US20210245806A1 - Vehicle and autonomous driving kit - Google Patents

Vehicle and autonomous driving kit Download PDF

Info

Publication number
US20210245806A1
US20210245806A1 US17/154,017 US202117154017A US2021245806A1 US 20210245806 A1 US20210245806 A1 US 20210245806A1 US 202117154017 A US202117154017 A US 202117154017A US 2021245806 A1 US2021245806 A1 US 2021245806A1
Authority
US
United States
Prior art keywords
vehicle
steering
prescribed
autonomous driving
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/154,017
Inventor
Ikuma SUZUKI
Satoshi Katoh
Ryo Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IRIE, RYO, KATOH, SATOSHI, SUZUKI, IKUMA
Publication of US20210245806A1 publication Critical patent/US20210245806A1/en
Priority to US17/722,644 priority Critical patent/US11628880B2/en
Priority to US18/098,822 priority patent/US11987284B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0023Planning or execution of driving tasks in response to energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/12Limiting control by the driver depending on vehicle state, e.g. interlocking means for the control input for preventing unsafe operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0005Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with arrangements to save energy
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • B60W2510/205Steering speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/207Steering angle of wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a vehicle and an autonomous driving kit and particularly to a vehicle capable of autonomous driving and an autonomous driving kit that issues an instruction for autonomous driving of a vehicle and is attachable to and removable from the vehicle.
  • a technique for autonomous driving of a vehicle has recently been developed.
  • a vehicle in which an autonomous driving electronic control unit (ECU) that issues an instruction for autonomous driving controls autonomous driving is available (see, for example, Japanese Patent Laying-Open No. 2018-132015).
  • ECU autonomous driving electronic control unit
  • a reference for a limit value of a steering rate on a vehicle side may be incorporated in advance in the autonomous driving ECU.
  • the autonomous driving ECU can thus steer the vehicle within a range between limit values of the steering rate adapted to the vehicle.
  • an autonomous driving apparatus that issues an instruction for autonomous driving such as the autonomous driving ECU, may be attachable to and removable from the vehicle, and the autonomous driving apparatus may be replaceable with an autonomous driving apparatus of another specification.
  • the vehicle is configured as such, however, unless an appropriate limit value of a steering rate suitable for the vehicle is incorporated in advance in the autonomous driving apparatus, the limit value of the steering rate cannot be controlled to an appropriate value.
  • the present disclosure was made to solve such a problem, and an object of the present disclosure is to provide a vehicle in which, when an attachable and removable apparatus that issues an instruction for autonomous driving controls a vehicle, a limit value of a steering rate can be set to an appropriate value suitable for the vehicle without storing in advance the limit value of the steering rate in this apparatus.
  • a vehicle is capable of autonomous driving and includes an autonomous driving kit attachable to and removable from the vehicle, the autonomous driving kit issuing an instruction for autonomous driving, a vehicle platform including a plurality of functional units that perform a plurality of prescribed functions of the vehicle, and a vehicle interface box that communicates with the autonomous driving kit and issues a control instruction to the functional units in accordance with an instruction from the autonomous driving kit.
  • One of the plurality of functional units is a steering system that steers the vehicle.
  • the steering system specifies a limit value of a steering rate in accordance with a prescribed reference and transmits the specified limit value to the autonomous driving kit through the vehicle interface box.
  • the autonomous driving kit calculates a target steering angle to satisfy the limit value received from the steering system and transmits an instruction for the calculated steering angle to the steering system through the vehicle interface box.
  • the limit value of the steering rate for calculating the target steering angle is conveyed from a side of the vehicle platform to the autonomous driving kit. Consequently, a vehicle in which, when an attachable and removable autonomous driving kit that issues an instruction for autonomous driving controls the vehicle, the limit value of the steering rate can be set to an appropriate value suitable for the vehicle without storing the limit value of the steering rate in advance in the autonomous driving kit can be provided.
  • the steering system may switch the prescribed reference in accordance with a vehicle speed.
  • the prescribed reference may be such a reference that the limit value of the steering rate is defined as a prescribed angular velocity when the vehicle speed is lower than a prescribed speed.
  • a value of the prescribed angular velocity may be 0.4 rad/s.
  • the prescribed reference may be such a reference that, when the vehicle speed exceeds a prescribed speed, the limit value of the steering rate satisfies predetermined relation between the vehicle speed and the limit value of the steering rate.
  • a value of the prescribed speed may be 10 km/h.
  • the prescribed reference may be a reference determined in advance such that a lateral jerk of the vehicle is lower than a prescribed jerk.
  • a value of the prescribed jerk may be 2.94 m/s 3 .
  • an autonomous driving kit issues an instruction for autonomous driving of a vehicle and is attachable to and removable from the vehicle.
  • the vehicle includes a plurality of functional units that perform a plurality of prescribed functions of the vehicle and the functional units are controlled in accordance with an instruction from the autonomous driving kit.
  • One of the plurality of functional units is a steering system that steers the vehicle.
  • the autonomous driving kit calculates a target steering angle to satisfy a limit value of a steering rate specified by the steering system in accordance with a prescribed reference and transmits an instruction for the calculated steering angle to the steering system through a vehicle interface box.
  • an autonomous driving kit with which a limit value of a steering rate can be set to an appropriate value suitable for the vehicle without storing the limit value of the steering rate in advance in the autonomous driving kit can be provided.
  • a vehicle is capable of autonomous driving and includes a vehicle platform and a vehicle interface box, the vehicle platform including a plurality of functional units that perform a plurality of prescribed functions of the vehicle, the vehicle interface box communicating with an autonomous driving kit that issues an instruction for autonomous driving and is attachable to and removable from the vehicle, the vehicle interface box issuing a control instruction to the functional units in accordance with an instruction from the autonomous driving kit.
  • One of the plurality of functional units is a steering system that steers the vehicle.
  • the steering system specifies a limit value of a steering rate in accordance with a prescribed reference, transmits the specified limit value to the autonomous driving kit through the vehicle interface box, and controls a steering angle in accordance with an instruction for a target steering angle calculated by the autonomous driving kit to satisfy the limit value received from the steering system.
  • a vehicle in which, when an attachable and removable autonomous driving kit that issues an instruction for autonomous driving controls the vehicle, the limit value of the steering rate can be set to an appropriate value suitable for the vehicle without storing the limit value of the steering rate in advance in the autonomous driving kit can be provided.
  • FIG. 1 is a diagram showing overview of a mobility as a service (MaaS) system in which a vehicle according to an embodiment of the present disclosure is used.
  • MoaS mobility as a service
  • FIG. 2 is a diagram showing overview of a configuration of the vehicle in this embodiment.
  • FIG. 3 is a flowchart showing a flow of processing relating to control of a steering angle in this embodiment.
  • FIG. 4 is a diagram showing a map of relation between a vehicle speed and a limit value of a steering rate in this embodiment.
  • FIG. 5 is a diagram of an overall configuration of MaaS.
  • FIG. 6 is a diagram of a system configuration of a MaaS vehicle.
  • FIG. 7 is a diagram showing a typical flow in an autonomous driving system.
  • FIG. 8 is a diagram showing an exemplary timing chart of an API relating to stop and start of the MaaS vehicle.
  • FIG. 9 is a diagram showing an exemplary timing chart of the API relating to shift change of the MaaS vehicle.
  • FIG. 10 is a diagram showing an exemplary timing chart of the API relating to wheel lock of the MaaS vehicle.
  • FIG. 11 is a diagram showing a limit value of variation in tire turning angle.
  • FIG. 12 is a diagram illustrating intervention by an accelerator pedal.
  • FIG. 13 is a diagram illustrating intervention by a brake pedal.
  • FIG. 14 is a diagram of an overall configuration of MaaS.
  • FIG. 15 is a diagram of a system configuration of a vehicle.
  • FIG. 16 is a diagram showing a configuration of supply of power of the vehicle.
  • FIG. 17 is a diagram illustrating strategies until the vehicle is safely brought to a standstill at the time of occurrence of a failure.
  • FIG. 18 is a diagram showing arrangement of representative functions of the vehicle.
  • FIG. 1 is a diagram showing overview of a MaaS system in which a vehicle according to an embodiment of the present disclosure is used.
  • this MaaS system includes a vehicle 10 , a data server 500 , a mobility service platform (which is denoted as “MSPF” below) 600 , and autonomous driving related mobility services 700 .
  • MSPF mobility service platform
  • Vehicle 10 includes a vehicle main body 100 and an autonomous driving kit (which is denoted as “ADK” below) 200 .
  • Vehicle main body 100 includes a vehicle control interface 110 , a vehicle platform (which is denoted as “VP” below) 120 , and a data communication module (DCM) 190 .
  • ADK autonomous driving kit
  • VP vehicle platform
  • DCM data communication module
  • Vehicle 10 can carry out autonomous driving in accordance with commands from ADK 200 attached to vehicle main body 100 .
  • FIG. 1 shows vehicle main body 100 and ADK 200 at positions distant from each other, ADK 200 is actually attached to a rooftop or the like of vehicle main body 100 .
  • ADK 200 can also be removed from vehicle main body 100 .
  • vehicle main body 100 can travel by driving by a user.
  • VP 120 carries out travel control (travel control in accordance with an operation by a user) in a manual mode.
  • Vehicle control interface 110 can communicate with ADK 200 over a controller area network (CAN). Vehicle control interface 110 receives various commands from ADK 200 or outputs a state of vehicle main body 100 to ADK 200 by executing a prescribed application program interface (API) defined for each communicated signal.
  • API application program interface
  • vehicle control interface 110 When vehicle control interface 110 receives a command from ADK 200 , it outputs a control command corresponding to the received command to VP 120 . Vehicle control interface 110 obtains various types of information on vehicle main body 100 from VP 120 and outputs the state of vehicle main body 100 to ADK 200 . A configuration of vehicle control interface 110 will be described in detail later.
  • VP 120 includes various systems and various sensors for controlling vehicle main body 100 .
  • VP 120 carries out various types of vehicle control in accordance with a command given from ADK 200 through vehicle control interface 110 .
  • ADK 200 autonomous driving of vehicle 10 is carried out.
  • a configuration of VP 120 will also be described in detail later.
  • ADK 200 includes an autonomous driving system (which is denoted as “ADS” below) for autonomous driving of vehicle 10 .
  • ADK 200 creates, for example, a driving plan of vehicle 10 and outputs various commands for traveling vehicle 10 in accordance with the created driving plan to vehicle control interface 110 in accordance with the API defined for each command.
  • ADK 200 receives various signals indicating states of vehicle main body 100 from vehicle control interface 110 in accordance with the API defined for each signal and has the received vehicle state reflected on creation of the driving plan.
  • a configuration of ADK 200 (ADS) will also be described later.
  • DCM 190 includes a communication interface (I/F) for vehicle main body 100 to wirelessly communicate with data server 500 .
  • DCM 190 outputs various types of vehicle information such as a speed, a position, or an autonomous driving state to data server 500 .
  • DCM 190 receives from autonomous driving related mobility services 700 through MSPF 600 and data server 500 , for example, various types of data for management of travel of an autonomous driving vehicle including vehicle 10 by mobility services 700 .
  • MSPF 600 is an integrated platform to which various mobility services are connected.
  • various mobility services for example, various mobility services provided by a ride-share company, a car-sharing company, an insurance company, a rent-a-car company, and a taxi company
  • Various mobility services including mobility services 700 can use various functions provided by MSPF 600 by using APIs published on MSPF 600 , depending on service contents.
  • Autonomous driving related mobility services 700 provide mobility services using an autonomous driving vehicle including vehicle 10 .
  • Mobility services 700 can obtain, for example, operation control data of vehicle 10 that communicates with data server 500 or information stored in data server 500 from MSPF 600 , by using the APIs published on MSPF 600 .
  • Mobility services 700 transmit, for example, data for managing an autonomous driving vehicle including vehicle 10 to MSPF 600 , by using the API.
  • MSPF 600 publishes APIs for using various types of data on vehicle states and vehicle control necessary for development of the ADS, and an ADS provider can use as the APIs, the data on the vehicle states and vehicle control necessary for development of the ADS stored in data server 500 .
  • FIG. 2 is a diagram showing overview of a configuration of the vehicle in this embodiment.
  • ADK 200 includes a compute assembly 210 , a human machine interface (HMI) 230 , sensors for perception 260 , sensors for pose 270 , and a sensor cleaning 290 .
  • HMI human machine interface
  • Compute assembly 210 contains a central processing unit (CPU) and a memory (including, for example, a read only memory (ROM) and a random access memory (RAM)) that are not shown.
  • CPU central processing unit
  • memory including, for example, a read only memory (ROM) and a random access memory (RAM)
  • compute assembly 210 obtains an environment around the vehicle and a pose, a behavior, and a position of vehicle 10 from various sensors which will be described later as well as a state of vehicle 10 from VP 120 which will be described later through vehicle control interface 110 and sets a next operation (acceleration, deceleration, or turning) of vehicle 10 .
  • Compute assembly 210 outputs various instructions for realizing a set next operation of vehicle 10 to vehicle control interface 110 .
  • HMI 230 presents information to a user and accepts an operation during autonomous driving, during driving requiring an operation by a user, or at the time of transition between autonomous driving and driving requiring an operation by the user.
  • HMI 230 is implemented, for example, by a touch panel display, a display apparatus, and an operation apparatus.
  • Sensors for perception 260 include sensors that perceive an environment around the vehicle, and are implemented, for example, by at least any of laser imaging detection and ranging (LIDAR), a millimeter-wave radar, and a camera.
  • LIDAR laser imaging detection and ranging
  • millimeter-wave radar a millimeter-wave radar
  • the LIDAR refers to a distance measurement apparatus that measures a distance based on a time period from emission of pulsed laser beams (infrared rays) until return of the laser beams reflected by an object.
  • the millimeter-wave radar is a distance measurement apparatus that measures a distance or a direction to an object by emitting radio waves short in wavelength to the object and detecting radio waves that return from the object.
  • the camera is arranged, for example, on a rear side of a room mirror in a compartment and used for shooting an image of the front of vehicle 10 .
  • AI artificial intelligence
  • an image processing processor onto images or video images shot by the camera, another vehicle, an obstacle, or a human in front of vehicle 10 can be recognized.
  • Information obtained by sensors for perception 260 is output to compute assembly 210 .
  • Sensors for pose 270 include sensors that detect a pose, a behavior, or a position of vehicle 10 , and are implemented, for example, by an inertial measurement unit (IMU) or a global positioning system (GPS).
  • IMU inertial measurement unit
  • GPS global positioning system
  • the IMU detects, for example, an acceleration in a front-rear direction, a lateral direction, and a vertical direction of vehicle 10 and an angular speed in a roll direction, a pitch direction, and a yaw direction of vehicle 10 .
  • the GPS detects a position of vehicle 10 based on information received from a plurality of GPS satellites that orbit the Earth. Information obtained by sensors for pose 270 is output to compute assembly 210 .
  • Sensor cleaning 290 removes soiling attached to various sensors during travel of vehicle 10 .
  • Sensor cleaning 290 removes soiling on a lens of the camera or a portion from which laser beams or radio waves are emitted, for example, with a cleaning solution or a wiper.
  • Vehicle control interface 110 includes vehicle control interface boxes (each of which is denoted as a “VCIB” below) 111 A and 111 B.
  • VCIBs 111 A and 111 B each include a CPU and a memory (including, for example, a ROM and a RAM) neither of which is shown.
  • VCIB 111 A is equivalent in function to VCIB 111 B, it is partially different in a plurality of systems connected thereto that make up VP 120 .
  • VCIBs 111 A and 111 B are communicatively connected to compute assembly 210 of ADK 200 .
  • VCIB 111 A and VCIB 111 B are communicatively connected to each other.
  • Each of VCIBs 111 A and 111 B relays various instructions from ADK 200 and provides them as control commands to VP 120 . More specifically, each of VCIBs 111 A and 111 B converts various instructions provided from ADK 200 into control commands to be used for control of each system of VP 120 by using information such as a program (for example, an application programming interface (API)) stored in a memory and provides the control commands to a destination system. Each of VCIBs 111 A and 111 B relays vehicle information output from VP 120 and provides the vehicle information as a vehicle state to ADK 200 .
  • a program for example, an application programming interface (API)
  • VCIBs 111 A and 111 B equivalent in function relating to an operation of at least one of (for example, braking or steering) systems are provided, control systems between ADK 200 and VP 120 are redundant. Therefore, when some kind of failure occurs in a part of the system, the function (turning or stopping) of VP 120 can be maintained by switching between the control systems as appropriate or disconnecting a control system where failure has occurred.
  • VP 120 includes brake systems 121 A and 121 B, steering systems 122 A and 122 B, an electric parking brake (EPB) system 123 A, a parking-lock (P-Lock) system 123 B, a propulsion system 124 , a pre-crash safety (PCS) system 125 , and a body system 126 .
  • EPB electric parking brake
  • P-Lock parking-lock
  • PCS pre-crash safety
  • VCIB 111 A is communicatively connected to brake system 121 B, steering system 122 A, and P-Lock system 123 B of the plurality of systems of VP 120 through a communication bus.
  • VCIB 111 B is communicatively connected to brake system 121 A, steering system 122 B, EPB system 123 A, P-Lock system 123 B, propulsion system 124 , and body system 126 of the plurality of systems of VP 120 through a communication bus.
  • Brake systems 121 A and 121 B can control a plurality of braking apparatuses provided in wheels of vehicle 10 .
  • Brake system 121 A may be equivalent in function to brake system 121 B, or any one of them may be able to independently control braking force of each wheel during travel of the vehicle and the other thereof may be able to control braking force such that equal braking force is generated in the wheels during travel of the vehicle.
  • the braking apparatus includes, for example, a disc brake system that is operated with a hydraulic pressure regulated by an actuator.
  • a wheel speed sensor 127 is connected to brake system 121 B.
  • Wheel speed sensor 127 is provided, for example, in each wheel of vehicle 10 and detects a rotation speed of each wheel. Wheel speed sensor 127 outputs the detected rotation speed of each wheel to brake system 121 B. Brake system 121 B outputs the rotation speed of each wheel to VCIB 111 A as one of pieces of information included in vehicle information.
  • Each of brake systems 121 A and 121 B generates a braking instruction to a braking apparatus in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110 .
  • brake systems 121 A and 121 B control the braking apparatus based on a braking instruction generated in any one of the brake systems, and when a failure occurs in one of the brake systems, the braking apparatus is controlled based on a braking instruction generated in the other brake system.
  • Steering systems 122 A and 122 B each include a not-shown steering ECU that contains a CPU and a memory (including, for example, a ROM and a RAM) and can control a steering angle of a steering wheel of vehicle 10 with a steering apparatus by means of the steering ECU.
  • Steering system 122 A is similar in function to steering system 122 B.
  • the steering apparatus includes, for example, rack-and-pinion electric power steering (EPS) that allows adjustment of a steering angle by an actuator.
  • EPS rack-and-pinion electric power steering
  • a pinion angle sensor 128 A is connected to steering system 122 A.
  • a pinion angle sensor 128 B provided separately from pinion angle sensor 128 A is connected to steering system 122 B.
  • Each of pinion angle sensors 128 A and 128 B detects an angle of rotation (a pinion angle) of a pinion gear coupled to a rotation shaft of the actuator.
  • Pinion angle sensors 128 A and 128 B output detected pinion angles to steering systems 122 A and 122 B, respectively.
  • Each of steering systems 122 A and 122 B generates a steering instruction to the steering apparatus in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110 .
  • steering systems 122 A and 122 B control the steering apparatus based on the steering instruction generated in any one of the steering systems, and when a failure occurs in any one of the steering systems, the steering apparatus is controlled based on a steering instruction generated in the other steering system.
  • EPB system 123 A can control the EPB provided in at least any of wheels of vehicle 10 .
  • the EPB is provided separately from the braking apparatus, and fixes (stops) a wheel by an operation of an actuator.
  • the EPB for example, activates a drum brake for a parking brake provided in at least one of wheels of vehicle 10 by means of an actuator to fix (stop) the wheel, or activates a braking apparatus to fix (stop) a wheel with an actuator capable of regulating a hydraulic pressure to be supplied to the braking apparatus separately from brake systems 121 A and 121 B.
  • EPB system 123 A controls the EPB in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110 .
  • P-Lock system 123 B can control a P-Lock apparatus provided in a transmission of vehicle 10 .
  • the P-Lock apparatus fixes (stops) rotation of an output shaft of the transmission by fitting a protrusion provided at a tip end of a parking lock pawl, a position of which is adjusted by an actuator, into a tooth of a gear (locking gear) provided as being coupled to a rotational element in the transmission.
  • P-Lock system 123 B controls the P-Lock apparatus in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110 .
  • Propulsion system 124 can switch a shift range with the use of a shift apparatus and can control driving force of vehicle 10 in a direction of travel that is generated from a drive source.
  • the shift apparatus can select any of a plurality of shift ranges.
  • the drive source includes, for example, a motor generator and an engine.
  • Propulsion system 124 controls the shift apparatus and the drive source in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110 .
  • PCS system 125 controls vehicle 10 to avoid collision or to mitigate damage by using a camera/radar 129 .
  • PCS system 125 is communicatively connected to brake system 121 B.
  • PCS system 125 detects an obstacle (an obstacle or a human) in front by using, for example, camera/radar 129 , and when it determines that there is possibility of collision based on a distance to the obstacle, it outputs a braking instruction to brake system 121 B so as to increase braking force.
  • an obstacle an obstacle or a human
  • Body system 126 can control, for example, components such as a direction indicator, a horn, or a wiper, depending on a state or an environment of travel of vehicle 10 .
  • Body system 126 controls the above-described components in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110 .
  • An operation apparatus that can manually be operated by a user for the braking apparatus, the steering apparatus, the EPB, P-Lock, the shift apparatus, and the drive source described above may separately be provided.
  • ADK 200 transmits a command relating to autonomous driving control to VCIBs 111 A and 111 B by executing the API.
  • ADK 200 obtains information on vehicle main body 100 .
  • compute assembly 210 of ADK 200 obtains information on an environment and information on poses of vehicle main body 100 from sensors for perception 260 and sensors for pose 270 .
  • Compute assembly 210 creates a driving plan based on the obtained information on vehicle main body 100 .
  • compute assembly 210 calculates a behavior of vehicle main body 100 (for example, poses of vehicle main body 100 ) and creates a driving plan suitable for a state and an external environment of vehicle main body 100 .
  • the driving plan refers to data that shows a behavior of vehicle main body 100 during a prescribed period.
  • Compute assembly 210 extracts a physical control quantity (an acceleration or a tire turning angle) from the created driving plan. Compute assembly 210 splits the extracted physical quantity for each API cycle. Compute assembly 210 executes the API based on the split physical quantity. As the API is executed as such, an API command for realizing the physical quantity in accordance with the driving plan is transmitted from ADK 200 to vehicle control interface 110 . Vehicle control interface 110 transmits a control command corresponding to the received API command to VP 120 . VP 120 carries out autonomous driving control of vehicle main body 100 in accordance with the control command.
  • a physical control quantity an acceleration or a tire turning angle
  • ADK 200 may incorporate in advance a reference for a limit value of a steering rate on a side of vehicle main body 100 .
  • ADK 200 can thus steer vehicle main body 100 at the limit value of the steering rate adapted to vehicle main body 100 .
  • ADK 200 is attachable to and removable from vehicle main body 100 and replaceable with ADK 200 of another specification.
  • the limit value of the steering rate cannot be controlled to an appropriate value unless the appropriate limit value of the steering rate suitable for vehicle main body 100 is incorporated in advance in ADK 200 .
  • steering systems 122 A and 122 B specify the limit value of the steering rate in accordance with a prescribed reference and transmit the specified limit value to ADK 200 through VCIBs 111 A and 111 B.
  • ADK 200 calculates a target steering angle to satisfy the limit value received from steering systems 122 A and 122 B and transmits an instruction for the calculated steering angle to steering systems 122 A and 122 B through VCIBs 111 A and 111 B.
  • the limit value of the steering rate for calculating the target steering angle is thus conveyed from a side of VP 120 to ADK 200 . Consequently, even though attachable and removable ADK 200 that issues an instruction for autonomous driving controls vehicle main body 100 , the limit value of the steering rate can be set to an appropriate value suitable for vehicle main body 100 .
  • FIG. 3 is a flowchart showing a flow of processing relating to control of a steering angle in this embodiment.
  • steering angle calculation processing shown in the flowchart on the left in FIG. 3 is performed by the CPU of compute assembly 210 of ADK 200 as being invoked from higher-order processing such as the API including this steering angle calculation processing
  • steering control processing shown in the flowchart on the right in FIG. 3 is performed by the steering ECU in each of steering systems 122 A and 122 B as being invoked from higher-order processing including this steering control processing.
  • the CPU of compute assembly 210 of ADK 200 determines whether or not the driving plan created in higher-order processing requires steering (step S 211 ).
  • the CPU requests steering systems 122 A and 122 B of VP 120 to transmit a limit value (Current_Road_Wheel_Angle_Rate_Limit) (which is called a “limit value of the steering rate” below) of variation in tire turning angle necessary for calculation of the steering angle through VCIBs 111 A and 111 B (step S 212 ).
  • a limit value of the steering rate which is called a “limit value of the steering rate” below
  • the steering ECU of each of steering systems 122 A and 122 B determines whether or not ADK 200 has issued a request for transmission of the limit value of the steering rate (step S 111 ).
  • the steering ECU of each of steering systems 122 A and 122 B specifies the limit value of the steering rate in accordance with the vehicle speed (step S 112 ). Specifically, the limit value of the steering rate is specified in accordance with a reference shown in FIG. 4 .
  • FIG. 4 is a diagram showing a map of relation between a vehicle speed and a limit value of a steering rate in this embodiment. Referring to FIG. 4 , when the vehicle speed is equal to or lower than 10 km/h, the limit value of the steering rate is fixed at 0.400 rad/s.
  • relation between the vehicle speed and the limit value of the steering rate satisfies relation predetermined for vehicle 10 as shown in FIG. 4 .
  • Relation between the vehicle speed and the limit value of the steering rate is determined in advance to satisfy a condition for safe travel and other conditions, depending on a vehicle model, a vehicle weight, and a tire size.
  • relation between the vehicle speed and the limit value of the steering rate is determined in advance, for example, such that a lateral jerk of vehicle main body 100 is lower than a prescribed jerk (for example, 2.94 m/s 3 ).
  • the limit value of the steering rate can thus be specified from the vehicle speed.
  • the steering ECU of each of steering systems 122 A and 122 B transmits the specified limit value of the steering rate to ADK 200 (step S 113 ).
  • step S 214 the CPU of compute assembly 210 determines that the driving plan does not require steering in steering angle calculation processing (NO in step S 211 ) and after step S 212 , the CPU calculates the steering angle in accordance with the driving plan at the current time point to satisfy the received limit value of the steering rate (step S 214 ).
  • the CPU of compute assembly 210 transmits an instruction for the calculated steering angle to steering systems 122 A and 122 B of VP 120 (step S 215 ).
  • the CPU of compute assembly 210 determines that it has not received the limit value of the steering rate (NO in step S 213 ) and after step S 215 , the CPU has processing to be performed return to the higher-order processing from which this processing has been invoked.
  • the steering ECU of each of steering systems 122 A and 122 B determines whether or not it has received an instruction for the steering angle from ADK 200 (step S 114 ).
  • the steering ECU of each of steering systems 122 A and 122 B determines that it has received the instruction (YES in step S 114 )
  • the steering ECU of each of steering systems 122 A and 122 B determines that it has not received the instruction for the steering angle (NO in step S 114 ) and after step S 115 , the steering ECU of each of steering systems 122 A and 122 B has processing to be performed return to the higher-order processing from which this processing has been invoked.
  • ADK 200 can communicate with the plurality of functional units (for example, steering systems 122 A and 122 B, brake systems 121 A and 121 B, EPB system 123 A, P-Lock system 123 B, propulsion system 124 , and body system 126 ) of VP 120 through any of VCIBs 111 A and 111 B.
  • functional units for example, steering systems 122 A and 122 B, brake systems 121 A and 121 B, EPB system 123 A, P-Lock system 123 B, propulsion system 124 , and body system 126 .
  • ADK 200 may directly communicate with the plurality of functional units of VP 120 .
  • VCIBs 111 A and 111 B may issue a control instruction to any of the plurality of functional units in accordance with an instruction from ADK 200 .
  • each of the plurality of functional units of VP 120 includes an ECU.
  • each of steering systems 122 A and 122 B includes the steering ECU.
  • VCIBs 111 A and 111 B and the ECUs of the functional units exhibit the functions on the side of vehicle main body 100 in coordination. Allocation of functions of VCIBs 111 A and 111 B and the ECUs of the functional units, however, is not limited as shown in FIG. 3 .
  • VCIBs 111 A and 111 B are responsible for relay of communication between ADK 200 and the ECUs of the functional units in FIG. 3
  • VCIBs 111 A and 111 B may further be responsible for a part of processing by the ECUs of the functional units.
  • Values obtained from the plurality of functional units of VP 120 such as steering systems 122 A and 122 B for calculation of the steering angle in ADK 200 are not limited to the limit value of the steering rate, and other values (for example, a steering angle (Steering_Wheel_Angle_Actual) of steering and a steering angular velocity (Steering_Wheel_Angle_Rate_Actual) of steering) are also obtained.
  • vehicle 10 is capable of autonomous driving and includes ADK 200 attachable to and removable from vehicle main body 100 , ADK 200 issuing an instruction for autonomous driving, VP 120 including a plurality of functional units that perform a plurality of prescribed functions of vehicle main body 100 , and VCIBs 111 A and 111 B that communicate with ADK 200 and issue a control instruction to the functional units in accordance with an instruction from ADK 200 .
  • one of the plurality of functional units is steering systems 122 A and 122 B that steer vehicle main body 100 .
  • steering systems 122 A and 122 B each specify a limit value of a steering rate in accordance with a prescribed reference (step S 112 ) and transmit the specified limit value to ADK 200 through VCIBs 111 A and 111 B (step S 113 ).
  • ADK 200 calculates a target steering angle to satisfy the limit value received from steering systems 122 A and 122 B (step S 214 ) and transmits an instruction for the calculated steering angle to steering systems 122 A and 122 B through VCIBs 111 A and 111 B (step S 215 ).
  • the limit value of the steering rate for calculating the target steering angle is thus conveyed from the side of VP 120 to ADK 200 . Consequently, when attachable and removable ADK 200 that issues an instruction for autonomous driving controls vehicle main body 100 , the limit value of the steering rate can be set to an appropriate value suitable for vehicle main body 100 without storing the limit value of the steering rate in advance in ADK 200 .
  • the steering system switches the prescribed reference in accordance with a vehicle speed of vehicle main body 100 .
  • the appropriate limit value of the steering rate suitable for vehicle main body 100 can thus be set.
  • the prescribed reference is such a reference that the limit value of the steering rate is defined as a prescribed angular velocity when a vehicle speed of vehicle main body 100 is lower than a prescribed speed.
  • the appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • a value of the prescribed angular velocity is 0.4 rad/s.
  • the appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • the prescribed reference is such a reference that, when the vehicle speed exceeds a prescribed speed, the limit value of the steering rate satisfies predetermined relation between the vehicle speed and the limit value of the steering rate.
  • the appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • a value of the prescribed speed is 10 km/h.
  • the appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • the prescribed reference is a reference determined in advance such that a lateral jerk of vehicle main body 100 is lower than a prescribed jerk.
  • the appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • a value of the prescribed jerk is 2.94 m/s 3 .
  • the appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • ADK 200 issues an instruction for autonomous driving of vehicle main body 100 and is attachable to and removable from vehicle main body 100 .
  • vehicle main body 100 includes a plurality of functional units that perform a plurality of prescribed functions of vehicle main body 100 and the functional units are controlled in accordance with an instruction from ADK 200 .
  • one of the plurality of functional units is steering systems 122 A and 122 B that steer vehicle main body 100 .
  • FIGS. 1 and 2 show that steer vehicle main body 100 and steer vehicle main body 100 .
  • ADK 200 calculates a target steering angle to satisfy a limit value of a steering rate specified by steering systems 122 A and 122 B in accordance with a prescribed reference (step S 214 ) and transmits an instruction for the calculated steering angle to steering systems 122 A and 122 B through VCIBs 111 A and 111 B (step S 215 ).
  • the limit value of the steering rate can be set to an appropriate value suitable for vehicle main body 100 without storing the limit value of the steering rate in advance in ADK 200 .
  • vehicle 10 is capable of autonomous driving and includes VP 120 and VCIBs 111 A and 111 B, VP 120 including a plurality of functional units that perform a plurality of prescribed functions of vehicle main body 100 , VCIBs 111 A and 111 B communicating with ADK 200 that issues an instruction for autonomous driving and is attachable to and removable from vehicle main body 100 , VCIBs 111 A and 111 B issuing a control instruction to the functional units in accordance with an instruction from ADK 200 .
  • one of the plurality of functional units is steering systems 122 A and 122 B that steer vehicle main body 100 .
  • steering systems 122 A and 122 B each specify a limit value of a steering rate in accordance with a prescribed reference (step S 112 ), transmit the specified limit value to ADK 200 through VCIBs 111 A and 111 B, (S 113 ), and control the steering angle in accordance with an instruction for a target steering angle calculated by ADK 200 to satisfy the limit value received from steering systems 122 A and 122 B (S 115 ).
  • the limit value of the steering rate can be set to an appropriate value suitable for vehicle main body 100 without storing the limit value of the steering rate in advance in ADK 200 .
  • This document is an API specification of Toyota Vehicle Platform and contains the outline, the usage and the caveats of the application interface.
  • ADS Autonomous Driving System ADK Autonomous Driving Kit VP Vehicle Platform. VCIB Vehicle Control Interface Box. This is an ECU for the interface and the signal converter between ADS and Toyota VP's sub systems.
  • Vehicle control technology is being used as an interface for technology providers.
  • the system architecture as a premise is shown ( FIG. 6 ).
  • the target vehicle will adopt the physical architecture of using CAN for the bus between ADS and VCIB.
  • the CAN frames and the bit assignments are shown in the form of “bit assignment table” as a separate document.
  • the ADS should create the driving plan, and should indicate vehicle control values to the VP.
  • the Toyota VP should control each system of the VP based on indications from an ADS.
  • CAN will be adopted as a communication line between ADS and VP. Therefore, basically, APIs should be executed every defined cycle time of each API by ADS.
  • a typical workflow of ADS of when executing APIs is as follows ( FIG. 7 ).
  • the below diagram shows an example.
  • Acceleration Command requests deceleration and makes the vehicle stop. After Actual_Moving_Direction is set to “standstill”, any shift position can be requested by Propulsion Direction Command. (In the example below, “D” “R”).
  • Acceleration Command has to request deceleration.
  • acceleration/deceleration is controlled based on Acceleration Command value ( FIG. 9 ).
  • Immobilization Command “Release” is requested when the vehicle is stationary. Acceleration Command is set to Deceleration at that time.
  • the vehicle is accelerated/decelerated based on Acceleration Command value ( FIG. 10 ).
  • Tire Turning Angle Command is the relative value from Estimated_Road_Wheel_Angle_Actual.
  • target vehicle deceleration is the sum of 1) estimated deceleration from the brake pedal stroke and 2) deceleration request from AD system.
  • ADS confirms Propulsion Direction by Driver and changes shift position by using Propulsion Direction Command.
  • the maximum is selected from 1) the torque value estimated from driver operation angle, and 2) the torque value calculated from requested wheel angle.
  • Tire Turning Angle Command is not accepted if the driver strongly turns the steering wheel.
  • the above-mentioned is determined by Steering_Wheel_Intervention flag.
  • Brake_Pedal_Intervention This signal shows whether the brake pedal T.B.D. is depressed by a driver (intervention) Steering_Wheel_Intervention This signal shows whether the steering T.B.D. wheel is turned by a driver (intervention) Shift_Lever_Intervention This signal shows whether the shift lever T.B.D.
  • WheelSpeed_FL wheel speed value (Front Left Wheel) N/A WheelSpeed_FL_Rotation Rotation direction of wheel (Front Left) N/A WheelSpeed_FR wheel speed value (Front Right Wheel) N/A WheelSpeed_FR_Rotation Rotation direction of wheel (Front Right) N/A WheelSpeed_RL wheel speed value (Rear Left Wheel) Applied WheelSpeed_RL_Rotation Rotation direction of wheel (Rear Left) Applied WheelSpeed_RR wheel speed value (Rear Right Wheel) Applied WheelSpeed_RR_Rotation Rotation direction of wheel (Rear Right) Applied Actual_Moving_Direction Moving direction of vehicle Applied Longitudinal_Velocity Estimated longitudinal velocity of vehicle Applied Longitudinal_Acceleration Estimated longitudinal acceleration of Applied vehicle Lateral Acceleration Sensor value of lateral acceleration of Applied vehicle Lateral Acceleration Sensor value of lateral acceleration of Applied vehicle Lateral Acceleration Sensor value of lateral acceleration of Applied vehicle Lateral Acceleration Sensor value of lateral acceleration of
  • the steering angle rate is calculated from the vehicle speed using 2.94 m/s 3
  • the threshold speed between A and B is 10 [km/h] ( FIG. 11 ).
  • This signal shows whether the accelerator pedal is depressed by a driver (intervention).
  • This signal shows whether the brake pedal is depressed by a driver (intervention).
  • This signal shows whether the steering wheel is turned by a driver (intervention).
  • This signal shows whether the shift lever is controlled by a driver (intervention).
  • VCIB achieves the following procedure after Ready-ON. (This functionality will be implemented from the CV.)
  • this signal may be set to “Occupied”.
  • Vehicle power off condition In this mode, the high voltage battery does not supply power, and neither VCIB nor other VP ECUs are activated.
  • VCIB is awake by the low voltage battery. In this mode, ECUs other than VCIB are not awake except for some of the body electrical ECUs.
  • the high voltage battery supplies power to the whole VP and all the VP ECUs including VCIB are awake.
  • Transmission interval is 100 ms within fuel cutoff motion delay allowance time (1 s) so that data can be transmitted more than 5 times. In this case, an instantaneous power interruption is taken into account.
  • This document is an architecture specification of Toyota's MaaS Vehicle Platform and contains the outline of system in vehicle level.
  • the representative vehicle with 19ePF is shown as follows.
  • ADS Autonomous Driving System ADK Autonomous Driving Kit VP Vehicle Platform. VCIB Vehicle Control Interface Box. This is an ECU for the interface and the signal converter between ADS and Toyota VP's sub systems.
  • Vehicle control technology is being used as an interface for technology providers.
  • the system architecture on the vehicle as a premise is shown ( FIG. 15 ).
  • the target vehicle of this document will adopt the physical architecture of using CAN for the bus between ADS and VCIB.
  • the CAN frames and the bit assignments are shown in the form of “bit assignment chart” as a separate document.
  • the power supply architecture as a premise is shown as follows ( FIG. 16 ).
  • the blue colored parts are provided from an ADS provider. And the orange colored parts are provided from the VP.
  • the power structure for ADS is isolate from the power structure for VP. Also, the ADS provider should install a redundant power structure isolated from the VP.
  • the basic safety concept is shown as follows.
  • the entire vehicle achieves the safety state 2 by activating the immobilization system.
  • the Braking System is designed to prevent the capability from becoming 0.3 G or less.
  • the Steering System is designed to prevent the capability from becoming 0.3 G or less.
  • any single failure on the Power Supply System doesn't cause loss of power supply functionality. However, in case of the primary power failure, the secondary power supply system keeps supplying power to the limited systems for a certain time.
  • Toyota's MaaS vehicle adopts the security document issued by Toyota as an upper document.
  • the entire risk includes not only the risks assumed on the base e-PF but also the risks assumed for the Autono-MaaS vehicle.
  • the countermeasure for a remote attack is shown as follows.
  • the autonomous driving kit communicates with the center of the operation entity, end-to-end security should be ensured. Since a function to provide a travel control instruction is performed, multi-layered protection in the autonomous driving kit is required. Use a secure microcomputer or a security chip in the autonomous driving kit and provide sufficient security measures as the first layer against access from the outside. Use another secure microcomputer and another security chip to provide security as the second layer. (Multi-layered protection in the autonomous driving kit including protection as the first layer to prevent direct entry from the outside and protection as the second layer as the layer below the former)
  • the countermeasure for a modification is shown as follows.
  • measures against a counterfeit autonomous driving kit For measures against a counterfeit autonomous driving kit, device authentication and message authentication are carried out. In storing a key, measures against tampering should be provided and a key set is changed for each pair of a vehicle and an autonomous driving kit. Alternatively, the contract should stipulate that the operation entity exercise sufficient management so as not to allow attachment of an unauthorized kit. For measures against attachment of an unauthorized product by an Autono-MaaS vehicle user, the contract should stipulate that the operation entity exercise management not to allow attachment of an unauthorized kit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

A vehicle includes an ADK attachable to and removable from a vehicle main body, the ADK issuing an instruction for autonomous driving, a VP including a plurality of functional units that perform a plurality of prescribed functions of the vehicle main body, and a VCIB that issues a control instruction to the functional units in accordance with an instruction from the ADK. One of the plurality of functional units is a steering system that steers the vehicle main body. The steering system specifies a limit value of a steering rate in accordance with a prescribed reference and transmits the specified limit value to the ADK through the VCIB. The ADK calculates a target steering angle to satisfy the limit value received from the steering system and transmits an instruction for the calculated steering angle to the steering system through the VCIB.

Description

  • This nonprovisional application is based on Japanese Patent Application No. 2020-015726 filed with the Japan Patent Office on Jan. 31, 2020, the entire contents of which are hereby incorporated by reference.
  • BACKGROUND Field
  • The present disclosure relates to a vehicle and an autonomous driving kit and particularly to a vehicle capable of autonomous driving and an autonomous driving kit that issues an instruction for autonomous driving of a vehicle and is attachable to and removable from the vehicle.
  • Description of the Background Art
  • A technique for autonomous driving of a vehicle has recently been developed. For example, a vehicle in which an autonomous driving electronic control unit (ECU) that issues an instruction for autonomous driving controls autonomous driving is available (see, for example, Japanese Patent Laying-Open No. 2018-132015). In such a vehicle, a reference for a limit value of a steering rate on a vehicle side may be incorporated in advance in the autonomous driving ECU. The autonomous driving ECU can thus steer the vehicle within a range between limit values of the steering rate adapted to the vehicle.
  • SUMMARY
  • In the vehicle in Japanese Patent Laying-Open No. 2018-132015, an autonomous driving apparatus that issues an instruction for autonomous driving, such as the autonomous driving ECU, may be attachable to and removable from the vehicle, and the autonomous driving apparatus may be replaceable with an autonomous driving apparatus of another specification. When the vehicle is configured as such, however, unless an appropriate limit value of a steering rate suitable for the vehicle is incorporated in advance in the autonomous driving apparatus, the limit value of the steering rate cannot be controlled to an appropriate value.
  • The present disclosure was made to solve such a problem, and an object of the present disclosure is to provide a vehicle in which, when an attachable and removable apparatus that issues an instruction for autonomous driving controls a vehicle, a limit value of a steering rate can be set to an appropriate value suitable for the vehicle without storing in advance the limit value of the steering rate in this apparatus.
  • A vehicle according to the present disclosure is capable of autonomous driving and includes an autonomous driving kit attachable to and removable from the vehicle, the autonomous driving kit issuing an instruction for autonomous driving, a vehicle platform including a plurality of functional units that perform a plurality of prescribed functions of the vehicle, and a vehicle interface box that communicates with the autonomous driving kit and issues a control instruction to the functional units in accordance with an instruction from the autonomous driving kit. One of the plurality of functional units is a steering system that steers the vehicle. The steering system specifies a limit value of a steering rate in accordance with a prescribed reference and transmits the specified limit value to the autonomous driving kit through the vehicle interface box. The autonomous driving kit calculates a target steering angle to satisfy the limit value received from the steering system and transmits an instruction for the calculated steering angle to the steering system through the vehicle interface box.
  • According to such a configuration, the limit value of the steering rate for calculating the target steering angle is conveyed from a side of the vehicle platform to the autonomous driving kit. Consequently, a vehicle in which, when an attachable and removable autonomous driving kit that issues an instruction for autonomous driving controls the vehicle, the limit value of the steering rate can be set to an appropriate value suitable for the vehicle without storing the limit value of the steering rate in advance in the autonomous driving kit can be provided.
  • The steering system may switch the prescribed reference in accordance with a vehicle speed. The prescribed reference may be such a reference that the limit value of the steering rate is defined as a prescribed angular velocity when the vehicle speed is lower than a prescribed speed. A value of the prescribed angular velocity may be 0.4 rad/s.
  • The prescribed reference may be such a reference that, when the vehicle speed exceeds a prescribed speed, the limit value of the steering rate satisfies predetermined relation between the vehicle speed and the limit value of the steering rate. A value of the prescribed speed may be 10 km/h.
  • Preferably, the prescribed reference may be a reference determined in advance such that a lateral jerk of the vehicle is lower than a prescribed jerk. A value of the prescribed jerk may be 2.94 m/s3.
  • According to another aspect of this disclosure, an autonomous driving kit issues an instruction for autonomous driving of a vehicle and is attachable to and removable from the vehicle. The vehicle includes a plurality of functional units that perform a plurality of prescribed functions of the vehicle and the functional units are controlled in accordance with an instruction from the autonomous driving kit. One of the plurality of functional units is a steering system that steers the vehicle. The autonomous driving kit calculates a target steering angle to satisfy a limit value of a steering rate specified by the steering system in accordance with a prescribed reference and transmits an instruction for the calculated steering angle to the steering system through a vehicle interface box.
  • According to such a configuration, in an example where an attachable and removable autonomous driving kit that issues an instruction for autonomous driving controls a vehicle, an autonomous driving kit with which a limit value of a steering rate can be set to an appropriate value suitable for the vehicle without storing the limit value of the steering rate in advance in the autonomous driving kit can be provided.
  • According to yet another aspect of this disclosure, a vehicle is capable of autonomous driving and includes a vehicle platform and a vehicle interface box, the vehicle platform including a plurality of functional units that perform a plurality of prescribed functions of the vehicle, the vehicle interface box communicating with an autonomous driving kit that issues an instruction for autonomous driving and is attachable to and removable from the vehicle, the vehicle interface box issuing a control instruction to the functional units in accordance with an instruction from the autonomous driving kit. One of the plurality of functional units is a steering system that steers the vehicle. The steering system specifies a limit value of a steering rate in accordance with a prescribed reference, transmits the specified limit value to the autonomous driving kit through the vehicle interface box, and controls a steering angle in accordance with an instruction for a target steering angle calculated by the autonomous driving kit to satisfy the limit value received from the steering system.
  • According to such a configuration, a vehicle in which, when an attachable and removable autonomous driving kit that issues an instruction for autonomous driving controls the vehicle, the limit value of the steering rate can be set to an appropriate value suitable for the vehicle without storing the limit value of the steering rate in advance in the autonomous driving kit can be provided.
  • The foregoing and other objects, features, aspects and advantages of the present disclosure will become more apparent from the following detailed description of the present disclosure when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing overview of a mobility as a service (MaaS) system in which a vehicle according to an embodiment of the present disclosure is used.
  • FIG. 2 is a diagram showing overview of a configuration of the vehicle in this embodiment.
  • FIG. 3 is a flowchart showing a flow of processing relating to control of a steering angle in this embodiment.
  • FIG. 4 is a diagram showing a map of relation between a vehicle speed and a limit value of a steering rate in this embodiment.
  • FIG. 5 is a diagram of an overall configuration of MaaS.
  • FIG. 6 is a diagram of a system configuration of a MaaS vehicle.
  • FIG. 7 is a diagram showing a typical flow in an autonomous driving system.
  • FIG. 8 is a diagram showing an exemplary timing chart of an API relating to stop and start of the MaaS vehicle.
  • FIG. 9 is a diagram showing an exemplary timing chart of the API relating to shift change of the MaaS vehicle.
  • FIG. 10 is a diagram showing an exemplary timing chart of the API relating to wheel lock of the MaaS vehicle.
  • FIG. 11 is a diagram showing a limit value of variation in tire turning angle.
  • FIG. 12 is a diagram illustrating intervention by an accelerator pedal.
  • FIG. 13 is a diagram illustrating intervention by a brake pedal.
  • FIG. 14 is a diagram of an overall configuration of MaaS.
  • FIG. 15 is a diagram of a system configuration of a vehicle.
  • FIG. 16 is a diagram showing a configuration of supply of power of the vehicle.
  • FIG. 17 is a diagram illustrating strategies until the vehicle is safely brought to a standstill at the time of occurrence of a failure.
  • FIG. 18 is a diagram showing arrangement of representative functions of the vehicle.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • An embodiment of the present disclosure will be described below in detail with reference to the drawings. The same or corresponding elements in the drawings have the same reference characters allotted and description thereof will not be repeated.
  • FIG. 1 is a diagram showing overview of a MaaS system in which a vehicle according to an embodiment of the present disclosure is used. Referring to FIG. 1, this MaaS system includes a vehicle 10, a data server 500, a mobility service platform (which is denoted as “MSPF” below) 600, and autonomous driving related mobility services 700.
  • Vehicle 10 includes a vehicle main body 100 and an autonomous driving kit (which is denoted as “ADK” below) 200. Vehicle main body 100 includes a vehicle control interface 110, a vehicle platform (which is denoted as “VP” below) 120, and a data communication module (DCM) 190.
  • Vehicle 10 can carry out autonomous driving in accordance with commands from ADK 200 attached to vehicle main body 100. Though FIG. 1 shows vehicle main body 100 and ADK 200 at positions distant from each other, ADK 200 is actually attached to a rooftop or the like of vehicle main body 100. ADK 200 can also be removed from vehicle main body 100. While ADK 200 is not attached, vehicle main body 100 can travel by driving by a user. In this case, VP 120 carries out travel control (travel control in accordance with an operation by a user) in a manual mode.
  • Vehicle control interface 110 can communicate with ADK 200 over a controller area network (CAN). Vehicle control interface 110 receives various commands from ADK 200 or outputs a state of vehicle main body 100 to ADK 200 by executing a prescribed application program interface (API) defined for each communicated signal.
  • When vehicle control interface 110 receives a command from ADK 200, it outputs a control command corresponding to the received command to VP 120. Vehicle control interface 110 obtains various types of information on vehicle main body 100 from VP 120 and outputs the state of vehicle main body 100 to ADK 200. A configuration of vehicle control interface 110 will be described in detail later.
  • VP 120 includes various systems and various sensors for controlling vehicle main body 100. VP 120 carries out various types of vehicle control in accordance with a command given from ADK 200 through vehicle control interface 110. Namely, as VP 120 carries out various types of vehicle control in accordance with a command from ADK 200, autonomous driving of vehicle 10 is carried out. A configuration of VP 120 will also be described in detail later.
  • ADK 200 includes an autonomous driving system (which is denoted as “ADS” below) for autonomous driving of vehicle 10. ADK 200 creates, for example, a driving plan of vehicle 10 and outputs various commands for traveling vehicle 10 in accordance with the created driving plan to vehicle control interface 110 in accordance with the API defined for each command. ADK 200 receives various signals indicating states of vehicle main body 100 from vehicle control interface 110 in accordance with the API defined for each signal and has the received vehicle state reflected on creation of the driving plan. A configuration of ADK 200 (ADS) will also be described later.
  • DCM 190 includes a communication interface (I/F) for vehicle main body 100 to wirelessly communicate with data server 500. DCM 190 outputs various types of vehicle information such as a speed, a position, or an autonomous driving state to data server 500. DCM 190 receives from autonomous driving related mobility services 700 through MSPF 600 and data server 500, for example, various types of data for management of travel of an autonomous driving vehicle including vehicle 10 by mobility services 700.
  • MSPF 600 is an integrated platform to which various mobility services are connected. In addition to autonomous driving related mobility services 700, not-shown various mobility services (for example, various mobility services provided by a ride-share company, a car-sharing company, an insurance company, a rent-a-car company, and a taxi company) are connected to MSPF 600. Various mobility services including mobility services 700 can use various functions provided by MSPF 600 by using APIs published on MSPF 600, depending on service contents.
  • Autonomous driving related mobility services 700 provide mobility services using an autonomous driving vehicle including vehicle 10. Mobility services 700 can obtain, for example, operation control data of vehicle 10 that communicates with data server 500 or information stored in data server 500 from MSPF 600, by using the APIs published on MSPF 600. Mobility services 700 transmit, for example, data for managing an autonomous driving vehicle including vehicle 10 to MSPF 600, by using the API.
  • MSPF 600 publishes APIs for using various types of data on vehicle states and vehicle control necessary for development of the ADS, and an ADS provider can use as the APIs, the data on the vehicle states and vehicle control necessary for development of the ADS stored in data server 500.
  • FIG. 2 is a diagram showing overview of a configuration of the vehicle in this embodiment. As shown in FIG. 2, ADK 200 includes a compute assembly 210, a human machine interface (HMI) 230, sensors for perception 260, sensors for pose 270, and a sensor cleaning 290.
  • Compute assembly 210 contains a central processing unit (CPU) and a memory (including, for example, a read only memory (ROM) and a random access memory (RAM)) that are not shown. During autonomous driving of vehicle 10, compute assembly 210 obtains an environment around the vehicle and a pose, a behavior, and a position of vehicle 10 from various sensors which will be described later as well as a state of vehicle 10 from VP 120 which will be described later through vehicle control interface 110 and sets a next operation (acceleration, deceleration, or turning) of vehicle 10. Compute assembly 210 outputs various instructions for realizing a set next operation of vehicle 10 to vehicle control interface 110.
  • HMI 230 presents information to a user and accepts an operation during autonomous driving, during driving requiring an operation by a user, or at the time of transition between autonomous driving and driving requiring an operation by the user. HMI 230 is implemented, for example, by a touch panel display, a display apparatus, and an operation apparatus.
  • Sensors for perception 260 include sensors that perceive an environment around the vehicle, and are implemented, for example, by at least any of laser imaging detection and ranging (LIDAR), a millimeter-wave radar, and a camera.
  • The LIDAR refers to a distance measurement apparatus that measures a distance based on a time period from emission of pulsed laser beams (infrared rays) until return of the laser beams reflected by an object. The millimeter-wave radar is a distance measurement apparatus that measures a distance or a direction to an object by emitting radio waves short in wavelength to the object and detecting radio waves that return from the object. The camera is arranged, for example, on a rear side of a room mirror in a compartment and used for shooting an image of the front of vehicle 10. As a result of image processing by artificial intelligence (AI) or an image processing processor onto images or video images shot by the camera, another vehicle, an obstacle, or a human in front of vehicle 10 can be recognized. Information obtained by sensors for perception 260 is output to compute assembly 210.
  • Sensors for pose 270 include sensors that detect a pose, a behavior, or a position of vehicle 10, and are implemented, for example, by an inertial measurement unit (IMU) or a global positioning system (GPS).
  • The IMU detects, for example, an acceleration in a front-rear direction, a lateral direction, and a vertical direction of vehicle 10 and an angular speed in a roll direction, a pitch direction, and a yaw direction of vehicle 10. The GPS detects a position of vehicle 10 based on information received from a plurality of GPS satellites that orbit the Earth. Information obtained by sensors for pose 270 is output to compute assembly 210.
  • Sensor cleaning 290 removes soiling attached to various sensors during travel of vehicle 10. Sensor cleaning 290 removes soiling on a lens of the camera or a portion from which laser beams or radio waves are emitted, for example, with a cleaning solution or a wiper.
  • Vehicle control interface 110 includes vehicle control interface boxes (each of which is denoted as a “VCIB” below) 111A and 111B. VCIBs 111A and 111B each include a CPU and a memory (including, for example, a ROM and a RAM) neither of which is shown. Though VCIB 111A is equivalent in function to VCIB 111B, it is partially different in a plurality of systems connected thereto that make up VP 120.
  • Each of VCIBs 111A and 111B is communicatively connected to compute assembly 210 of ADK 200. VCIB 111A and VCIB 111B are communicatively connected to each other.
  • Each of VCIBs 111A and 111B relays various instructions from ADK 200 and provides them as control commands to VP 120. More specifically, each of VCIBs 111A and 111B converts various instructions provided from ADK 200 into control commands to be used for control of each system of VP 120 by using information such as a program (for example, an application programming interface (API)) stored in a memory and provides the control commands to a destination system. Each of VCIBs 111A and 111B relays vehicle information output from VP 120 and provides the vehicle information as a vehicle state to ADK 200.
  • As VCIBs 111A and 111B equivalent in function relating to an operation of at least one of (for example, braking or steering) systems are provided, control systems between ADK 200 and VP 120 are redundant. Therefore, when some kind of failure occurs in a part of the system, the function (turning or stopping) of VP 120 can be maintained by switching between the control systems as appropriate or disconnecting a control system where failure has occurred.
  • VP 120 includes brake systems 121A and 121B, steering systems 122A and 122B, an electric parking brake (EPB) system 123A, a parking-lock (P-Lock) system 123B, a propulsion system 124, a pre-crash safety (PCS) system 125, and a body system 126.
  • VCIB 111A is communicatively connected to brake system 121B, steering system 122A, and P-Lock system 123B of the plurality of systems of VP 120 through a communication bus.
  • VCIB 111B is communicatively connected to brake system 121A, steering system 122B, EPB system 123A, P-Lock system 123B, propulsion system 124, and body system 126 of the plurality of systems of VP 120 through a communication bus.
  • Brake systems 121A and 121B can control a plurality of braking apparatuses provided in wheels of vehicle 10. Brake system 121A may be equivalent in function to brake system 121B, or any one of them may be able to independently control braking force of each wheel during travel of the vehicle and the other thereof may be able to control braking force such that equal braking force is generated in the wheels during travel of the vehicle. The braking apparatus includes, for example, a disc brake system that is operated with a hydraulic pressure regulated by an actuator.
  • A wheel speed sensor 127 is connected to brake system 121B. Wheel speed sensor 127 is provided, for example, in each wheel of vehicle 10 and detects a rotation speed of each wheel. Wheel speed sensor 127 outputs the detected rotation speed of each wheel to brake system 121B. Brake system 121B outputs the rotation speed of each wheel to VCIB 111A as one of pieces of information included in vehicle information.
  • Each of brake systems 121A and 121B generates a braking instruction to a braking apparatus in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110. For example, brake systems 121A and 121B control the braking apparatus based on a braking instruction generated in any one of the brake systems, and when a failure occurs in one of the brake systems, the braking apparatus is controlled based on a braking instruction generated in the other brake system.
  • Steering systems 122A and 122B each include a not-shown steering ECU that contains a CPU and a memory (including, for example, a ROM and a RAM) and can control a steering angle of a steering wheel of vehicle 10 with a steering apparatus by means of the steering ECU. Steering system 122A is similar in function to steering system 122B. The steering apparatus includes, for example, rack-and-pinion electric power steering (EPS) that allows adjustment of a steering angle by an actuator.
  • A pinion angle sensor 128A is connected to steering system 122A. A pinion angle sensor 128B provided separately from pinion angle sensor 128A is connected to steering system 122B. Each of pinion angle sensors 128A and 128B detects an angle of rotation (a pinion angle) of a pinion gear coupled to a rotation shaft of the actuator. Pinion angle sensors 128A and 128B output detected pinion angles to steering systems 122A and 122B, respectively.
  • Each of steering systems 122A and 122B generates a steering instruction to the steering apparatus in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110. For example, steering systems 122A and 122B control the steering apparatus based on the steering instruction generated in any one of the steering systems, and when a failure occurs in any one of the steering systems, the steering apparatus is controlled based on a steering instruction generated in the other steering system.
  • EPB system 123A can control the EPB provided in at least any of wheels of vehicle 10. The EPB is provided separately from the braking apparatus, and fixes (stops) a wheel by an operation of an actuator. The EPB, for example, activates a drum brake for a parking brake provided in at least one of wheels of vehicle 10 by means of an actuator to fix (stop) the wheel, or activates a braking apparatus to fix (stop) a wheel with an actuator capable of regulating a hydraulic pressure to be supplied to the braking apparatus separately from brake systems 121A and 121B.
  • EPB system 123A controls the EPB in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110.
  • P-Lock system 123B can control a P-Lock apparatus provided in a transmission of vehicle 10. The P-Lock apparatus fixes (stops) rotation of an output shaft of the transmission by fitting a protrusion provided at a tip end of a parking lock pawl, a position of which is adjusted by an actuator, into a tooth of a gear (locking gear) provided as being coupled to a rotational element in the transmission.
  • P-Lock system 123B controls the P-Lock apparatus in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110.
  • Propulsion system 124 can switch a shift range with the use of a shift apparatus and can control driving force of vehicle 10 in a direction of travel that is generated from a drive source. The shift apparatus can select any of a plurality of shift ranges. The drive source includes, for example, a motor generator and an engine.
  • Propulsion system 124 controls the shift apparatus and the drive source in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110.
  • PCS system 125 controls vehicle 10 to avoid collision or to mitigate damage by using a camera/radar 129. PCS system 125 is communicatively connected to brake system 121B. PCS system 125 detects an obstacle (an obstacle or a human) in front by using, for example, camera/radar 129, and when it determines that there is possibility of collision based on a distance to the obstacle, it outputs a braking instruction to brake system 121B so as to increase braking force.
  • Body system 126 can control, for example, components such as a direction indicator, a horn, or a wiper, depending on a state or an environment of travel of vehicle 10. Body system 126 controls the above-described components in accordance with a prescribed control command provided from ADK 200 through vehicle control interface 110.
  • An operation apparatus that can manually be operated by a user for the braking apparatus, the steering apparatus, the EPB, P-Lock, the shift apparatus, and the drive source described above may separately be provided.
  • When autonomous driving is carried out in vehicle 10 configured as above, ADK 200 transmits a command relating to autonomous driving control to VCIBs 111A and 111B by executing the API. Initially, ADK 200 obtains information on vehicle main body 100. For example, compute assembly 210 of ADK 200 obtains information on an environment and information on poses of vehicle main body 100 from sensors for perception 260 and sensors for pose 270.
  • Compute assembly 210 creates a driving plan based on the obtained information on vehicle main body 100. For example, compute assembly 210 calculates a behavior of vehicle main body 100 (for example, poses of vehicle main body 100) and creates a driving plan suitable for a state and an external environment of vehicle main body 100. The driving plan refers to data that shows a behavior of vehicle main body 100 during a prescribed period.
  • Compute assembly 210 extracts a physical control quantity (an acceleration or a tire turning angle) from the created driving plan. Compute assembly 210 splits the extracted physical quantity for each API cycle. Compute assembly 210 executes the API based on the split physical quantity. As the API is executed as such, an API command for realizing the physical quantity in accordance with the driving plan is transmitted from ADK 200 to vehicle control interface 110. Vehicle control interface 110 transmits a control command corresponding to the received API command to VP 120. VP 120 carries out autonomous driving control of vehicle main body 100 in accordance with the control command.
  • In the configuration as described above, ADK 200 may incorporate in advance a reference for a limit value of a steering rate on a side of vehicle main body 100. ADK 200 can thus steer vehicle main body 100 at the limit value of the steering rate adapted to vehicle main body 100.
  • In vehicle 10 in this embodiment, ADK 200 is attachable to and removable from vehicle main body 100 and replaceable with ADK 200 of another specification. With the configuration of the ADK as such, the limit value of the steering rate cannot be controlled to an appropriate value unless the appropriate limit value of the steering rate suitable for vehicle main body 100 is incorporated in advance in ADK 200.
  • Then, steering systems 122A and 122B specify the limit value of the steering rate in accordance with a prescribed reference and transmit the specified limit value to ADK 200 through VCIBs 111A and 111B. ADK 200 calculates a target steering angle to satisfy the limit value received from steering systems 122A and 122B and transmits an instruction for the calculated steering angle to steering systems 122A and 122B through VCIBs 111A and 111B.
  • The limit value of the steering rate for calculating the target steering angle is thus conveyed from a side of VP 120 to ADK 200. Consequently, even though attachable and removable ADK 200 that issues an instruction for autonomous driving controls vehicle main body 100, the limit value of the steering rate can be set to an appropriate value suitable for vehicle main body 100.
  • FIG. 3 is a flowchart showing a flow of processing relating to control of a steering angle in this embodiment. Referring to FIG. 3, steering angle calculation processing shown in the flowchart on the left in FIG. 3 is performed by the CPU of compute assembly 210 of ADK 200 as being invoked from higher-order processing such as the API including this steering angle calculation processing and steering control processing shown in the flowchart on the right in FIG. 3 is performed by the steering ECU in each of steering systems 122A and 122B as being invoked from higher-order processing including this steering control processing.
  • In steering angle calculation processing, the CPU of compute assembly 210 of ADK 200 determines whether or not the driving plan created in higher-order processing requires steering (step S211). When the CPU of compute assembly 210 determines that the driving plan requires steering (YES in step S211), the CPU requests steering systems 122A and 122B of VP 120 to transmit a limit value (Current_Road_Wheel_Angle_Rate_Limit) (which is called a “limit value of the steering rate” below) of variation in tire turning angle necessary for calculation of the steering angle through VCIBs 111A and 111B (step S212).
  • In steering control processing, the steering ECU of each of steering systems 122A and 122B determines whether or not ADK 200 has issued a request for transmission of the limit value of the steering rate (step S111). When the steering ECU determines that the request has been issued (YES in step S111), the steering ECU of each of steering systems 122A and 122B specifies the limit value of the steering rate in accordance with the vehicle speed (step S112). Specifically, the limit value of the steering rate is specified in accordance with a reference shown in FIG. 4.
  • FIG. 4 is a diagram showing a map of relation between a vehicle speed and a limit value of a steering rate in this embodiment. Referring to FIG. 4, when the vehicle speed is equal to or lower than 10 km/h, the limit value of the steering rate is fixed at 0.400 rad/s.
  • When the vehicle speed is higher than 10 km/h, relation between the vehicle speed and the limit value of the steering rate satisfies relation predetermined for vehicle 10 as shown in FIG. 4. Relation between the vehicle speed and the limit value of the steering rate is determined in advance to satisfy a condition for safe travel and other conditions, depending on a vehicle model, a vehicle weight, and a tire size.
  • Specifically, relation between the vehicle speed and the limit value of the steering rate is determined in advance, for example, such that a lateral jerk of vehicle main body 100 is lower than a prescribed jerk (for example, 2.94 m/s3). The limit value of the steering rate can thus be specified from the vehicle speed.
  • Referring back to FIG. 3, the steering ECU of each of steering systems 122A and 122B transmits the specified limit value of the steering rate to ADK 200 (step S113).
  • When the CPU of compute assembly 210 determines that the driving plan does not require steering in steering angle calculation processing (NO in step S211) and after step S212, the CPU calculates the steering angle in accordance with the driving plan at the current time point to satisfy the received limit value of the steering rate (step S214).
  • Then, the CPU of compute assembly 210 transmits an instruction for the calculated steering angle to steering systems 122A and 122B of VP 120 (step S215). When the CPU of compute assembly 210 determines that it has not received the limit value of the steering rate (NO in step S213) and after step S215, the CPU has processing to be performed return to the higher-order processing from which this processing has been invoked.
  • In steering control processing, the steering ECU of each of steering systems 122A and 122B determines whether or not it has received an instruction for the steering angle from ADK 200 (step S114). When the steering ECU of each of steering systems 122A and 122B determines that it has received the instruction (YES in step S114), it controls the steering angle to the indicated steering angle (step S115). When the steering ECU of each of steering systems 122A and 122B determines that it has not received the instruction for the steering angle (NO in step S114) and after step S115, the steering ECU of each of steering systems 122A and 122B has processing to be performed return to the higher-order processing from which this processing has been invoked.
  • [Modification]
  • (1) In the embodiment described previously, as shown in FIGS. 1 and 2, ADK 200 can communicate with the plurality of functional units (for example, steering systems 122A and 122B, brake systems 121A and 121B, EPB system 123A, P-Lock system 123B, propulsion system 124, and body system 126) of VP 120 through any of VCIBs 111A and 111B.
  • Without being limited as such, ADK 200 may directly communicate with the plurality of functional units of VP 120. VCIBs 111A and 111B may issue a control instruction to any of the plurality of functional units in accordance with an instruction from ADK 200.
  • (2) In the embodiment described previously, each of the plurality of functional units of VP 120 includes an ECU. For example, each of steering systems 122A and 122B includes the steering ECU. As shown in FIG. 3, VCIBs 111A and 111B and the ECUs of the functional units (for example, the steering ECUs of steering systems 122A and 122B) exhibit the functions on the side of vehicle main body 100 in coordination. Allocation of functions of VCIBs 111A and 111B and the ECUs of the functional units, however, is not limited as shown in FIG. 3. Though VCIBs 111A and 111B are responsible for relay of communication between ADK 200 and the ECUs of the functional units in FIG. 3, VCIBs 111A and 111B may further be responsible for a part of processing by the ECUs of the functional units.
  • (3) In the embodiment described previously, as shown in FIG. 3, obtainment of the limit value (Current_Road_Wheel_Angle_Rate_Limit) of the steering rate from steering systems 122A and 122B for calculation of the steering angle by ADK 200 is described.
  • Values obtained from the plurality of functional units of VP 120 such as steering systems 122A and 122B for calculation of the steering angle in ADK 200, however, are not limited to the limit value of the steering rate, and other values (for example, a steering angle (Steering_Wheel_Angle_Actual) of steering and a steering angular velocity (Steering_Wheel_Angle_Rate_Actual) of steering) are also obtained.
  • [Summary]
  • (1) As shown in FIGS. 1 and 2, vehicle 10 is capable of autonomous driving and includes ADK 200 attachable to and removable from vehicle main body 100, ADK 200 issuing an instruction for autonomous driving, VP 120 including a plurality of functional units that perform a plurality of prescribed functions of vehicle main body 100, and VCIBs 111A and 111B that communicate with ADK 200 and issue a control instruction to the functional units in accordance with an instruction from ADK 200. As shown in FIG. 2, one of the plurality of functional units is steering systems 122A and 122B that steer vehicle main body 100.
  • As shown in FIGS. 3 and 4, steering systems 122A and 122B each specify a limit value of a steering rate in accordance with a prescribed reference (step S112) and transmit the specified limit value to ADK 200 through VCIBs 111A and 111B (step S113). As shown in FIG. 3, ADK 200 calculates a target steering angle to satisfy the limit value received from steering systems 122A and 122B (step S214) and transmits an instruction for the calculated steering angle to steering systems 122A and 122B through VCIBs 111A and 111B (step S215).
  • The limit value of the steering rate for calculating the target steering angle is thus conveyed from the side of VP 120 to ADK 200. Consequently, when attachable and removable ADK 200 that issues an instruction for autonomous driving controls vehicle main body 100, the limit value of the steering rate can be set to an appropriate value suitable for vehicle main body 100 without storing the limit value of the steering rate in advance in ADK 200.
  • (2) As shown in FIG. 4, the steering system switches the prescribed reference in accordance with a vehicle speed of vehicle main body 100. The appropriate limit value of the steering rate suitable for vehicle main body 100 can thus be set.
  • (3) As shown in FIG. 4, the prescribed reference is such a reference that the limit value of the steering rate is defined as a prescribed angular velocity when a vehicle speed of vehicle main body 100 is lower than a prescribed speed. The appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • (4) As shown in FIG. 4, a value of the prescribed angular velocity is 0.4 rad/s. The appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • (5) As shown in FIG. 4, the prescribed reference is such a reference that, when the vehicle speed exceeds a prescribed speed, the limit value of the steering rate satisfies predetermined relation between the vehicle speed and the limit value of the steering rate. The appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • (6) As shown in FIG. 4, a value of the prescribed speed is 10 km/h. The appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • (7) As shown in FIG. 4, the prescribed reference is a reference determined in advance such that a lateral jerk of vehicle main body 100 is lower than a prescribed jerk. The appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • (8) As shown in FIG. 4, a value of the prescribed jerk is 2.94 m/s3. The appropriate limit value of the steering rate in conformity with the vehicle speed of vehicle main body 100 can thus be set.
  • (9) As shown in FIGS. 1 and 2, ADK 200 issues an instruction for autonomous driving of vehicle main body 100 and is attachable to and removable from vehicle main body 100. As shown in FIG. 2, vehicle main body 100 includes a plurality of functional units that perform a plurality of prescribed functions of vehicle main body 100 and the functional units are controlled in accordance with an instruction from ADK 200. As shown in FIG. 2, one of the plurality of functional units is steering systems 122A and 122B that steer vehicle main body 100. As shown in FIGS. 3 and 4, ADK 200 calculates a target steering angle to satisfy a limit value of a steering rate specified by steering systems 122A and 122B in accordance with a prescribed reference (step S214) and transmits an instruction for the calculated steering angle to steering systems 122A and 122B through VCIBs 111A and 111B (step S215).
  • Thus, when attachable and removable ADK 200 that issues an instruction for autonomous driving controls vehicle main body 100, the limit value of the steering rate can be set to an appropriate value suitable for vehicle main body 100 without storing the limit value of the steering rate in advance in ADK 200.
  • (10) As shown in FIGS. 1 and 2, vehicle 10 is capable of autonomous driving and includes VP 120 and VCIBs 111A and 111B, VP 120 including a plurality of functional units that perform a plurality of prescribed functions of vehicle main body 100, VCIBs 111A and 111B communicating with ADK 200 that issues an instruction for autonomous driving and is attachable to and removable from vehicle main body 100, VCIBs 111A and 111B issuing a control instruction to the functional units in accordance with an instruction from ADK 200. As shown in FIG. 2, one of the plurality of functional units is steering systems 122A and 122B that steer vehicle main body 100. As shown in FIGS. 3 and 4, steering systems 122A and 122B each specify a limit value of a steering rate in accordance with a prescribed reference (step S112), transmit the specified limit value to ADK 200 through VCIBs 111A and 111B, (S113), and control the steering angle in accordance with an instruction for a target steering angle calculated by ADK 200 to satisfy the limit value received from steering systems 122A and 122B (S115).
  • Thus, when attachable and removable ADK 200 that issues an instruction for autonomous driving controls vehicle main body 100, the limit value of the steering rate can be set to an appropriate value suitable for vehicle main body 100 without storing the limit value of the steering rate in advance in ADK 200.
  • Example 1
  • Toyota's MaaS Vehicle Platform
  • API Specification
  • for ADS Developers
  • [Standard Edition #0.1]
  • History of Revision
  • TABLE 1
    Date of Revision ver. Summary of Revision Reviser
    2019 May 4 0.1 Creating a new material MaaS Business Div.
  • Index
  • 1. Outline 4
      • 1.1. Purpose of this Specification 4
      • 1.2. Target Vehicle 4
      • 1.3. Definition of Term 4
      • 1.4. Precaution for Handling 4
  • 2. Structure 5
      • 2.1. Overall Structure of MaaS 5
      • 2.2. System structure of MaaS vehicle 6
  • 3. Application Interfaces 7
      • 3.1. Responsibility sharing of when using APIs 7
      • 3.2. Typical usage of APIs 7
      • 3.3. APIs for vehicle motion control 9
        • 3.3.1. Functions 9
        • 3.3.2. Inputs 16
        • 3.3.3. Outputs 23
      • 3.4. APIs for BODY control 45
        • 3.4.1. Functions 45
        • 3.4.2. Inputs 45
        • 3.4.3. Outputs 56
      • 3.5. APIs for Power control 68
        • 3.5.1. Functions 68
        • 3.5.2. Inputs 68
        • 3.5.3. Outputs 69
      • 3.6. APIs for Safety 70
        • 3.6.1. Functions 70
        • 3.6.2. Inputs 70
        • 3.6.3. Outputs 70
      • 3.7. APIs for Security 74
        • 3.7.1. Functions 74
        • 3.7.2. Inputs 74
        • 3.7.3. Outputs 76
      • 3.8. APIs for MaaS Service 80
        • 3.8.1. Functions 80
        • 3.8.2. Inputs 80
        • 3.8.3. Outputs 80
    1. Outline 1.1. Purpose of this Specification
  • This document is an API specification of Toyota Vehicle Platform and contains the outline, the usage and the caveats of the application interface.
  • 1.2. Target Vehicle
  • e-Palette, MaaS vehicle based on the POV (Privately Owned Vehicle) manufactured by Toyota
  • 1.3. Definition of Term
  • TABLE 2
    Term Definition
    ADS Autonomous Driving System.
    ADK Autonomous Driving Kit
    VP Vehicle Platform.
    VCIB Vehicle Control Interface Box.
    This is an ECU for the interface and the signal
    converter between ADS and Toyota VP's sub systems.
  • 1.4. Precaution for Handling
  • This is an early draft of the document.
  • All the contents are subject to change. Such changes are notified to the users. Please note that some parts are still T.B.D. will be updated in the future.
  • 2. Structure
  • 2.1. Overall Structure of MaaS
  • The overall structure of MaaS with the target vehicle is shown (FIG. 5).
  • Vehicle control technology is being used as an interface for technology providers.
  • Technology providers can receive open API such as vehicle state and vehicle control, necessary for development of automated driving systems.
  • 2.2. System structure of MaaS vehicle
  • The system architecture as a premise is shown (FIG. 6).
  • The target vehicle will adopt the physical architecture of using CAN for the bus between ADS and VCIB. In order to realize each API in this document, the CAN frames and the bit assignments are shown in the form of “bit assignment table” as a separate document.
  • 3. Application Interfaces
  • 3.1. Responsibility Sharing of when Using APIs
  • Basic responsibility sharing between ADS and vehicle VP is as follows when using APIs.
  • [ADS]
  • The ADS should create the driving plan, and should indicate vehicle control values to the VP.
  • [VP]
  • The Toyota VP should control each system of the VP based on indications from an ADS.
  • 3.2. Typical Usage of APIs
  • In this section, typical usage of APIs is described.
  • CAN will be adopted as a communication line between ADS and VP. Therefore, basically, APIs should be executed every defined cycle time of each API by ADS.
  • A typical workflow of ADS of when executing APIs is as follows (FIG. 7).
  • 3.3. APIs for Vehicle Motion Control
  • In this section, the APIs for vehicle motion control which is controllable in the MaaS vehicle is described.
  • 3.3.1. Functions
  • 3.3.1.1. Standstill, Start Sequence
  • The transition to the standstill (immobility) mode and the vehicle start sequence are described. This function presupposes the vehicle is in Autonomy_State=Autonomous Mode. The request is rejected in other modes.
  • The below diagram shows an example.
  • Acceleration Command requests deceleration and stops the vehicle. Then, when Longitudinal_Velocity is confirmed as 0 [km/h], Standstill Command=“Applied” is sent. After the brake hold control is finished, Standstill Status becomes “Applied”. Until then, Acceleration Command has to continue deceleration request. Either Standstill Command=“Applied” or Acceleration Command's deceleration request were canceled, the transition to the brake hold control will not happen. After that, the vehicle continues to be standstill as far as Standstill Command=“Applied” is being sent. Acceleration Command can be set to 0 (zero) during this period.
  • If the vehicle needs to start, the brake hold control is cancelled by setting Standstill Command to “Released”. At the same time, acceleration/deceleration is controlled based on Acceleration Command (FIG. 8).
  • EPB is engaged when Standstill Status=“Applied” continues for 3 minutes.
  • 3.3.1.2. Direction Request Sequence
  • The shift change sequence is described. This function presupposes that Autonomy_State=Autonomous Mode. Otherwise, the request is rejected.
  • Shift change happens only during Actual_Moving_Direction=“standstill”). Otherwise, the request is rejected.
  • In the following diagram shows an example. Acceleration Command requests deceleration and makes the vehicle stop. After Actual_Moving_Direction is set to “standstill”, any shift position can be requested by Propulsion Direction Command. (In the example below, “D” “R”).
  • During shift change, Acceleration Command has to request deceleration.
  • After the shift change, acceleration/deceleration is controlled based on Acceleration Command value (FIG. 9).
  • 3.3.1.3. WheelLock Sequence
  • The engagement and release of wheel lock is described. This function presupposes Autonomy_State=Autonomous Mode, otherwise the request is rejected.
  • This function is conductible only during vehicle is stopped. Acceleration Command requests deceleration and makes the vehicle stop. After Actual_Moving_Direction is set to “standstill”, WheelLock is engaged by Immobilization Command=“Applied”. Acceleration Command is set to Deceleration until Immobilization Status is set to “Applied”.
  • If release is desired, Immobilization Command=“Release” is requested when the vehicle is stationary. Acceleration Command is set to Deceleration at that time.
  • After this, the vehicle is accelerated/decelerated based on Acceleration Command value (FIG. 10).
  • 3.3.1.4. Road_Wheel_Angle Request
  • This function presupposes Autonomy_State=“Autonomous Mode”, and the request is rejected otherwise.
  • Tire Turning Angle Command is the relative value from Estimated_Road_Wheel_Angle_Actual.
  • For example, in case that Estimated_Road_Wheel_Angle_Actual=0.1 [rad] while the vehicle is going straight;
  • If ADS requests to go straight ahead, Tire Turning Angle Command should be set to 0+0.1=0.1 [rad].
  • If ADS requests to steer by −0.3 [rad], Tire Turning Angle Command should be set to −0.3+0.1=−0.2 [rad].
  • 3.3.1.5. Rider Operation
  • 3.3.1.5.1. Acceleration Pedal Operation
  • While in Autonomous driving mode, accelerator pedal stroke is eliminated from the vehicle acceleration demand selection.
  • 3.3.1.5.2. Brake Pedal Operation
  • The action when the brake pedal is operated. In the autonomy mode, target vehicle deceleration is the sum of 1) estimated deceleration from the brake pedal stroke and 2) deceleration request from AD system.
  • 3.3.1.5.3. Shift Lever Operation
  • In Autonomous driving mode, driver operation of the shift lever is not reflected in Propulsion Direction Status.
  • If necessary, ADS confirms Propulsion Direction by Driver and changes shift position by using Propulsion Direction Command.
  • 3.3.1.5.4. Steering Operation
  • When the driver (rider) operates the steering, the maximum is selected from 1) the torque value estimated from driver operation angle, and 2) the torque value calculated from requested wheel angle.
  • Note that Tire Turning Angle Command is not accepted if the driver strongly turns the steering wheel. The above-mentioned is determined by Steering_Wheel_Intervention flag.
  • 3.3.2. Inputs
  • TABLE 3
    Signal Name Description Redundancy
    Propulsion Direction Request to switch between N/A
    Command forward (D range)
    and back (R range)
    Immobilization Request to engage/release Applied
    Command WheelLock
    Standstill Command Request to maintain stationary Applied
    Acceleration Cornmand Request to accelerate/decelerate Applied
    Tire Turning Angle Request front wheel angle Applied
    Command
    Autonomization Request to transition Applied
    Command between manual
    mode and autonomy mode
  • 3.3.2.1. Propulsion Direction Command
  • Request to switch between forward (D range) and back (R range) Values
  • TABLE 4
    value Description Remarks
    0 No Request
    2 R Shift to R range
    4 D Shift to D range
    other Reserved
  • Remarks
      • Only available when Autonomy_State=“Autonomous Mode”
      • D/R is changeable only the vehicle is stationary (Actual_Moving_Direction=“standstill”).
      • The request while driving (moving) is rejected.
      • When system requests D/R shifting, Acceleration Command is sent deceleration (−0.4 m/s2) simultaneously. (Only while brake is applied.)
      • The request may not be accepted in following cases.
      • Direction_Control_Degradation_Modes=“Failure detected”
  • 3.3.2.2. Immobilization Command
  • Request to engage/release WheelLock
  • Values
  • TABLE 5
    value Description Remarks
    0 No Request
    1 Applied EPB is turned on and TM shifts
    to P range
    2 Released EPB is turned off and TM shifts
    to the value of Propulsion
    Direction Command
  • Remarks
      • Available only when Autonomy_State=“Autonomous Mode”
      • Changeable only when the vehicle is stationary (Actual_Moving_Direction=“standstill”)
      • The request is rejected when vehicle is running.
      • When Apply/Release mode change is requested, Acceleration Command is set to deceleration (−0.4 m/s2) (Only while brake is applied.)
  • 3.3.2.3. Standstill Command
  • Request the vehicle to be stationary
  • Values
  • TABLE 6
    value Description Remarks
    0 No Request
    1 Applied Standstill is requested
    2 Released
  • Remarks
      • Only available when Autonomy_State=“Autonomous Mode”
      • Confirmed by Standstill Status=“Applied”
      • When the vehicle is stationary (Actual_Moving_Direction=“standstill”), transition to Stand Still is enabled.
      • Acceleration Command has to be continued until Standstill Status becomes “Applied” and Acceleration Command's deceleration request (−0.4 m/s2) should be continued.
      • There are more cases where the request is not accepted. Details are T.B.D.
  • 3.3.2.4. Acceleration Command
  • Command vehicle acceleration
  • Values
  • Estimated_Max_Decel_Capability to Estimated_Max_Accel_Capability [m/s2]
  • Remarks
      • Only available when Autonomy_State=“Autonomous Mode”
      • Acceleration (+) and deceleration (−) request based on Propulsion Direction Status direction
      • The upper/lower limit will vary based on Estimated_Max_Decel_Capability and Estimated_Max_Accel_Capability.
      • When acceleration more than Estimated_Max_Accel_Capability is requested, the request is set to Estimated_Max_Accel_Capability.
      • When deceleration more than Estimated_Max_Decel_Capability is requested, the request is set to Estimated_Max_Decel_Capability.
      • Depending on the accel/brake pedal stroke, the requested acceleration may not be met. See 3.4.1.4 for more detail.
      • When Pre-Collision system is activated simultaneously, minimum acceleration (maximum deceleration) is selected.
  • 3.3.2.5. Tire Turning Angle Command
  • Command tire turning angle
  • Values
  • TABLE 7
    value Description Remarks
    [unit: rad]
  • Remarks
      • Left is positive value (+). Right is negative value (−).
      • Available only when Autonomy_State=“Autonomous Mode”
      • The output of Estimated_Road_Wheel_Angle_Actual when the vehicle is going straight, is set to the reference value (0).
      • This requests relative value of Estimated_Road_Wheel_Angle_Actual. (See 3.4.1.1 for details)
      • The requested value is within Current_Road_Wheel_Angle_Rate_Limit.
      • The requested value may not be fulfilled depending on the steer angle by the driver.
  • 3.3.2.6. Autonomization Command
  • Request to transition between manual mode and autonomy mode
  • Values
  • TABLE 8
    value Description Remarks
    00b No Request For
    Autonomy
    01b Request For Autonomy
    10b Deactivation Request means transition request
    to manual mode
      • The mode may be able not to be transitioned to Autonomy mode. (e.g. In case that a failure occurs in the vehicle platform.)
  • 3.3.3. Outputs
  • TABLE 9
    Signal Name Description Redundancy
    Propulsion Direction Status Current shift range N/A
    Propulsion Direction by Driver Shift lever position by driver N/A
    Immobilization Status Output of EPB and Shift P Applied
    Immobilization Request by Driver EPB switch status by driver N/A
    Standstill Status Stand still status N/A
    Estimated_Coasting_Rate Estimated vehicle deceleration when N/A
    throttle is closed
    Estimated_Max_Accel_Capability Estimated maximum acceleration Applied
    Estimated_Max_Decel_Capability Estimated maximum deceleration Applied
    Estimated_Road_Wheel_Angle_Actual Front wheel steer angle Applied
    Estimated_Road_Wheel_Angle_Rate_Actual Front wheel steer angle rate Applied
    Steering_Wheel_Angle_Actual Steering wheel angle N/A
    Steering_Wheel_Angle_Rate_Actual Steering wheel angle rate N/A
    Current_Road_Wheel_Angle_Rate_Limit Road wheel angle rate limit Applied
    Estimated_Max_Lateral_Acceleration_Capability Estimated max lateral acceleration Applied
    Estimated_Max_Lateral_Acceleration_Rate_Capability Estimated max lateral acceleration rate Applied
    Accelerator_Pedal_Position Position of the accelerator pedal (How N/A
    much is the pedal depressed?)
    Accelerator_Pedal_Intervention This signal shows whether the accelerator N/A
    pedal is depressed by a driver (intervention)
    Brake_Pedal_Position Position of the brake pedal (How much is T.B.D.
    the pedal depressed?)
    Brake_Pedal_Intervention This signal shows whether the brake pedal T.B.D.
    is depressed by a driver (intervention)
    Steering_Wheel_Intervention This signal shows whether the steering T.B.D.
    wheel is turned by a driver (intervention)
    Shift_Lever_Intervention This signal shows whether the shift lever T.B.D.
    is controlled by a driver (intervention)
    WheelSpeed_FL wheel speed value (Front Left Wheel) N/A
    WheelSpeed_FL_Rotation Rotation direction of wheel (Front Left) N/A
    WheelSpeed_FR wheel speed value (Front Right Wheel) N/A
    WheelSpeed_FR_Rotation Rotation direction of wheel (Front Right) N/A
    WheelSpeed_RL wheel speed value (Rear Left Wheel) Applied
    WheelSpeed_RL_Rotation Rotation direction of wheel (Rear Left) Applied
    WheelSpeed_RR wheel speed value (Rear Right Wheel) Applied
    WheelSpeed_RR_Rotation Rotation direction of wheel (Rear Right) Applied
    Actual_Moving_Direction Moving direction of vehicle Applied
    Longitudinal_Velocity Estimated longitudinal velocity of vehicle Applied
    Longitudinal_Acceleration Estimated longitudinal acceleration of Applied
    vehicle
    Lateral Acceleration Sensor value of lateral acceleration of Applied
    vehicle
    Yawrate Sensor value of Yaw rate Applied
    Autonomy_State State of whether autonomy mode or manual Applied
    mode
    Autonomy_Ready Situation of whether the vehicle can transition Applied
    to autonomy mode or not
    Autonomy_Fault Status of whether the fault regarding a Applied
    functionality in autonomy mode occurs or not
  • 3.3.3.1. Propulsion Direction Status
  • Current shift range
  • Values
  • TABLE 10
    value Description remarks
    0 Reserved
    1 P
    2 R
    3 N
    4 D
    5 B
    6 Reserved
    7 Invalid value
  • Remarks
      • When the shift range is indeterminate, this output is set to “Invalid Value”.
      • When the vehicle becomes the following status during VO mode, [Propulsion Direction Status] will turn to “P”.
        • [Longitudinal_Velocity]=0 [km/h]
        • [Brake_Pedal_Position]<Threshold value (T.B.D.) (in case of being determined that the pedal isn't depressed)
        • [1st_Left_Seat_Belt_Status]=Unbuckled
        • [1st_Left_Door_Open_Status]=Opened
  • 3.3.3.2. Propulsion Direction by Driver
  • Shift lever position by driver operation
  • Values
  • TABLE 11
    value Description remarks
    0 No Request
    1 P
    2 R
    3 N
    4 D
    5 B
    6 Reserved
    7 Invalid value
  • Remarks
      • Output based on the lever position operated by driver
      • If the driver releases his hand of the shift lever, the lever returns to the central position and the output is set as “No Request”.
      • When the vehicle becomes the following status during NVO mode, [Propulsion Direction by Driver] will turn to “1(P)”.
        • [Longitudinal_Velocity]=0 [km/h]
        • [Brake_Pedal_Position]<Threshold value (T.B.D.) (in case of being determined that the pedal isn't depressed)
        • [1st_Left_Seat_Belt_Status]=Unbuckled
        • [1st_Left_Door_Open_Status]=Opened
  • 3.3.3.3. Immobilization Status
  • Output EPB and Shift-P status
  • Values
  • <Primary>
  • TABLE 12
    Value
    Shift EPB Description Remarks
    0 0 Shift set to other than P, and EPB Released
    1 0 Shift set to P and EPB Released
    0 1 Shift set to other than P, and EPB applied
    1 1 Shift set to P and EPB Applied
  • <Secondary>
  • TABLE 13
    Value
    Shift Description Remarks
    0 0 Other than Shift P
    1 0 Shift P
    0 1 Reserved
    1 1 Reserved
  • Remarks
      • Secondary signal does not include EPB lock status.
  • 3.3.3.4. Immobilization Request by Driver
  • Driver operation of EPB switch
  • Values
  • TABLE 14
    value Description remarks
    0 No Request
    1 Engaged
    2 Released
    3 Invalid value
  • Remarks
      • “Engaged” is outputted while the EPB switch is being pressed.
      • “Released” is outputted while the EPB switch is being pulled.
  • 3.3.3.5. Standstill Status
  • Vehicle stationary status
  • Values
  • TABLE 15
    Value Description remarks
    0 Released
    1 Applied
    2 Reserved
    3 Invalid value
  • Remarks
      • When Standstill Status=Applied continues for 3 minutes, EPB is activated.
      • If the vehicle is desired to start, ADS requests Standstill Command=“Released”.
  • 3.3.3.6. Estimated Coasting Rate
  • Estimated vehicle deceleration when throttle is closed
  • Values
  • [unit: m/s2]
  • Remarks
      • Estimated acceleration at WOT is calculated.
      • Slope and road load etc. are taken into estimation.
      • When the Propulsion Direction Status is “D”, the acceleration to the forward direction shows a positive value.
      • When the Propulsion Direction Status is “R”, the acceleration to the reverse direction shows a positive value.
  • 3.3.3.7. Estimated_Max_Accel_Capability
  • Estimated maximum acceleration
  • Values
  • [unit: m/s2]
  • Remarks
      • The acceleration at WOT is calculated.
      • Slope and road load etc. are taken into estimation.
      • The direction decided by the shift position is considered to be plus.
  • 3.3.3.8. Estimated_Max_Decel_Capability
  • Estimated maximum deceleration
  • Values
  • −9.8 to 0 [unit: m/s2]
  • Remarks
      • Affected by Brake_System_Degradation_Modes. Details are T.B.D.
      • Based on vehicle state or road condition, cannot output in some cases
  • 3.3.3.9. Estimated_Road_Wheel_Angle_Actual
  • Front wheel steer angle
  • Values
  • TABLE 16
    value Description Remarks
    others [unit: rad]
    Minimum Value Invalid value The sensor is invalid.
  • Remarks
      • Left is positive value (+). Right is negative value (−).
      • Before “the wheel angle when the vehicle is going straight” becomes available, this signal is Invalid value.
  • 3.3.3.10. Estimated_Road_Wheel_Angle_Rate_Actual
  • Front wheel steer angle rate
  • Values
  • TABLE 17
    value Description Remarks
    others [unit: rad/s]
    Minimum Value Invalid value
  • Remarks
      • Left is positive value (+). Right is negative value (−).
  • 3.3.3.11. Steering_Wheel_Angle_Actual
  • Steering wheel angle
  • Values
  • TABLE 18
    Value Description Remarks
    others [unit: rad]
    Minimum Value Invalid value
  • Remarks
      • Left is positive value (+). Right is negative value (−).
      • The steering angle converted from the steering assist motor angle
      • Before “the wheel angle when the vehicle is going straight” becomes available, this signal is Invalid value.
  • 3.3.3.12. Steering_Wheel_Angle_Rate_Actual
  • Steering wheel angle rate
  • Values
  • TABLE 19
    Value Description Remarks
    others [unit: rad/s]
    Minimum Value Invalid value
  • Remarks
      • Left is positive value (+). Right is negative value (−).
      • The steering angle rate converted from the steering assist motor angle rate
  • 3.3.3.13. Current_Road_Wheel_Angle_Rate_Limit
  • Road wheel angle rate limit
  • Values
      • When stopped: 0.4 [rad/s]
      • While running: Show “Remarks”
  • Remarks
  • Calculated from the “vehicle speed—steering angle rate” chart like below
  • A) At a very low speed or stopped situation, use fixed value of 0.4 [rad/s]
  • B) At a higher speed, the steering angle rate is calculated from the vehicle speed using 2.94 m/s3
  • The threshold speed between A and B is 10 [km/h] (FIG. 11).
  • 3.3.3.14. Estimated_Max_Lateral_Acceleration_Capability
  • Estimated max lateral acceleration
  • Values
  • 2.94 [unit: m/s2] fixed value
  • Remarks
      • Wheel Angle controller is designed within the acceleration range up to 2.94 m/s2.
  • 3.3.3.15. Estimated_Max_Lateral_Acceleration_Rate_Capability
  • Estimated max lateral acceleration rate
  • Values
  • 2.94 [unit: m/s3] fixed value
  • Remarks
      • Wheel Angle controller is designed within the acceleration range up to 2.94 m/s3.
  • 3.3.3.16. Accelerator_Pedal_Position
  • Position of the accelerator pedal (How much is the pedal depressed?)
  • Values
  • 0 to 100 [unit: %]
  • Remarks
      • In order not to change the acceleration openness suddenly, this signal is filtered by smoothing process.
      • In normal condition
        • The accelerator position signal after zero point calibration is transmitted.
      • In failure condition
        • Transmitted failsafe value (0xFF)
  • 3.3.3.17. Accelerator_Pedal_Intervention
  • This signal shows whether the accelerator pedal is depressed by a driver (intervention).
  • Values
  • TABLE 20
    Value Description Remarks
    0 Not depressed
    1 depressed
    2 Beyond autonomy acceleration
  • Remarks
      • When Accelerator_Pedal_Position is higher than the defined threshold value (ACCL_INTV), this signal [Accelerator_Pedal_Intervention] will turn to “depressed”.
  • When the requested acceleration from depressed acceleration pedal is higher than the requested acceleration from system (ADS, PCS etc.), this signal will turn to “Beyond autonomy acceleration”.
      • During NVO mode, accelerator request will be rejected. Therefore, this signal will not turn to “2”.
  • Detail design (FIG. 12)
  • 3.3.3.18. Brake_Pedal_Position
  • Position of the brake pedal (How much is the pedal depressed?)
  • Values
  • 0 to 100 [unit: %]
  • Remarks
      • In the brake pedal position sensor failure:
        • Transmitted failsafe value (0xFF)
      • Due to assembling error, this value might be beyond 100%.
  • 3.3.3.19. Brake_Pedal_Intervention
  • This signal shows whether the brake pedal is depressed by a driver (intervention).
  • Values
  • TABLE 21
    Value Description Remarks
    0 Not depressed
    1 depressed
    2 Beyond autonomy deceleration
  • Remarks
      • When Brake_Pedal_Position is higher than the defined threshold value (BRK_INTV), this signal [Brake_Pedal_Intervention] will turn to “depressed”.
      • When the requested deceleration from depressed brake pedal is higher than the requested deceleration from system (ADS, PCS etc.), this signal will turn to “Beyond autonomy deceleration”.
  • Detail design (FIG. 13)
  • 3.3.3.20. Steering_Wheel_Intervention
  • This signal shows whether the steering wheel is turned by a driver (intervention).
  • Values
  • TABLE 22
    Value Description Remarks
    0 Not turned
    1 Turned collaboratively Driver steering torque +
    steering motor torque
    2 Turned by human driver
  • Remarks
      • In “Steering_Wheel_Intervention=1”, considering the human driver's intent, EPS system will drive the steering with the Human driver collaboratively.
      • In “Steering_Wheel_Intervention=2”, considering the human driver's intent, EPS system will reject the steering requirement from autonomous driving kit. (The steering will be driven the human driver.)
  • 3.3.3.21. Shift Lever Intervention
  • This signal shows whether the shift lever is controlled by a driver (intervention).
  • Values
  • TABLE 23
    Value Description Remarks
    0 OFF
    1 ON Controlled (moved to any shift position)
  • Remarks
      • N/A
  • 3.3.3.22. WheelSpeed_FL, WheelSpeed_FR, WheelSpeed_RL, WheelSpeed_RR
  • wheel speed value
  • Values
  • TABLE 24
    Value Description Remarks
    others Velocity [unit: m/s]
    Maximum Value Invalid value The sensor is invalid.
  • Remarks
      • T.B.D.
  • 3.3.3.23. WheelSpeed_FL Rotation, WheelSpeed_FR Rotation, WheelSpeed_RL_Rotation, WheelSpeed_RR_Rotation
  • Rotation direction of each wheel
  • Values
  • TABLE 25
    value Description remarks
    0 Forward
    1 Reverse
    2 Reserved
    3 Invalid value The sensor is invalid.
  • Remarks
      • After activation of ECU, until the rotation direction is fixed, “Forward” is set to this signal.
      • When detected continuously 2 (two) pulses with the same direction, the rotation direction will be fixed.
  • 3.3.3.24. Actual_Moving_Direction
  • Rotation direction of wheel
  • Values
  • TABLE 26
    value Description remarks
    0 Forward
    1 Reverse
    2 Standstill
    3 Undefined
  • Remarks
      • This signal shows “Standstill” when four wheel speed values are “0” during a constant time.
      • When other than above, this signal will be determined by the majority rule of four Wheel Speed Rotations.
      • When more than two WheelSpeed_Rotations are “Reverse”, this signal shows “Reverse”.
      • When more than two WheelSpeed_Rotations are “Forward”, this signal shows “Forward”.
      • When “Forward” and “Reverse” are the same counts, this signal shows “Undefined”.
  • 3.3.3.25. Longitudinal_Velocity
  • Estimated longitudinal velocity of vehicle
  • Values
  • TABLE 27
    Value Description Remarks
    others Velocity [unit: m/s]
    Maximum Value Invalid value The sensor is invalid.
  • Remarks
      • This signal is output as the absolute value.
  • 3.3.3.26. Longitudinal Acceleration
  • Estimated longitudinal acceleration of vehicle
  • Values
  • TABLE 28
    value Description Remarks
    others Acceleration [unit: m/s2]
    Minimum Invalid value The sensor is invalid.
    Value
  • Remarks
      • This signal will be calculated with wheel speed sensor and acceleration sensor.
      • When the vehicle is driven at a constant velocity on the flat road, this signal shows “0”.
  • 3.3.3.27. Lateral_Acceleration
  • Sensor value of lateral acceleration of vehicle
  • Values
  • TABLE 29
    Value Description Remarks
    others Acceleration [unit: m/s2]
    Minimum Invalid value The sensor is invalid.
    Value
  • Remarks
      • The positive value means counterclockwise. The negative value means clockwise.
  • 3.3.3.28. Yawrate
  • Sensor value of Yaw rate
  • Values
  • TABLE 30
    Value Description Remarks
    others Yaw rate [unit: deg/s]
    Minimum Value Invalid value The sensor is invalid.
  • Remarks
      • The positive value means counterclockwise. The negative value means clockwise.
  • 3.3.3.29. Autonomy_State
  • State of whether autonomy mode or manual mode
  • Values
  • TABLE 31
    value Description Remarks
    00 Manual Mode The mode starts from Manual mode.
    01 Autonomous Mode
  • Remarks
      • The initial state is the Manual mode. (When Ready ON, the vehicle will start from the Manual mode.)
  • 3.3.3.30. Autonomy Ready
  • Situation of whether the vehicle can transition to autonomy mode or not
  • Values
  • TABLE 32
    value Description Remarks
    00b Not Ready For Autonomy
    01b Ready For Autonomy
    11b Invalid means the status is
    not determined.
  • Remarks
      • This signal is a part of transition conditions toward the Autonomy mode.
  • Please see the summary of conditions.
  • 3.3.3.31. Autonomy Fault
  • Status of whether the fault regarding a functionality in autonomy mode occurs or not
  • Values
  • TABLE 33
    value Description Remarks
    00b No fault
    01b Fault
    11b Invalid means the status is not determined.
  • Remarks
      • [T.B.D.] Please see the other material regarding the fault codes of a functionality in autonomy mode.
      • [T.B.D.] Need to consider the condition to release the status of “fault”.
  • 3.4. APIs for BODY control
  • 3.4.1. Functions
  • T.B.D.
  • 3.4.2. Inputs
  • TABLE 34
    Signal Name Description Redundancy
    Turnsignallight_Mode_Command Command to control the turnsignallight N/A
    mode of the vehicle platform
    Headlight_Mode_Command Command to control the headlight mode of N/A
    the vehicle platform
    Hazardlight_Mode_Command Command to control the hazardlight mode N/A
    of the vehicle platform
    Horn_Pattern_Command Command to control the pattern of horn N/A
    ON-time and OFF-time per cycle of the
    vehicle platform
    Horn_Number_of_Cycle_Command Command to control the Number of horn N/A
    ON/OFF cycle of the vehicle platform
    Horn_Continuous_Command Command to control of horn ON of the N/A
    vehicle platform
    Windshieldwiper_Mode_Front_ Command to control the front windshield N/A
    Command wiper of the vehicle platform
    Windshieldwiper_Intermittent_ Command to control the Windshield wiper N/A
    Wiping_Speed_Command actuation interval at the Intermittent mode
    Windshieldwiper_Mode_Rear_ Command to control the rear windshield N/A
    Command wiper mode of the vehicle platform
    Hvac_1st_Command Command to start/stop 1st row air N/A
    conditioning control
    Hvac_2nd_Command Command to start/stop 2nd row air N/A
    conditioning control
    Hvac_TargetTemperature_ Command to set the target temperature N/A
    1st_Left_Command around front left area
    Hvac_TargetTemperature_ Command to set the target temperature N/A
    1st_Right_Command around front right area
    Hvac_TargetTemperature_ Command to set the target temperature N/A
    2nd_Left_Command around rear left area
    Hvac_TargetTemperature_ Command to set the target temperature N/A
    2nd_Right_Command around rear right area
    Hvac_Fan_Level_1st_Row_ Command to set the fan level on the front N/A
    Command AC
    Hvac_Fan_Level_2nd_Row_ Command to set the fan level on the rear N/A
    Command AC
    Hvac_1st_Row_AirOutlet_Mode_ Command to set the mode of 1st row air N/A
    Command outlet
    Hvac_2nd_Row_AirOutlet_Mode_ Command to set the mode of 2nd row air N/A
    Command outlet
    Hvac_Recirculate_Command Command to set the air recirculation mode N/A
    Hvac_AC_Command Command to set the AC mode N/A
  • 3.4.2.1. Turnsignallight_Mode_Command
  • Command to control the turnsignallight mode of the vehicle platform
  • Values
  • TABLE 35
    value Description remarks
    0 OFF Blinker OFF
    1 Right Right blinker ON
    2 Left Left blinker ON
    3 reserved
  • Remarks
  • T.B.D.
  • Detailed Design
  • When Turnsignallight_Mode_Command=1, vehicle platform sends left blinker on request.
  • When Turnsignallight_Mode_Command=2, vehicle platform sends right blinker on request.
  • 3.4.2.2. Headlight_Mode_Command
  • Command to control the headlight mode of the vehicle platform
  • Values
  • TABLE 36
    Value Description remarks
    0 No Request Keep current mode
    1 TAIL mode request side lamp mode
    2 HEAD mode request Lo mode
    3 AUTO mode request
    4 HI mode request
    5 OFF Mode Request
    6-7 reserved
  • Remarks
      • This command is valid when Headlight_Driver_Input=OFF or Auto mode ON.
      • Driver input overrides this command.
      • Headlight mode changes when Vehicle platform receives once this command.
  • 3.4.2.3. Hazardlight_Mode_Command
  • Command to control the hazardlight mode of the vehicle platform
  • Values
  • TABLE 37
    value Description remarks
    0 OFF command for hazardlight OFF
    1 ON command for hazardlight ON
  • Remarks
      • Driver input overrides this command.
      • Hazardlight is active during Vehicle Platform receives ON command.
  • 3.4.2.4. Horn_Pattern_Command
  • Command to control the pattern of horn ON-time and OFF-time per cycle of the vehicle platform
  • Values
  • TABLE 38
    value Description remarks
    0 No request
    1 Pattern 1 ON-time: 250 ms OFF-time: 750 ms
    2 Pattern 2 ON-time: 500 ms OFF-time: 500 ms
    3 Pattern 3 reserved
    4 Pattern 4 reserved
    5 Pattern 5 reserved
    6 Pattern 6 reserved
    7 Pattern 7 Reserved
  • Remarks
      • Pattern 1 is assumed to use single short ON, Pattern 2 is assumed to use ON-OFF repeating.
      • Detail is under internal discussion.
  • 3.4.2.5. Horn_Number_of_Cycle_Command
  • Command to control the Number of horn ON/OFF cycle of the vehicle platform
  • Values
  • 0˜7 [−]
  • Remarks
      • Detail is under internal discussion.
  • 3.4.2.6. Horn_Continuous_Command
  • Command to control of horn ON of the vehicle platform
  • Values
  • TABLE 39
    value Description remarks
    0 No request
    1 ON request
  • Remarks
      • This command overrides Horn_Pattern_Command, Horn_Number_of_Cycle_Command.
      • Horn is active during Vehicle Platform receives ON command.
      • Detail is under internal discussion.
  • 3.4.2.7. Windshieldwiper_Mode_Front_Command
  • Command to control the front windshield wiper of the vehicle platform
  • Values
  • TABLE 40
    value Description remarks
    0 OFF mode request
    1 Lo mode request
    2 Hi mode request
    3 Intermittent mode request
    4 Auto mode request
    5 Mist mode request One- Time Wiping
    6, 7 Reserved
  • Remarks
      • This command is under internal discussion the timing of valid.
      • This command is valid when Windshieldwiper_Front_Driver_Input=OFF or Auto mode ON.
      • Driver input overrides this command.
      • Windshieldwiper mode is kept during Vehicle platform is receiving the command.
  • 3.4.2.8. Windshieldwiper_Intermittent_Wiping_Speed_Command
  • Command to control the Windshield wiper actuation interval at the Intermittent mode
  • Values
  • TABLE 41
    value Description remarks
    0 FAST
    1 SECOND FAST
    2 THIRD FAST
    3 SLOW
  • Remarks
      • This command is valid when Windshieldwiper_Mode_Front_Status=INT.
      • Driver input overrides this command.
      • Windshieldwiper intermittent mode changes when Vehicle platform receives once this command.
  • 3.4.2.9. Windshieldwiper_Mode_Rear_Command
  • Command to control the rear windshield wiper mode of the vehicle platform
  • Values
  • TABLE 42
    value Description Remarks
    0 OFF mode request
    1 Lo mode request
    2 reserved
    3 Intermittent mode request
    4-7 reserved
  • Remarks
      • Driver input overrides this command.
      • Windshieldwiper mode is kept during Vehicle platform is receiving the command.
      • Wiping speed of intermittent mode is not variable.
  • 3.4.2.10. Hvac_1st_Command
  • Command to start/stop 1st row air conditioning control
  • Values
  • TABLE 43
    value Description Remarks
    00 No request
    01 ON means turning the 1st air conditioning control to ON
    02 OFF means turning the 1st air conditioning control to
    OFF
  • Remarks
      • The hvac of S-AM has a synchronization functionality.
  • Therefore, in order to control 4 (four) hvacs (1st_left/right, 2nd_left/right) individually, VCIB achieves the following procedure after Ready-ON. (This functionality will be implemented from the CV.)
      • #1: Hvac_1st_Command=ON
      • #2: Hvac_2nd_Command=ON
      • #3: Hvac_TargetTemperature_2nd_Left Command
      • #4: Hvac_TargetTemperature_2nd_Right Command
      • #5: Hvac_Fan_Level_2nd_Row_Command
      • #6: Hvac_2nd_Row_AirOutlet_Mode_Command
      • #7: Hvac_TargetTemperature_1st_Left_Command
      • #8: Hvac_TargetTemperature_1st_Right_Command
      • #9: Hvac_Fan_Level_1st_Row_Command
      • #10: Hvac_1st_Row_AirOutlet_Mode_Command
        • The interval between each command needs 200 ms or more.
        • Other commands are able to be executed after #1.
  • 3.4.2.11. Hvac_2nd_Command
  • Command to start/stop 2nd row air conditioning control
  • Values
  • TABLE 44
    value Description Remarks
    00 No request
    01 ON means turning the 2nd air conditioning control to ON
    02 OFF means turning the 2nd air conditioning control to
    OFF
  • Remarks
  • N/A 3.4.2.12. Hvac_TargetTemperature_1st_Left Command Command to set the target temperature around front left area Values
  • TABLE 45
    value Description Remarks
    0 No request
    60 to 85 [unit: ° F.] (by 1.0° F.) Temperature direction
  • Remarks
      • N/A
  • 3.4.2.13. Hvac_TargetTemperature_1st_Right_Command
  • Command to set the target temperature around front right area
  • Values
  • TABLE 46
    value Description Remarks
    0 No request
    60 to 85 [unit: ° F.] (by 1.0° F.) Temperature direction
  • Remarks
      • N/A
  • 3.4.2.14. Hvac_TargetTemperature_2nd_Left_Command
  • Command to set the target temperature around rear left area
  • Values
  • TABLE 47
    value Description Remarks
    0 No request
    60 to 85 [unit: ° F.] (by 1.0° F.) Temperature direction
  • Remarks
      • N/A
  • 3.4.2.15. Hvac_TargetTemperature_2nd_Right_Command
  • Command to set the target temperature around rear right area
  • Values
  • TABLE 48
    value Description Remarks
    0 No request
    60 to 85 [unit: ° F.] (by 1.0° F.) Temperature direction
  • Remarks
      • N/A
  • 3.4.2.16. Hvac_Fan_Level_1st_Row_Command
  • Command to set the fan level on the front AC
  • Values
  • TABLE 49
    value Description Remarks
    0 No request
    1 to 7 (Maximum) Fan level direction
  • Remarks
      • If you would like to turn the fan level to 0 (OFF), you should transmit “Hvac_1st_Command=OFF”.
      • If you would like to turn the fan level to AUTO, you should transmit “Hvac_1st_Command=ON”.
  • 3.4.2.17. Hvac_Fan_Level_2nd_Row_Command
  • Command to set the fan level on the rear AC
  • Values
  • TABLE 50
    value Description Remarks
    0 No request
    1 to 7 (Maximum) Fan level direction
  • Remarks
      • If you would like to turn the fan level to 0 (OFF), you should transmit “Hvac_2nd_Command=OFF”.
      • If you would like to turn the fan level to AUTO, you should transmit “Hvac_2nd_Command=ON”.
  • 3.4.2.18. Hvac_1st_Row_AirOutlet_Mode_Command
  • Command to set the mode of 1st row air outlet
  • Values
  • TABLE 51
    value Description Remarks
    000b No Operation
    001b UPPER Air flows to the upper body
    010b U/F Air flows to the upper body and feet
    011b FEET Air flows to the feet.
    100b F/D Air flows to the feet and the
    windshield defogger operates
  • Remarks
      • N/A
  • 3.4.2.19. Hvac_2nd_Row_AirOutlet_Mode_Command
  • Command to set the mode of 2nd row air outlet
  • Values
  • TABLE 52
    value Description Remarks
    000b No Operation
    001b UPPER Air flows to the upper body
    010b U/F Air flows to the upper body and feet
    011b FEET Air flows to the feet.
  • Remarks
      • N/A
  • 3.4.2.20. Hvac Recirculate Command
  • Command to set the air recirculation mode
  • Values
  • TABLE 53
    value Description Remarks
    00 No request
    01 ON means turning the air recirculation mode ON
    02 OFF means turning the air recirculation mode OFF
  • Remarks
      • N/A
  • 3.4.2.21. Hvac_AC_Command
  • Command to set the AC mode
  • Values
  • TABLE 54
    value Description remarks
    00 No request
    01 ON means turning the AC mode ON
    02 OFF means turning the AC mode OFF
  • Remarks
      • N/A
  • 3.4.3. Outputs
  • TABLE 55
    Signal Name Description Redundancy
    Turnsignallight_Mode_Status Status of the current turnsignallight N/A
    mode of the vehicle platform
    Headlight_Mode_Status Status of the current headlight mode N/A
    of the vehicle platform
    Hazardlight_Mode_Status Status of the current hazardlight N/A
    mode of the vehicle platform
    Horn_Status Status of the current horn of the N/A
    vehicle platform
    Windshieldwiper_Mode_Front_Status Status of the current front windshield N/A
    wiper mode of the vehicle platform
    Windshieldwiper_Mode_Rear_Status Status of the current rear windshield N/A
    wiper mode of the vehicle platform
    Hvac_1st_Status Status of activation of the N/A
    1st row HVAC
    Hvac_2nd_Status Status of activation of the N/A
    2nd row HVAC
    Hvac_Temperature_1st_Left_Status Status of set temperature of N/A
    1st row left
    Hvac_Temperature_1st_Right_Status Status of set temperature of N/A
    1st row right
    Hvac_Temperature_2nd_Left_Status Status of set temperature of N/A
    2nd row left
    Hvac_Temperature_2nd_Right_Status Status of set temperature of N/A
    2nd row right
    Hvac_Fan_Level_1st_Row_Status Status of set fan level of 1st row N/A
    Hvac_Fan_Level_2nd_Row_Status Status of set fan level of 2nd row N/A
    Hvac_1st_Row_AirOutlet_Mode_Status Status of mode of 1st row air outlet N/A
    Hvac_2nd_Row_AirOutlet_Mode_Status Status of mode of 2nd row air outlet N/A
    Hvac_Recirculate_Status Status of set air recirculation mode N/A
    Hvac_AC_Status Status of set AC mode N/A
    1st_Right_Seat_Occupancy_Status Seat occupancy status in
    1st left seat
    1st_Left_Seat_Belt_Status Status of driver's seat belt
    buckle switch
    1st_Right_Seat_Belt_Status Status of passenger's seat belt
    buckle switch
    2nd_Left_Seat_Belt_Status Seat belt buckle switch status in
    2nd left seat
    2nd_Right_Seat_Belt_Status Seat belt buckle switch status in
    2nd right seat
  • 3.4.3.1. Turnsignallight_Mode_Status
  • Status of the current turnsignallight mode of the vehicle platform
  • Values
  • TABLE 56
    value Description Remarks
    0 OFF Turn lamp = OFF
    1 Left Turn lamp L = ON (flashing)
    2 Right Turn lamp R = ON (flashing)
    3 invalid
  • Remarks
      • At the time of the disconnection detection of the turn lamp, state is ON.
      • At the time of the short detection of the turn lamp, State is OFF.
  • 3.4.3.2. Headlight_Mode_Status
  • Status of the current headlight mode of the vehicle platform
  • Values
  • TABLE 57
    Value Description Remarks
    0 OFF
    1 TAIL
    2 Lo
    3 reserved
    4 Hi
    5-6 reserved
    7 invalid
  • Remarks
  • N/A
  • Detailed Design
      • At the time of tail signal ON, Vehicle Platform sends 1.
      • At the time of Lo signal ON, Vehicle Platform sends 2.
      • At the time of Hi signal ON, Vehicle Platform sends 4.
      • At the time of any signal above OFF, Vehicle Platform sends 0.
  • 3.4.3.3. Hazardlight_Mode_Status
  • Status of the current hazard lamp mode of the vehicle platform
  • Values
  • TABLE 58
    Value Description Remarks
    0 OFF Hazard lamp = OFF
    1 Hazard Hazard lamp = ON (flashing)
    2 reserved
    3 invalid
  • Remarks
  • N/A
  • 3.4.3.4. Horn_Status
  • Status of the current horn of the vehicle platform
  • Values
  • TABLE 59
    Value Description Remarks
    0 OFF
    1 ON
    2 reserved (unsupport)
    3 invalid (unsupport)
  • Remarks
      • cannot detect any failure.
      • Vehicle platform sends “1” during Horn_Pattern_Command is active, if the horn is OFF.
  • 3.4.3.5. Windshieldwiper_Mode_Front_Status
  • Status of the current front windshield wiper mode of the vehicle platform
  • Values
  • TABLE 60
    Value Description Remarks
    0 OFF Front wiper stopped
    1 Lo Front wiper being active in LO mode (also
    including being active in MIST, being active
    in coordination with washer, and being
    wiping at speed other than HI)
    2 Hi Front wiper being active in HI mode
    3 INT Front wiper being active in INT mode (also
    including motor stop while being active in INT
    mode and being active in INT mode owing
    to vehicle speed change function)
    4-5 reserved
    6 fail Front wiper failed
    7 invalid
  • TABLE 61
    Value Description Remarks
    0 OFF Front wiper is stopped.
    1 Lo Front wiper is in LO mode (include
    in MIST mode, operation
    with washer, Medium speed).
    2 Hi Front wiper is in HI mode.
    3 INT Front wiper is in INT mode (include motor
    stopped between INT mode, INT operation
    of vehicle speed change function).
    4-5 reserved
    6 fail Front wiper is fail.
    7 invalid
  • Remarks
  • Fail Mode Conditions
      • detect signal discontinuity
      • cannot detect except the above failure.
  • 3.4.3.6. Windshieldwiper_Mode_Rear_Status
  • Status of the current rear windshield wiper mode of the vehicle platform
  • Values
  • TABLE 62
    Value Description Remarks
    0 OFF Rear wiper stopped
    1 Lo Rear wiper being in LO mode
    2 reserved
    3 INT Rear wiper being in INT mode
    4-5 reserved
    6 fail Rear wiper failed
    7 invalid
  • Remarks
      • cannot detect any failure.
  • 3.4.3.7. Hvac_1st_Status
  • Status of activation of the 1st row HVAC
  • Values
  • TABLE 63
    value Description remarks
    0b OFF
    1b ON
  • Remarks
      • N/A
  • 3.4.3.8. Hvac_2nd_Status
  • Status of activation of the 2nd row HVAC
  • Values
  • TABLE 64
    value Description remarks
    0b OFF
    1b ON
  • Remarks
      • N/A
  • 3.4.3.9. Hvac_Temperature_1st_Left_Status
  • Status of set temperature of 1st row left
  • Values
  • TABLE 65
    value Description remarks
     0 Lo Max cold
     60 to 85 [unit: ° F.] Target temperature
    100 Hi Max hot
    FFh Unknown
  • Remarks
      • N/A
  • 3.4.3.10. Hvac_Temperature_1st_Right_Status
  • Status of set temperature of 1st row right
  • Values
  • TABLE 66
    value Description remarks
     0 Lo Max cold
     60 to 85 [unit: ° F.] Target temperature
    100 Hi Max hot
    FFh Unknown
  • Remarks
      • N/A
  • 3.4.3.11. Hvac_Temperature_2nd_Left_Status
  • Status of set temperature of 2nd row left
  • Values
  • TABLE 67
    value Description remarks
     0 Lo Max cold
     60 to 85 [unit: ° F.] Target temperature
    100 Hi Max hot
    FFh Unknown
  • Remarks
      • N/A
  • 3.4.3.12. Hvac_Temperature_2nd_Right_Status
  • Status of set temperature of 2nd row right
  • Values
  • TABLE 68
    value Description remarks
     0 Lo Max cold
     60 to 85 [unit: ° F.] Target temperature
    100 Hi Max hot
    FFh Unknown
  • Remarks
      • N/A
  • 3.4.3.13. Hvac_Fan_Level_1st_Row_Status
  • Status of set fan level of 1st row
  • Values
  • TABLE 69
    value Description remarks
    0 OFF
    1-7 Fan Level
    8 Undefined
  • Remarks
      • N/A
  • 3.4.3.14. Hvac_Fan_Level_2nd_Row_Status
  • Status of set fan level of 2nd row
  • Values
  • TABLE 70
    value Description remarks
    0 OFF
    1-7 Fan Level
    8 Undefined
  • Remarks
      • N/A
  • 3.4.3.15. Hvac_1st_Row_AirOutlet_Mode_Status
  • Status of mode of 1st row air outlet
  • Values
  • TABLE 71
    value Description remarks
    000b ALL OFF when Auto mode is set
    001b UPPER Air flows to the upper body
    010b U/F Air flows to the upper body and feet
    011b FEET Air flows to the feet.
    100b F/D Air flows to the feet and the windshield
    defogger operates
    101b DEF The windshield defogger operates
    111b Undefined
  • Remarks
      • N/A
  • 3.4.3.16. Hvac_2nd_Row_AirOutlet_Mode_Status
  • Status of mode of 2nd row air outlet
  • Values
  • TABLE 72
    value Description remarks
    000b ALL OFF when Auto mode is set
    001b UPPER Air flows to the upper body
    010b U/F Air flows to the upper body and feet
    011b FEET Air flows to the feet.
    111b Undefined
  • Remarks
      • N/A
  • 3.4.3.17. Hvac_Recirculate_Status
  • Status of set air recirculation mode
  • Values
  • TABLE 73
    value Description remarks
    00 OFF means that the air recirculation mode is OFF
    01 ON means that the air recirculation mode is ON
  • Remarks
      • N/A
  • 3.4.3.18. Hvac_AC_Status
  • Status of set AC mode
  • Values
  • TABLE 74
    value Description remarks
    00 OFF means that the AC mode is OFF
    01 ON means that the AC mode is ON
  • Remarks
      • N/A
  • 3.4.3.19. 1st_Right_Seat_Occupancy_Status
  • Seat occupancy status in 1st left seat
  • Values
  • TABLE 75
    value Description remarks
    0 Not occupied
    1 Occupied
    2 Undecided IG OFF or signal from sensor being lost
    3 Failed
  • Remarks
  • When there is luggage on the seat, this signal may be set to “Occupied”.
  • 3.4.3.20. 1st_Left_Seat_Belt_Status
  • Status of driver's seat belt buckle switch
  • Values
  • TABLE 76
    value Description remarks
    0 Buckled
    1 Unbuckled
    2 Undetermined
    3 Fault of a switch
  • Remarks
      • When Driver's seat belt buckle switch status signal is not set, [undetermined] is transmitted.
  • It is checking to a person in charge, when using it. (Outputs “undetermined=10” as an initial value.)
      • The judgement result of buckling/unbuckling shall be transferred to CAN transmission buffer within 1.3s after IG_ON or before allowing firing, whichever is earlier.
  • 3.4.3.21. 1st_Right_Seat_Belt_Status
  • Status of passenger's seat belt buckle switch
  • Values
  • TABLE 77
    value Description remarks
    0 Buckled
    1 Unbuckled
    2 Undetermined
    3 Fault of a switch
  • Remarks
      • When Passenger's seat belt buckle switch status signal is not set, [undetermined] is transmitted.
  • It is checking to a person in charge, when using it. (Outputs “undetermined=10” as an initial value.)
      • The judgement result of buckling/unbuckling shall be transferred to CAN transmission buffer within 1.3s after IG_ON or before allowing firing, whichever is earlier.
  • 3.4.3.22. 2nd_Left_Seat_Belt_Status
  • Seat belt buckle switch status in 2nd left seat
  • Values
  • TABLE 78
    value Description remarks
    0 Buckled
    1 Unbuckled
    2 Undetermined
    3 Reserved
  • Remarks
      • cannot detect sensor failure.
  • 3.4.3.23. 2nd_Right_Seat_Belt_Status
  • Seat belt buckle switch status in 2nd right seat
  • Values
  • TABLE 79
    value Description remarks
    0 Buckled
    1 Unbuckled
    2 Undetermined
    3 Reserved
  • Remarks
      • cannot detect any failure.
  • 3.5. APIs for Power control
  • 3.5.1. Functions
  • T.B.D.
  • 3.5.2. Inputs
  • TABLE 80
    Signal Name Description Redundancy
    Power_Mode_Request Command to control the power N/A
    mode of the vehicle platform
  • 3.5.2.1. Power_Mode_Request
  • Command to control the power mode of the vehicle platform
  • Values
  • TABLE 81
    Value Description Remarks
    00 No request
    01 Sleep means “Ready OFF”
    02 Wake means that VCIB turns ON
    03 Resd Reserved for data expansion
    04 Resd Reserved for data expansion
    05 Resd Reserved for data expansion
    06 Driving Mode means “Ready ON”
  • Remarks
      • Regarding “wake”, let us share how to achieve this signal on the CAN. (See the other material) Basically, it is based on “ISO11989-2:2016”. Also, this signal should not be a simple value. Anyway, please see the other material.
      • This API will reject the next request for a certain time [4000 ms] after receiving a request.
  • The followings are the explanation of the three power modes, i.e. [Sleep][Wake][Driving Mode], which are controllable via API.
  • [Sleep]
  • Vehicle power off condition. In this mode, the high voltage battery does not supply power, and neither VCIB nor other VP ECUs are activated.
  • [Wake]
  • VCIB is awake by the low voltage battery. In this mode, ECUs other than VCIB are not awake except for some of the body electrical ECUs.
  • [Driving Mode]
  • Ready ON mode. In this mode, the high voltage battery supplies power to the whole VP and all the VP ECUs including VCIB are awake.
  • 3.5.3. Outputs
  • TABLE 82
    Signal Name Description Redundancy
    Power_Mode_Status Status of the current power N/A
    mode of the vehicle platform
  • 3.5.3.1. Power_Mode_Status
  • Status of the current power mode of the vehicle platform
  • Values
  • TABLE 83
    Value Description Remarks
    00 Resd Reserved for same data align as mode request
    01 Sleep means “Ready OFF”
    02 Wake means that the only VCIB turns ON
    03 Resd Reserved for data expansion
    04 Resd Reserved for data expansion
    05 Resd Reserved for data expansion
    06 Driving Mode means “Ready ON”
    07 unknown means unhealthy situation would occur
  • Remarks
      • VCIB will transmit [Sleep] as Power_Mode_Status continuously for 3000 [ms] after executing the sleep sequence. And then, VCIB will be shutdown.
  • 3.6. APIs for Safety
  • 3.6.1. Functions
  • T.B.D.
  • 3.6.2. Inputs
  • TABLE 84
    Signal Name Description Redundancy
    T.B.D.
  • 3.6.3. Outputs
  • TABLE 85
    Signal Name Description Redundancy
    Request for Operation Request for operation
    according to status of vehicle
    platform toward ADS
    Passive_Safety_ Collision detection signal
    Functions_Triggered
    Brake_System_ Indicates Brake_System_ Applied
    Degradation_Modes Degradation_Modes
    Propulsive_System_ Indicates Propulsive_System_ N/A
    Degradation_Modes Degradation_Modes
    Direction_Control_ Indicates Direction_Control_ N/A
    Degradation_Modes Degradation_Modes
    WheelLock_Control_ Indicates WheelLock_Control_ Applied
    Degradation_Modes Degradation_Modes
    Steering_System_ Indicates Steering_System_ Applied
    Degradation_Modes Degradation_Modes
    Power_System_ Indicates Power_System_ Applied
    Degradation_Modes Degradation_Modes
    Communication_
    Degradation_Modes
  • 3.6.3.1. Request for Operation
  • Request for operation according to status of vehicle platform toward ADS
  • Values
  • TABLE 86
    value Description remarks
    0 No request
    1 Need maintenance
    2 Need back to garage
    3 Need stopping safely immediately
    Others Reserved
  • Remarks
      • T.B.D.
  • 3.6.3.2. Passive_Safety_Functions_Triggered
  • Crash detection Signal
  • Values
  • TABLE 87
    value Description remarks
    0 Normal
    5 Crash Detection (airbag)
    6 Crash Detection (high
    voltage circuit is shut off)
    7 Invalid Value
    Others Reserved
  • Remarks
      • When the event of crash detection is generated, the signal is transmitted 50 consecutive times every 100 [ms]. If the crash detection state changes before the signal transmission is completed, the high signal of priority is transmitted.
  • Priority: crash detection >normal
      • Transmits for 5s regardless of ordinary response at crash, because the vehicle breakdown judgment system shall send a voltage OFF request for 5 s or less after crash in HV vehicle.
  • Transmission interval is 100 ms within fuel cutoff motion delay allowance time (1 s) so that data can be transmitted more than 5 times. In this case, an instantaneous power interruption is taken into account.
  • 3.6.3.3. Brake_System_Degradation_Modes
  • Indicate Brake_System status
  • Values
  • TABLE 88
    value Description remarks
    0 Normal
    1 Failure detected
  • Remarks
      • When the Failure is detected, Safe stop is moved.
  • 3.6.3.4. Propulsive_System_Degradation_Modes
  • Indicate Powertrain_System status
  • Values
  • TABLE 89
    value Description remarks
    0 Normal
    1 Failure detected
  • Remarks
      • When the Failure is detected, Safe stop is moved.
  • 3.6.3.5. Direction_Control_Degradation_Modes
  • Indicate Direction_Control status
  • Values
  • TABLE 90
    value Description remarks
    0 Normal
    1 Failure detected
  • Remarks
      • When the Failure is detected, Safe stop is moved.
      • When the Failure is detected, Propulsion Direction Command is refused.
  • 3.6.3.6. WheelLock_Control_Degradation_Modes
  • Indicate WheelLock_Control status
  • Values
  • TABLE 91
    value Description remarks
    0 Normal
    1 Failure detected
  • Remarks
      • Primary indicates EPB status, and Secondary indicates SBW indicates.
      • When the Failure is detected, Safe stop is moved.
  • 3.6.3.7. Steering_System_Degradation_Modes
  • Indicate Steering_System status
  • Values
  • TABLE 92
    value Description remarks
    0 Normal
    1 Failure detected
    2 Stationary steering Temporary lowering in performance
    not possible due to high temperature or the like
  • Remarks
      • When the Failure are detected, Safe stop is moved.
  • 3.6.3.8. Power_System_Degradation_Modes
  • [T.B.D]
  • 3.6.3.9. Communication_Degradation_Modes
  • [T.B.D]
  • 3.7. APIs for Security
  • 3.7.1. Functions
  • T.B.D.
  • 3.7.2. Inputs
  • TABLE 93
    Signal Name Description Redundancy
    1st_Left_Door_Lock_ Command to control each door N/A
    Command lock of the vehicle platform
    1st_Right_Door_Lock_ Lock command supports only N/A
    Command ALL Door Lock.
    Unlock command supports
    2nd_Left_Door_Lock_ 1st-left Door unlock only, and N/A
    Command ALL Door unlock.
    Trunk Door Lock/unlock
    2nd_Right_Door_Lock_ command include in ALL Door N/A
    Command lock/unlock
    Central_Vehicle_Lock_ Command to control the all door N/A
    Exterior_Command lock of the vehicle platform
  • 3.7.2.1. 1st_Left_Door_Lock_Command, 1st_Right_Door_Lock_Command, 2nd_Left_Door_Lock_Command, 2nd_Right_Door_Lock_Command
  • Command to control each door lock of the vehicle platform
  • Values
  • TABLE 94
    Value Description Remarks
    0 No Request
    1 Lock (unsupported)
    2 Unlock
    3 reserved
  • Remarks
      • Lock command supports only ALL Door Lock.
      • Unlock command supports 1st-left Door unlock only, and ALL Door unlock.
  • 3.7.2.2. Central_Vehicle_Lock_Exterior_Command
  • Command to control the all door lock of the vehicle platform.
  • Values
  • TABLE 95
    Value Description Remarks
    0 No Request
    1 Lock (all) include trunk lock
    2 Unlock (all) include trunk unlock
    3 reserved
  • Remarks
      • Lock command supports only ALL Door Lock.
      • Unlock command supports 1st-left Door unlock only, and ALL Door unlock.
  • 3.7.3. Outputs
  • TABLE 96
    Signal Name Description Redundancy
    1st_Left_Door_Lock_Status Status of the current 1st-left door N/A
    lock mode of the vehicle platform
    1st_Right_Door_Lock_Status Status of the current 1st-right door N/A
    lock mode of the vehicle platform
    2nd_Left_Door_Lock_Status Status of the current 2nd-left door N/A
    lock mode of the vehicle platform
    2nd_Right_Door_Lock_Status Status of the current 2nd-right door N/A
    lock mode of the vehicle platform
    Central_Vehicle_Exterior_Locked_Status Status of the current all door lock N/A
    mode of the vehicle platform
    Vehicle_Alarm_Status Status of the current vehicle alarm N/A
    of the vehicle platform
  • 3.7.3.1. 1st_Left_Door_Lock_Status
  • Status of the current 1st-left door lock mode of the vehicle platform
  • Values
  • TABLE 97
    value Description Remarks
    0 reserved
    1 Locked D seat locked
    2 Unlocked D seat unlocked
    3 invalid
  • Remarks
      • cannot detect any failure.
  • 3.7.3.2. 1st_Right_Door_Lock_Status
  • Status of the current 1st-right door lock mode of the vehicle platform
  • Values
  • TABLE 98
    value Description remarks
    0 reserved
    1 Locked P seat locked
    2 Unlocked P seat unlocked
    3 invalid
  • Remarks
      • cannot detect any failure.
  • 3.7.3.3. 2nd_Left_Door_Lock_Status
  • Status of the current 2nd-left door lock mode of the vehicle platform
  • Values
  • TABLE 99
    Value Description remarks
    0 Reserved
    1 Locked RL seat locked
    2 Unlocked RL seat unlocked
    3 invalid
  • Remarks
      • cannot detect any failure.
  • 3.7.3.4. 2nd_Right_Door_Lock_Status
  • Status of the current 2nd-right door lock mode of the vehicle platform
  • Values
  • TABLE 100
    value Description remarks
    0 reserved
    1 Locked RR seat locked
    2 Unlocked RR seat unlocked
    3 invalid
  • Remarks
      • cannot detect any failure.
  • 3.7.3.5. Central_Vehicle_Exterior_Locked_Status
  • Status of the current all door lock mode of the vehicle platform
  • Values
  • TABLE 101
    value Description remarks
    0 Reserved (unsupport)
    1 All Locked (unsupport)
    2 Anything Unlocked
    (unsupport)
    3 invalid (unsupport)
  • Remarks
      • Vehicle platform refers to each door lock status,
      • in case any door unlocked, sends 0.
      • in case all door locked, sends 1.
  • 3.7.3.6. Vehicle_Alarm_Status
  • Status of the current vehicle alarm of the vehicle platform
  • Values
  • TABLE 102
    Value Description remarks
    0 Disarmed Auto alarm system not active
    1 Armed Auto alarm system active • not
    on alert
    2 Active Auto alarm system active • on
    3 invalid alert
  • Remarks
  • N/A
  • 3.8. APIs for MaaS Service
  • 3.8.1. Functions
  • T.B.D.
  • 3.8.2. Inputs
  • TABLE 103
    Signal Name Description Redundancy
    T.B.D.
  • 3.8.3. Outputs
  • TABLE 104
    Signal Name Description Redundancy
    T.B.D.
  • Example 2
  • Toyota's MaaS Vehicle Platform
  • Architecture Specification
  • [Standard Edition #0.1]
  • History of Revision
  • TABLE 105
    Date of
    Revision ver. Summary of Revision Reviser
    2019, Nov. 4 0.1 Creating a new material MaaS Business Div.
  • Index
  • 1. General Concept 4
      • 1.1. Purpose of this Specification 4
      • 1.2. Target Vehicle Type 4
      • 1.3. Target Electronic Platform 4
      • 1.4. Definition of Term 4
      • 1.5. Precaution for Handling 4
      • 1.6. Overall Structure of MaaS 4
      • 1.7. Adopted Development Process 6
      • 1.8. ODD (Operational Design Domain) 6
  • 2. Safety Concept 7
      • 2.1. Outline 7
      • 2.2. Hazard analysis and risk assessment 7
      • 2.3. Allocation of safety requirements 8
      • 2.4. Redundancy 8
  • 3. Security Concept 10
      • 3.1. Outline 10
      • 3.2. Assumed Risks 10
      • 3.3. Countermeasure for the risks 10
        • 3.3.1. The countermeasure for a remote attack 11
        • 3.3.2. The countermeasure for a modification 11
      • 3.4. Addressing Held Data Information 11
      • 3.5. Addressing Vulnerability 11
      • 3.6. Contract with Operation Entity 11
  • 4. System Architecture 12
      • 4.1. Outline 12
      • 4.2. Physical LAN architecture (in-Vehicle) 12
      • 4.3. Power Supply Structure 14
  • 5. Function Allocation 15
      • 5.1. in a healthy situation 15
      • 5.2. in a single failure 16
  • 6. Data Collection 18
      • 6.1. At event 18
      • 6.2. Constantly 18
    1. General Concept 1.1. Purpose of this Specification
  • This document is an architecture specification of Toyota's MaaS Vehicle Platform and contains the outline of system in vehicle level.
  • 1.2. Target Vehicle Type
  • This specification is applied to the Toyota vehicles with the electronic platform called 19ePF [ver.1 and ver.2].
  • The representative vehicle with 19ePF is shown as follows.
  • e-Palette, Sienna, RAV4, and so on.
  • 1.3. Definition of Term
  • TABLE 106
    Term Definition
    ADS Autonomous Driving System.
    ADK Autonomous Driving Kit
    VP Vehicle Platform.
    VCIB Vehicle Control Interface Box.
    This is an ECU for the interface and the signal
    converter between ADS and Toyota VP's sub
    systems.
  • 1.4. Precaution for Handling
  • This is an early draft of the document.
  • All the contents are subject to change. Such changes are notified to the users. Please note that some parts are still T.B.D. will be updated in the future.
  • 2. Architectural Concept
  • 2.1. Overall Structure of MaaS
  • The overall structure of MaaS with the target vehicle is shown (FIG. 14).
  • Vehicle control technology is being used as an interface for technology providers.
  • Technology providers can receive open API such as vehicle state and vehicle control, necessary for development of automated driving systems.
  • 2.2. Outline of System Architecture on the Vehicle
  • The system architecture on the vehicle as a premise is shown (FIG. 15).
  • The target vehicle of this document will adopt the physical architecture of using CAN for the bus between ADS and VCIB. In order to realize each API in this document, the CAN frames and the bit assignments are shown in the form of “bit assignment chart” as a separate document.
  • 2.3. Outline of Power Supply Architecture on the Vehicle
  • The power supply architecture as a premise is shown as follows (FIG. 16).
  • The blue colored parts are provided from an ADS provider. And the orange colored parts are provided from the VP.
  • The power structure for ADS is isolate from the power structure for VP. Also, the ADS provider should install a redundant power structure isolated from the VP.
  • 3. Safety Concept
  • 3.1. Overall Safety Concept
  • The basic safety concept is shown as follows.
  • The strategy of bringing the vehicle to a safe stop when a failure occurs is shown as follows (FIG. 17).
  • 1. After occurrence of a failure, the entire vehicle executes “detecting a failure” and “correcting an impact of failure” and then achieves the safety state 1.
  • 2. Obeying the instructions from the ADS, the entire vehicle stops in a safe space at a safe speed (assumed less than 0.2 G).
  • However, depending on a situation, the entire vehicle should happen a deceleration more than the above deceleration if needed.
  • 3. After stopping, in order to prevent slipping down, the entire vehicle achieves the safety state 2 by activating the immobilization system.
  • TABLE 107
    category content
    Precondition Only one single failure at a time across the entire
    integrated vehicle. (Multiple failures are not covered)
    After the initial single failure, no other failure is
    anticipated in the duration in which the functionality
    is maintained.
    Responsibility for In case of a single failure, the integrated vehicle
    the vehicle platform should maintain the necessary functionality for safety
    until safety state 2 stop. The functionality should be maintained for 15
    (fifteen) seconds.
    Basic [For ADS]
    Responsibility The ADS should create the driving plan, and should
    Sharing indicate vehicle control values to the VP.
    [For Toyota vehicle platform]
    The Toyota VP should control each system of the VP
    based on indications from the ADS.
  • See the separated document called “Fault Management” regarding notifiable single failure and expected behavior for the ADS.
  • 3.2. Redundancy
  • The redundant functionalities with Toyota's MaaS vehicle are shown.
  • Toyota's Vehicle Platform has the following redundant functionalities to meet the safety goals led from the functional safety analysis.
  • Redundant Braking
  • Any single failure on the Braking System doesn't cause loss of braking functionality. However, depending on where the failure occurred, the capability left might not be equivalent to the primary system's capability. In this case, the braking system is designed to prevent the capability from becoming 0.3 G or less.
  • Redundant Steering
  • Any single failure on the Steering System doesn't cause loss of steering functionality. However, depending on where the failure occurred, the capability left might not be equivalent to the primary system's capability. In this case, the steering system is designed to prevent the capability from becoming 0.3 G or less.
  • Redundant Immobilization
  • Toyota's MaaS vehicle has 2 immobilization systems, i.e. P lock and EPB. Therefore, any single failure of immobilization system doesn't cause loss of the immobilization capability. However, in the case of failure, maximum stationary slope angle is less steep than when the systems are healthy.
  • Redundant Power
  • Any single failure on the Power Supply System doesn't cause loss of power supply functionality. However, in case of the primary power failure, the secondary power supply system keeps supplying power to the limited systems for a certain time.
  • Redundant Communication
  • Any single failure on the Communication System doesn't cause loss of all the communication functionality. System which needs redundancy has physical redundant communication lines. For more detail information, see the chapter “Physical LAN architecture (in-Vehicle)”.
  • 4. Security Concept
  • 4.1. Outline
  • Regarding security, Toyota's MaaS vehicle adopts the security document issued by Toyota as an upper document.
  • 4.2. Assumed Risks
  • The entire risk includes not only the risks assumed on the base e-PF but also the risks assumed for the Autono-MaaS vehicle.
  • The entire risk is shown as follows.
  • [Remote Attack]
      • To vehicle
        • Spoofing the center
        • ECU Software Alternation
        • DoS Attack
        • Sniffering
      • From vehicle
        • Spoofing the other vehicle
        • Software Alternation for a center or an ECU on the other vehicle
        • DoS Attack to a center or other vehicle
        • Uploading illegal data
  • [Modification]
      • Illegal Reprogramming
      • Setting up an illegal ADK
      • Installation of an unauthenticated product by a customer
  • 4.3. Countermeasure for the Risks
  • The countermeasure of the above assumed risks is shown as follows.
  • 4.3.1. The Countermeasure for a Remote Attack
  • The countermeasure for a remote attack is shown as follows.
  • Since the autonomous driving kit communicates with the center of the operation entity, end-to-end security should be ensured. Since a function to provide a travel control instruction is performed, multi-layered protection in the autonomous driving kit is required. Use a secure microcomputer or a security chip in the autonomous driving kit and provide sufficient security measures as the first layer against access from the outside. Use another secure microcomputer and another security chip to provide security as the second layer. (Multi-layered protection in the autonomous driving kit including protection as the first layer to prevent direct entry from the outside and protection as the second layer as the layer below the former)
  • 4.3.2. The Countermeasure for a Modification
  • The countermeasure for a modification is shown as follows.
  • For measures against a counterfeit autonomous driving kit, device authentication and message authentication are carried out. In storing a key, measures against tampering should be provided and a key set is changed for each pair of a vehicle and an autonomous driving kit. Alternatively, the contract should stipulate that the operation entity exercise sufficient management so as not to allow attachment of an unauthorized kit. For measures against attachment of an unauthorized product by an Autono-MaaS vehicle user, the contract should stipulate that the operation entity exercise management not to allow attachment of an unauthorized kit.
  • In application to actual vehicles, conduct credible threat analysis together, and measures for addressing most recent vulnerability of the autonomous driving kit at the time of LO should be completed.
  • 5. Function Allocation
  • 5.1. In a Healthy Situation
  • The allocation of representative functionalities is shown as below (FIG. 18).
  • [Function Allocation]
  • TABLE 108
    Function
    category Function name Related to # remarks
    Planning Plan for driving path 0
    Calculating control 0 e.g. longitudinal G
    indications
    Overall API Pub/Sub 1 One system with
    redundancy
    Security Autonomy Driving Kit 1 One system with
    Authentication redundancy
    Message
    1 One system with
    Authentication redundancy
    Door locking control 8
    Longi- Motion control 2 (Primary),
    tudinal/ 3 (Secondary)
    Lateral Propulsion control 4
    Braking control 2, 3 Two units controlled
    according to
    deceleration
    requirement
    Steering control
    5 One system with
    redundancy
    Immobilization control 2 (EPB),
    6 (P Lock)
    Shift control 6
    Power Secondary battery 7
    supply control
    Vehicle power control 10 For more information,
    see the API
    specification.
    Access/ Body control 8 Turn signal,
    Comfort Headlight, Window,
    etc.
    HVAC control 9
    Data Data logging (at event) 1
    Data logging 1
    (constantly)
  • 5.2. In a Single Failure
  • See the separated document called “Fault Management” regarding notifiable single failure and expected behavior for the ADS.
  • Though embodiments of the present disclosure have been described above, it should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (20)

What is claimed is:
1. A vehicle capable of autonomous driving, the vehicle comprising:
an autonomous driving kit attachable to and removable from the vehicle, the autonomous driving kit issuing an instruction for autonomous driving;
a vehicle platform including a plurality of functional units that perform a plurality of prescribed functions of the vehicle; and
a vehicle interface box that communicates with the autonomous driving kit and issues a control instruction to the functional units in accordance with an instruction from the autonomous driving kit, wherein
one of the plurality of functional units is a steering system that steers the vehicle,
the steering system
specifies a limit value of a steering rate in accordance with a prescribed reference, and
transmits the specified limit value to the autonomous driving kit through the vehicle interface box, and
the autonomous driving kit
calculates a target steering angle to satisfy the limit value received from the steering system, and
transmits an instruction for the calculated steering angle to the steering system through the vehicle interface box.
2. The vehicle according to claim 1, wherein
the steering system switches the prescribed reference in accordance with a vehicle speed.
3. The vehicle according to claim 2, wherein
the prescribed reference is a reference that the limit value of the steering rate is defined as a prescribed angular velocity when the vehicle speed is lower than a prescribed speed.
4. The vehicle according to claim 3, wherein
a value of the prescribed angular velocity is 0.4 rad/s.
5. The vehicle according to claim 2, wherein
the prescribed reference is a reference that, when the vehicle speed exceeds a prescribed speed, the limit value of the steering rate satisfies predetermined relation between the vehicle speed and the limit value of the steering rate.
6. The vehicle according to claim 5, wherein
a value of the prescribed speed is 10 km/h.
7. The vehicle according to claim 2, wherein
the prescribed reference is a reference determined in advance to set a lateral jerk of the vehicle to be lower than a prescribed jerk.
8. The vehicle according to claim 7, wherein
a value of the prescribed jerk is 2.94 m/s′.
9. An autonomous driving kit that is attachable to and removable from a vehicle and issues an instruction for autonomous driving of the vehicle, the vehicle including a plurality of functional units that perform a plurality of prescribed functions of the vehicle, the functional units being controlled in accordance with an instruction from the autonomous driving kit, one of the plurality of functional units being a steering system that steers the vehicle, the autonomous driving kit
calculating a target steering angle to satisfy a limit value of a steering rate specified by the steering system in accordance with a prescribed reference, and
transmitting an instruction for the calculated steering angle to the steering system.
10. The autonomous driving kit according to claim 9, wherein
the steering system switches the prescribed reference in accordance with a vehicle speed.
11. The autonomous driving kit according to claim 10, wherein
the prescribed reference is a reference that the limit value of the steering rate is defined as a prescribed angular velocity when the vehicle speed is lower than a prescribed speed.
12. The autonomous driving kit according to claim 11, wherein
a value of the prescribed angular velocity is 0.4 rad/s.
13. The autonomous driving kit according to claim 10, wherein
the prescribed reference is a reference that, when the vehicle speed exceeds a prescribed speed, the limit value of the steering rate satisfies predetermined relation between the vehicle speed and the limit value of the steering rate.
14. The autonomous driving kit according to claim 10, wherein
the prescribed reference is a reference determined in advance to set a lateral jerk of the vehicle to be lower than a prescribed jerk.
15. A vehicle capable of autonomous driving, the vehicle comprising:
a vehicle platform including a plurality of functional units that perform a plurality of prescribed functions of the vehicle; and
a vehicle interface box, the vehicle interface box communicating with an autonomous driving kit that issues an instruction for autonomous driving and is attachable to and removable from the vehicle, the vehicle interface box issuing a control instruction to the functional units in accordance with an instruction from the autonomous driving kit, wherein
one of the plurality of functional units is a steering system that steers the vehicle,
the steering system
specifies a limit value of a steering rate in accordance with a prescribed reference,
transmits the specified limit value to the autonomous driving kit through the vehicle interface box, and
controls a steering angle in accordance with an instruction for a target steering angle calculated by the autonomous driving kit to satisfy the limit value received from the steering system.
16. The vehicle according to claim 15, wherein
the steering system switches the prescribed reference in accordance with a vehicle speed.
17. The vehicle according to claim 16, wherein
the prescribed reference is a reference that the limit value of the steering rate is defined as a prescribed angular velocity when the vehicle speed is lower than a prescribed speed.
18. The vehicle according to claim 17, wherein
a value of the prescribed angular velocity is 0.4 rad/s.
19. The vehicle according to claim 16, wherein
the prescribed reference is a reference that, when the vehicle speed exceeds a prescribed speed, the limit value of the steering rate satisfies predetermined relation between the vehicle speed and the limit value of the steering rate.
20. The vehicle according to claim 16, wherein
the prescribed reference is a reference determined in advance to set a lateral jerk of the vehicle to be lower than a prescribed jerk.
US17/154,017 2020-01-31 2021-01-21 Vehicle and autonomous driving kit Abandoned US20210245806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/722,644 US11628880B2 (en) 2020-01-31 2022-04-18 Vehicle and autonomous driving kit
US18/098,822 US11987284B2 (en) 2020-01-31 2023-01-19 Vehicle and autonomous driving kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-015726 2020-01-31
JP2020015726A JP7255507B2 (en) 2020-01-31 2020-01-31 vehicle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/722,644 Continuation US11628880B2 (en) 2020-01-31 2022-04-18 Vehicle and autonomous driving kit

Publications (1)

Publication Number Publication Date
US20210245806A1 true US20210245806A1 (en) 2021-08-12

Family

ID=74285303

Family Applications (3)

Application Number Title Priority Date Filing Date
US17/154,017 Abandoned US20210245806A1 (en) 2020-01-31 2021-01-21 Vehicle and autonomous driving kit
US17/722,644 Active US11628880B2 (en) 2020-01-31 2022-04-18 Vehicle and autonomous driving kit
US18/098,822 Active US11987284B2 (en) 2020-01-31 2023-01-19 Vehicle and autonomous driving kit

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/722,644 Active US11628880B2 (en) 2020-01-31 2022-04-18 Vehicle and autonomous driving kit
US18/098,822 Active US11987284B2 (en) 2020-01-31 2023-01-19 Vehicle and autonomous driving kit

Country Status (7)

Country Link
US (3) US20210245806A1 (en)
EP (1) EP3858712A1 (en)
JP (2) JP7255507B2 (en)
KR (1) KR102594569B1 (en)
CN (1) CN113276878A (en)
BR (1) BR102021001821A2 (en)
RU (1) RU2754021C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250648A1 (en) * 2020-01-31 2022-08-11 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling vehicle
US20220379955A1 (en) * 2021-06-01 2022-12-01 GM Global Technology Operations LLC Limiting system for constraining the commanded steering angle of a steering system
FR3139310A1 (en) * 2022-09-07 2024-03-08 Psa Automobiles Sa Method and device for saturating a steering wheel angle variation setpoint.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484858B2 (en) 2021-09-28 2024-05-16 トヨタ自動車株式会社 Autonomous driving kit, vehicle platform, vehicle interface box and vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313735A1 (en) * 2015-04-24 2016-10-27 Autonomous Solutions Inc. System and method for controlling a vehicle
US20180265019A1 (en) * 2017-03-20 2018-09-20 Ford Global Technologies, Llc Autonomous vehicle conversion

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843759B2 (en) * 2001-05-10 2006-11-08 いすゞ自動車株式会社 Automatic steering device
JP3956693B2 (en) * 2001-12-27 2007-08-08 トヨタ自動車株式会社 Integrated vehicle motion controller
JP5503260B2 (en) * 2009-11-16 2014-05-28 日立オートモティブシステムズ株式会社 Vehicle motion control device
JP5560844B2 (en) * 2010-03-30 2014-07-30 井関農機株式会社 Driving device for automatic steering of traveling vehicle
US9073576B2 (en) * 2011-09-02 2015-07-07 GM Global Technology Operations LLC System and method for smooth steering override transition during automated lane centering
JP6237256B2 (en) * 2014-01-21 2017-11-29 日産自動車株式会社 Vehicle speed control device
CN106414962B (en) * 2014-02-05 2019-07-05 本田技研工业株式会社 The control device of this vehicle
MX355863B (en) * 2014-03-12 2018-05-03 Nissan Motor Vehicle operation device.
JP2016094093A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Antenna for satellite navigation system
IL305177A (en) * 2014-12-15 2023-10-01 Polaris Inc Autonomous ready vehicle
JP6176263B2 (en) * 2015-01-19 2017-08-09 トヨタ自動車株式会社 Automatic driving device
JP2016203787A (en) * 2015-04-22 2016-12-08 三菱マヒンドラ農機株式会社 Linear movement induction device and work vehicle
US10379007B2 (en) * 2015-06-24 2019-08-13 Perrone Robotics, Inc. Automated robotic test system for automated driving systems
JP6954960B2 (en) 2015-08-05 2021-10-27 オリザ油化株式会社 TNF-α and IL-6 production inhibitors and muscle inflammation inhibitors using them
JP6539178B2 (en) * 2015-10-01 2019-07-03 Kyb株式会社 Electric power steering device
US11238133B1 (en) * 2016-07-14 2022-02-01 Bigfoot Biomedical, Inc. Systems and methods for monitoring use of and ensuring continuity of functionality of insulin infusion pumps, glucose monitors, and other diabetes treatment equipment
KR101922009B1 (en) * 2016-09-28 2018-11-26 엘지전자 주식회사 Vehicle control device mounted on vehicle and method for controlling the vehicle
US10539961B2 (en) * 2016-11-01 2020-01-21 Ford Global Technologies Steering capability prediction
JP6489135B2 (en) * 2017-01-13 2019-03-27 トヨタ自動車株式会社 Vehicle driving support device
JP6760113B2 (en) * 2017-01-31 2020-09-23 日本精工株式会社 Electric power steering device
JP7001349B2 (en) * 2017-02-16 2022-01-19 株式会社デンソー Automatic operation control device
JP6528336B2 (en) * 2017-06-02 2019-06-12 本田技研工業株式会社 Vehicle control system and vehicle control method
KR102387613B1 (en) * 2017-06-26 2022-04-15 엘지전자 주식회사 Interface system for vehicle
US10625749B2 (en) * 2017-08-29 2020-04-21 Ford Global Technologies, Llc Attachable vehicle control
JP6525413B1 (en) * 2017-12-28 2019-06-05 マツダ株式会社 Vehicle control device
JP7106872B2 (en) * 2018-01-23 2022-07-27 株式会社デンソー AUTOMATIC DRIVING CONTROL DEVICE AND AUTOMATIC DRIVING CONTROL METHOD FOR VEHICLE
JP6962258B2 (en) * 2018-03-30 2021-11-05 トヨタ自動車株式会社 Control devices, programs for control devices, and control methods
US11364935B2 (en) * 2019-07-22 2022-06-21 Volvo Car Corporation Robust autonomous drive design
JP2023169647A (en) * 2022-05-17 2023-11-30 トヨタ自動車株式会社 System, method, and program for selectively providing mobile object with remote monitoring and remote driving

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313735A1 (en) * 2015-04-24 2016-10-27 Autonomous Solutions Inc. System and method for controlling a vehicle
US20180265019A1 (en) * 2017-03-20 2018-09-20 Ford Global Technologies, Llc Autonomous vehicle conversion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hideaki Nanba, Manabu Sawada, Koji Oguri; Study on Pre-Deceleration Running in Encounters with Emergency Vehicles Using Vehicle to Vehicle Communications, 2019, International Journal of Intelligent Transportation Systems Research,18, pp. 381–390 (Year: 2019) *
Karl J. Astrom and Richard M. Murray; Vehicle Steering, 2019, https://python-control.readthedocs.io/, pp.2 (Year: 2019) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250648A1 (en) * 2020-01-31 2022-08-11 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling vehicle
US11702100B2 (en) * 2020-01-31 2023-07-18 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling vehicle
US20220379955A1 (en) * 2021-06-01 2022-12-01 GM Global Technology Operations LLC Limiting system for constraining the commanded steering angle of a steering system
US11679804B2 (en) * 2021-06-01 2023-06-20 GM Global Technology Operations LLC Limiting system for constraining the commanded steering angle of a steering system
FR3139310A1 (en) * 2022-09-07 2024-03-08 Psa Automobiles Sa Method and device for saturating a steering wheel angle variation setpoint.
WO2024052602A1 (en) * 2022-09-07 2024-03-14 Stellantis Auto Sas Method and device for saturating a steering wheel angle variation setpoint

Also Published As

Publication number Publication date
US20230159101A1 (en) 2023-05-25
RU2754021C1 (en) 2021-08-25
US11987284B2 (en) 2024-05-21
EP3858712A1 (en) 2021-08-04
CN113276878A (en) 2021-08-20
BR102021001821A2 (en) 2021-08-31
US11628880B2 (en) 2023-04-18
JP2021123146A (en) 2021-08-30
JP2023073404A (en) 2023-05-25
KR20210098853A (en) 2021-08-11
JP7255507B2 (en) 2023-04-11
US20220242484A1 (en) 2022-08-04
KR102594569B1 (en) 2023-10-27

Similar Documents

Publication Publication Date Title
US11667308B2 (en) Vehicle
US11673573B2 (en) Vehicle and vehicle control interface
US20220250647A1 (en) Vehicle, Vehicle Control Interface Box, and Autonomous Driving Vehicle
US11987284B2 (en) Vehicle and autonomous driving kit
US11731650B2 (en) Vehicle and method of controlling vehicle
US11891055B2 (en) Autonomous driving system for communicating with and controlling a vehicle via a vehicle control interface
US20210245774A1 (en) Vehicle and vehicle control interface
US11850997B2 (en) Vehicle
US20230152798A1 (en) Vehicle and power supply system of vehicle
US20230278580A1 (en) Vehicle with mountable and removable autonomous driving system
US11951988B2 (en) Vehicle
US11733701B2 (en) Vehicle
US11702100B2 (en) Vehicle and method of controlling vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUZUKI, IKUMA;KATOH, SATOSHI;IRIE, RYO;SIGNING DATES FROM 20201214 TO 20201215;REEL/FRAME:054980/0394

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION