US20210268725A1 - Additively manufacturing fluorine-containing polymers - Google Patents

Additively manufacturing fluorine-containing polymers Download PDF

Info

Publication number
US20210268725A1
US20210268725A1 US16/806,494 US202016806494A US2021268725A1 US 20210268725 A1 US20210268725 A1 US 20210268725A1 US 202016806494 A US202016806494 A US 202016806494A US 2021268725 A1 US2021268725 A1 US 2021268725A1
Authority
US
United States
Prior art keywords
additive manufacturing
manufacturing material
mixture
manufacturing system
containing polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/806,494
Inventor
Thomas Matthew Selter
Jamie Michael Messman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Federal Manufacturing and Technologies LLC
Original Assignee
Honeywell Federal Manufacturing and Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Federal Manufacturing and Technologies LLC filed Critical Honeywell Federal Manufacturing and Technologies LLC
Priority to US16/806,494 priority Critical patent/US20210268725A1/en
Publication of US20210268725A1 publication Critical patent/US20210268725A1/en
Priority to US17/490,210 priority patent/US11731346B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/171Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
    • B29C64/176Sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/171Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
    • B29C64/182Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/25Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49883Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing organic materials or pastes, e.g. for thick films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00045Organic membrane manufacture by agglomeration of particles by additive layer techniques, e.g. selective laser sintering [SLS], selective laser melting [SLM] or 3D printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00415Inorganic membrane manufacture by agglomeration of particles in the dry state by additive layer techniques, e.g. selective laser sintering [SLS], selective laser melting [SLM] or 3D printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • B29C64/259Interchangeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • G01N33/0095
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/704162.5D lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2048Surface layer material
    • G03G2215/2054Inorganic filler, e.g. silica powder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/490233-D printing, layer of powder, add drops of binder in layer, new powder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/492463-D printing, layer of powder, add drops of binder in layer, new powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1712Indefinite or running length work
    • Y10T156/1722Means applying fluent adhesive or adhesive activator material between layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1798Surface bonding means and/or assemblymeans with work feeding or handling means with liquid adhesive or adhesive activator applying means

Definitions

  • Fluorine-containing polymer part manufacturing is currently limited by several factors. For example, internal stress in fluorine-containing polymers results in warping, particularly in larger fixtures. Conventional manufacturing with fluorine-containing polymers also produces volatile organic compounds (VOCs). Furthermore, general limitations of conventional manufacturing techniques such as material removal tooling restrictions prevent fluorine-containing polymers from being used in complex electronic circuits and other parts.
  • Embodiments of the present invention solve the above-mentioned problems and other problems and provide a distinct advance in the art of manufacturing electrically conductive or static dissipative parts. More particularly, the present invention provides a system and method for additively manufacturing parts including electrically conductive or static dissipating fluorine-containing polymers.
  • One embodiment of the invention is an additive manufacturing system comprising a build platform, a material deposition device, an energy source, and a cure device.
  • the additive manufacturing system utilizes an additive manufacturing material including electrically conductive or static dissipating fluorine-containing polymers to form an electrically conductive or static dissipating part.
  • the additive manufacturing system may employ any additive manufacturing or “3D printing” methods such as a sintering, laser melting, laser sintering, DIW, extrusion, fused filament, stereolithography, light polymerizing, powder bed, wire additive, or laminated object manufacturing.
  • the additive manufacturing system may also be a hybrid system that combines additive manufacturing with molding, scaffolding, and/or other subtractive manufacturing or assembly techniques.
  • the additive manufacturing material may be in pellet or powder form or any other suitable form.
  • the additive manufacturing material may also include a supplemental material such as graphite, graphene, or carbon.
  • the build platform may be a stationary or movable flat tray or bed, a substrate, a print plate, a shaped mandrel, a wheel, scaffolding, or similar support.
  • the build platform may be integral with the additive manufacturing system or may be removable and transferable with the part as the part is being constructed.
  • the material deposition device may include a nozzle, guide, sprayer, or other similar component.
  • the material deposition device may be configured to deposit material via direct ink writing (DIW) at room temperature for subsequent curing.
  • DIW direct ink writing
  • the material mixture deposition device is configured to extrude strands of additive manufacturing material mixture for creating a lattice structure.
  • the energy source may be a laser, heater, or similar component for melting the additive manufacturing material and bonding (e.g., sintering) the additive manufacturing material to a previously constructed layer.
  • the energy source may be configured to melt the additive manufacturing material as the additive manufacturing material is being deposited or melt the additive manufacturing material of an entire layer after the layer of additive manufacturing material has been deposited.
  • the cure device is a heating device or system for curing the part after material deposition is complete.
  • the cure device may be an oven, a furnace, a heating element, or any other suitable heating device.
  • the build platform supports the part as it is being constructed.
  • the material deposition device deposits the additive manufacturing material onto the build platform and onto previously constructed layers.
  • the energy source bonds the additive manufacturing material together.
  • the cure device cures the additive manufacturing material so as to create an electrically conductive or static dissipating part.
  • Another embodiment of the invention is a method of additive manufacturing a part using electrically conductive or static dissipating fluorine-containing polymers.
  • the additive manufacturing material is then fed to a material deposition device.
  • the additive manufacturing material mixture may be metered in discrete amounts or continuously, depending on movement and position of the material deposition device.
  • a material deposition device then deposits the additive manufacturing material onto a build platform and previously constructed layers.
  • the specific location and placement of the additive manufacturing material may be according to computer-aided design (CAD) data, or other technical model or drawing, as followed manually or by a user or as directed in an automated or semi-automated fashion via control signals provided from a processor.
  • CAD computer-aided design
  • the material deposition device may deposit the additive manufacturing material mixture according to an electronic circuit pattern.
  • the additive manufacturing material is then cured in a cure device or sintered via an energy source.
  • the cure device may heat the part so as to cross-link at least some of the deposited additive manufacturing material. This may be done selectively so that certain portions of the deposited additive manufacturing material are cross-linked.
  • the energy source may melt or sinter, and thereby cross-link, selected portions of the additive manufacturing material of the current layer. This may include tracing the energy source over or through the current layer according to CAD data, models, drawings, or other technical resources.
  • a drying system may then be used to dry (or post cure) the part.
  • any of the above steps may be repeated multiple times as needed. For example, once one layer of the part has been deposited, another layer of additive manufacturing material may be deposited on the previously deposited layer.
  • the resulting part is at least one of electrically conductive and static dissipating, while benefiting from the broad possibilities of additive manufacturing and design.
  • a functional material may be selectively added to the additive manufacturing material, thus training the electrically conductive or static dissipating characteristic in regions, portions, or areas of the part for creating electronic circuits and other electrical or static-sensitive components.
  • the electrically conductive or static dissipating characteristic can be truly homogenous throughout the additive manufacturing material (and hence the part), whereas conventional manufacturing techniques only provide approximate homogeneity.
  • Additive manufacturing reduces internal stresses in the electrically conductive or static dissipating fluorine-containing polymers and allows this material to be used in larger fixtures without warping. It also reduces the release of volatile organic compounds. Additive manufacturing with electrically conductive or static dissipating fluorine-containing polymers can be used at least in several electronic circuit and electronic assembly applications, cleaning (e.g., cleaning fixtures that are ESD compliant), and electrical encapsulation.
  • FIG. 1 is a perspective view of an additive manufacturing system constructed in accordance with an embodiment of the invention
  • FIG. 2 is a schematic diagram of components of the additive manufacturing system of FIG. 1 ;
  • FIG. 3 is an enlarged view of an additive manufacturing material mixture including an additive manufacturing material having fluorine-containing polymers mixed with a supplemental material, and a mix-promoting functional material, in accordance with an embodiment of the invention
  • FIG. 4 is a perspective view of a part formed via the additive manufacturing material mixture of FIG. 3 in accordance with an embodiment of the invention
  • FIG. 5 is a flow diagram showing some steps of a method of forming a part via additive manufacturing in accordance with another embodiment of the invention.
  • references to “one embodiment”, “an embodiment”, or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology.
  • references to “one embodiment”, “an embodiment”, or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description.
  • a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included.
  • the current technology can include a variety of combinations and/or integrations of the embodiments described herein.
  • the additive manufacturing system 10 may employ any additive manufacturing or “3D printing” methods such as a sintering, laser melting, laser sintering, DIW, extrusion, fused filament, stereolithography, light polymerizing, powder bed, wire additive, or laminated object manufacturing.
  • the additive manufacturing system 10 may also be a hybrid system that combines additive manufacturing with molding, scaffolding, and/or other subtractive manufacturing or assembly techniques.
  • the additive manufacturing system 10 broadly comprises a frame 12 , a build platform 14 , an additive manufacturing material reserve 16 , a functional material reserve 18 , a mixing component 20 , a feeder 22 , a material deposition device 24 , an optional energy source 26 , a set of motors 28 , a processor 30 , a cure device 32 , and an optional drying system 34 .
  • the frame 12 provides structure for at least the build platform 14 , feeder 22 , material mixture deposition device 24 , energy source 26 , and motors 28 and may include a base, vertical members, cross members, and mounting points for mounting the above components thereto. Alternatively, the frame 12 may be a walled housing or similar structure.
  • the build platform 14 supports a part 100 as it is constructed and may be a stationary or movable flat tray or bed, a substrate, a print plate, a shaped mandrel, a wheel, scaffolding, or similar support.
  • the build platform 14 may be integral with the additive manufacturing system 10 or may be removable and transferable with the part 100 as the part 100 is being constructed.
  • the additive manufacturing material reserve 16 retains additive manufacturing material 102 and may be a hopper, tank, cartridge, container, spool, or other similar material holder.
  • the additive manufacturing material reserve 16 may be integral with the additive manufacturing system 10 or may be disposable and/or reusable.
  • the additive manufacturing material 102 includes fluorine-containing polymers 104 and a supplemental material 106 .
  • the fluorine-containing polymers 104 may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), perfluoroalkoxy (PFA), ethylene tetrafluoroethylene (ETFE), or any other suitable fluorine-containing polymer.
  • the supplemental material be graphite, graphene, carbon, or any other suitable supplemental material and any combination of the supplemental materials.
  • the supplemental material 106 may be graphite, graphene, carbon, or any other suitable supplemental material.
  • the supplemental material 106 may be added to, stirred in, or blended with the additive manufacturing material 102 as a doping agent or the like.
  • the supplemental material 106 may be between 1% and 65%, between 5% and 55%, or between 15% and 50% by weight.
  • the supplemental material 106 is graphene between 20% and 25% by weight.
  • the supplemental material 106 is carbon between 40% and 55% by weight.
  • the supplemental material 106 is graphite between 35% and 45% by weight.
  • the supplemental material 106 is a virgin material.
  • the supplemental material 106 is saturated in the additive manufacturing material 102 .
  • the functional material reserve 18 retains the functional material 108 and may be a hopper, tank, cartridge, container, spool, or other similar material holder.
  • the functional material reserve 18 may be integral with the additive manufacturing system 10 or may be disposable and/or reusable.
  • the functional material 108 may be any suitable fluorinating agent for promoting mixing of the fluorine-containing polymers 104 and the supplemental material 106 of the additive manufacturing material.
  • the functional material 108 may be mixed with the additive manufacturing material 102 via the mixing component 20 or may be pre-mixed with the additive manufacturing material 102 .
  • the mixing component 20 is connected downstream of the additive manufacturing material reserve 16 and the functional material reserve 18 and upstream of the feeder 22 .
  • the mixing component 20 combines, via continuous inline mixing, batch mixing, or the like, the functional material 108 with the fluorine-containing polymers 104 and the supplemental material 106 of the additive manufacturing material 102 to form a homogenous mixture.
  • the mixing component 20 may be a mechanical mixer, a planetary mixer, a resonance acoustic mixer, or any other suitable mixer.
  • the feeder 22 is connected downstream of the mixing component 20 and directs the additive manufacturing material 102 (now as a mixture) to the material deposition device 24 .
  • the feeder 22 may be a pump, an auger, or any other suitable feeder.
  • the additive manufacturing material 102 may be gravity fed to the material deposition device 24 .
  • the material deposition device 24 may include a nozzle, guide, sprayer, rake, or other similar component for depositing the additive manufacturing material mixture onto the build platform 14 and previously constructed layers via DIW or a similar technique. In one embodiment, the material deposition device 24 prints strands of additive manufacturing material 102 to create a lattice structure.
  • the optional energy source 26 may be a laser, heater, or similar component for melting the additive manufacturing material 102 and bonding (e.g., sintering) the additive manufacturing material 102 to a previously constructed layer.
  • the energy source 26 may be configured to melt the additive manufacturing material 102 as the additive manufacturing material 102 is being deposited or melt the additive manufacturing material 102 of an entire layer after the layer of additive manufacturing material 102 has been deposited.
  • the energy source 26 may be a directed energy source configured to selectively melt portions of the additive manufacturing material 102 .
  • the motors 28 position the material deposition device 24 over the build platform 14 and previously constructed layers and move the material deposition device 24 as the additive manufacturing material 102 is deposited onto the build platform 14 and the previously constructed layers.
  • the motors 28 may be oriented orthogonally to each other so that a first one of the motors 28 is configured to move the material deposition device 24 in a lateral “x” direction, a second one of the motors 28 is configured to move the material deposition device 24 in a longitudinal “y” direction, and a third one of the motors 28 is configured to move the material deposition device 24 in an altitudinal “z” direction.
  • the motors 28 may move the build platform 14 (and hence the part 100 ) while the material deposition device 24 remains stationary.
  • the processor 30 directs the material deposition device 24 via the motors 28 and activates the material deposition device 24 such that the material deposition device 24 deposits the additive manufacturing material 102 onto the build platform 14 and previously constructed layers according to a computer aided design of the part.
  • the processor 30 may include a circuit board, memory, display, inputs, and/or other electronic components such as a transceiver or external connection for communicating with other external computers.
  • the processor 30 may implement aspects of the present invention with one or more computer programs stored in or on computer-readable medium residing on or accessible by the processor.
  • Each computer program preferably comprises an ordered listing of executable instructions for implementing logical functions in the processor 30 .
  • Each computer program can be embodied in any non-transitory computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device, and execute the instructions.
  • a “computer-readable medium” can be any non-transitory means that can store the program for use by or in connection with the instruction execution system, apparatus, or device.
  • the computer-readable medium can be, for example, but not limited to, an electronic, magnetic, optical, electro-magnetic, infrared, or semi-conductor system, apparatus, or device. More specific, although not inclusive, examples of the computer-readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable, programmable, read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disk read-only memory (CDROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable, programmable, read-only memory
  • CDROM portable compact disk read-only memory
  • the cure device 32 may be a heating device or system for curing the part 100 after deposition is complete.
  • the cure device 32 may be an oven, a furnace, a heating element, or any other suitable heating device.
  • the cure device 32 heats the part 100 so as to crosslink polymers in the additive manufacturing material 102 .
  • the optional drying system 34 may use heat, positive airflow, humidity control, or a combination thereof to dry the part 100 .
  • the part 100 may be air-dried.
  • the additive manufacturing material 102 may be positioned in the additive manufacturing material reserve 16 and the functional material 108 may be positioned in the functional material reserve 18 , as shown in block 200 .
  • the additive manufacturing material 102 (including the fluorine-containing polymers 104 and the supplemental material 106 ) and the functional material 108 may then be mixed together via the mixing component 20 to create a homogenous additive manufacturing material mixture, as shown in block 202 .
  • the functional material 108 promotes mixing of the fluorine-containing polymers 104 and the supplemental material 106 .
  • the mixing component 20 may selectively add the functional material 102 to the additive manufacturing material 102 according to computer-aided design (CAD) data, or other technical model or drawing, as followed manually or by a user or as directed in an automated or semi-automated fashion via control signals provided from the processor 30 to the motors 28 .
  • CAD computer-aided design
  • the mixing component may add the functional material 102 to the additive manufacturing material 102 according to an electronic circuit pattern.
  • the additive manufacturing material mixture may then be fed to the material deposition device 24 via the feeder 22 , as shown in block 204 .
  • the additive manufacturing material mixture may be metered in discrete amounts or continuously, depending on movement and position of the material deposition device 24 .
  • the material deposition device 24 may then deposit the additive manufacturing material mixture onto the build platform 14 and previously constructed layers, as shown in block 206 .
  • the specific location and placement of the additive manufacturing material mixture may be according to computer-aided design (CAD) data, or other technical model or drawing, as followed manually or by a user or as directed in an automated or semi-automated fashion via control signals provided from the processor 30 to the motors 28 .
  • CAD computer-aided design
  • the material deposition device 24 may then deposit the additive manufacturing material mixture according to an electronic circuit pattern.
  • the additive manufacturing material mixture is extruded as strands so that the resulting part includes a lattice structure.
  • the additive manufacturing material 102 may be cured in the cure device 32 , as shown in block 208 .
  • the cure device 32 may heat the part 100 so as to cross-link at least some of the deposited additive manufacturing material 102 . This may be done selectively so that certain portions of the deposited additive manufacturing material 102 are cross-linked.
  • the additive manufacturing material 102 may be allowed to passively cure (e.g., at room temperature). However, doing so may consume more time.
  • the additive manufacturing material 102 may be heat cured during processing.
  • the optional energy source 26 may melt or sinter, and thereby cross-link, selected portions of the additive manufacturing material 102 of the current layer, as shown in block 210 .
  • This may include tracing the energy source 26 over or through the current layer according to CAD data, models, drawings, or other technical resources.
  • the additive manufacturing material 102 may fuse together and to additive manufacturing material of a previous layer. Temperature ranges for this step are selected to prevent deterioration of the additive manufacturing material 102 .
  • steps 200 - 210 may be repeated multiple times as needed. For example, once one layer of the part has been deposited, another layer of additive manufacturing material may be deposited on the previously-deposited layer. This may be accomplished through first lowering the build platform 14 relative to the material deposition device 24 and energy source 26 .
  • the optional drying system 34 may then dry (or post cure) the part, as shown in block 212 .
  • the part may be dried via heat, positive airflow, humidity control, or a combination thereof.
  • the part may be air-dried.
  • the resulting part is at least one of electrically conductive and static dissipating, while benefiting from the broad possibilities of additive manufacturing and design.
  • the functional material 108 promotes mixing of the fluorine-containing polymers 104 with the supplemental material 106 in a fluorination process.
  • the electrically conductive or static dissipating characteristic can thereby be trained in regions, portions, or areas of the part for creating electronic circuits (such as electronic circuit 110 ) and other electrical or static-sensitive components.
  • the electrically conductive or static dissipating characteristic can be truly homogenous throughout the additive manufacturing material 102 (and hence the part), whereas conventional manufacturing techniques only provide approximate homogeneity.
  • Additively manufacturing reduces internal stresses in the electrically conductive or static dissipating fluorine-containing polymers and allows this material to be used in larger fixtures without warping. It also reduces the release of volatile organic compounds.
  • Additive manufacturing with electrically conductive or static dissipating fluorine-containing polymers can be used at least in several electronic circuit and electronic assembly applications, cleaning (e.g., cleaning fixtures that are ESD compliant), and electrical encapsulation.

Abstract

A system and method of additively manufacturing a part including electrically conductive or static dissipating fluorine-containing polymers. The method includes depositing fluorine-containing polymer additive manufacturing material onto a build platform, selectively cross-linking portions of the deposited additive manufacturing material, and curing the selectively cross-linked portions such that the part is at least one of electrically conductive and static dissipating.

Description

    STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH OR DEVELOPMENT
  • This invention was made with Government support under Contract No.: DE-NA-0002839 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention.
  • BACKGROUND
  • Electrically conductive or static dissipating fluorine-containing polymer part manufacturing is currently limited by several factors. For example, internal stress in fluorine-containing polymers results in warping, particularly in larger fixtures. Conventional manufacturing with fluorine-containing polymers also produces volatile organic compounds (VOCs). Furthermore, general limitations of conventional manufacturing techniques such as material removal tooling restrictions prevent fluorine-containing polymers from being used in complex electronic circuits and other parts.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention solve the above-mentioned problems and other problems and provide a distinct advance in the art of manufacturing electrically conductive or static dissipative parts. More particularly, the present invention provides a system and method for additively manufacturing parts including electrically conductive or static dissipating fluorine-containing polymers.
  • One embodiment of the invention is an additive manufacturing system comprising a build platform, a material deposition device, an energy source, and a cure device. The additive manufacturing system utilizes an additive manufacturing material including electrically conductive or static dissipating fluorine-containing polymers to form an electrically conductive or static dissipating part. The additive manufacturing system may employ any additive manufacturing or “3D printing” methods such as a sintering, laser melting, laser sintering, DIW, extrusion, fused filament, stereolithography, light polymerizing, powder bed, wire additive, or laminated object manufacturing. The additive manufacturing system may also be a hybrid system that combines additive manufacturing with molding, scaffolding, and/or other subtractive manufacturing or assembly techniques.
  • The additive manufacturing material may be in pellet or powder form or any other suitable form. The additive manufacturing material may also include a supplemental material such as graphite, graphene, or carbon.
  • The build platform may be a stationary or movable flat tray or bed, a substrate, a print plate, a shaped mandrel, a wheel, scaffolding, or similar support. The build platform may be integral with the additive manufacturing system or may be removable and transferable with the part as the part is being constructed.
  • The material deposition device may include a nozzle, guide, sprayer, or other similar component. The material deposition device may be configured to deposit material via direct ink writing (DIW) at room temperature for subsequent curing. In one embodiment, the material mixture deposition device is configured to extrude strands of additive manufacturing material mixture for creating a lattice structure.
  • The energy source may be a laser, heater, or similar component for melting the additive manufacturing material and bonding (e.g., sintering) the additive manufacturing material to a previously constructed layer. The energy source may be configured to melt the additive manufacturing material as the additive manufacturing material is being deposited or melt the additive manufacturing material of an entire layer after the layer of additive manufacturing material has been deposited.
  • The cure device is a heating device or system for curing the part after material deposition is complete. To that end, the cure device may be an oven, a furnace, a heating element, or any other suitable heating device.
  • In use, the build platform supports the part as it is being constructed. The material deposition device deposits the additive manufacturing material onto the build platform and onto previously constructed layers. The energy source bonds the additive manufacturing material together. The cure device cures the additive manufacturing material so as to create an electrically conductive or static dissipating part.
  • Another embodiment of the invention is a method of additive manufacturing a part using electrically conductive or static dissipating fluorine-containing polymers.
  • The additive manufacturing material is then fed to a material deposition device. The additive manufacturing material mixture may be metered in discrete amounts or continuously, depending on movement and position of the material deposition device.
  • A material deposition device then deposits the additive manufacturing material onto a build platform and previously constructed layers. The specific location and placement of the additive manufacturing material may be according to computer-aided design (CAD) data, or other technical model or drawing, as followed manually or by a user or as directed in an automated or semi-automated fashion via control signals provided from a processor. For example, the material deposition device may deposit the additive manufacturing material mixture according to an electronic circuit pattern.
  • The additive manufacturing material is then cured in a cure device or sintered via an energy source. For example, the cure device may heat the part so as to cross-link at least some of the deposited additive manufacturing material. This may be done selectively so that certain portions of the deposited additive manufacturing material are cross-linked. Alternatively, the energy source may melt or sinter, and thereby cross-link, selected portions of the additive manufacturing material of the current layer. This may include tracing the energy source over or through the current layer according to CAD data, models, drawings, or other technical resources. A drying system may then be used to dry (or post cure) the part.
  • Any of the above steps may be repeated multiple times as needed. For example, once one layer of the part has been deposited, another layer of additive manufacturing material may be deposited on the previously deposited layer.
  • The above-described steps may be performed in any order, including simultaneously. In addition, some of the steps may be repeated, duplicated, and/or omitted without departing from the scope of the present invention.
  • The above-described additive manufacturing system and method provide several advantages. For example, the resulting part is at least one of electrically conductive and static dissipating, while benefiting from the broad possibilities of additive manufacturing and design. A functional material may be selectively added to the additive manufacturing material, thus training the electrically conductive or static dissipating characteristic in regions, portions, or areas of the part for creating electronic circuits and other electrical or static-sensitive components. For other applications, the electrically conductive or static dissipating characteristic can be truly homogenous throughout the additive manufacturing material (and hence the part), whereas conventional manufacturing techniques only provide approximate homogeneity.
  • Additive manufacturing reduces internal stresses in the electrically conductive or static dissipating fluorine-containing polymers and allows this material to be used in larger fixtures without warping. It also reduces the release of volatile organic compounds. Additive manufacturing with electrically conductive or static dissipating fluorine-containing polymers can be used at least in several electronic circuit and electronic assembly applications, cleaning (e.g., cleaning fixtures that are ESD compliant), and electrical encapsulation.
  • This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the present invention will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • Embodiments of the present invention are described in detail below with reference to the attached drawing figures, wherein:
  • FIG. 1 is a perspective view of an additive manufacturing system constructed in accordance with an embodiment of the invention;
  • FIG. 2 is a schematic diagram of components of the additive manufacturing system of FIG. 1;
  • FIG. 3 is an enlarged view of an additive manufacturing material mixture including an additive manufacturing material having fluorine-containing polymers mixed with a supplemental material, and a mix-promoting functional material, in accordance with an embodiment of the invention;
  • FIG. 4 is a perspective view of a part formed via the additive manufacturing material mixture of FIG. 3 in accordance with an embodiment of the invention;
  • FIG. 5 is a flow diagram showing some steps of a method of forming a part via additive manufacturing in accordance with another embodiment of the invention.
  • The drawing figures do not limit the present invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The following detailed description of the invention references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
  • In this description, references to “one embodiment”, “an embodiment”, or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to “one embodiment”, “an embodiment”, or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the current technology can include a variety of combinations and/or integrations of the embodiments described herein.
  • Turning to the drawing figures, and particularly FIGS. 1-4, an additive manufacturing system 10 constructed in accordance with an embodiment of the present invention is illustrated. The additive manufacturing system 10 may employ any additive manufacturing or “3D printing” methods such as a sintering, laser melting, laser sintering, DIW, extrusion, fused filament, stereolithography, light polymerizing, powder bed, wire additive, or laminated object manufacturing. The additive manufacturing system 10 may also be a hybrid system that combines additive manufacturing with molding, scaffolding, and/or other subtractive manufacturing or assembly techniques. The additive manufacturing system 10 broadly comprises a frame 12, a build platform 14, an additive manufacturing material reserve 16, a functional material reserve 18, a mixing component 20, a feeder 22, a material deposition device 24, an optional energy source 26, a set of motors 28, a processor 30, a cure device 32, and an optional drying system 34.
  • The frame 12 provides structure for at least the build platform 14, feeder 22, material mixture deposition device 24, energy source 26, and motors 28 and may include a base, vertical members, cross members, and mounting points for mounting the above components thereto. Alternatively, the frame 12 may be a walled housing or similar structure.
  • The build platform 14 supports a part 100 as it is constructed and may be a stationary or movable flat tray or bed, a substrate, a print plate, a shaped mandrel, a wheel, scaffolding, or similar support. The build platform 14 may be integral with the additive manufacturing system 10 or may be removable and transferable with the part 100 as the part 100 is being constructed.
  • The additive manufacturing material reserve 16 retains additive manufacturing material 102 and may be a hopper, tank, cartridge, container, spool, or other similar material holder. The additive manufacturing material reserve 16 may be integral with the additive manufacturing system 10 or may be disposable and/or reusable.
  • The additive manufacturing material 102 includes fluorine-containing polymers 104 and a supplemental material 106. The fluorine-containing polymers 104 may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), perfluoroalkoxy (PFA), ethylene tetrafluoroethylene (ETFE), or any other suitable fluorine-containing polymer.
  • We should consider the supplemental material be graphite, graphene, carbon, or any other suitable supplemental material and any combination of the supplemental materials. The supplemental material 106 may be graphite, graphene, carbon, or any other suitable supplemental material. The supplemental material 106 may be added to, stirred in, or blended with the additive manufacturing material 102 as a doping agent or the like. The supplemental material 106 may be between 1% and 65%, between 5% and 55%, or between 15% and 50% by weight. In one embodiment, the supplemental material 106 is graphene between 20% and 25% by weight. In another embodiment, the supplemental material 106 is carbon between 40% and 55% by weight. In yet another embodiment, the supplemental material 106 is graphite between 35% and 45% by weight. In one embodiment, the supplemental material 106 is a virgin material. In yet another embodiment, the supplemental material 106 is saturated in the additive manufacturing material 102.
  • The functional material reserve 18 retains the functional material 108 and may be a hopper, tank, cartridge, container, spool, or other similar material holder. The functional material reserve 18 may be integral with the additive manufacturing system 10 or may be disposable and/or reusable.
  • The functional material 108 may be any suitable fluorinating agent for promoting mixing of the fluorine-containing polymers 104 and the supplemental material 106 of the additive manufacturing material. The functional material 108 may be mixed with the additive manufacturing material 102 via the mixing component 20 or may be pre-mixed with the additive manufacturing material 102.
  • The mixing component 20 is connected downstream of the additive manufacturing material reserve 16 and the functional material reserve 18 and upstream of the feeder 22. The mixing component 20 combines, via continuous inline mixing, batch mixing, or the like, the functional material 108 with the fluorine-containing polymers 104 and the supplemental material 106 of the additive manufacturing material 102 to form a homogenous mixture. The mixing component 20 may be a mechanical mixer, a planetary mixer, a resonance acoustic mixer, or any other suitable mixer.
  • The feeder 22 is connected downstream of the mixing component 20 and directs the additive manufacturing material 102 (now as a mixture) to the material deposition device 24. The feeder 22 may be a pump, an auger, or any other suitable feeder. Alternatively, the additive manufacturing material 102 may be gravity fed to the material deposition device 24.
  • The material deposition device 24 may include a nozzle, guide, sprayer, rake, or other similar component for depositing the additive manufacturing material mixture onto the build platform 14 and previously constructed layers via DIW or a similar technique. In one embodiment, the material deposition device 24 prints strands of additive manufacturing material 102 to create a lattice structure.
  • The optional energy source 26 may be a laser, heater, or similar component for melting the additive manufacturing material 102 and bonding (e.g., sintering) the additive manufacturing material 102 to a previously constructed layer. The energy source 26 may be configured to melt the additive manufacturing material 102 as the additive manufacturing material 102 is being deposited or melt the additive manufacturing material 102 of an entire layer after the layer of additive manufacturing material 102 has been deposited. The energy source 26 may be a directed energy source configured to selectively melt portions of the additive manufacturing material 102.
  • The motors 28 position the material deposition device 24 over the build platform 14 and previously constructed layers and move the material deposition device 24 as the additive manufacturing material 102 is deposited onto the build platform 14 and the previously constructed layers. The motors 28 may be oriented orthogonally to each other so that a first one of the motors 28 is configured to move the material deposition device 24 in a lateral “x” direction, a second one of the motors 28 is configured to move the material deposition device 24 in a longitudinal “y” direction, and a third one of the motors 28 is configured to move the material deposition device 24 in an altitudinal “z” direction. Alternatively, the motors 28 may move the build platform 14 (and hence the part 100) while the material deposition device 24 remains stationary.
  • The processor 30 directs the material deposition device 24 via the motors 28 and activates the material deposition device 24 such that the material deposition device 24 deposits the additive manufacturing material 102 onto the build platform 14 and previously constructed layers according to a computer aided design of the part. The processor 30 may include a circuit board, memory, display, inputs, and/or other electronic components such as a transceiver or external connection for communicating with other external computers.
  • The processor 30 may implement aspects of the present invention with one or more computer programs stored in or on computer-readable medium residing on or accessible by the processor. Each computer program preferably comprises an ordered listing of executable instructions for implementing logical functions in the processor 30. Each computer program can be embodied in any non-transitory computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device, and execute the instructions. In the context of this application, a “computer-readable medium” can be any non-transitory means that can store the program for use by or in connection with the instruction execution system, apparatus, or device. The computer-readable medium can be, for example, but not limited to, an electronic, magnetic, optical, electro-magnetic, infrared, or semi-conductor system, apparatus, or device. More specific, although not inclusive, examples of the computer-readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable, programmable, read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disk read-only memory (CDROM).
  • The cure device 32 may be a heating device or system for curing the part 100 after deposition is complete. The cure device 32 may be an oven, a furnace, a heating element, or any other suitable heating device. The cure device 32 heats the part 100 so as to crosslink polymers in the additive manufacturing material 102.
  • The optional drying system 34 may use heat, positive airflow, humidity control, or a combination thereof to dry the part 100. Alternatively, the part 100 may be air-dried.
  • Turning to FIG. 5, and with reference to FIGS. 1-4, use of the additive manufacturing system 10 will now be described in more detail. First, the additive manufacturing material 102 may be positioned in the additive manufacturing material reserve 16 and the functional material 108 may be positioned in the functional material reserve 18, as shown in block 200.
  • The additive manufacturing material 102 (including the fluorine-containing polymers 104 and the supplemental material 106) and the functional material 108 may then be mixed together via the mixing component 20 to create a homogenous additive manufacturing material mixture, as shown in block 202. The functional material 108 promotes mixing of the fluorine-containing polymers 104 and the supplemental material 106. The mixing component 20 may selectively add the functional material 102 to the additive manufacturing material 102 according to computer-aided design (CAD) data, or other technical model or drawing, as followed manually or by a user or as directed in an automated or semi-automated fashion via control signals provided from the processor 30 to the motors 28. For example, the mixing component may add the functional material 102 to the additive manufacturing material 102 according to an electronic circuit pattern.
  • The additive manufacturing material mixture may then be fed to the material deposition device 24 via the feeder 22, as shown in block 204. The additive manufacturing material mixture may be metered in discrete amounts or continuously, depending on movement and position of the material deposition device 24.
  • The material deposition device 24 may then deposit the additive manufacturing material mixture onto the build platform 14 and previously constructed layers, as shown in block 206. The specific location and placement of the additive manufacturing material mixture may be according to computer-aided design (CAD) data, or other technical model or drawing, as followed manually or by a user or as directed in an automated or semi-automated fashion via control signals provided from the processor 30 to the motors 28. For example, the material deposition device 24 may then deposit the additive manufacturing material mixture according to an electronic circuit pattern. In one embodiment, the additive manufacturing material mixture is extruded as strands so that the resulting part includes a lattice structure.
  • In one embodiment, if the additive manufacturing material 102 is incompatible with sintering, the additive manufacturing material 102 may be cured in the cure device 32, as shown in block 208. To that end, the cure device 32 may heat the part 100 so as to cross-link at least some of the deposited additive manufacturing material 102. This may be done selectively so that certain portions of the deposited additive manufacturing material 102 are cross-linked. Alternatively, the additive manufacturing material 102 may be allowed to passively cure (e.g., at room temperature). However, doing so may consume more time. In another embodiment, the additive manufacturing material 102 may be heat cured during processing.
  • In another embodiment, if the additive manufacturing material 102 is compatible with sintering, the optional energy source 26 may melt or sinter, and thereby cross-link, selected portions of the additive manufacturing material 102 of the current layer, as shown in block 210. This may include tracing the energy source 26 over or through the current layer according to CAD data, models, drawings, or other technical resources. The additive manufacturing material 102 may fuse together and to additive manufacturing material of a previous layer. Temperature ranges for this step are selected to prevent deterioration of the additive manufacturing material 102.
  • Note that any of steps 200-210 may be repeated multiple times as needed. For example, once one layer of the part has been deposited, another layer of additive manufacturing material may be deposited on the previously-deposited layer. This may be accomplished through first lowering the build platform 14 relative to the material deposition device 24 and energy source 26.
  • The optional drying system 34 may then dry (or post cure) the part, as shown in block 212. To that end, the part may be dried via heat, positive airflow, humidity control, or a combination thereof. Alternatively, the part may be air-dried.
  • The above-described steps may be performed in any order, including simultaneously. In addition, some of the steps may be repeated, duplicated, and/or omitted without departing from the scope of the present invention.
  • The above-described additive manufacturing system 10 and method provide several advantages. For example, the resulting part is at least one of electrically conductive and static dissipating, while benefiting from the broad possibilities of additive manufacturing and design. The functional material 108 promotes mixing of the fluorine-containing polymers 104 with the supplemental material 106 in a fluorination process. When the functional material 108 is added selectively, the electrically conductive or static dissipating characteristic can thereby be trained in regions, portions, or areas of the part for creating electronic circuits (such as electronic circuit 110) and other electrical or static-sensitive components. For other applications, the electrically conductive or static dissipating characteristic can be truly homogenous throughout the additive manufacturing material 102 (and hence the part), whereas conventional manufacturing techniques only provide approximate homogeneity.
  • Additively manufacturing reduces internal stresses in the electrically conductive or static dissipating fluorine-containing polymers and allows this material to be used in larger fixtures without warping. It also reduces the release of volatile organic compounds. Additive manufacturing with electrically conductive or static dissipating fluorine-containing polymers can be used at least in several electronic circuit and electronic assembly applications, cleaning (e.g., cleaning fixtures that are ESD compliant), and electrical encapsulation.
  • Although the invention has been described with reference to the embodiments illustrated in the attached drawing figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims.

Claims (24)

Having thus described various embodiments of the invention, what is claimed as new and desired to be protected by Letters Patent includes the following:
1. An additive manufacturing system for forming a part via additive manufacturing, the additive manufacturing system comprising:
a build platform configured to support the part as it is formed;
an additive manufacturing material reserve that retains an additive manufacturing material including fluorine-containing polymers being at least one of electrically conductive and static dissipating and a supplemental material including at least one of graphite, graphene, and carbon;
a functional material reserve that retains a functional material configured to promote mixing of the fluorine-containing polymers with the supplemental material when added to the additive manufacturing material;
a mixer downstream of the additive manufacturing material reserve and the functional material reserve, the mixer being configured to selectively add the functional material to the additive manufacturing material to form an additive manufacturing material mixture;
a material depositor downstream of the mixer, the material depositor being configured to deposit the additive manufacturing material mixture onto the build platform; and
an energizer source configured to selectively cross-link portions of the deposited additive manufacturing material mixture such that the part is at least one of electrically conductive and static dissipating.
2. The additive manufacturing system, wherein the additive manufacturing system is at least one of a stereolithography system and a powder bed printing system.
3. The additive manufacturing system of claim 1, wherein the additive manufacturing system is at least one of an extrusion system and a fused filament fabrication system.
4. (canceled)
5. The additive manufacturing system of claim 1,
wherein the at least one of graphite, graphene, and carbon is saturated in the mixture.
6. (canceled)
7. The additive manufacturing system of claim 1, wherein the additive manufacturing system is configured to add the functional material to the mixture according to an electronic circuit pattern.
8. The additive manufacturing system of claim 1, wherein at least one of electrical conductivity and a static dissipative quality is homogenous throughout the additive manufacturing material.
9. A method of forming a part via additive manufacturing, the method comprising the steps of:
depositing additive manufacturing material onto a build platform, the additive manufacturing material including fluorine-containing polymers being at least one of electrically conductive and static dissipating;
selectively cross-linking portions of the deposited additive manufacturing material; and
curing the selectively cross-linked portions such that the part is at least one of electrically conductive and static dissipating.
10. The method of claim 9, wherein the step of selectively cross-linking portions of the deposited additive manufacturing material includes directing an energy source at the portions of the deposited additive manufacturing material according to a computer-aided design.
11. The method of claim 9, wherein the steps of depositing the additive manufacturing material and selectively cross-linking portions of the deposited additive manufacturing material are performed simultaneously via fused filament fabrication.
12. The method of claim 9, further comprising the step of mixing at least one of graphite, graphene, and carbon with the fluorine-containing polymers to form a mixture.
13. The method of claim 12, further comprising saturating the mixture with the at least one of graphite, graphene, and carbon.
14. The method of claim 12, further comprising the step of adding a functional material that enhances mixing of the at least one of graphite, graphene, and carbon with the fluorine-containing polymers.
15. The method of claim 14, further comprising selectively adding the functional material to the mixture according to an electronic circuit pattern.
16. The method of claim 9, wherein at least one of electrical conductivity and a static dissipative quality is homogenous throughout the cured additive manufacturing material.
17. A stereolithographic additive manufacturing system for forming a part via additive manufacturing, the additive manufacturing system comprising:
a build platform configured to support an additive manufacturing material thereon, the additive manufacturing material being a mixture including fluorine-containing polymers being at least one of electrically conductive and static dissipating, and at least one of graphite, graphene, and carbon;
an energy source configured to selectively cross-link portions of the additive manufacturing material; and
a cure device configured to cure the additive manufacturing material such that the part is at least one of electrically conductive and static dissipating.
18. The stereolithographic additive manufacturing system of claim 17, wherein the mixture further includes a functional material for enhancing mixing.
19. The stereolithographic additive manufacturing system of claim 17, wherein the additive manufacturing system is configured to selectively add the functional material to the mixture according to an electronic circuit pattern.
20. The stereolithographic additive manufacturing system of claim 17, wherein at least one of electrical conductivity and a static dissipative quality is homogenous throughout the cured additive manufacturing material.
21. An additive manufacturing system for forming a part via additive manufacturing, the additive manufacturing system comprising:
a build platform configured to support the part as it is formed;
an additive manufacturing material reserve that retains an additive manufacturing material including fluorine-containing polymers being at least one of electrically conductive and static dissipating and a supplemental material including at least one of graphite, graphene, and carbon;
a functional material reserve that retains a functional material configured to promote mixing of the fluorine-containing polymers with the supplemental material when added to the additive manufacturing material;
a mechanical mixer downstream of the additive manufacturing material reserve and the functional material reserve, the mechanical mixer being configured to selectively add the functional material to the additive manufacturing material to form an additive manufacturing material mixture;
a material depositor downstream of the mixer, the material depositor being configured to deposit the additive manufacturing material mixture onto the build platform;
a laser configured to selectively cross-link portions of the deposited additive manufacturing material mixture; and
a processor communicatively coupled to the mechanical mixer, the material depositor, and the laser, the processor being configured to:
instruct the mechanical mixer to selectively add the functional material to the additive manufacturing material according to computer-aided design (CAD) data of an electronic circuit pattern;
instruct the material depositor to deposit the additive manufacturing material mixture onto the build platform and previously constructed layers according to the CAD data; and
instruct the laser to trace over deposited layers according to the CAD data such that portions of the part are at least one of electrically conductive and static dissipating.
22. The additive manufacturing system of claim 21, the material depositor being configured to print strands of additive manufacturing material mixture in a lattice structure pattern.
23. The additive manufacturing system of claim 21, further comprising a dryer configured to dry the part.
24. The additive manufacturing system of claim 21, further comprising a heater configured to heat cure the additive manufacturing material mixture.
US16/806,494 2020-03-02 2020-03-02 Additively manufacturing fluorine-containing polymers Abandoned US20210268725A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/806,494 US20210268725A1 (en) 2020-03-02 2020-03-02 Additively manufacturing fluorine-containing polymers
US17/490,210 US11731346B2 (en) 2020-03-02 2021-09-30 Additively manufacturing fluorine-containing polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/806,494 US20210268725A1 (en) 2020-03-02 2020-03-02 Additively manufacturing fluorine-containing polymers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/490,210 Division US11731346B2 (en) 2020-03-02 2021-09-30 Additively manufacturing fluorine-containing polymers

Publications (1)

Publication Number Publication Date
US20210268725A1 true US20210268725A1 (en) 2021-09-02

Family

ID=77463373

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/806,494 Abandoned US20210268725A1 (en) 2020-03-02 2020-03-02 Additively manufacturing fluorine-containing polymers
US17/490,210 Active US11731346B2 (en) 2020-03-02 2021-09-30 Additively manufacturing fluorine-containing polymers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/490,210 Active US11731346B2 (en) 2020-03-02 2021-09-30 Additively manufacturing fluorine-containing polymers

Country Status (1)

Country Link
US (2) US20210268725A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190330766A1 (en) * 2018-04-28 2019-10-31 Dennis Joseph Steibel, JR. Apparatus for removing moisture from a section of polymer filament

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3741966B2 (en) * 2000-03-27 2006-02-01 秋田日本電気株式会社 Horizontal electric field type color liquid crystal display element
EP1549788A4 (en) 2002-10-01 2006-05-31 Shamrock Tech Inc Process of making cellulosic fibers including ptfe
FR2910900B1 (en) * 2006-12-28 2010-08-20 Arkema France PROCESS FOR THE PREPARATION OF POLYAMIDE POWDER BY ANIONIC POLYMERIZATION
DE102011078722A1 (en) * 2011-07-06 2013-01-10 Evonik Degussa Gmbh Powder containing polymer-coated inorganic particles
JP5740716B2 (en) * 2013-05-24 2015-06-24 株式会社シマブンコーポレーション Manufacturing method of three-dimensional structure
WO2015057783A1 (en) 2013-10-17 2015-04-23 Rudinger Richard F Post-extruded polymeric man-made synthetic fiber with polytetrafluoroethylene (ptfe)
WO2015067326A1 (en) 2013-11-08 2015-05-14 Saint-Gobain Performance Plastics Corporation Articles containing ptfe having improved dimensional stability particularly over long lengths, methods for making such articles, and cable/wire assemblies containing such articles
CN108495877B (en) 2016-01-21 2021-06-08 3M创新有限公司 Additive processing of fluoropolymers
CN106009430A (en) 2016-06-13 2016-10-12 衢州学院 Polytetrafluoroethylene powder material based on selective laser sintering and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190330766A1 (en) * 2018-04-28 2019-10-31 Dennis Joseph Steibel, JR. Apparatus for removing moisture from a section of polymer filament

Also Published As

Publication number Publication date
US11731346B2 (en) 2023-08-22
US20220016829A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US20220024068A1 (en) 3d printing method using slip
Srinivasan et al. Effect on infill density on mechanical properties of PETG part fabricated by fused deposition modelling
KR100938451B1 (en) Smoothing method for layered deposition modeling
EP3116670B1 (en) Forming a three dimensional object
US11801633B2 (en) Apparatuses for continuously refreshing a recoater blade for additive manufacturing including a blade feed unit and arm portion
US20200139694A1 (en) Methods, apparatuses and systems for additive manufacturing with preheat
US20070036964A1 (en) Direct manufacturing using thermoplastic and thermoset
US11731346B2 (en) Additively manufacturing fluorine-containing polymers
Coon et al. Preserving rapid prototypes: a review
US11426798B2 (en) Additive manufactured alloy components
EP3109035A1 (en) Systems and methods for additive manufacturing processes
US20170015064A1 (en) Sintering particulate material
TWI619616B (en) Fabricating a three-dimensional object
US11872749B2 (en) System and method for additively manufacturing porous parts via salt micro-spheres
JP2018015972A (en) Three-dimensional molding method, molded article and three-dimensional molding apparatus
US10386799B2 (en) Method and system for defining a 3D printed object
CN106796737B (en) Diffusing errors in three-dimensional contone model data
US20220063186A1 (en) Additively manufacturing fluorine-containing polymers
JP2019533590A (en) Additive manufacturing method of extrusion base
US20170368745A1 (en) 3d printing process augmentation by applied energy
US20200180219A1 (en) Systems and Methods for Additive Manufacturing Using Thermally Cross-Linkable Materials
US11090861B2 (en) Systems and methods for lateral material transfer in additive manufacturing system
Giri et al. The effect of various parameters on the nozzle diameter and 3D printed product in fused deposition modelling: an approach
US11911848B2 (en) Systems and methods for additive manufacturing
DE202018106141U1 (en) lighting device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION