sealing device as defined in aspect X17 wherein the inward or outward case size adjustment device included a set of parallel conveyors, two long shafts, one side motor belt, one side motor. The side motor is mounted at the side of the case sealing device. At the front side and end side of the case sealing device, two long shafts are mounted and parallel to each other.
  • X19. The inward or outward case size adjustment device as defined in aspect X18 wherein the two long shaft has a sprocket mounted on one end of the long shaft. The sprocket is used to connect with the side motor belt. On each of the long shaft, there are two connection blocks, the connection blocks are used to mount the two inward or outward conveyors and the parallel conveyors.
  • X20. The inward or outward case size adjustment device defined in aspect X18 wherein the side motor includes a rectangular plate, a big sprocket, two sprockets and a cover. The side motor is connected with a rectangular plate and the big sprocket located on the top of the side motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted. The big sprocket is directly controlled by the side motor and link with the side motor belt. The side motor belt is also connected with the two sprockets. A cover will cover the big sprocket. In operation, the side motor will drive the big sprocket to rotate. The big sprocket is linked with side motor belt. When the side motor belt starts to move, the big sprocket also moves and drives the side motor belt to rotate. The two sprockets are linked with the side motor belt and they also move. The two ends of the side motor belt are linked with the two long shafts by two sprockets so the side motor belt drives the two long shafts to move. The movement of the two long shafts will make the two parallel conveyors and the inward or outward conveyors to move inward or outward.
  • X21. A case sealing device as defined in aspect X17 wherein the top tape applicator adjustment device is composed of one top tape applicator, one top motor, one top motor belt, two vertical shafts, one top tape applicator supporting bar, one top bar, one HMI. The two vertical hollow bars are mounted at the two sides of the supporting frame. Inside the two vertical hollow bars, two vertical shafts are mounted and the two vertical shafts are linked with a top tape applicator supporting bar. At the center of the top tape applicator supporting bar, top tape applicator is mounted. A top bar connected two ends of the vertical hollow bars. At the bottom side of the top bar, the top motor is mounted to drive the top motor belt. The top motor belt is connected with the two vertical shafts by the sprocket. On the top side of the top bar, a HMI arm is mounted. The HMI arm is movable, so that the HMI mounted on HMI arm can move.
  • X22. A top tape applicator adjustment device as defined in aspect X21 wherein the top motor is connected with a rectangular plate and the big sprocket is mounted on the top of the top motor. At the two sides of the front end of the rectangular plate, two sprockets are mounted. The big sprocket is directly linked with the top motor by the top motor belt. The top motor belt is also connected with the two sprockets. A cover will cover the big sprocket.
  • It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that other changes and modifications are possible.

Claims (14)

1. A semi-automatic case handling machine, comprising:
a case holding and forming section, including:
spaced apart walls that are movable laterally to adapt to different case widths;
spaced apart bottom major flap kickers for moving bottom major flaps of a case upward, the bottom major flap kickers movable with the walls;
a bottom minor flap kicker movable axially to adapt to different case lengths;
a case sealing section axially downstream of the case holding and forming section, the case sealing section including:
a bottom taper for taping bottom major flaps;
an upper taper for taping upper major flaps, the upper taper movable vertically to adapt to different case heights;
a pair of spaced apart conveyors for moving cases past the bottom taper and the upper taper for taping, wherein the spaced apart conveyors are movable laterally to adapt to different case widths;
an adjustment system including a memory storing a plurality of machine set ups, wherein each machine set up includes data corresponding to (i) lateral positions for the spaced apart walls, the spaced apart bottom major flap kickers and the spaced apart conveyors, (ii) axial position for the bottom minor flap kicker and (iii) vertical position for the upper taper.
2. The semi-automatic case handling machine of claim 1, wherein the adjustment system further includes:
a lateral adjustment system for powered movement of the spaced apart walls, the spaced apart major flap kickers and the spaced apart conveyors;
an axial adjustment system for powered movement of the bottom minor flap kicker; and
a vertical adjustment system for powered movement of the upper taper.
3. The semi-automatic case handling machine of claim 2,
wherein the lateral adjustment system includes a first motor linked for effecting lateral movement of the spaced apart walls, the spaced apart major flap kickers and the spaced apart conveyors;
wherein the axial adjustment system includes a second motor linked for effecting axial movement of the bottom minor flap kicker;
wherein the vertical adjustment system includes a third motor linked for effecting vertical movement of the upper taper.
4. The semi-automatic case handling machine of claim 2, wherein the adjustment system further comprises a scanning unit for scanning a code associated with items to be placed in a case, and a controller that selects one of the machine set ups based upon the scanned codes and automatically controls the first motor, the second motor and the third motor to set up the machine according to the data of the selected machine set up.
5. The semi-automatic case handling machine of claim 4, wherein the scanner is a hand-held scanner.
6. The semi-automatic case handling machine of claim 4, wherein the controller is configured to output an indicator that communicates to an operator the case size to be selected for the items.
7. The semi-automatic case handing machine of claim 6, wherein the code is associated with a pick tray holding the items, wherein the indicator is associated with a case holding rack.
8. The semi-automatic case handling machine of claim 2, wherein the adjustment system further comprises a user interface enabling a machine operator to select or input a case size code, and a controller that selects one of the machine set ups based upon the case size code and automatically controls the first motor, the second motor and the third motor to set up the machine according to the data of the selected machine set up.
9. A method of forming, loading and taping a case using a semi-automated case handling machine that includes a plurality of components that are position adjustable based upon case size to be formed, loaded and taped, the method comprising:
(a) inputting a case size code to a controller of the machine via one of:
scanning the case size code associated with a pick tray holding one or more items to be loaded into a case;
or
manually selecting the case size code via a user interface of the machine;
(b) the controller automatically effecting movement of the plurality of components to respective positions corresponding to a case size associated with the case size code, in preparation for forming, loading and taping the case.
10. The method of claim 9, wherein the case handling machine is located alongside a conveyance path for pick trays.
11. The method of claim 10, wherein the inputting of the case size code is achieved by scanning the case size code associated with a pick tray holding one or more items to be loaded into a case.
12. The method of claim 11, wherein a plurality of case racks are located proximate an operator side of the machine, and the method further includes the controller automatically providing an annunciator output indicating a particular one of the case racks from which the operator should select a case, wherein particular one of the case racks holds the case size associated with the case size code.
13. The method of claim 12, wherein the provided annunciator is energizing of a visual output element located on or near the particular one of the case racks.
14. The method of claim 13, wherein the visual output element is a light.
US17/446,026 2020-09-15 2021-08-26 Semi-automatic case forming, holding and sealing machine Abandoned US20220081145A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/446,026 US20220081145A1 (en) 2020-09-15 2021-08-26 Semi-automatic case forming, holding and sealing machine
US17/948,767 US20230068955A1 (en) 2021-08-26 2022-09-20 Semi-automatic case forming, holding and sealing machine and related order fulfillment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063078414P 2020-09-15 2020-09-15
US17/446,026 US20220081145A1 (en) 2020-09-15 2021-08-26 Semi-automatic case forming, holding and sealing machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/948,767 Continuation-In-Part US20230068955A1 (en) 2021-08-26 2022-09-20 Semi-automatic case forming, holding and sealing machine and related order fulfillment system

Publications (1)

Publication Number Publication Date
US20220081145A1 true US20220081145A1 (en) 2022-03-17

Family

ID=80626234

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/446,026 Abandoned US20220081145A1 (en) 2020-09-15 2021-08-26 Semi-automatic case forming, holding and sealing machine

Country Status (1)

Country Link
US (1) US20220081145A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114687324A (en) * 2022-05-17 2022-07-01 中国水利水电第九工程局有限公司 Canal lining device for hydraulic engineering
CN115158789A (en) * 2022-07-18 2022-10-11 深圳市壹友为科技有限公司 Automatic change packaging robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821203A (en) * 1987-05-12 1989-04-11 Marq Packaging Systems, Inc. Computer adjustable case handling machine
US20090277139A1 (en) * 2008-05-12 2009-11-12 Storopack, Inc. Automated System Of Protective Packaging
US20210103886A1 (en) * 2018-06-25 2021-04-08 Kabushiki Kaisha Toshiba Packaging assistance device, packaging assistance method, and storage medium
WO2022259279A1 (en) * 2021-06-08 2022-12-15 I.M.A. Industria Macchine Automatiche S.P.A. Packaging method and system to pack one or more objects in boxes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821203A (en) * 1987-05-12 1989-04-11 Marq Packaging Systems, Inc. Computer adjustable case handling machine
US20090277139A1 (en) * 2008-05-12 2009-11-12 Storopack, Inc. Automated System Of Protective Packaging
US20210103886A1 (en) * 2018-06-25 2021-04-08 Kabushiki Kaisha Toshiba Packaging assistance device, packaging assistance method, and storage medium
WO2022259279A1 (en) * 2021-06-08 2022-12-15 I.M.A. Industria Macchine Automatiche S.P.A. Packaging method and system to pack one or more objects in boxes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114687324A (en) * 2022-05-17 2022-07-01 中国水利水电第九工程局有限公司 Canal lining device for hydraulic engineering
CN115158789A (en) * 2022-07-18 2022-10-11 深圳市壹友为科技有限公司 Automatic change packaging robot

Similar Documents

Publication Publication Date Title
US20220081145A1 (en) Semi-automatic case forming, holding and sealing machine
US10543945B2 (en) Method and system for automatically forming packaging boxes
US6520317B2 (en) Packaging and casing system
US10155352B2 (en) Method and system for automatically forming packaging boxes
US10583943B2 (en) Method and system for automatically processing blanks for packaging boxes
JP5976460B2 (en) Automatic boxing apparatus and method
US7603827B2 (en) Apparatus for packaging of foodstuffs in containers of various dimensions
US20170190453A1 (en) Method of operating a packaging machine
KR200458643Y1 (en) The bunch change of direction system of the product which is packed
CN108622459B (en) Conveying device, packaging equipment and packaging method
US20220153465A1 (en) Packaging machine and method
US20230068955A1 (en) Semi-automatic case forming, holding and sealing machine and related order fulfillment system
JP4154275B2 (en) Device for weighing drug containers
WO2014024674A1 (en) Device for folding continuous web of individually wrapped absorbent articles
CN205837338U (en) That automatically measures goods width selects case apparatus
CN106005610A (en) Box selection device capable of measuring width of goods automatically
JP2017001711A (en) Packaging device
US11697518B2 (en) Device used to handle articles to be packaged and method used to adapt a device for the transport of articles intended for packaging
US4199918A (en) Cup loader machine
JP2930551B2 (en) Device and method for packing soft containers
JP3244036B2 (en) Packaging equipment
KR102088015B1 (en) Strapping Machine
JPH062494B2 (en) Packaging equipment
JP2005082213A (en) Packaging device
JP2502616Y2 (en) Equipment for supplying goods to the packaging section of a packaging machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: WEXXAR PACKAGING INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHU, WILLIAM YIU TONG;CHENG, RUIQI;SIGNING DATES FROM 20210820 TO 20210823;REEL/FRAME:057301/0957

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION