US20210229716A1 - Methods and systems for ultra-wideband (uwb) based rail line sensing and safety - Google Patents

Methods and systems for ultra-wideband (uwb) based rail line sensing and safety Download PDF

Info

Publication number
US20210229716A1
US20210229716A1 US17/157,523 US202117157523A US2021229716A1 US 20210229716 A1 US20210229716 A1 US 20210229716A1 US 202117157523 A US202117157523 A US 202117157523A US 2021229716 A1 US2021229716 A1 US 2021229716A1
Authority
US
United States
Prior art keywords
control module
module
detection
train
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/157,523
Inventor
Richard C. Carlson
Kurt A. Gunther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metrom Rail LLC
Original Assignee
Metrom Rail LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metrom Rail LLC filed Critical Metrom Rail LLC
Priority to US17/157,523 priority Critical patent/US20210229716A1/en
Assigned to METROM RAIL, LLC reassignment METROM RAIL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARLSON, RICHARD C., GUNTHER, KURT A.
Publication of US20210229716A1 publication Critical patent/US20210229716A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • B61L27/0038
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/02Electric devices associated with track, e.g. rail contacts
    • B61L1/08Electric devices associated with track, e.g. rail contacts magnetically actuated; electrostatically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or vehicle train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L29/00Safety means for rail/road crossing traffic
    • B61L29/08Operation of gates; Combined operation of gates and signals
    • B61L29/18Operation by approaching rail vehicle or rail vehicle train
    • B61L29/22Operation by approaching rail vehicle or rail vehicle train electrically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L29/00Safety means for rail/road crossing traffic
    • B61L29/24Means for warning road traffic that a gate is closed or closing, or that rail traffic is approaching, e.g. for visible or audible warning
    • B61L29/28Means for warning road traffic that a gate is closed or closing, or that rail traffic is approaching, e.g. for visible or audible warning electrically operated
    • B61L29/32Timing, e.g. advance warning of approaching train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • B61L3/125Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves using short-range radio transmission

Definitions

  • aspects of the present disclosure relate to control solutions used in railway systems. More specifically, various implementations of the present disclosure relate to methods and systems for ultra-wideband (UWB) based rail line sensing and safety.
  • UWB ultra-wideband
  • Ultra-wideband (UWB) based rail line sensing and safety substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
  • FIG. 1 shows a bird's eye schematic view of a rail line sensing and safety system.
  • FIG. 2 shows a bird's eye schematic view of a rail line sensing and safety system.
  • FIG. 3 shows an angled top view of a sensing device, also referred to as a detection module.
  • FIG. 4 shows a bird's eye schematic view of a detection module.
  • FIG. 5 shows an exploded, angled side view of a detection module.
  • FIG. 6 shows an angled top view of a detection module.
  • FIG. 7 shows an angled top view of a detection module, mounted to a rail.
  • FIG. 8 shows a cross-sectional side view of a detection module, mounted to a rail.
  • FIG. 9 shows a bird's eye view of a detection module, mounted to a rail.
  • FIG. 10 shows an exploded side view of a mounting system for a detection module.
  • FIG. 11 shows an exploded, angled top view of a mounting system for a detection module.
  • FIG. 12 shows an angled top view of a detection module and a mounting system.
  • FIG. 13 shows an angled top view of a detection module, mounted to a rail.
  • FIG. 14 shows a circuit diagram of circuitry that may be associated with sensors located inside a detection module.
  • FIG. 15 shows a sinewave that may be produced by an oscillator that may be part of the circuitry associated with sensors located inside a detection module.
  • FIG. 16 shows a timing relationship that may result between a voltage in the circuitry, associated with sensors located inside a detection module, and one of the circuitry's output pulses.
  • FIG. 17 shows a timing relationship that may result between a voltage in the circuitry, associated with sensors located inside a detection module, and one of the circuitry's output pulses.
  • FIG. 18 shows output pulses that may be generated by circuitry associated with sensors located inside a detection module.
  • FIG. 19A shows a block diagram of a remote module.
  • FIG. 19B shows a block diagram of a remote module.
  • FIG. 20 shows a block diagram of a remote module in relation to a detection module and a rail.
  • FIG. 21 shows the installation location of at least some subcomponents of a remote module.
  • FIG. 22 shows the installation location of at least some subcomponents of a remote module.
  • FIG. 23 shows a block diagram of a control module.
  • FIG. 24 shows a block diagram of a control module.
  • FIG. 25 shows a schematic view of an ultra-wideband (UWB) based rail line sensing and safety system.
  • UWB ultra-wideband
  • FIG. 26 shows a schematic view of another example ultra-wideband (UWB) based rail line sensing and safety system.
  • UWB ultra-wideband
  • circuits and “circuitry” refer to physical electronic components (e.g., hardware), and any software and/or firmware (“code”) that may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware.
  • code software and/or firmware
  • a particular processor and memory e.g., a volatile or non-volatile memory device, a general computer-readable medium, etc.
  • a circuit may comprise analog and/or digital circuitry. Such circuitry may, for example, operate on analog and/or digital signals.
  • a circuit may be in a single device or chip, on a single motherboard, in a single chassis, in a plurality of enclosures at a single geographical location, in a plurality of enclosures distributed over a plurality of geographical locations, etc.
  • module may, for example, refer to physical electronic components (e.g., hardware) and any software and/or firmware (“code”) that may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware.
  • circuitry or module is “operable” to perform a function whenever the circuitry or module comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled or not enabled (e.g., by a user-configurable setting, factory trim, etc.).
  • “and/or” means any one or more of the items in the list joined by “and/or”.
  • “x and/or y” means any element of the three-element set ⁇ (x), (y), (x, y) ⁇ .
  • “x and/or y” means “one or both of x and y.”
  • “x, y, and/or z” means any element of the seven-element set ⁇ (x), (y), (z), (x, y), (x, z), (y, z), (x, y, z) ⁇ .
  • x, y and/or z means “one or more of x, y, and z.”
  • exemplary means serving as a non-limiting example, instance, or illustration.
  • terms “for example” and “e.g.” set off lists of one or more non-limiting examples, instances, or illustrations.
  • Rail lines such as railroads for trains, create safety concerns where they intersect with roads, other rail lines or other paths of travel. These intersections (crossings) are notorious for collisions between vehicles.
  • Various types of safety devices for example, lights and crossing gates) are used to warn approaching vehicles of a potential collision. In this regard, safety devices are also referred by the Federal Railway Administration as a “crossing warning system”.
  • crossing warning system a system for sensing an approaching train and activating a safety device are not sufficiently reliable under certain operating conditions.
  • the following disclosure describes a rail line sensing and safety system adapted to reliably sense the presence, as well as the direction and speed, of vehicles, including high-speed vehicles, traveling on a rail line.
  • the rail line sensing and safety system then indicates whether a safety device, such as crossing gates, lights, bells, visual, audio or physical warnings, and combinations thereof, should be activated.
  • the rail line sensing and safety system comprises at least one sensing device (also referred to as a detection module) for a rail line.
  • the sensing device in turn comprises: (1) a first sensor capable of detecting a vehicle traveling on the rail line and signaling a first detection event; (2) a second sensor capable of detecting the vehicle traveling on the rail line and signaling a second detection event, wherein the second sensor is located a fixed distance away from the first sensor; (3) electrical circuitry that accepts signals from the two sensors; and (4) electrical connections that electrically connect the two sensors and the electrical circuitry.
  • the first sensor and the second sensor may be inductive sensors, each sensor comprising wire wound on a ferrite core, and wherein the wire is Litz Wire, and wherein each sensor is capable of generating a magnetic field that extends a distance above the sensor, and wherein the electrical circuitry is capable of detecting an interruption in the magnetic field of either the first sensor, the second sensor, or both.
  • the ferrite core may be, for example, a PQ-style ferrite core.
  • the first sensor and the second sensor may comprise a coil of wire operable to inductively couple to at least one part of the vehicle traveling on the rail line
  • the electrical circuitry is configured to generate, for the first sensor, a first coupling signal and a first output pulse signal, the magnitude of the first coupling signal being based on the amount of inductive coupling between the coil of wire of the first sensor and the vehicle, the first output pulse signal being an output pulse triggered in response to the first coupling signal indicating that the amount of inductive coupling between the coil of wire of the first sensor and the vehicle is approximately at a maximum
  • the electrical circuitry is configured to generate, for the second sensor, a second coupling signal and a second output pulse signal, the magnitude of the second coupling signal being based on the amount of inductive coupling between the coil of wire of the second sensor and the vehicle, the second output pulse signal being an output pulse triggered in response to the second coupling signal indicating that the amount of inductive coupling between the coil of wire of the second
  • the amount of inductive coupling between the coil of wire and the vehicle increases and the Q factor of the coil of wire decreases, and wherein the magnitude of the coupling signal increases when the amount of inductive coupling between the coil of wire and the vehicle increases.
  • the first output pulse signal generated by the circuitry for the first sensor corresponds to the signaling of the first detection event
  • the second output pulse signal generated by the circuitry for the second sensor corresponds to the signaling of the second detection event
  • the electrical circuitry may comprise, for each of the first sensor and the second sensor, a peak-and-hold detector that is operable to detect a peak in the magnitude of the coupling signal, and trigger the output pulse signal when the peak in the magnitude of the coupling signal is detected.
  • the electrical circuitry may comprise, for each of the first sensor and the second sensor, a capacitor located between the wire carrying the coupling signal and the peak-and-hold detector, and wherein the capacitor removes a DC component of the coupling signal, allowing only an AC component of the coupling signal to pass through to the peak-and-hold detector, and wherein the capacitor ensures that static DC-signal drift in the coupling signal is not introduced to the peak-and-hold detector.
  • the electrical circuitry may comprise, for each of the first sensor and the second sensor, an amplifier operable to amplify the coupling signal, the amplifier comprising a feedback path having a Zener diode to produce a logarithmic transfer characteristic of the amplifier such that the amplifier is capable of accurately handling the coupling signal regardless of whether its magnitude is large or small.
  • the electrical circuitry may also comprise, for each of the first sensor and the second sensor, a comparator operable to terminate the output pulse when the magnitude of the coupling signal falls from a peak magnitude to below a threshold value.
  • the electrical circuitry may also be operable to detect an error or a fault in the electrical circuitry and to generate an error signal when the error or fault is detected.
  • the sensing device further comprises a sensor package that houses at least the two sensors, the electrical circuitry and the electrical connections, wherein the sensor package includes an upper casing and a lower casing such that when the two casings are affixed together, a cavity is defined between them, wherein the sensor package includes an attachment device for attaching the sensor package to the rail line.
  • the attachment device may be an energy absorbing mounting system comprised of: (1) a clamp assembly for attaching the sensor package to the rail line; (2) aluminum shims and vibration absorption pads disposed between the sensor package and the clamp assembly, wherein the vibration absorption pads are composed of rubber or an elastomeric material or other vibration absorbing material; (3) cap screws that run vertically through the sensor package, the aluminum shims, the vibration absorption pads, and into the clamp assembly, wherein the cap screws apply clamping force to attach the sensor package to the rest of the attachment device and to hold the parts of the attachment device together; and (4) lock pins that are inserted horizontally into the side of the sensor package to prevent the cap screws from rotating.
  • the electrical circuitry of the sensing device may include a signal processor.
  • the signal processor may be programmed to calculate the direction, speed or both of the vehicle traveling on the rail line by detecting the order of the first detection event in relation to the second detection event, and measuring the time period between the detection events.
  • the sensing device may further comprise at least one additional sensor capable of detecting the vehicle traveling on the rail line and signaling at least one additional detection event, wherein the electrical circuitry also accepts signals from the at least one additional sensor, wherein the electrical connections also electrically connect the at least one additional sensor.
  • the system comprises: (1) at least one sensing device for a rail line according to claim 1 , wherein each sensing device outputs one or more signals that indicate at least one of the presence, direction and speed of a vehicle traveling on the rail line; (2) at least one remote module that accepts signals outputted by at least one of the sensing devices, wherein the remote module processes signals and transmits one or more signals, wherein the remote module is located near the sensing device from which it accepts signals; and (3) a control module that accepts signals outputted by at least one of the remote modules, wherein the control module performs operations based on signals and outputs one or more signals, wherein the signals outputted by the control module indicate, among other things, whether one or more safety devices should be activated, the safety devices being lights, gates, bells, visual, audio or physical warnings, and combinations thereof, wherein the control module and the safety devices are located near an intersection of a rail line and a road, a second rail line, or other path of travel.
  • the rail line sensing and safety system further comprises one or more solar panels electrically connected to one or more devices or modules, including the sensing device, the remote module and the control module; and one or more battery packs electrically connected to one or more devices or modules, including the sensing device, the remote module and the control module.
  • the signals outputted by the control module are sent directly to the one or more safety devices, and wherein the rail line sensing and safety system provides primary control signals for the safety devices.
  • the rail line sensing and safety system may further comprise at least one backup sensing device, wherein at least one sensing device located on either side of the safety devices is backed up, as a form of redundancy, by the at least one backup sensing device, wherein the backup sensing device is located a distance away from the sensing device that it backs up, wherein the backup sensing device outputs signals that indicate at least one of the presence, direction and speed of a vehicle traveling on the rail line.
  • the system is adapted to be a supplemental or backup system to a separate existing system, wherein the signals outputted by the control module are sent to the existing system, and wherein the existing system controls one or more safety devices.
  • the existing system may attempt to detect the vehicle traveling on the rail line by sending one or more electrical signals down one or more rails of the rail line, whereby the rail operates as a conductor for the one or more signals to travel through.
  • the rail line sensing and safety system may further comprising at least one backup sensing device, wherein at least one sensing device located on either side of the safety devices is backed up, as a form of redundancy, by the at least one backup sensing device, wherein the backup sensing device is located a distance away from the sensing device that it backs up, wherein the backup sensing device outputs signals that indicate at least one of the presence, direction and speed of a vehicle traveling on the rail line.
  • the system may further comprise at least one sensor that monitors health of at least one device or module in the system, including the sensing device and the remote module, wherein the signals transmitted by the remote module and sent to the control module periodically include information regarding health of at least one device or module, wherein the control module is adapted to accept signals and information regarding health of devices or modules.
  • control module may include computing equipment capable of data logging and self-diagnostics. Additionally, the system may further comprise a display that is part of the control module, wherein the display conveys system diagnostics and status indicators.
  • the remote module may transmit one or more signals using a frequency hopping radio.
  • the remote module may transmit one or more signals using a cellular network.
  • the remote module may transmit one or more signals using a licensed frequency.
  • the sensing device may be located a distance away from the one or more safety devices that the sensing and safety system controls, wherein the distance is between 3,800 feet and 4,500 feet.
  • the distance where the sensing located may be determined and/or set based on various conditions and/or parameters associated with operation of trains on the track. For example, the distance may be proportional to the maximum allowable train speed on the track. At distance of 3,800 feet, for example, with an allowance of 5 seconds for the entire system to initiate the crossing gates, and a maximum train speed of 79 mph, the gates may initiate their warning less than 28 seconds before the train arrives (assuming constant train speed).
  • the following disclosure describes a rail line sensing and safety system (RLSSS) adapted to reliably sense the presence, as well as the direction and speed, of vehicles, including high-speed vehicles, traveling on a rail line.
  • the rail line sensing and safety system then indicates whether a safety device, such as crossing gates, lights, bells, visual, audio or physical warnings, and combinations thereof, should be activated.
  • FIG. 1 shows a rail line sensing and safety system (RLSSS) 2 according to an embodiment of the disclosure.
  • the rail line sensing and safety system 2 comprises at least one detection module (DM) 4 , at least one remote module (RM) 6 , and at least one control module (CM) 8 .
  • the rail line sensing and safety system 2 will include two detection modules and two remote modules, one of each located on each side of a safety device 10 ; however, it should be noted that the rail line sensing and safety system 2 may contain more detection modules and remote modules.
  • the rail line sensing and safety system 2 will include a single control module 8 , adapted to accept signals sent from multiple remote modules 6 , however, it should be noted that the rail line sensing and safety system 2 may contain more than one control module 8 . Additionally, although the following description may refer to the safety device 10 as a crossing gate or other type safety device, it should be understood that the safety device 10 may comprise many types of safety and warning devices, such as crossing gates, lights, bells, visual, audio or physical warnings, and combinations thereof.
  • the detection modules 4 are each generally connected, in close proximity, with their closest remote module 6 , for example by a hard-wired connection 12 .
  • the detection module 4 is hard-wired by a short cable 12 to the remote module 6 , instead of utilizing a wireless connection.
  • a hard-wired connection instead of a wireless connection, is that the hard-wired connection can be used to feed power, in addition to electrical signals, to the detection modules 4 .
  • the detection modules 4 may be powered by one or more solar panels 312 , battery packs 322 , and a power control module that are part of the closest remote module 6 (see FIGS. 19A, 19B and 20 ).
  • the detection modules 4 may be powered by a power source located in or near the control module 8 , provided that the wireless link 14 is replaced by a wired connection.
  • the detection module 4 detects a vehicle traveling on the rail 11 and sends one or more signals, for example, by a wired communication link 12 , to a nearby remote module 6 .
  • the remote module 6 contains circuitry that processes signals received from the detection module 4 .
  • the remote module 6 then transmits one or more signals to the control module 8 , for example by a radio link 14 .
  • the remote module may also detect the direction of movement of the vehicle traveling on the rail. In this regard, a vehicle moving away from the crossing is not cause to initiate the warning devices, whereas one moving towards the crossing is cause to initiate a warning, at the appropriate time based upon the speed of the approach.
  • the processing to determine direction may be calculated elsewhere, as explained below.
  • connection between the remote modules 6 and the control module 8 may be by a wired connection instead of a radio link.
  • the control module 8 also operates in communication, for example by a wired communication link 16 , with a safety device 10 , either directly or indirectly as a backup or supplement to an existing sensing and safety system (ESSS).
  • ESSS sensing and safety system
  • the detection modules 4 are mounted a distance 9 down the track from the centerline 7 between the two safety devices 10 .
  • This distance is typically between 3,800 feet and 4,500 feet, although other distances may allow the detection modules 4 to function properly.
  • the greater the distance 9 the more time is allowed for transmission of the wireless communications, and more transmission time provides additional operating margin to be sure that, after the vehicle passes a detection module 4 , the safety device 10 then engages before (for example, approximately 30 seconds in advance) the vehicle traveling on the rail reaches the safety device 10 .
  • the time for transmission of wireless communications may not be a limiting factor.
  • the distance 9 may be necessary to provide sufficient advance warning by the safety devices 10 .
  • the Federal Railway Administration requires the crossing warning system to indicate the approach of a train at least 20 seconds prior to the train's arrival at the crossing.
  • detection of the train must happen more than 20 seconds prior to its arrival to allow for detection and processing delays, as well as the response time of the crossing warning device(s).
  • the maximum speed of an approaching train and the processing time determines the minimum allowable distance.
  • the nominal distance of 4,000 feet has been tested and has proved to offer a beneficial operating margin for train speeds no greater than 80 mph.
  • the remote modules 6 are generally installed at the same distance 9 down the track that the detection modules 4 are installed, although the installation location of the remote modules 6 may vary.
  • FIGS. 3-6 show a sensing device, also referred to as a detection module (DM) 4 , according to the disclosure.
  • the detection module 4 is designed to reliably detect if a wheel, for example, of a rail vehicle has passed over a specific location on a rail, and if so the detection module 4 may determine the direction and speed at which the vehicle was traveling. It is also possible that the detection module 4 may be configured to detect the presence of another part of a rail vehicle instead of a wheel, for example an axle.
  • the detection module 4 is comprised of a sensor package 114 , two discreet magnetic or inductive sensors 102 , signal processing circuitry 104 located near the sensors, a mounting system 106 , and a wire conduit 107 and wire hole 108 to channel wires out of the sensor package 114 .
  • Sensor package 114 includes an upper casing 112 and a lower casing 110 that when affixed together, create a cavity between the two casings 112 , 110 .
  • Sensor package 114 houses, inside this cavity, the signal processing circuitry 104 and the two sensors 102 , along with any hardware required to mount the sensors 102 inside the package 114 , such as brackets, gaskets, screws, washers, etc.
  • the sensor package 114 may house other standard components such as an analog-to-digital converter.
  • the two discrete sensors 102 of the detection module 4 are mounted, inside the package 114 , at a fixed spacing 116 from each other (see FIGS. 4 and 5 ). This spacing 116 allows the two sensors 102 and related circuitry to sense time-separated detection events, allowing for the calculation of the speed and direction of a passing rail vehicle. While the following descriptions discuss only two sensors per detection module, it should be understood that a detection module 4 (and its package 114 ) could contain more than two sensors 102 , sometimes referred to as a “sensor array”. Additionally, although this disclosure refers separately to sensors 102 and circuitry 104 , it should be understood that there may not be a defined separating point between a sensor 102 and its associated circuitry 104 .
  • the senor 102 may include, as explain below, a coil of wire and the circuitry 104 may include a signal processing circuit, but the sensor item 102 may also include some or all of the circuit components of circuitry item 104 . If sensor item 102 contains all the circuitry components of item 104 then the two items would, in effect, be one module, including the sensor item 102 and the circuitry item 104 .
  • the detection module sensor package 114 is mounted onto a rail 11 (see also FIG. 1 ) utilizing a rail attachment device.
  • the rail attachment device can be a clamp, flange, bracket, or other fastener.
  • the detection module sensor package 114 is attached to the rail with an energy absorbing mounting system 106 .
  • the mounting system 106 may include a clamp, flange, bracket, or other fastener for attaching the sensor package to a rail 11 . In one example, this mounting system 106 clamps to the lower flange 120 of a rail 11 , and suspends the detection module sensor package 114 up off the rail flange 120 a vertical distance 122 .
  • FIGS. 10-11 show a more detailed example of an energy absorbing mounting system 106 .
  • the mounting system 106 may be further comprised of a clamp assembly 124 , aluminum shims 126 , vibration absorption pads 128 , lock pins 130 and cap screws 132 .
  • the detection module sensor package 114 is mounted on top of the absorption pads 128 , which are designed to absorb vibrations from the rail 11 .
  • the absorption pads 128 may be made of a variety of vibration absorbing materials, including rubber or some other elastomeric material.
  • Lock pins 130 are inserted horizontally from the side of the package 114 into the detection module sensor package 114 and rest against the heads of the four cap screws 132 .
  • the cap screws 132 apply clamping force to the package 114 to fasten the package 114 to the rest of the mounting system 106 and to fasten the parts of the mounting system 106 together.
  • the four cap screws 132 are not tightened conventionally, but are instead tightened to a specific rotation angle after contact is made between the sensor package 114 and the absorption pads 128 .
  • the cap screws 132 are then prevented from unscrewing by the lock pins 130 which are inserted once the mounting system 106 is assembled.
  • the lock pins 130 key on the heads of the cap screws 132 , preventing the cap screws from rotating.
  • the wire conduit 107 has room to freely curve in the gap that exists between the two pillars 123 of the mounting system 106 .
  • the wire conduit 107 attaches to the underside of the lower casing 110 of the package 114 at the location of the wire hole 108 (see FIGS. 5 and 10 ). From that point, the wire conduit 107 curves from a generally vertical downward direction to a generally horizontal direction toward the center of the railway 140 . From there, a water-tight tube 142 adapted to enclosing wires attaches to the wire conduit 107 .
  • the tube 142 curves from a generally horizontal direction downward and then back on itself. Tube 142 then runs through a channel 143 created by and between rail ties 141 , below the rail 11 , and then away toward the nearest remote module 6 .
  • the combination of the wire hole 108 (see FIGS. 3-4 ), the wire conduit 107 and the tube 142 creates a path whereby wired connections may run from inside the detection module sensor package 114 out to the nearest remote module 6 .
  • Signal processing circuitry 104 is disposed inside the detection module sensor package 114 , near the sensors. It should be understood that while some processing of the signals produced by sensors 102 may be done by circuitry 104 contained in the detection module sensor package 114 , all or some of the processing may be done by circuitry or firmware contained in the remote module 6 .
  • the sensors 102 in combination with circuitry generally located inside the detection module 4 , detect the speed of a vehicle traveling on the rail 11 by measuring the time between sensor events. Likewise, the sensors and circuitry measure direction by looking at which sensor event occurred first.
  • a “sensor event” refers to a signal produced by an individual sensor 102 that the circuitry, located either inside the detection module, inside the remote module, or both, determines fulfills the appropriate detection criteria, that is, the circuitry determines whether the detection event is valid.
  • the presence, speed and direction of the vehicle are calculated with circuitry located within the detection module sensor package 114 , within the remote module 6 , or a combination of both.
  • the detection module 4 produces and sends to the remote module 6 one or more output pulses 323 (see FIG. 20 ) predictably synchronized with the passing of the vehicle traveling on the rail. These output pulses 323 are produced utilizing sensors 102 and other circuitry 104 disposed inside the detection module sensor package 114 .
  • a successful sequence of sensor pulses is referred to as a “transit.”
  • Detection events are generated by the detection modules 4 and/or remote modules 6 at the start and end of a vehicle passing by a detection module 4 on the rail 11 , and the remote module 6 then transmits information about these detection events as signals to the control module 8 .
  • the detection modules 4 and remote modules 6 may generate events and transmit signals for each discrete axle of the vehicle.
  • sensors 102 can be one of several different types of proximity sensors, such as Piezo electric sensors, magnetic sensors or inductive sensors.
  • sensors 102 utilize active inductive sensor technology that is self-compensating and resistant to drift because it constantly resets (e.g., recalibrates) its trip threshold.
  • FIG. 14 shows a high-level circuit diagram of circuitry 203 associated with a sensor 102 .
  • Circuitry 203 constitutes at least some of the total circuitry 104 that is associated with a sensor 102 .
  • Circuitry 203 includes an oscillator 202 , for example a Colpitts oscillator.
  • an oscillator is an electronic circuit that produces a repetitive electronic signal, often a sine wave or a square wave.
  • An oscillator circuit often consists of an inductor and a capacitor connected together in the form of a resonant tank. Charge flows back and forth between the capacitor's plates through the inductor, so the circuit can store electrical energy oscillating at its resonant frequency.
  • an amplifier compensates for those losses and supplies the power for the output signal.
  • the oscillator 202 operates in continuous wave (CW) mode, for example in the 140-180 kHz range, which is defined by characteristics of the resonant tank comprised of an inductive proximity “pickup coil” 204 , an RF rectifier 208 and an automatic level control (ALC) amplifier 206 .
  • FIG. 15 shows an example of a sinewave, as illustrated by trace 240 , produced by the oscillator 202 .
  • the sinewave can have a peak-to-peak voltage value of approximately 1.4 Volts and a frequency of approximately 148.8 KHz, which is close to the lower end of the range disclosed above.
  • Pickup coil 204 essentially an inductor, includes wire wound on one half of a ferrite core, a PQ-style ferrite core for example, so that an AC magnetic field generated by the coil extends outward a distance (the coils sensing area), extending above the sensor for example.
  • the coil may magnetically couple with nearby metallic objects.
  • core styles may be used instead of a PQ-style ferrite core.
  • a variant of a “pot core” could be used.
  • a pot core has a magnetic structure that almost completely surrounds the winding of wire, and only small slots are present in the structure to allow wires to enter and/or exit. This magnetic structure tends to contain the magnetic field in a more controlled fashion.
  • Other variants of pot cores that may be applicable to this implementation include ER, DS, RM, and EP cores.
  • Litz Wire is comprised of many small-diameter conductors in parallel such that the combined skin effect loss of the conductors is significantly reduced compared to the skin effect loss experienced by other types of wire. Less skin effect loss results in, among other benefits, lower power consumption. More specifically, in regards to the circuitry of the detection module 4 , less skin effect loss results in “low-losses” such that the oscillator achieves a high Q resonance with minimal power. Thus, the use of Litz Wire allows the pickup coil 204 to achieve a Q factor as high as possible.
  • the pickup coil 204 has a high Q factor when no detection object is present in the pickup coil's sensing area, very little energy needs to be added in each oscillation cycle to sustain oscillations, and thus the micropower operation of the circuitry 203 in “Idle” state (no object detected) is very low (less than 1 milliwatt).
  • the energy loss of the oscillator 202 will increase because some of the energy will be coupled into the object and lost as heat. The amount of energy loss is dependent on both the magnetic properties of the intruding object, and the distance between the pickup coil 204 and the object.
  • circuit 203 utilizes an ALC loop 207 , consisting of a RF rectifier 208 and an ALC amplifier 206 , to ensure that just enough energy is delivered to the resonant tank of oscillator 202 to sustain oscillations of relatively constant magnitude (i.e. amplitude) for all reasonable values of Q.
  • the oscillation magnitude i.e.
  • the ALC loop tries to compensate via negative feedback action by producing a DC voltage proportional to the magnitude (i.e. amplitude) of the oscillator's 202 output, which is then amplified and used to control the operating point of the oscillator 202 by increasing the oscillator's 202 operating current. More specifically, a decrease in oscillations magnitude (i.e. amplitude) causes the DC voltage produced by the rectifier 208 to also decrease.
  • the ALC amplifier 206 increases the current through the oscillator's transistor (essentially increasing the amount of energy which is injected into the resonant tank) until the magnitude (i.e. amplitude) of oscillations is back at the predefined level (negative feedback).
  • a reduction in the pickup coil's Q-factor, caused by an intruding object is proportionally represented by an increase in the ALC's drive voltage.
  • the profile of variations in the ALC control voltage would therefore closely follow the wheel's proximity curve.
  • a capacitor 210 is typically located between the ALC control voltage (i.e. the output of amplifier 206 ) and amplifier 212 .
  • Capacitor 210 may act as a “DC-blocking capacitor” to the ALC control voltage such that it removes the DC component (DC offset), in whole or in part, from the AC/DC mixture, allowing only (or primarily) the AC component to pass through to amplifier 212 .
  • the capacitor 210 ensures that only (or primarily) variable signals caused by moving (dynamic) objects are passed downstream in circuitry 203 , while static DC level shifts (drift) that may be caused by interference from static or slow-moving objects (for example, the sensor package or the rail) are blocked, in whole or in part.
  • drift static DC level shifts
  • this filtering feature may provide a benefit over older proximity sensors that may just compare a proximity-based voltage to a static threshold, using the threshold to determine whether an object is sufficiently close. Accounting for DC voltage drift, like the circuitry 203 does in these embodiments, may increase the accuracy and repeatability of the proximity sensing.
  • circuitry 203 may completely filter out the DC voltage from the AC/DC mixture
  • capacitor 210 may completely filter out the DC voltage from the AC/DC mixture
  • some embodiments may allow some DC voltage to pass downstream.
  • the ability to sense the DC aspect, or at least very low frequency components, may be useful.
  • the profile of the V_Q voltage 214 is a flat line, close to the circuit's virtual ground level.
  • the threshold of comparator 216 is chosen such that the ENABLE signal 218 (i.e. the output of comparator 216 ) is inactive in the “Idle” state, holding the output 228 of the flip-flop 220 in a “Reset” state and the storage capacitor 222 of the peak-and-hold circuit 224 discharged.
  • circuitry 203 utilizes a peak-and-hold detector, whereby the following sequence of events transpires in circuitry 203 : (1) As soon as the V_Q voltage 214 rises significantly above the noise level of the Idle state, comparator 216 raises the ENABLE signal 218 and keeps it active until the V_Q voltage 214 falls back under the detection threshold, which occurs as the detection object recedes.
  • the active ENABLE signal 218 activates in turn the peak-and-hold circuit 224 by connecting its storage capacitor 222 to the output of the peak detector 226 in the peak-and-hold circuit 224 . Also, flip-flop 220 is released from the “Reset” state (however, the state of output 228 does not change until a trigger pulse is generated by comparator 230 ). Differential driver 232 is also activated at this point.
  • the output (V_PEAK) 234 of the peak-and-hold circuit 224 follows the V_Q voltage 214 closely, with a slight lag. Comparator 230 maintains its low output state, since the V_Q voltage 214 input to the comparator 230 is always slightly above the V_PEAK 234 input.
  • FIG. 18 shows an example of the output pulses 323 that result from the detection of a metallic object by the circuitry 203 .
  • the trace labeled 250 corresponds to one of the outputs of the differential driver 232 while the trace labeled 252 corresponds to the other output of the differential driver 232 .
  • FIG. 16 there is shown an example of the timing relationship that results between the V_Q voltage 214 , which is illustrated by trace 242 , and one of the output pulses 323 , which is illustrated by trace 244 , when the sequence of events described above transpires in circuitry 203 .
  • trace 242 the V_Q voltage 214
  • trace 244 the start of the pulse in trace 244 coincides with the peak of the bell-shaped curve of trace 242 .
  • the output pulse 323 that is generated indicates, by its starting time, the peak of the V_Q voltage 214 and, therefore, the moment at which the metallic object is closest to the sensor 102 .
  • the circuitry 203 can be configured to detect those instances, and when detected, circuitry 203 can be configured to force both outputs 323 from the differential driver 232 to zero (or another defined state), and generate a signal that indicates that a fault in the oscillator 202 has been detected.
  • the oscillator 202 can be built around a first transistor Q 1 (not shown) and a voltage-controlled resistor (not shown) in the emitter path of Q 1 .
  • the voltage-controlled resistor can be implemented using a second transistor Q 2 .
  • the sinewave produced by the oscillator 202 is converted to DC by the RF rectifier 208 and applied to the input of the ALC amplifier 206 in such a polarity that an increase in the magnitude (i.e. amplitude) of oscillations results in a decrease in the output of the ALC amplifier 206 (V_ALC), thus reducing the conductance of the voltage-controlled resistor.
  • V_ALC the output of the ALC amplifier 206
  • any drop in the Q factor of the inductive proximity pickup coil 204 in response to the presence of a nearby metallic object can be compensated by the ALC loop by increasing the conductance of the voltage-controlled resistors, which reduces the emitter resistance in Q 1 . Since the base of Q 1 can be kept at a fixed reference potential, a reduction of emitter resistance can cause the DC operating point to move such that there is an increased current draw and more energy is deposited into the resonant tank at each cycle.
  • a thermally sensitive resistor (not shown), also referred to as a thermistor, can be used with the oscillator 202 to maintain the voltage of the ALC loop at approximately the middle of the operating voltage range during “Idle” operation.
  • the amplifier 212 can be configured or be operable to have a sufficiently high gain, for example 30 dB at 25 degrees Centigrade, so that small variations in the output of the ALC amplifier 206 can be amplified by the amplifier 212 to an magnitude (i.e. amplitude) of approximately a few hundred millivolts during normal detection events.
  • a thermistor (not shown) associated with the amplifier 212 can compensate or neutralize the effect that the thermistor in the oscillator 202 has on the overall gain of the analog track of the circuitry 203 .
  • the output from the ALC amplifier 206 can cause the output of the amplifier 212 to saturate, clipping V_Q voltage 214 .
  • clipping could cause the generation of incorrectly positioned differential output pulses 323 .
  • a Zener diode (not shown) can be placed in a feedback path of the amplifier 212 to give it a logarithmic transfer characteristic for large-magnitude (i.e. large-amplitude) signals.
  • a strong proximity voltage signal would be somewhat flattened at the top instead of being hard-clipped, allowing for correct operation of the follow-up peak detection.
  • FIG. 17 shows an example of the timing relationship that results between the V_Q voltage 214 , which is illustrated by trace 246 , and one of the output pulses 323 , which is illustrated by trace 248 , when a metallic object passes above the inductive proximity pickup coil 204 at a distance of less than one inch (1′′).
  • the logarithmic transfer characteristics of the amplifier 212 flatten the top of the V_Q voltage 214 such that the synchronization of the output pulse 323 and the V_Q voltage 214 is not exact but produces an acceptable result.
  • FIGS. 19A and 19B show the remote module (RM) 6 .
  • the primary function of the remote module 6 is to receive and process signals received from the detection module 4 and to send appropriate data and signals to the control module 8 .
  • the remote module 6 includes 2 main subcomponents, a connection box 306 that is typically located close to the tracks, and a utility pole 308 (or other similar structure or tower which elevates the antenna 310 to improve wireless propagation distances) that is typically located further away from the tracks and connected by an underground connection (see FIG. 22 ) to the connection box 306 .
  • connection box 306 may contain a junction box 311 and a control board 307 , preferably enclosed in an environmentally sealed enclosure.
  • control board 307 may also be mounted, preferably within an environmentally sealed enclosure, on the utility pole 308 , further away from the tracks, instead of being disposed inside a structure (for example, connection box 306 ) that is mounted close to the tracks.
  • the junction box 311 contains mainly adaptors and connections to create a removable connection to the detection module 4 , which aids in the installation and removal of the detection module 4 , for example, removal of the detection module 4 to perform track maintenance. It should be understood that although FIG. 19A shows the junction box 311 contained within a structure (for example, connection box 306 ) that also contains the control board 307 , the connections of the junction box 311 and the junction box itself may be contained either inside the structure that houses the control board 307 , outside that structure, or a combination of both. Additionally, referring to FIG.
  • the junction box 311 may be the only component located near the tracks, such that the junction box 311 is not actually contained within a separate box (for example, connection box 306 ) as shown in FIG. 19B , but instead the junction box 311 would stand alone as the only module near the tracks, such that it is directly connected to the utility pole 308 .
  • the control board 307 contains most or all of the circuitry components contained within the remote module 6 . In one example, all of the circuitry components of the remote module 6 are disposed on a single circuit board.
  • the control board 307 can contain circuitry 314 adapted for processing signals received from the detection module, a wireless radio transmitter circuit 316 , a power module 318 , and a monitoring and control module 320 .
  • the circuitry 314 is in connection with the detection module 4 (see FIG. 20 ) and further includes signal detecting and control logic, a timer, and signal processing and filtering logic.
  • the circuitry 314 is also in communication with the radio transmitter circuit 316 , and may send it vehicle presence, speed and direction information of a nearby vehicle.
  • the radio transmitter circuit 316 is in connection with a radio transmitter antenna 310 , located on the utility pole 308 .
  • the power interface 318 may be connected to power components contained on the utility pole 308 , including one or more solar panels, battery packs or both. Furthermore, the power interface 318 may contain power monitoring and charging logic as well as a power supply to power the other components contained in the connection box 306 and optionally to feed power to the detection module 4 .
  • the monitoring and control module 320 further contains a service interface and a system monitoring and control unit that may communicate system information (for example, diagnostics about the detection module and the remote module) to the radio transmitter 316 .
  • the detection module produces one or more output pulses 323 predictably synchronized with passing of a vehicle on the rail.
  • circuitry inside the detection module 4 or inside the remote module 6 or both computes whether the signals generated by the detection module sensors fulfill the appropriate detection criteria, that is, whether a vehicle detection event is valid. Detection events are generated by the detection modules and remote modules at the start and end of a vehicle traveling on the rail, and the remote modules transmit these detection events as signals to the control module. Alternatively, the detection modules and remote modules may generate events and transmit signals for each discrete axle of the vehicle.
  • FIG. 19A shows a utility pole 308 , which includes a wireless radio transmission antenna 310 , a solar panel 312 , and battery packs 322 .
  • the utility pole 308 is actually comprised of a physical pole 309 as well as the devices that are mounted to the pole 309 , such as the wireless radio transmission antenna 310 , the solar panel 312 , and the battery packs 322 .
  • the phrase “on the utility pole 308 ” shall be understood to mean either mounted on the physical pole 309 or located in close vicinity to the physical pole 309 .
  • a variety of styles of physical poles may be used, such as a hinged metal pole that allows erection of the antenna and solar panel without requiring a lift truck, such that all work on the mounted components can be done at ground level.
  • the solar panel 312 derives energy from the environment, and stores that energy in the battery packs 322 or other rechargeable batteries.
  • the battery packs 322 are enclosed in a vented enclosure that is adapted to be mounted on a pole. Furthermore, the battery packs 322 are sized for over 30 days of operation in the event the solar cell is damaged or otherwise incapacitated. Together, the solar panel 312 and the battery packs 322 provide power to the other modules that make up the remote module and detection module.
  • the transmitter 324 which includes a radio transmission antenna 310 and a radio transmitter circuit 316 , processes signals generated by the remote module 6 and transmits signals to control module 8 utilizing either a wired or a wireless communication.
  • a wireless communication could be established by a frequency hopping radio, transmitting at a radio frequency (RF) such as a 900 Mhz band.
  • RF radio frequency
  • a wireless communication could be established using a wider cellular interface and cellular network. Frequency hopping radios are preferable for wireless communications over a distance of three miles or less. For longer distances, it may be preferable for the wireless communication to be established over licensed frequencies that allow higher power transmissions than are allowable on unlicensed frequencies. Additionally, for longer distances, the wireless communication may be established by an interface to a cellular network.
  • Transmitter 324 is mainly referred to, throughout this disclosure, as a “transmitter” because it typically operates to transmit signals. Likewise, transmission antenna 310 and transmitter circuit 316 typically operate to transmit signals. However, it should be understood that transmitter 324 , transmission antenna 310 and transmitter circuit 316 may also operate to receive signals, and in this respect they may actually be transceiver components. Thus, it should be understood that although these components ( 324 , 310 , 316 ) are referred to throughout this disclosure as “transmitter” or “transmission” components, they may actually be transceiver components.
  • wireless antenna and solar panel features of this embodiment is that installation of the rail line sensing and safety system 2 is much easier than if, for example, wired connections had to be run from the remote module to the control module or from a power source to the remote module. This wireless and solar powered installation is especially useful in remote locations where currently, installing rail sensing systems is cost prohibitive due to lack of power and interface infrastructure.
  • the wireless installation is often preferred, in certain instances, it may be desirable to install a “wired” version of the rail line sensing and safety system 2 .
  • This wired version may be preferable in certain environments or circumstances where the wireless space is “noisy” or where other obstructions may attenuate a wireless signal or link.
  • the wireless radio links 14 (the wireless radio transmitter 324 and the wireless radio transceiver 405 are replaced by wired connections, for example, utilizing a twisted wire pair and differential drivers, such as EIA-485.
  • the solar panels 312 and battery packs 322 on the utility pole 308 may be eliminated, and instead, DC power may be fed to the remote modules and detection modules through the wired connection from the control module, for example, utilizing a wire pair as the wired connection.
  • the power supply at the control module may still include solar panels and battery packs, or may include a more permanent power supply from a power generator.
  • the remote module 6 may also utilize power saving features.
  • the remote module 6 may operate in a mode whereby processing circuitry, for example circuitry included on control board 307 , is at times put to “sleep.” Because the wireless transmitter 324 in the remote module 6 has sufficient built-in intelligence to maintain a wireless link without requiring constant transmission and processing of substantive signals about vehicles, the processing circuitry in the remote module 6 may sleep when there is inactivity in the system. The wireless link is maintained autonomously while the processing circuitry is powered down. If the remote module 6 needs to communicate substantively with the control module 8 , for example with a status update or a detection of a vehicle on the rail, the processing circuitry in the remote module 6 may be signaled to “wake up.”
  • FIGS. 21 and 22 show the installation location of the main remote module subcomponents (connection box 306 and utility pole 308 ) in relation to a rail line 11 , a detection module 4 and each other.
  • the connection box 306 and utility pole 308 are each located a distance 330 , 332 (respectively) away from the center line of the rail 334 in a perpendicular direction to the center line 334 . Distances 330 and 332 may vary.
  • the utility pole 308 may be installed a distance away from other remote module components (located in the connection box 306 near the rail 11 ) if, for example, there is not enough space near the rail 11 to install the utility pole 308 , with its antenna, battery packs and a solar panels.
  • connection box 306 is located a distance 330 of approximately 8 feet from the rail, and the utility pole 308 is located a distance 332 of approximately 25 feet from the rail.
  • connection box 306 and the utility pole 308 are installed at approximately a distance 9 (see FIGS. 1 and 21 ) down the track from the centerline 7 between the two safety devices 10 , approximately the same distance 9 at which the detection modules are installed.
  • This distance is typically between 3,800 feet and 4,500, although other distances may allow the system modules to function properly.
  • connection box 306 and the utility pole 308 are connected by an underground conduit 339 .
  • the conduit may run in a variety of directions, angles and depths.
  • the conduit may be formed from a variety of materials such as metal, plastic and PVC. Furthermore, the conduit may be formed from a single piece of material, or from several segments joined together. In the example shown in FIG. 22 , the conduit starts at the connection box 306 and extends, by a PVC segment 340 , vertically downward below the line of the ground 350 . At approximately a depth of 3 to 4 feet, PVC segment 340 connects by a 90 degree elbow 346 to another PVC segment 342 . PVC segment 342 runs horizontally toward the utility pole 308 , and once it reaches the utility pole 308 , it connects by a 90 degree elbow 347 to another PVC segment 344 . PVC segment 344 runs vertically upward and meets the utility pole 308 at its base.
  • PVC segment 340 runs vertically upward and meets the utility pole 308 at its base.
  • FIG. 23 shows the control module (CM) 8 , the central control center for the rail line sensing and safety system 2 .
  • the main purpose of this module is to process signals transmitted from the remote module's and then control a safety device 10 , either directly (see FIG. 24 ) or indirectly (see FIG. 23 ) as a backup or supplement to an existing sensing and safety system (ESSS).
  • the rail line sensing and safety system 2 contains only one control module, but it may contain more than one, for example, one for each side of the safety device 10 . Although the following discussion refers to a single control module, it should be understood that there could be more than one.
  • At least one remote module 6 is located down the track on each side of the control module 8 .
  • the signals sent by the remote modules 6 are typically received by the control module 8 from opposite directions.
  • the rail line sensing and safety system 2 typically utilizes two directional antennas so each can be pointed directly toward its associated remote module 6 .
  • the control module 8 is comprised of at least two radio transceiver antennas 402 , typically one to receive signals from each remote module 6 located on opposite sides of the safety device 10 .
  • the control module 8 further comprises a wireless transceiver circuit 404 , a signal and data processing circuit 406 , a monitoring and control module 408 , a safety system interface 410 , and a power supply 412 .
  • the wireless transceiver circuit 404 further contains a splitter/combiner that combines (or selects) the signals from (or between) multiple radio transceiver antennas 402 , a radio transceiver such as a base FHSS radio transceiver, a communication management circuit and optionally a cellular link and a GPS module.
  • the wireless transceiver circuit 404 together with a radio transceiver antenna 402 constitutes a wireless transceiver 405 that communicates with the wireless transmitter 324 of a remote module 6 , typically to receive signals sent from the remote module 6 to the control module 8 (see FIG. 1 ).
  • the signal and data processing circuit 406 further contains a real-time clock which may have a WWV receiver for automatic time synchronization, and a data processor circuit that processes signals from the remote modules regarding vehicles traveling on the rail.
  • a real-time clock which may have a WWV receiver for automatic time synchronization
  • a data processor circuit that processes signals from the remote modules regarding vehicles traveling on the rail.
  • the monitoring and control module 408 further contains a user interface, a service interface such as a microSD slot, USB port or Ethernet port, a configuration management module and a data and event logging module.
  • the data and event logging module may log system information and diagnostic about remote modules as well as the control module itself.
  • the power supply 412 may contain power handling circuitry including a temperature compensated circuit for transferring power from solar panels to a rechargeable battery.
  • the control module 8 receives vehicle detection events from the remote modules 6 which include time-stamped track identification, and information about the presence, speed, and direction of vehicles traveling on the rail. Detection events are generated by the detection modules and remote modules at the start and end of a vehicle traveling on the rail, and the remote modules 6 transmit these detection events as signals to the control module 8 . Alternatively, the detection modules and remote modules may generate events and transmit signals with data for each discrete axle of the vehicle.
  • the control module data processor circuit 406 analyzes and validates incoming detection events and determines whether to generate a signal to a safety device (either directly or indirectly), such as a signal to lower a gate or activate an alarm (see FIG. 23 ).
  • the control module data processor circuit 406 also may contain fault detection functionalities whereby it recognizes and logs anomalous combinations of events which may or may not indicate an error or other failure in the rail line sensing and safety system 2 . For example, if the control module detects an outbound vehicle (at the detection module on one side of the safety device) with no associated inbound detection (at the detection module on the other side of the safety device), an error or a “fault” may exist in the system.
  • the rail line sensing and safety system 2 may also incorporate this fault detection functionality at the sensor level.
  • the signals detected from one of the sensors inside a detection module package is compared to the signals detected from the other sensor inside the same detection module package.
  • Circuitry located inside the detection module, the remote module, the control module or some combination of these compares the signals from each of the sensors within a detection module package and recognizes and logs anomalous combinations of events. For example, if one of the sensors within a detection module package is indicating a nearby, large, fast-moving object and the other sensor in the same package is outputting no signal, an error or a “fault” may exist in detection module package or in the system.
  • control module 8 is mounted inside an existing control bungalow 3 (see FIGS. 1 and 23 ) located on either side of a safety device 10 (for example, crossing gates).
  • a safety device 10 for example, crossing gates.
  • One benefit of this type of mounting is that installation is easy because no additional housings need to be built to contain the control modules.
  • the existing power source inside the control bungalow 3 may feed power to the control module 8 .
  • the existing power source may, for example, come from the existing sensing and safety system.
  • the control module 8 may contain its own power module 420 .
  • Power module 420 may contain solar panels, battery packs or both. The solar panels may be mounted on a pole, similar to the setup of the utility pole 308 or the remote module 6 . The same pole may also support the radio transceiver antennas 402 .
  • the control module 8 and/or the remote module 6 may also utilize power saving features. For example, because the wireless transceiver (in the control module 8 ) and/or the wireless transmitter (in the remote module 6 ) may draw a large amount of current, the control module 8 and/or the remote module 6 may operate in a mode where the transceiver (in the control module 8 ) and/or the wireless transmitter (in the remote module 6 ) is normally powered down (“sleep mode”) and where the transceiver and/or transmitter are “woken up” and synchronize each time a vehicle is detected.
  • the control module 8 and/or the remote module 6 may operate in a mode where the transceiver (in the control module 8 ) and/or the wireless transmitter (in the remote module 6 ) is normally powered down (“sleep mode”) and where the transceiver and/or transmitter are “woken up” and synchronize each time a vehicle is detected.
  • the control module 8 and/or the remote module 6 may operate in a mode where the wireless transceiver and/or wireless transmitter are operational (“awake”) at all times.
  • control module 8 and/or the remote module 6 may utilize is a mode of operation where the control module 8 and/or the remote module 6 puts its main control processor to “sleep.” Because the wireless transceiver (in the control module 8 ) and/or the wireless transmitter (in the remote module 6 ) have sufficient built-in intelligence to maintain a wireless link without requiring constant transmission and processing of substantive signals about vehicles, the main control processor in the control module 8 and/or the remote module 6 may sleep when there is inactivity in the system. The wireless link is maintained autonomously while the main processor is powered down.
  • the remote module 6 can wake up its own processor and/or signal to the control module 8 , through the wireless radio link, to wake up its processor.
  • an external system e.g., the rail line sensing and safety system 2 of FIG. 1
  • an existing sensing and safety system (ESSS) 414 .
  • the control module 8 may interface with the card racks that are currently available inside the existing control bungalow 3 .
  • the control module may plug into existing auxiliary inputs of the existing sensing and safety system.
  • the backup/supplemental system will provide an input signal to lower the gates, and then the existing sensing and safety system may activate and control the gates.
  • the rail line sensing and safety system 2 is installed as a primary control to a safety device 10 that may include gates, bells, lights, etc.
  • the control module 8 interfaces directly with the safety device 10 , whereby the control module 8 interfaces with the safety device 10 such that the control module 8 instructs the safety device 10 to engage.
  • the control module 8 may directly instruct the safety system 10 to lower its gates.
  • the rail line sensing and safety system 2 may have a single detection module 4 mounted a distance down the rail on each side of the safety device 10 . Furthermore, as explained above, the rail line sensing and safety system 2 may have, one per side, a single radio link, including a transmitter located in the remote module 6 and transceiver located in the control module 8 .
  • the rail line sensing and safety system 2 may be configured with added redundancy 20 .
  • the added redundancy 20 may consist of at least one additional detection module 22 mounted a distance down the rail 11 on each side of the safety device 10 , such that each side has at least 2 detection modules 4 , 22 .
  • the added redundancy 20 may consist of at least one additional radio link 24 (transmitter and transceiver) on each side of the safety device 10 .
  • Each redundant radio link may operate on a different frequency than the initial radio link.
  • the redundancy 20 is portrayed and explained as only one additional detection module per side and one additional radio link per side, it should be understood that the redundancy could be increased to include more than one detection module per side and more than one radio link per side. Additionally, the redundancy could include duplicates of other parts of the rail line sensing and safety system 2 , to further enhance the reliable detection of light, fast-moving vehicles.
  • the redundancy 20 may be especially important if the rail line sensing and safety system 2 is installed as the primary control to a safety device 10 , as shown in FIG. 24 and as explained above.
  • the rail line sensing and safety system 2 replaces an existing sensing and safety system completely or is installed instead of a more expensive system. Because no other sensing and safety system is installed, the redundancy 20 , importantly, enhances the reliability of the detection modules and the radio links, such that the safety device 10 activates when a vehicle travels on the rail past the detection modules.
  • the redundancy 20 may be especially preferred when the rail line sensing and safety system 2 is installed as the primary control to a safety device 10 , it may also be used in the embodiment (shown in FIG. 23 and explained above) where the rail line sensing and safety system 2 is installed as a backup or a supplement to an existing sensing and safety system. In this setup, the redundancy 20 acts as an additional layer of backup.
  • the rail line sensing and safety system 2 Regardless of whether the rail line sensing and safety system 2 is configured as a primary control to a safety device, or as a backup/supplement to an existing sensing and safety system, and regardless of whether the rail line sensing and safety system 2 is configured to included redundancies, the rail line sensing and safety system 2 provides several advantages over existing/current railroad sensing and safety systems.
  • the advantages of the rail line sensing and safety system 2 over the current system can be seen by looking at how the current system in use at many railroad crossing locations detects an approaching train.
  • the current system sends an electrical signal down a rail, whereby the rail is used as a conductor for the signal to travel through.
  • the signal is shorted by a metallic wheel of the approaching train. This shorting requires that an electrical contact be made between the metallic rail and the metallic wheel.
  • the change in the signal due to this shorting is then processed by the system to determine if a train is present, and if so, the system signals the crossing gates to lower.
  • the rated speed at which it can operate i.e. at which trains can travel
  • the current system requires this lower speed because, at a lower speed, the chances are higher of establishing the required electrical connection between the wheel and the rail.
  • the train wheels may lose contact with the rail for longer periods as the wheels travel over minute hills and valleys (natural variations) in the rail.
  • the rail line sensing and safety system 2 does not suffer from the disadvantages of the current system. Interference with an electrical connection between the wheel and the rail is not an issue in the rail line sensing and safety system because the rail line sensing and safety system may use an advanced induction proximity sensor. This proximity sensor does not rely on the rail as a conductor and operates reliably even if the rail is contaminated. Therefore, by using the rail line sensing and safety system, the vehicles traveling on the rail need not carry additional empty cars nor limit their speed.
  • FIG. 25 shows a schematic view of an ultra-wideband (UWB) based rail line sensing and safety system. Shown in FIG. 25 is an ultra-wideband (UWB) based crossing warning enhancement (CWE) system 500 .
  • UWB ultra-wideband
  • CWE crossing warning enhancement
  • the CWE system 500 may comprise suitable components (including circuitry) for providing rail line sensing and safety.
  • the CWE system 500 may be similar rail line sensing and safety systems described above—e.g., the rail line sensing and safety system (RLSSS) 2 of FIG. 1 .
  • the CWE system 500 may be configured for using ultra-wideband (UWB) based signals/communications in conjunction with rail line sensing and safety functions, such as with respect to providing warnings to trains approaching crossings.
  • UWB ultra-wideband
  • use UWB may be desirable for various reasons, such as due to its wide frequency bandwidth, which makes UWB communications and/or signals particularly resistant to conditions associated with railway systems.
  • UWB communications and/or signals may be un-effected by the normal mechanical obstructions and interfaces that may be present in train locations, such as supporting beams and other structures normally found in a subway tunnels or other track locations.
  • UWB communications and/or signals may be used for different purposes—e.g., for communication of data, ranging (e.g., time of flight based ranging), in which precise distances may be measured, and rates of closure can be calculated, such as for collision avoidance applications, etc.
  • UWB in rail line sensing and safety systems may enhance the functions of these systems.
  • the devices of the rail line sensing and safety systems may function as backup to crossing gate system, with axle counters used to locate the train and determine its speed at that location, and sending a wireless notice to the existing crossing bungalow where the legacy system is located, and notifying it to lower the gates if it did not assert the system at the proper point.
  • the CWE system 500 of FIG. 25 use of UWB is added and/or incorporated into the sensing system, providing a redundant sensing path, which may improve the accuracy of the gate timing.
  • Such enhancement may be desirable as it may provide added protection in instances where persons (pedestrians, drivers, etc.) may ignore that gates—e.g., where somebody attempts to drive around crossing gates is if the train's arrival is delayed, as the current system is not very accurate as far as the gate timing is concerned, particularly if the train changes speed as it approaches the crossing.
  • the CWE system 500 may comprise at least one wheel detector (WD) 504 , which is substantially similar to the detection module (DM) 4 as described above, at least one detection control module (DCM) 506 , which is substantially similar to the remote module (RM) 6 as described above, and at least one signaling gateway module (SGM) 508 , which is substantially similar to the control module (CM) 8 as described above.
  • the CWE system 500 may also incorporate UWB radios (and related circuitry), which may be incorporated into the various components of the system, to provide UWB based signals and/or communications.
  • the CWE system 500 comprises a single SGM 508 (e.g., deployed in an existing crossing bungalow 503 ) and two wheel detectors and two DCMs, one of each located on each side of a safety device 510 , each substantially similar to the safety device 10 as described above.
  • the CWE systems may be arranged differently—e.g., comprising more than one SGM 508 , more wheel detectors and DCMs on one or both sides of the crossing.
  • the single SGM 508 may be configured to accept signals sent from multiple DCMs 506 .
  • the safety device 510 may comprise many types of safety and warning devices, such as crossing gates, lights, bells, visual, audio or physical warnings, and combinations thereof.
  • Each wheel detectors 504 may be connected with the closest DCM 506 , such as via wireless and/or wired connection(s) 512 .
  • each wheel detectors 504 may be connected with the closest DCM 506 via a hard-wired connection.
  • the wheel detectors 504 may be powered by the peer DCM 506 .
  • the DCMs 506 may comprise power related components, such as solar panel(s), battery pack(s), power control module(s), etc.
  • the wheel detectors 504 may be powered by other power sources—e.g., a power source located in or near the SGM 508 .
  • the CWE system 500 may provide sensing and safety functions as described above—that is, with the wheel detectors 504 , the DCMs 506 , and the SGM 508 detecting (sensing) approaching trains (e.g., train 501 in FIG. 25 operating on track 511 ) and controlling safety devices 510 in substantially similar manner as described above with respect to the rail line sensing and safety system (RLSSS) 2 .
  • the UWB radios incorporated into the train 501 , the DCMs 506 , and the SGM 508 may provide redundant sensing, as described above, to enhance performance of the systems—e.g., with respect to timing of the safety devices 510 .
  • UWB based signaling may enhance the gate timing as the range and reliability of UWB signals may allow for controlling of the opening/closing of the gate from the train adaptively—e.g., where the speed at which the train approaches the crossing would affect the timing of the gate operation on a continuous basis.
  • the processing in the SGM 508 will delay for 150 seconds (21 ⁇ 2 minutes) before triggering the crossing gates safety device 510 .
  • the 150 seconds allows for a 2 second delay in the safety device 510 response because at distance of 4,000 ft, a trains traveling at 15 mph will take ⁇ 181.8 seconds to reach the crossing.
  • a delay 150 seconds it will be ⁇ 31.8 seconds before the train arrives at crossing. If the train accelerates after passing the DCM 506 , it may reach the crossing before the gate is even actuated.
  • Continuous monitoring of the approach train speed in the DCM may allow the CWE system 500 to reduce the delay to ensure that the safety device 510 is actuated far enough in advance to properly protect the crossing. If, however, the train is of minimal length, the train wheels may clear the wheel detector 504 while the train is still accelerating, resulting in improper timing (late triggering) of the safety device.
  • UWB range measurements between the train 501 and the SGM in the bungalow 503 allows the CWE system 500 to continuously and dynamically maintain the desired 30 second advanced triggering of the safety device 510 .
  • UWB communication links between the train 501 and the CWE system 500 may allow for communication of sensing and safety related information.
  • the train may receive confirmation about gate operation, such as if the gates are lowered, if there is a vehicle there blocking the crossing, etc.
  • Such information may be conveyed to the engineer operating the locomotive, alerting the engineer that additional safety actions may be required, such as increased operation of the train whistle, or braking the train to avoid, or in the case where the train cannot stop prior to the crossing, braking to reduce the severity of collision.
  • UWB communication links between the train and the system may also be used for communication of sensing and safety related information to external applications.
  • This exported data may be configured for use with online applications.
  • data obtained based on sensing and safety related UWB communications may be utilized to notify apps such as Waze and Google Maps of what is happening at the crossings (e.g., whether the gates deployed, which direction the train is coming from, etc.). This allows the reduction of traffic congestion due to slow trains blocking railroad crossings for extended periods. Traffic may instead be diverted to routes which avoid the crossing, such as roads which have a tunnel below or a bridge above the railroad tracks.
  • such exported data may be used for safety enhancement, such as to properly equipped vehicles to enhance safety—e.g., a school bus or petroleum tank truck.
  • such exported data may be used for safety enhancement by providing warning notifications directly to an operator of a vehicle, such as indications that a train is approaching a nearby crossing, and the expected time of arrival of the train.
  • the UWB transceiver in the remote sensing DCM 506 may also be used in a radar sensing mode of operation after the UWB-equipped train engine passes as it heads for the railroad crossing.
  • the large, metallic rail cars following the train engine provide a robust radar reflection target, allow the DCM to continue measurement of the train speed (and even direction) using the Doppler effect as the trailing cars pass the DCM.
  • the UWB ranging system in the SGM 508 may not be capable of reliably completing range measurements with the UWB antenna in the train 501 until the train approaches relatively close to the crossing.
  • a secondary UWB-only sensing system e.g., similar to the DCM 506
  • auxiliary sensing location may facilitate improved accuracy of timing of the safety device 510 for short and/or slower speed trains.
  • the secondary UWB-only sensing DCM 506 may be particularly advantageous in heavily populated areas where there are significant numbers of pedestrians and/or vehicles which may be waiting at crossings, some impatiently. A delay in train arrival after initiation of signals may result in people crossing the tracks after erroneously concluding that a train is not approaching. In the event of a short train, UWB range measurements may be performed repeatedly as the train approaches, providing highly accurate and continuous measurements of the train speed and direction. This may provide more accurate triggering of the crossing safety device 510 , as well as detect train reversal. An example implementation is shown in FIG. 26 .
  • FIG. 26 shows a schematic view of another example ultra-wideband (UWB) based rail line sensing and safety system. Shown in FIG. 26 is an ultra-wideband (UWB) based crossing warning enhancement (CWE) system 600 .
  • UWB ultra-wideband
  • CWE crossing warning enhancement
  • the CWE system 600 may be substantially similar to the CWE system 500 of FIG. 25 , and may be configured to operate in substantially similar manner.
  • the CWE system 600 is modified to provide a standalone rail line sensing and safety, as described above.
  • the system comprises an outer detection site 620 and an inner detection site 606 , which may be deployed in proximity of the track.
  • the spacing between each of the crossing, the outer detection site 620 , and the inner detection site 606 may be selected or determined based on pertinent conditions or parameters—e.g., topology of the section of the track, existing structures, etc.
  • the outer detection site 620 may comprise suitable circuitry, other hardware and the like for supporting detection functions performed thereby as described herein.
  • the outer detection site 620 may comprise one or more controllers (comprising suitable circuity for, e.g., processing input, supporting communication functions, etc.), power sources (e.g., battery, solar panels, etc.), and antenna(s) (as well as suitable transceiver(s) for facilitating use of the antennas).
  • the outer detection site 620 comprises redundant vital controllers, a battery and solar panel for providing power, and two data antennas.
  • the inner detection site 606 may comprise suitable circuitry, other hardware and the like for supporting detection functions performed thereby as described herein.
  • the inner detection site 606 may comprise one or more controllers (comprising suitable circuity for, e.g., processing input, supporting communication functions, etc.), power sources (e.g., battery, solar panels, etc.), and antenna(s) (as well as suitable transceiver(s) for facilitating use of the antennas).
  • the inner detection site 606 comprises a single vital controller, a battery and solar panel for providing power, and single data antenna and a dual-channel (e.g., for ranging and data communication) antenna.
  • Vital (redundant) set of wheel sensors 604 may be installed on the track, for use in detecting approaching train (e.g., train 601 in FIG. 26 ), and may be connected to the outer detection site 620 .
  • the redundant vital controllers of the outer detection site 620 process the wheel sensor output and detect when a train is approaching the crossing as well as the speed of the train.
  • the outer detection site 620 may then take action in adaptive manner. For example, when the train is moving slowly, data from the outer detection site 620 does not trigger an immediate actuation of safety device(s) 610 at the crossing.
  • the outer detection site 620 may trigger an immediate actuation of the safety devices 610 . This may be done via a signal site 608 , with the data being communicated thereto. In this regard, the data may be communicated (relayed) via the inner detection site 606 .
  • the signal site 608 may comprise suitable circuitry, other hardware and the like for controlling operation of the safety devices (e.g., facilitating actuation thereof).
  • the signal site 608 may comprise one or more controllers (comprising suitable circuity for, e.g., processing input, supporting communication functions, etc.), power sources, and antenna(s).
  • the signal site 608 comprises a dual vital controllers (e.g., for redundancy), a battery for providing power, and two data antennas.
  • an UWB ranging measurement installation may be used for automatic adjustment of the warning time when there are drastic reductions in the speed of an approaching train.
  • the trains may be configured to support UWB communication (e.g., using suitable UWB transceiver(s) and antenna(s) deployed therein).
  • UWB ranging allows continuous high-resolution range measurements at distances greater than a quarter mile distance prior to the wayside UWB radio. By combining multiple range measurement results and the elapsed time between measurements, the resulting “delta-range” values allow determination of the train speed and direction. This additional data allows for accurate determination of the expected arrival time of a slower moving train at the grade crossing.
  • An example system for train control in accordance with the present disclosure comprises a detection control module, configured for deployment on or near rail tracks in a rail network, and signaling gateway module.
  • the detection control module comprises one or more antennas, one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas, and one or more circuits.
  • the signaling gateway module comprising one or more circuits.
  • the signaling gateway module is configured to control a safety device deployed at a crossing on a rail track, and one or both of the detection control module and the signaling gateway module are configured to communicate signals with any train-based transceiver that comes within communication range, the signals comprising ultra-wideband (UWB) signals, obtain based on at least processing of received UWB signals range measurements corresponding to a train traveling on the rail track, and generate control signals for controlling safety device based on the range measurements.
  • UWB ultra-wideband
  • the system further comprises one or more sensors attached to the rail track, wherein each sensor is configured to generate a coupling signal in response to a train traveling on the rail track, the coupling signal is communicated to the detection control module.
  • the detection control module is configured to generate one or more output signals based on coupling signals received from the one or more sensors, wherein each output signal is generated based on one or more characteristics of at least one corresponding coupling signals.
  • the safety device includes a gate.
  • one or both of the detection control module and the signaling gateway module are configured to generate at least one control signal for controlling or adjusting timing of the safety device.
  • one or both of the detection control module and the signaling gateway module are configured to determine based on the range measurements train-related information associated with the train, and generate or adjust the control signals based on the train-related information.
  • one or both of the detection control module and the signaling gateway module are configured to communicate to the train information relating to the safety device and/or operation of the safety device.
  • one or both of the detection control module and the signaling gateway module are configured to communicate to one or more vehicles approaching the crossing information relating to the safety device and/or operation of the safety device.
  • the signaling gateway module further comprises one or more antennas, and one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas, the signaling gateway module being configured to communicate with one or both of the detection control module and the safety device using wireless signals.
  • An example system for train control comprises a plurality of detection control modules configured for deployment on or near rail tracks in a rail network, with each detection control module comprising one or more antennas, one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas, and one or more circuits.
  • the plurality of detection control modules comprises at least a first detection control module and a second detection control module, with the first detection control module deployed physically closer to a crossing on a rail track than the second detection control module, the second detection control module is configured to generate in response to physical detection of a train traveling on the rail track, a detection signal, and communicate the detection signal to the first detection control module, the first detection control module is configured to communicate signals with any train-based transceiver that comes within communication range, the signals comprising ultra-wideband (UWB) signals, and obtain based on at least processing of received UWB signals range measurements corresponding to a train traveling on the rail track.
  • the range measurements and the detection signal are used in controlling a safety device deployed at the crossing.
  • the system further comprises a signaling gateway module is configured to control the safety device, and wherein the one or both of the signaling gateway module and the first detection control module are configured to generate control signals for controlling safety device based on the range measurements and the detection signal.
  • one or both of the first detection control module and the signaling gateway module are configured to generate at least of control signal for controlling or adjusting timing of the safety device.
  • one or both of the first detection control module and the signaling gateway module are configured to determine based on the range measurements train-related information associated with the train, and generate or adjust the control signals based on the train-related information.
  • the signaling gateway module further comprises one or more antennas, and one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas, the signaling gateway module being configured to communicate with one or both of the first detection control module and the safety gate using wireless signals.
  • the first detection control module is configured to communicate to the train information relating to the safety device and/or operation of the safety device.
  • the system further comprises one or more sensors attached to the rail track, wherein each sensor is configured to generate a coupling signal in response to a train traveling on the rail track, the coupling signal is communicated to the second detection control module.
  • the first detection control module is configured to the detection signal based on coupling signals received from the one or more sensors.
  • the safety device includes a gate.
  • aspects of the techniques described herein may be implemented in digital electronic circuitry, computer software, firmware, or hardware, including the structures disclosed herein and their structural equivalents, or in various combinations. Aspects of the techniques described herein may be implemented using a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the processes as described herein.
  • Each of the computer programs may have, for example, one or more sets of program instructions residing on or encoded in the non-transitory computer-readable storage medium for execution by, or to control the operation of, one or more processors of the machine or the computer.
  • the instructions may be encoded on an artificially-generated propagated signal, for example, a machine-generated electrical, optical, or electromagnetic signal that may be generated to encode information for transmission to a suitable receiver apparatus for execution by one or more processors.
  • a non-transitory computer-readable medium may be, or be included in, a non-transitory computer-readable storage device, a non-transitory computer-readable storage substrate, a random or serial access memory array or device, various combinations thereof.
  • a non-transitory computer-readable medium may or may not be a propagated signal
  • a non-transitory computer-readable medium may be a source or destination of program instructions encoded in an artificially-generated propagated signal.
  • the non-transitory computer-readable medium may also be, or be included in, one or more separate physical components or media (for example, CDs, disks, or other storage devices).
  • processors may encompass various kinds of apparatuses, devices, or machines for processing data, including by way of example a central processing unit, a microprocessor, a microcontroller, a digital-signal processor, programmable processor, a computer, a system on a chip, or various combinations thereof.
  • the processor may include special purpose logic circuitry, for example, a field programmable gate array or an application-specific integrated circuit.
  • Program instructions may be written in various programming languages, including compiled or interpreted languages, declarative or procedural languages, and may be deployed in various forms, for example as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment.
  • Program instructions may correspond to a file in a file system.
  • Program instructions may be stored in a portion of a file that holds other programs or data (for example, one or more scripts stored in a markup language document), in a dedicated file or in multiple coordinated files (for example, files that store one or more modules, sub-programs, or portions of code).
  • Program instructions may be deployed to be executed on one or more processors located at one site or distributed across multiple sites connected by a network.
  • various embodiments in accordance with the present invention may be realized in hardware, software, or a combination of hardware and software.
  • the present invention may be realized in a centralized fashion in at least one computing system, or in a distributed fashion where different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited.
  • a typical combination of hardware and software may be a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein.
  • Another typical implementation may comprise an application specific integrated circuit or chip.
  • Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

Systems and methods are provided for ultra-wideband (UWB) based rail line sensing and safety.

Description

    CLAIM OF PRIORITY
  • This patent application makes reference to, claims priority to, and claims benefit from U.S. Provisional Patent Application Ser. No. 62/964,830, filed on Jan. 23, 2020. The above identified applications is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • Aspects of the present disclosure relate to control solutions used in railway systems. More specifically, various implementations of the present disclosure relate to methods and systems for ultra-wideband (UWB) based rail line sensing and safety.
  • BACKGROUND
  • Various issues may exist with conventional solutions for controlling operation of systems and devices used for managing train crossings. Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of ordinary skill in the art, through comparison of such systems with some aspects of the present disclosure as set forth in the remainder of the present application with reference to the drawings.
  • BRIEF SUMMARY
  • System and methods are provided for ultra-wideband (UWB) based rail line sensing and safety, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
  • These and other advantages, aspects and novel features of the present disclosure, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a bird's eye schematic view of a rail line sensing and safety system.
  • FIG. 2 shows a bird's eye schematic view of a rail line sensing and safety system.
  • FIG. 3 shows an angled top view of a sensing device, also referred to as a detection module.
  • FIG. 4 shows a bird's eye schematic view of a detection module.
  • FIG. 5 shows an exploded, angled side view of a detection module.
  • FIG. 6 shows an angled top view of a detection module.
  • FIG. 7 shows an angled top view of a detection module, mounted to a rail.
  • FIG. 8 shows a cross-sectional side view of a detection module, mounted to a rail.
  • FIG. 9 shows a bird's eye view of a detection module, mounted to a rail.
  • FIG. 10 shows an exploded side view of a mounting system for a detection module.
  • FIG. 11 shows an exploded, angled top view of a mounting system for a detection module.
  • FIG. 12 shows an angled top view of a detection module and a mounting system.
  • FIG. 13 shows an angled top view of a detection module, mounted to a rail.
  • FIG. 14 shows a circuit diagram of circuitry that may be associated with sensors located inside a detection module.
  • FIG. 15 shows a sinewave that may be produced by an oscillator that may be part of the circuitry associated with sensors located inside a detection module.
  • FIG. 16 shows a timing relationship that may result between a voltage in the circuitry, associated with sensors located inside a detection module, and one of the circuitry's output pulses.
  • FIG. 17 shows a timing relationship that may result between a voltage in the circuitry, associated with sensors located inside a detection module, and one of the circuitry's output pulses.
  • FIG. 18 shows output pulses that may be generated by circuitry associated with sensors located inside a detection module.
  • FIG. 19A shows a block diagram of a remote module.
  • FIG. 19B shows a block diagram of a remote module.
  • FIG. 20 shows a block diagram of a remote module in relation to a detection module and a rail.
  • FIG. 21 shows the installation location of at least some subcomponents of a remote module.
  • FIG. 22 shows the installation location of at least some subcomponents of a remote module.
  • FIG. 23 shows a block diagram of a control module.
  • FIG. 24 shows a block diagram of a control module.
  • FIG. 25 shows a schematic view of an ultra-wideband (UWB) based rail line sensing and safety system.
  • FIG. 26 shows a schematic view of another example ultra-wideband (UWB) based rail line sensing and safety system.
  • DETAILED DESCRIPTION
  • As utilized herein the terms “circuits” and “circuitry” refer to physical electronic components (e.g., hardware), and any software and/or firmware (“code”) that may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware. As used herein, for example, a particular processor and memory (e.g., a volatile or non-volatile memory device, a general computer-readable medium, etc.) may comprise a first “circuit” when executing a first one or more lines of code and may comprise a second “circuit” when executing a second one or more lines of code. Additionally, a circuit may comprise analog and/or digital circuitry. Such circuitry may, for example, operate on analog and/or digital signals. It should be understood that a circuit may be in a single device or chip, on a single motherboard, in a single chassis, in a plurality of enclosures at a single geographical location, in a plurality of enclosures distributed over a plurality of geographical locations, etc. Similarly, the term “module” may, for example, refer to physical electronic components (e.g., hardware) and any software and/or firmware (“code”) that may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware.
  • As utilized herein, circuitry or module is “operable” to perform a function whenever the circuitry or module comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled or not enabled (e.g., by a user-configurable setting, factory trim, etc.).
  • As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. In other words, “x and/or y” means “one or both of x and y.” As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. In other words, “x, y and/or z” means “one or more of x, y, and z.” As utilized herein, the term “exemplary” means serving as a non-limiting example, instance, or illustration. As utilized herein, the terms “for example” and “e.g.” set off lists of one or more non-limiting examples, instances, or illustrations.
  • Rail lines, such as railroads for trains, create safety concerns where they intersect with roads, other rail lines or other paths of travel. These intersections (crossings) are notorious for collisions between vehicles. Various types of safety devices (for example, lights and crossing gates) are used to warn approaching vehicles of a potential collision. In this regard, safety devices are also referred by the Federal Railway Administration as a “crossing warning system”. However, current systems for sensing an approaching train and activating a safety device are not sufficiently reliable under certain operating conditions.
  • The following disclosure describes a rail line sensing and safety system adapted to reliably sense the presence, as well as the direction and speed, of vehicles, including high-speed vehicles, traveling on a rail line. The rail line sensing and safety system then indicates whether a safety device, such as crossing gates, lights, bells, visual, audio or physical warnings, and combinations thereof, should be activated.
  • In one embodiment, the rail line sensing and safety system comprises at least one sensing device (also referred to as a detection module) for a rail line. The sensing device in turn comprises: (1) a first sensor capable of detecting a vehicle traveling on the rail line and signaling a first detection event; (2) a second sensor capable of detecting the vehicle traveling on the rail line and signaling a second detection event, wherein the second sensor is located a fixed distance away from the first sensor; (3) electrical circuitry that accepts signals from the two sensors; and (4) electrical connections that electrically connect the two sensors and the electrical circuitry.
  • In one example of the sensing device, the first sensor and the second sensor may be inductive sensors, each sensor comprising wire wound on a ferrite core, and wherein the wire is Litz Wire, and wherein each sensor is capable of generating a magnetic field that extends a distance above the sensor, and wherein the electrical circuitry is capable of detecting an interruption in the magnetic field of either the first sensor, the second sensor, or both. The ferrite core may be, for example, a PQ-style ferrite core.
  • In another example of the sensing device, the first sensor and the second sensor may comprise a coil of wire operable to inductively couple to at least one part of the vehicle traveling on the rail line, and wherein the electrical circuitry is configured to generate, for the first sensor, a first coupling signal and a first output pulse signal, the magnitude of the first coupling signal being based on the amount of inductive coupling between the coil of wire of the first sensor and the vehicle, the first output pulse signal being an output pulse triggered in response to the first coupling signal indicating that the amount of inductive coupling between the coil of wire of the first sensor and the vehicle is approximately at a maximum, and wherein the electrical circuitry is configured to generate, for the second sensor, a second coupling signal and a second output pulse signal, the magnitude of the second coupling signal being based on the amount of inductive coupling between the coil of wire of the second sensor and the vehicle, the second output pulse signal being an output pulse triggered in response to the second coupling signal indicating that the amount of inductive coupling between the coil of wire of the second sensor and the vehicle is approximately at a maximum.
  • In this example, as the vehicle gets closer to the sensor's coil of wire, the amount of inductive coupling between the coil of wire and the vehicle increases and the Q factor of the coil of wire decreases, and wherein the magnitude of the coupling signal increases when the amount of inductive coupling between the coil of wire and the vehicle increases.
  • In this example, the first output pulse signal generated by the circuitry for the first sensor corresponds to the signaling of the first detection event, and the second output pulse signal generated by the circuitry for the second sensor corresponds to the signaling of the second detection event.
  • In this example, the electrical circuitry may comprise, for each of the first sensor and the second sensor, a peak-and-hold detector that is operable to detect a peak in the magnitude of the coupling signal, and trigger the output pulse signal when the peak in the magnitude of the coupling signal is detected. The electrical circuitry may comprise, for each of the first sensor and the second sensor, a capacitor located between the wire carrying the coupling signal and the peak-and-hold detector, and wherein the capacitor removes a DC component of the coupling signal, allowing only an AC component of the coupling signal to pass through to the peak-and-hold detector, and wherein the capacitor ensures that static DC-signal drift in the coupling signal is not introduced to the peak-and-hold detector.
  • In this example, the electrical circuitry may comprise, for each of the first sensor and the second sensor, an amplifier operable to amplify the coupling signal, the amplifier comprising a feedback path having a Zener diode to produce a logarithmic transfer characteristic of the amplifier such that the amplifier is capable of accurately handling the coupling signal regardless of whether its magnitude is large or small. The electrical circuitry may also comprise, for each of the first sensor and the second sensor, a comparator operable to terminate the output pulse when the magnitude of the coupling signal falls from a peak magnitude to below a threshold value. The electrical circuitry may also be operable to detect an error or a fault in the electrical circuitry and to generate an error signal when the error or fault is detected.
  • In another example of the sensing device, the sensing device further comprises a sensor package that houses at least the two sensors, the electrical circuitry and the electrical connections, wherein the sensor package includes an upper casing and a lower casing such that when the two casings are affixed together, a cavity is defined between them, wherein the sensor package includes an attachment device for attaching the sensor package to the rail line.
  • In this example, the attachment device may be an energy absorbing mounting system comprised of: (1) a clamp assembly for attaching the sensor package to the rail line; (2) aluminum shims and vibration absorption pads disposed between the sensor package and the clamp assembly, wherein the vibration absorption pads are composed of rubber or an elastomeric material or other vibration absorbing material; (3) cap screws that run vertically through the sensor package, the aluminum shims, the vibration absorption pads, and into the clamp assembly, wherein the cap screws apply clamping force to attach the sensor package to the rest of the attachment device and to hold the parts of the attachment device together; and (4) lock pins that are inserted horizontally into the side of the sensor package to prevent the cap screws from rotating.
  • In another example of the sensing device, the electrical circuitry of the sensing device may include a signal processor. The signal processor may be programmed to calculate the direction, speed or both of the vehicle traveling on the rail line by detecting the order of the first detection event in relation to the second detection event, and measuring the time period between the detection events.
  • In another example of the sensing device, the sensing device may further comprise at least one additional sensor capable of detecting the vehicle traveling on the rail line and signaling at least one additional detection event, wherein the electrical circuitry also accepts signals from the at least one additional sensor, wherein the electrical connections also electrically connect the at least one additional sensor.
  • In one embodiment of the rail line sensing and safety system, the system comprises: (1) at least one sensing device for a rail line according to claim 1, wherein each sensing device outputs one or more signals that indicate at least one of the presence, direction and speed of a vehicle traveling on the rail line; (2) at least one remote module that accepts signals outputted by at least one of the sensing devices, wherein the remote module processes signals and transmits one or more signals, wherein the remote module is located near the sensing device from which it accepts signals; and (3) a control module that accepts signals outputted by at least one of the remote modules, wherein the control module performs operations based on signals and outputs one or more signals, wherein the signals outputted by the control module indicate, among other things, whether one or more safety devices should be activated, the safety devices being lights, gates, bells, visual, audio or physical warnings, and combinations thereof, wherein the control module and the safety devices are located near an intersection of a rail line and a road, a second rail line, or other path of travel.
  • In one example, the rail line sensing and safety system further comprises one or more solar panels electrically connected to one or more devices or modules, including the sensing device, the remote module and the control module; and one or more battery packs electrically connected to one or more devices or modules, including the sensing device, the remote module and the control module.
  • In another example of the rail line sensing and safety system, the signals outputted by the control module are sent directly to the one or more safety devices, and wherein the rail line sensing and safety system provides primary control signals for the safety devices. In this example, the rail line sensing and safety system may further comprise at least one backup sensing device, wherein at least one sensing device located on either side of the safety devices is backed up, as a form of redundancy, by the at least one backup sensing device, wherein the backup sensing device is located a distance away from the sensing device that it backs up, wherein the backup sensing device outputs signals that indicate at least one of the presence, direction and speed of a vehicle traveling on the rail line.
  • In another example of the rail line sensing and safety system, the system is adapted to be a supplemental or backup system to a separate existing system, wherein the signals outputted by the control module are sent to the existing system, and wherein the existing system controls one or more safety devices. The existing system may attempt to detect the vehicle traveling on the rail line by sending one or more electrical signals down one or more rails of the rail line, whereby the rail operates as a conductor for the one or more signals to travel through. In this example, the rail line sensing and safety system may further comprising at least one backup sensing device, wherein at least one sensing device located on either side of the safety devices is backed up, as a form of redundancy, by the at least one backup sensing device, wherein the backup sensing device is located a distance away from the sensing device that it backs up, wherein the backup sensing device outputs signals that indicate at least one of the presence, direction and speed of a vehicle traveling on the rail line.
  • In another example of the rail line sensing and safety system, the system may further comprise at least one sensor that monitors health of at least one device or module in the system, including the sensing device and the remote module, wherein the signals transmitted by the remote module and sent to the control module periodically include information regarding health of at least one device or module, wherein the control module is adapted to accept signals and information regarding health of devices or modules.
  • In another example of the rail line sensing and safety system, the control module may include computing equipment capable of data logging and self-diagnostics. Additionally, the system may further comprise a display that is part of the control module, wherein the display conveys system diagnostics and status indicators.
  • In another example of the rail line sensing and safety system, the remote module may transmit one or more signals using a frequency hopping radio. Alternatively, the remote module may transmit one or more signals using a cellular network. Alternatively, the remote module may transmit one or more signals using a licensed frequency.
  • In another example of the rail line sensing and safety system, the sensing device may be located a distance away from the one or more safety devices that the sensing and safety system controls, wherein the distance is between 3,800 feet and 4,500 feet. In this regard, the distance where the sensing located may be determined and/or set based on various conditions and/or parameters associated with operation of trains on the track. For example, the distance may be proportional to the maximum allowable train speed on the track. At distance of 3,800 feet, for example, with an allowance of 5 seconds for the entire system to initiate the crossing gates, and a maximum train speed of 79 mph, the gates may initiate their warning less than 28 seconds before the train arrives (assuming constant train speed).
  • The rail industry could benefit from a system, according to this disclosure, that addresses concerns such as safety, reliability, efficiency, ease of control and cost. These concerns only increase with the introduction of high speed vehicles traveling on rail lines.
  • The following disclosure describes a rail line sensing and safety system (RLSSS) adapted to reliably sense the presence, as well as the direction and speed, of vehicles, including high-speed vehicles, traveling on a rail line. The rail line sensing and safety system then indicates whether a safety device, such as crossing gates, lights, bells, visual, audio or physical warnings, and combinations thereof, should be activated.
  • FIG. 1 shows a rail line sensing and safety system (RLSSS) 2 according to an embodiment of the disclosure. The rail line sensing and safety system 2 comprises at least one detection module (DM) 4, at least one remote module (RM) 6, and at least one control module (CM) 8. Typically, the rail line sensing and safety system 2 will include two detection modules and two remote modules, one of each located on each side of a safety device 10; however, it should be noted that the rail line sensing and safety system 2 may contain more detection modules and remote modules. Typically, the rail line sensing and safety system 2 will include a single control module 8, adapted to accept signals sent from multiple remote modules 6, however, it should be noted that the rail line sensing and safety system 2 may contain more than one control module 8. Additionally, although the following description may refer to the safety device 10 as a crossing gate or other type safety device, it should be understood that the safety device 10 may comprise many types of safety and warning devices, such as crossing gates, lights, bells, visual, audio or physical warnings, and combinations thereof.
  • The detection modules 4 are each generally connected, in close proximity, with their closest remote module 6, for example by a hard-wired connection 12. In one example, the detection module 4 is hard-wired by a short cable 12 to the remote module 6, instead of utilizing a wireless connection. One benefit of a hard-wired connection, instead of a wireless connection, is that the hard-wired connection can be used to feed power, in addition to electrical signals, to the detection modules 4. In this setup, the detection modules 4 may be powered by one or more solar panels 312, battery packs 322, and a power control module that are part of the closest remote module 6 (see FIGS. 19A, 19B and 20). Alternatively, in this setup, the detection modules 4 may be powered by a power source located in or near the control module 8, provided that the wireless link 14 is replaced by a wired connection.
  • In operation, the detection module 4 detects a vehicle traveling on the rail 11 and sends one or more signals, for example, by a wired communication link 12, to a nearby remote module 6. The remote module 6 contains circuitry that processes signals received from the detection module 4. The remote module 6 then transmits one or more signals to the control module 8, for example by a radio link 14. The remote module may also detect the direction of movement of the vehicle traveling on the rail. In this regard, a vehicle moving away from the crossing is not cause to initiate the warning devices, whereas one moving towards the crossing is cause to initiate a warning, at the appropriate time based upon the speed of the approach. The processing to determine direction may be calculated elsewhere, as explained below. In some installations, the connection between the remote modules 6 and the control module 8 may be by a wired connection instead of a radio link. The control module 8 also operates in communication, for example by a wired communication link 16, with a safety device 10, either directly or indirectly as a backup or supplement to an existing sensing and safety system (ESSS).
  • The detection modules 4 are mounted a distance 9 down the track from the centerline 7 between the two safety devices 10. This distance is typically between 3,800 feet and 4,500 feet, although other distances may allow the detection modules 4 to function properly. In general, the greater the distance 9, the more time is allowed for transmission of the wireless communications, and more transmission time provides additional operating margin to be sure that, after the vehicle passes a detection module 4, the safety device 10 then engages before (for example, approximately 30 seconds in advance) the vehicle traveling on the rail reaches the safety device 10. In this regard, the time for transmission of wireless communications may not be a limiting factor. The distance 9 may be necessary to provide sufficient advance warning by the safety devices 10. For example, the Federal Railway Administration requires the crossing warning system to indicate the approach of a train at least 20 seconds prior to the train's arrival at the crossing. Thus, detection of the train must happen more than 20 seconds prior to its arrival to allow for detection and processing delays, as well as the response time of the crossing warning device(s). The maximum speed of an approaching train and the processing time determines the minimum allowable distance. As one example, the nominal distance of 4,000 feet has been tested and has proved to offer a beneficial operating margin for train speeds no greater than 80 mph.
  • The remote modules 6 are generally installed at the same distance 9 down the track that the detection modules 4 are installed, although the installation location of the remote modules 6 may vary.
  • FIGS. 3-6 show a sensing device, also referred to as a detection module (DM) 4, according to the disclosure. The detection module 4 is designed to reliably detect if a wheel, for example, of a rail vehicle has passed over a specific location on a rail, and if so the detection module 4 may determine the direction and speed at which the vehicle was traveling. It is also possible that the detection module 4 may be configured to detect the presence of another part of a rail vehicle instead of a wheel, for example an axle.
  • The detection module 4 is comprised of a sensor package 114, two discreet magnetic or inductive sensors 102, signal processing circuitry 104 located near the sensors, a mounting system 106, and a wire conduit 107 and wire hole 108 to channel wires out of the sensor package 114. Sensor package 114 includes an upper casing 112 and a lower casing 110 that when affixed together, create a cavity between the two casings 112, 110. Sensor package 114 houses, inside this cavity, the signal processing circuitry 104 and the two sensors 102, along with any hardware required to mount the sensors 102 inside the package 114, such as brackets, gaskets, screws, washers, etc. Optionally, the sensor package 114 may house other standard components such as an analog-to-digital converter.
  • The two discrete sensors 102 of the detection module 4 are mounted, inside the package 114, at a fixed spacing 116 from each other (see FIGS. 4 and 5). This spacing 116 allows the two sensors 102 and related circuitry to sense time-separated detection events, allowing for the calculation of the speed and direction of a passing rail vehicle. While the following descriptions discuss only two sensors per detection module, it should be understood that a detection module 4 (and its package 114) could contain more than two sensors 102, sometimes referred to as a “sensor array”. Additionally, although this disclosure refers separately to sensors 102 and circuitry 104, it should be understood that there may not be a defined separating point between a sensor 102 and its associated circuitry 104. For example, the sensor 102 may include, as explain below, a coil of wire and the circuitry 104 may include a signal processing circuit, but the sensor item 102 may also include some or all of the circuit components of circuitry item 104. If sensor item 102 contains all the circuitry components of item 104 then the two items would, in effect, be one module, including the sensor item 102 and the circuitry item 104.
  • Referring to FIGS. 7-9, the detection module sensor package 114, including all of its inner components, is mounted onto a rail 11 (see also FIG. 1) utilizing a rail attachment device. The rail attachment device can be a clamp, flange, bracket, or other fastener. Preferably, the detection module sensor package 114 is attached to the rail with an energy absorbing mounting system 106. The mounting system 106 may include a clamp, flange, bracket, or other fastener for attaching the sensor package to a rail 11. In one example, this mounting system 106 clamps to the lower flange 120 of a rail 11, and suspends the detection module sensor package 114 up off the rail flange 120 a vertical distance 122.
  • FIGS. 10-11 show a more detailed example of an energy absorbing mounting system 106. The mounting system 106 may be further comprised of a clamp assembly 124, aluminum shims 126, vibration absorption pads 128, lock pins 130 and cap screws 132. The detection module sensor package 114 is mounted on top of the absorption pads 128, which are designed to absorb vibrations from the rail 11. The absorption pads 128 may be made of a variety of vibration absorbing materials, including rubber or some other elastomeric material. Lock pins 130 are inserted horizontally from the side of the package 114 into the detection module sensor package 114 and rest against the heads of the four cap screws 132. The cap screws 132 apply clamping force to the package 114 to fasten the package 114 to the rest of the mounting system 106 and to fasten the parts of the mounting system 106 together. In one example, the four cap screws 132 are not tightened conventionally, but are instead tightened to a specific rotation angle after contact is made between the sensor package 114 and the absorption pads 128. The cap screws 132 are then prevented from unscrewing by the lock pins 130 which are inserted once the mounting system 106 is assembled. The lock pins 130 key on the heads of the cap screws 132, preventing the cap screws from rotating.
  • Referring to FIGS. 7-13, once the detection module sensor package 114 has been mounted to a rail 11 using a mounting system 106, for example, the wire conduit 107 has room to freely curve in the gap that exists between the two pillars 123 of the mounting system 106. The wire conduit 107 attaches to the underside of the lower casing 110 of the package 114 at the location of the wire hole 108 (see FIGS. 5 and 10). From that point, the wire conduit 107 curves from a generally vertical downward direction to a generally horizontal direction toward the center of the railway 140. From there, a water-tight tube 142 adapted to enclosing wires attaches to the wire conduit 107. The tube 142 curves from a generally horizontal direction downward and then back on itself. Tube 142 then runs through a channel 143 created by and between rail ties 141, below the rail 11, and then away toward the nearest remote module 6. The combination of the wire hole 108 (see FIGS. 3-4), the wire conduit 107 and the tube 142 creates a path whereby wired connections may run from inside the detection module sensor package 114 out to the nearest remote module 6. Although the preceding explanation refers to specific angles and curving of the wire conduit 107 and tube 142, it should be understood that other angles, curvings, and wiring paths may work.
  • Signal processing circuitry 104 is disposed inside the detection module sensor package 114, near the sensors. It should be understood that while some processing of the signals produced by sensors 102 may be done by circuitry 104 contained in the detection module sensor package 114, all or some of the processing may be done by circuitry or firmware contained in the remote module 6. The sensors 102, in combination with circuitry generally located inside the detection module 4, detect the speed of a vehicle traveling on the rail 11 by measuring the time between sensor events. Likewise, the sensors and circuitry measure direction by looking at which sensor event occurred first. A “sensor event” refers to a signal produced by an individual sensor 102 that the circuitry, located either inside the detection module, inside the remote module, or both, determines fulfills the appropriate detection criteria, that is, the circuitry determines whether the detection event is valid.
  • Thus, in operation, when a vehicle passes at a distance above the first and second sensors 102 of a detection module 4, the presence, speed and direction of the vehicle are calculated with circuitry located within the detection module sensor package 114, within the remote module 6, or a combination of both. The detection module 4 produces and sends to the remote module 6 one or more output pulses 323 (see FIG. 20) predictably synchronized with the passing of the vehicle traveling on the rail. These output pulses 323 are produced utilizing sensors 102 and other circuitry 104 disposed inside the detection module sensor package 114. In general, a successful sequence of sensor pulses is referred to as a “transit.”
  • Detection events are generated by the detection modules 4 and/or remote modules 6 at the start and end of a vehicle passing by a detection module 4 on the rail 11, and the remote module 6 then transmits information about these detection events as signals to the control module 8. Alternatively, the detection modules 4 and remote modules 6 may generate events and transmit signals for each discrete axle of the vehicle.
  • Considering the inner workings of a detection module 4, sensors 102, can be one of several different types of proximity sensors, such as Piezo electric sensors, magnetic sensors or inductive sensors. In one embodiment of the disclosure, sensors 102 utilize active inductive sensor technology that is self-compensating and resistant to drift because it constantly resets (e.g., recalibrates) its trip threshold.
  • FIG. 14 shows a high-level circuit diagram of circuitry 203 associated with a sensor 102.
  • Circuitry 203 constitutes at least some of the total circuitry 104 that is associated with a sensor 102. Circuitry 203 includes an oscillator 202, for example a Colpitts oscillator. In general, an oscillator is an electronic circuit that produces a repetitive electronic signal, often a sine wave or a square wave. An oscillator circuit often consists of an inductor and a capacitor connected together in the form of a resonant tank. Charge flows back and forth between the capacitor's plates through the inductor, so the circuit can store electrical energy oscillating at its resonant frequency. However, there are small energy losses in the circuit, and so an amplifier compensates for those losses and supplies the power for the output signal.
  • The oscillator 202 operates in continuous wave (CW) mode, for example in the 140-180 kHz range, which is defined by characteristics of the resonant tank comprised of an inductive proximity “pickup coil” 204, an RF rectifier 208 and an automatic level control (ALC) amplifier 206. FIG. 15 shows an example of a sinewave, as illustrated by trace 240, produced by the oscillator 202. In this example, the sinewave can have a peak-to-peak voltage value of approximately 1.4 Volts and a frequency of approximately 148.8 KHz, which is close to the lower end of the range disclosed above.
  • Pickup coil 204, essentially an inductor, includes wire wound on one half of a ferrite core, a PQ-style ferrite core for example, so that an AC magnetic field generated by the coil extends outward a distance (the coils sensing area), extending above the sensor for example. In this respect, the coil may magnetically couple with nearby metallic objects. It should be understood that other core styles may be used instead of a PQ-style ferrite core. For example, a variant of a “pot core” could be used. A pot core has a magnetic structure that almost completely surrounds the winding of wire, and only small slots are present in the structure to allow wires to enter and/or exit. This magnetic structure tends to contain the magnetic field in a more controlled fashion. Other variants of pot cores that may be applicable to this implementation include ER, DS, RM, and EP cores.
  • Construction of the coil is tailored to achieve relatively high Q factor (Quality Factor), which is a measure of energy loss at the operating frequency. Pickup coil 204 preferably utilizes a special type of wire, called “Litz Wire”, to achieve high sensitivity and very low power consumption. Litz Wire is comprised of many small-diameter conductors in parallel such that the combined skin effect loss of the conductors is significantly reduced compared to the skin effect loss experienced by other types of wire. Less skin effect loss results in, among other benefits, lower power consumption. More specifically, in regards to the circuitry of the detection module 4, less skin effect loss results in “low-losses” such that the oscillator achieves a high Q resonance with minimal power. Thus, the use of Litz Wire allows the pickup coil 204 to achieve a Q factor as high as possible.
  • Because the pickup coil 204 has a high Q factor when no detection object is present in the pickup coil's sensing area, very little energy needs to be added in each oscillation cycle to sustain oscillations, and thus the micropower operation of the circuitry 203 in “Idle” state (no object detected) is very low (less than 1 milliwatt). In operation, when a metallic object, for example a wheel of a vehicle traveling on a rail 11, approaches the pickup coil 204 and intrudes the pickup coil's 204 sensing area, the energy loss of the oscillator 202 will increase because some of the energy will be coupled into the object and lost as heat. The amount of energy loss is dependent on both the magnetic properties of the intruding object, and the distance between the pickup coil 204 and the object.
  • This increased energy loss exhibits itself as a drop in the Q factor of the pickup coil 204. As the Q of the pickup coil 204 drops due to approach of an object, the magnitude (i.e. amplitude) of the oscillator's 202 oscillations starts to decrease proportionally. In response, circuit 203 utilizes an ALC loop 207, consisting of a RF rectifier 208 and an ALC amplifier 206, to ensure that just enough energy is delivered to the resonant tank of oscillator 202 to sustain oscillations of relatively constant magnitude (i.e. amplitude) for all reasonable values of Q. As the oscillation magnitude (i.e. amplitude) drops, the ALC loop tries to compensate via negative feedback action by producing a DC voltage proportional to the magnitude (i.e. amplitude) of the oscillator's 202 output, which is then amplified and used to control the operating point of the oscillator 202 by increasing the oscillator's 202 operating current. More specifically, a decrease in oscillations magnitude (i.e. amplitude) causes the DC voltage produced by the rectifier 208 to also decrease. In response, the ALC amplifier 206 increases the current through the oscillator's transistor (essentially increasing the amount of energy which is injected into the resonant tank) until the magnitude (i.e. amplitude) of oscillations is back at the predefined level (negative feedback).
  • In other words, a reduction in the pickup coil's Q-factor, caused by an intruding object is proportionally represented by an increase in the ALC's drive voltage. The closer the object is to the coil's sensing surface, the higher are the losses due to magnetic coupling, the higher the ALC control voltage will be, while the magnitude (i.e. amplitude) of the RF oscillations remains relatively constant. Therefore, output voltage of the ALC amplifier 206 can be treated as a close representation of the pickup coil's Q, and consequently, representation of the detection object's proximity. For a dynamic (moving) object, like a railcar wheel, the profile of variations in the ALC control voltage would therefore closely follow the wheel's proximity curve.
  • A capacitor 210 is typically located between the ALC control voltage (i.e. the output of amplifier 206) and amplifier 212. Capacitor 210 may act as a “DC-blocking capacitor” to the ALC control voltage such that it removes the DC component (DC offset), in whole or in part, from the AC/DC mixture, allowing only (or primarily) the AC component to pass through to amplifier 212. Thus, the capacitor 210 ensures that only (or primarily) variable signals caused by moving (dynamic) objects are passed downstream in circuitry 203, while static DC level shifts (drift) that may be caused by interference from static or slow-moving objects (for example, the sensor package or the rail) are blocked, in whole or in part. In this respect, only (or primarily) the AC component of the ALC control voltage variations, which indicates the proximity of a high-speed detection object, is amplified by amplifier 212.
  • In certain embodiments where the circuitry 203, specifically capacitor 210, filters out all or some of the DC voltage drift, this filtering feature may provide a benefit over older proximity sensors that may just compare a proximity-based voltage to a static threshold, using the threshold to determine whether an object is sufficiently close. Accounting for DC voltage drift, like the circuitry 203 does in these embodiments, may increase the accuracy and repeatability of the proximity sensing.
  • Although the previous description explains a feature whereby the circuitry 203, specifically capacitor 210, may completely filter out the DC voltage from the AC/DC mixture, it should be understood that some embodiments may allow some DC voltage to pass downstream. In these embodiments, the ability to sense the DC aspect, or at least very low frequency components, may be useful.
  • While the circuit 203 is in its “Idle” state (no object detected), the profile of the V_Q voltage 214 is a flat line, close to the circuit's virtual ground level. The threshold of comparator 216 is chosen such that the ENABLE signal 218 (i.e. the output of comparator 216) is inactive in the “Idle” state, holding the output 228 of the flip-flop 220 in a “Reset” state and the storage capacitor 222 of the peak-and-hold circuit 224 discharged.
  • In operation, the passing of a railcar wheel above the pickup coil 204 introduces a bell-shaped variation in the V_Q voltage 214. In order to provide consistent synchronization of the output pulses 323 with the top of the bell-shaped voltage curve (which coincides, for example, with a wheel's closest location), circuitry 203 utilizes a peak-and-hold detector, whereby the following sequence of events transpires in circuitry 203: (1) As soon as the V_Q voltage 214 rises significantly above the noise level of the Idle state, comparator 216 raises the ENABLE signal 218 and keeps it active until the V_Q voltage 214 falls back under the detection threshold, which occurs as the detection object recedes. (2) The active ENABLE signal 218 activates in turn the peak-and-hold circuit 224 by connecting its storage capacitor 222 to the output of the peak detector 226 in the peak-and-hold circuit 224. Also, flip-flop 220 is released from the “Reset” state (however, the state of output 228 does not change until a trigger pulse is generated by comparator 230). Differential driver 232 is also activated at this point. (3) On the rising slope of the V_Q voltage 214, the output (V_PEAK) 234 of the peak-and-hold circuit 224 follows the V_Q voltage 214 closely, with a slight lag. Comparator 230 maintains its low output state, since the V_Q voltage 214 input to the comparator 230 is always slightly above the V_PEAK 234 input.
  • (4) When the V_Q voltage 214 tops off (i.e., the top of the bell-shaped voltage curve) and begins to fall back, the peak-and-hold circuit 224 can no longer follow it and holds the maximum level that V_Q voltage 214 has reached in this detection cycle. As soon as the divergence between the falling V_Q voltage 214 and the “frozen” V_PEAK 234 becomes large enough to overcome the hysteresis of the comparator 230, the comparator's 230 output state changes, producing a trigger pulse for the flip-flop 220. (5) Flip-flop 220 then changes its output state to “high”, producing a pulse at its output 228, which is further converted to differential format by the differential driver 232. (6) This state is preserved until the V_Q voltage 214 drops below comparator's 230 detection threshold, which then terminates the flip flop's 220 output pulse and resets the circuit back into its “Idle” state, whereby circuitry 203 is ready for a next detection event. FIG. 18 shows an example of the output pulses 323 that result from the detection of a metallic object by the circuitry 203. The trace labeled 250 corresponds to one of the outputs of the differential driver 232 while the trace labeled 252 corresponds to the other output of the differential driver 232.
  • Referring to FIG. 16, there is shown an example of the timing relationship that results between the V_Q voltage 214, which is illustrated by trace 242, and one of the output pulses 323, which is illustrated by trace 244, when the sequence of events described above transpires in circuitry 203. In this example, when a metallic object passes above the pickup coil 204 at a distance of approximately two inches (2″), the start of the pulse in trace 244 coincides with the peak of the bell-shaped curve of trace 242.
  • In other words, the output pulse 323 that is generated indicates, by its starting time, the peak of the V_Q voltage 214 and, therefore, the moment at which the metallic object is closest to the sensor 102.
  • In the event that the oscillator 202 malfunctions or operates incorrectly because of a damaged inductive proximity pickup coil 204 or other defects that lead to a loss in oscillations, the voltage of the ALC loop will likely rise to the maximum or close to the maximum of the operating voltage range. The circuitry 203 can be configured to detect those instances, and when detected, circuitry 203 can be configured to force both outputs 323 from the differential driver 232 to zero (or another defined state), and generate a signal that indicates that a fault in the oscillator 202 has been detected.
  • With respect to the embodiment of circuitry 203 associated with sensor 102 illustrated by FIG. 14, the oscillator 202 can be built around a first transistor Q1 (not shown) and a voltage-controlled resistor (not shown) in the emitter path of Q1. The voltage-controlled resistor can be implemented using a second transistor Q2. The sinewave produced by the oscillator 202 is converted to DC by the RF rectifier 208 and applied to the input of the ALC amplifier 206 in such a polarity that an increase in the magnitude (i.e. amplitude) of oscillations results in a decrease in the output of the ALC amplifier 206 (V_ALC), thus reducing the conductance of the voltage-controlled resistor. Similarly, a decrease in the magnitude (i.e. amplitude) of oscillations results in an increase in the output of the ALC amplifier 206, which increases the conductance of voltage-controlled resistor. Therefore, any drop in the Q factor of the inductive proximity pickup coil 204 in response to the presence of a nearby metallic object can be compensated by the ALC loop by increasing the conductance of the voltage-controlled resistors, which reduces the emitter resistance in Q1. Since the base of Q1 can be kept at a fixed reference potential, a reduction of emitter resistance can cause the DC operating point to move such that there is an increased current draw and more energy is deposited into the resonant tank at each cycle. A thermally sensitive resistor (not shown), also referred to as a thermistor, can be used with the oscillator 202 to maintain the voltage of the ALC loop at approximately the middle of the operating voltage range during “Idle” operation.
  • Also with respect to the embodiment of circuitry 203 illustrated by FIG. 14, the amplifier 212 can be configured or be operable to have a sufficiently high gain, for example 30 dB at 25 degrees Centigrade, so that small variations in the output of the ALC amplifier 206 can be amplified by the amplifier 212 to an magnitude (i.e. amplitude) of approximately a few hundred millivolts during normal detection events. A thermistor (not shown) associated with the amplifier 212 can compensate or neutralize the effect that the thermistor in the oscillator 202 has on the overall gain of the analog track of the circuitry 203.
  • Moreover, because of the high gain of the amplifier 212, if the sensor 106 is mounted so that the wheels pass very close to the pickup coil 204, the output from the ALC amplifier 206 can cause the output of the amplifier 212 to saturate, clipping V_Q voltage 214. Such clipping could cause the generation of incorrectly positioned differential output pulses 323. To address this possible condition, a Zener diode (not shown) can be placed in a feedback path of the amplifier 212 to give it a logarithmic transfer characteristic for large-magnitude (i.e. large-amplitude) signals. As a result, a strong proximity voltage signal would be somewhat flattened at the top instead of being hard-clipped, allowing for correct operation of the follow-up peak detection. FIG. 17 shows an example of the timing relationship that results between the V_Q voltage 214, which is illustrated by trace 246, and one of the output pulses 323, which is illustrated by trace 248, when a metallic object passes above the inductive proximity pickup coil 204 at a distance of less than one inch (1″). In such instance, the logarithmic transfer characteristics of the amplifier 212 flatten the top of the V_Q voltage 214 such that the synchronization of the output pulse 323 and the V_Q voltage 214 is not exact but produces an acceptable result.
  • FIGS. 19A and 19B show the remote module (RM) 6. The primary function of the remote module 6 is to receive and process signals received from the detection module 4 and to send appropriate data and signals to the control module 8. The remote module 6 includes 2 main subcomponents, a connection box 306 that is typically located close to the tracks, and a utility pole 308 (or other similar structure or tower which elevates the antenna 310 to improve wireless propagation distances) that is typically located further away from the tracks and connected by an underground connection (see FIG. 22) to the connection box 306.
  • Referring to FIG. 19A, the connection box 306 may contain a junction box 311 and a control board 307, preferably enclosed in an environmentally sealed enclosure. Referring to FIG. 19B, the control board 307 may also be mounted, preferably within an environmentally sealed enclosure, on the utility pole 308, further away from the tracks, instead of being disposed inside a structure (for example, connection box 306) that is mounted close to the tracks.
  • The junction box 311 contains mainly adaptors and connections to create a removable connection to the detection module 4, which aids in the installation and removal of the detection module 4, for example, removal of the detection module 4 to perform track maintenance. It should be understood that although FIG. 19A shows the junction box 311 contained within a structure (for example, connection box 306) that also contains the control board 307, the connections of the junction box 311 and the junction box itself may be contained either inside the structure that houses the control board 307, outside that structure, or a combination of both. Additionally, referring to FIG. 19B, in the example where the control board 307 is mounted on the utility pole 308, the junction box 311 may be the only component located near the tracks, such that the junction box 311 is not actually contained within a separate box (for example, connection box 306) as shown in FIG. 19B, but instead the junction box 311 would stand alone as the only module near the tracks, such that it is directly connected to the utility pole 308.
  • Referring to FIG. 20, the control board 307 contains most or all of the circuitry components contained within the remote module 6. In one example, all of the circuitry components of the remote module 6 are disposed on a single circuit board. The control board 307 can contain circuitry 314 adapted for processing signals received from the detection module, a wireless radio transmitter circuit 316, a power module 318, and a monitoring and control module 320. The circuitry 314 is in connection with the detection module 4 (see FIG. 20) and further includes signal detecting and control logic, a timer, and signal processing and filtering logic. The circuitry 314 is also in communication with the radio transmitter circuit 316, and may send it vehicle presence, speed and direction information of a nearby vehicle. The radio transmitter circuit 316 is in connection with a radio transmitter antenna 310, located on the utility pole 308. The power interface 318 may be connected to power components contained on the utility pole 308, including one or more solar panels, battery packs or both. Furthermore, the power interface 318 may contain power monitoring and charging logic as well as a power supply to power the other components contained in the connection box 306 and optionally to feed power to the detection module 4. The monitoring and control module 320 further contains a service interface and a system monitoring and control unit that may communicate system information (for example, diagnostics about the detection module and the remote module) to the radio transmitter 316.
  • It should be understood that while some processing of the detection module sensor signals may be done inside the detection module sensor package 114, all or some of the processing may be done by circuitry contained in the remote module 6. Typically, the detection module produces one or more output pulses 323 predictably synchronized with passing of a vehicle on the rail. Then circuitry inside the detection module 4 or inside the remote module 6 or both computes whether the signals generated by the detection module sensors fulfill the appropriate detection criteria, that is, whether a vehicle detection event is valid. Detection events are generated by the detection modules and remote modules at the start and end of a vehicle traveling on the rail, and the remote modules transmit these detection events as signals to the control module. Alternatively, the detection modules and remote modules may generate events and transmit signals for each discrete axle of the vehicle.
  • FIG. 19A shows a utility pole 308, which includes a wireless radio transmission antenna 310, a solar panel 312, and battery packs 322. It should be understood that even though this disclosure and FIG. 19A refers to a utility “pole” 308, the utility pole 308 is actually comprised of a physical pole 309 as well as the devices that are mounted to the pole 309, such as the wireless radio transmission antenna 310, the solar panel 312, and the battery packs 322. Throughout this disclosure, the phrase “on the utility pole 308” shall be understood to mean either mounted on the physical pole 309 or located in close vicinity to the physical pole 309. Additionally, a variety of styles of physical poles may be used, such as a hinged metal pole that allows erection of the antenna and solar panel without requiring a lift truck, such that all work on the mounted components can be done at ground level.
  • The solar panel 312 derives energy from the environment, and stores that energy in the battery packs 322 or other rechargeable batteries. The battery packs 322 are enclosed in a vented enclosure that is adapted to be mounted on a pole. Furthermore, the battery packs 322 are sized for over 30 days of operation in the event the solar cell is damaged or otherwise incapacitated. Together, the solar panel 312 and the battery packs 322 provide power to the other modules that make up the remote module and detection module.
  • Referring to FIG. 20, the transmitter 324, which includes a radio transmission antenna 310 and a radio transmitter circuit 316, processes signals generated by the remote module 6 and transmits signals to control module 8 utilizing either a wired or a wireless communication. For example, a wireless communication could be established by a frequency hopping radio, transmitting at a radio frequency (RF) such as a 900 Mhz band. In another example, a wireless communication could be established using a wider cellular interface and cellular network. Frequency hopping radios are preferable for wireless communications over a distance of three miles or less. For longer distances, it may be preferable for the wireless communication to be established over licensed frequencies that allow higher power transmissions than are allowable on unlicensed frequencies. Additionally, for longer distances, the wireless communication may be established by an interface to a cellular network.
  • Transmitter 324 is mainly referred to, throughout this disclosure, as a “transmitter” because it typically operates to transmit signals. Likewise, transmission antenna 310 and transmitter circuit 316 typically operate to transmit signals. However, it should be understood that transmitter 324, transmission antenna 310 and transmitter circuit 316 may also operate to receive signals, and in this respect they may actually be transceiver components. Thus, it should be understood that although these components (324, 310, 316) are referred to throughout this disclosure as “transmitter” or “transmission” components, they may actually be transceiver components.
  • One benefit of the wireless antenna and solar panel features of this embodiment is that installation of the rail line sensing and safety system 2 is much easier than if, for example, wired connections had to be run from the remote module to the control module or from a power source to the remote module. This wireless and solar powered installation is especially useful in remote locations where currently, installing rail sensing systems is cost prohibitive due to lack of power and interface infrastructure.
  • Although the wireless installation is often preferred, in certain instances, it may be desirable to install a “wired” version of the rail line sensing and safety system 2. This wired version may be preferable in certain environments or circumstances where the wireless space is “noisy” or where other obstructions may attenuate a wireless signal or link. In this wired configuration, the wireless radio links 14 (the wireless radio transmitter 324 and the wireless radio transceiver 405 are replaced by wired connections, for example, utilizing a twisted wire pair and differential drivers, such as EIA-485. Likewise, in a wired configuration, the solar panels 312 and battery packs 322 on the utility pole 308 may be eliminated, and instead, DC power may be fed to the remote modules and detection modules through the wired connection from the control module, for example, utilizing a wire pair as the wired connection. In the wired installation, the power supply at the control module may still include solar panels and battery packs, or may include a more permanent power supply from a power generator.
  • The remote module 6 may also utilize power saving features. For example, the remote module 6 may operate in a mode whereby processing circuitry, for example circuitry included on control board 307, is at times put to “sleep.” Because the wireless transmitter 324 in the remote module 6 has sufficient built-in intelligence to maintain a wireless link without requiring constant transmission and processing of substantive signals about vehicles, the processing circuitry in the remote module 6 may sleep when there is inactivity in the system. The wireless link is maintained autonomously while the processing circuitry is powered down. If the remote module 6 needs to communicate substantively with the control module 8, for example with a status update or a detection of a vehicle on the rail, the processing circuitry in the remote module 6 may be signaled to “wake up.”
  • FIGS. 21 and 22 show the installation location of the main remote module subcomponents (connection box 306 and utility pole 308) in relation to a rail line 11, a detection module 4 and each other. The connection box 306 and utility pole 308 are each located a distance 330, 332 (respectively) away from the center line of the rail 334 in a perpendicular direction to the center line 334. Distances 330 and 332 may vary. The utility pole 308 may be installed a distance away from other remote module components (located in the connection box 306 near the rail 11) if, for example, there is not enough space near the rail 11 to install the utility pole 308, with its antenna, battery packs and a solar panels. Other factors that may determine the location of the utility pole include the need to establish a sufficient wireless link and the need for access to direct sunlight. In one example, the connection box 306 is located a distance 330 of approximately 8 feet from the rail, and the utility pole 308 is located a distance 332 of approximately 25 feet from the rail.
  • The connection box 306 and the utility pole 308 are installed at approximately a distance 9 (see FIGS. 1 and 21) down the track from the centerline 7 between the two safety devices 10, approximately the same distance 9 at which the detection modules are installed. This distance is typically between 3,800 feet and 4,500, although other distances may allow the system modules to function properly.
  • Referring to FIG. 22, the connection box 306 and the utility pole 308 are connected by an underground conduit 339. The conduit may run in a variety of directions, angles and depths.
  • Additionally, the conduit may be formed from a variety of materials such as metal, plastic and PVC. Furthermore, the conduit may be formed from a single piece of material, or from several segments joined together. In the example shown in FIG. 22, the conduit starts at the connection box 306 and extends, by a PVC segment 340, vertically downward below the line of the ground 350. At approximately a depth of 3 to 4 feet, PVC segment 340 connects by a 90 degree elbow 346 to another PVC segment 342. PVC segment 342 runs horizontally toward the utility pole 308, and once it reaches the utility pole 308, it connects by a 90 degree elbow 347 to another PVC segment 344. PVC segment 344 runs vertically upward and meets the utility pole 308 at its base.
  • FIG. 23 shows the control module (CM) 8, the central control center for the rail line sensing and safety system 2. The main purpose of this module is to process signals transmitted from the remote module's and then control a safety device 10, either directly (see FIG. 24) or indirectly (see FIG. 23) as a backup or supplement to an existing sensing and safety system (ESSS). Typically, the rail line sensing and safety system 2 contains only one control module, but it may contain more than one, for example, one for each side of the safety device 10. Although the following discussion refers to a single control module, it should be understood that there could be more than one.
  • In typical installations of this rail line sensing and safety system 2, at least one remote module 6 is located down the track on each side of the control module 8. The signals sent by the remote modules 6 are typically received by the control module 8 from opposite directions. Thus, the rail line sensing and safety system 2 typically utilizes two directional antennas so each can be pointed directly toward its associated remote module 6. For this reason, as shown in FIG. 23, the control module 8 is comprised of at least two radio transceiver antennas 402, typically one to receive signals from each remote module 6 located on opposite sides of the safety device 10.
  • The control module 8 further comprises a wireless transceiver circuit 404, a signal and data processing circuit 406, a monitoring and control module 408, a safety system interface 410, and a power supply 412. The wireless transceiver circuit 404 further contains a splitter/combiner that combines (or selects) the signals from (or between) multiple radio transceiver antennas 402, a radio transceiver such as a base FHSS radio transceiver, a communication management circuit and optionally a cellular link and a GPS module. The wireless transceiver circuit 404 together with a radio transceiver antenna 402 constitutes a wireless transceiver 405 that communicates with the wireless transmitter 324 of a remote module 6, typically to receive signals sent from the remote module 6 to the control module 8 (see FIG. 1).
  • The signal and data processing circuit 406 further contains a real-time clock which may have a WWV receiver for automatic time synchronization, and a data processor circuit that processes signals from the remote modules regarding vehicles traveling on the rail. (Note: WWV is the call sign of the United States National Institute of Standards and Technology's shortwave radio station, and WWV continuously transmits official U.S. Government frequency and time signals.) The monitoring and control module 408 further contains a user interface, a service interface such as a microSD slot, USB port or Ethernet port, a configuration management module and a data and event logging module. The data and event logging module may log system information and diagnostic about remote modules as well as the control module itself. The power supply 412 may contain power handling circuitry including a temperature compensated circuit for transferring power from solar panels to a rechargeable battery.
  • The control module 8 receives vehicle detection events from the remote modules 6 which include time-stamped track identification, and information about the presence, speed, and direction of vehicles traveling on the rail. Detection events are generated by the detection modules and remote modules at the start and end of a vehicle traveling on the rail, and the remote modules 6 transmit these detection events as signals to the control module 8. Alternatively, the detection modules and remote modules may generate events and transmit signals with data for each discrete axle of the vehicle.
  • The control module data processor circuit 406 analyzes and validates incoming detection events and determines whether to generate a signal to a safety device (either directly or indirectly), such as a signal to lower a gate or activate an alarm (see FIG. 23). The control module data processor circuit 406 also may contain fault detection functionalities whereby it recognizes and logs anomalous combinations of events which may or may not indicate an error or other failure in the rail line sensing and safety system 2. For example, if the control module detects an outbound vehicle (at the detection module on one side of the safety device) with no associated inbound detection (at the detection module on the other side of the safety device), an error or a “fault” may exist in the system.
  • The rail line sensing and safety system 2 may also incorporate this fault detection functionality at the sensor level. In this example, the signals detected from one of the sensors inside a detection module package is compared to the signals detected from the other sensor inside the same detection module package. Circuitry located inside the detection module, the remote module, the control module or some combination of these, compares the signals from each of the sensors within a detection module package and recognizes and logs anomalous combinations of events. For example, if one of the sensors within a detection module package is indicating a nearby, large, fast-moving object and the other sensor in the same package is outputting no signal, an error or a “fault” may exist in detection module package or in the system.
  • In one embodiment of the disclosure, the control module 8 is mounted inside an existing control bungalow 3 (see FIGS. 1 and 23) located on either side of a safety device 10 (for example, crossing gates). One benefit of this type of mounting is that installation is easy because no additional housings need to be built to contain the control modules. Additionally, it may be possible for the existing power source inside the control bungalow 3 to feed power to the control module 8. The existing power source may, for example, come from the existing sensing and safety system.
  • Referring to FIG. 24, if the control module 8 is unable to receive power from an existing power source, the control module may contain its own power module 420. Power module 420 may contain solar panels, battery packs or both. The solar panels may be mounted on a pole, similar to the setup of the utility pole 308 or the remote module 6. The same pole may also support the radio transceiver antennas 402.
  • The control module 8 and/or the remote module 6 may also utilize power saving features. For example, because the wireless transceiver (in the control module 8) and/or the wireless transmitter (in the remote module 6) may draw a large amount of current, the control module 8 and/or the remote module 6 may operate in a mode where the transceiver (in the control module 8) and/or the wireless transmitter (in the remote module 6) is normally powered down (“sleep mode”) and where the transceiver and/or transmitter are “woken up” and synchronize each time a vehicle is detected. However, it should be noted that if the transceiver and/or transmitter synchronization takes too long after the transceiver and/or transmitter is “woken up”, such that system integrity (i.e. there is concern that the synchronization will not complete before the vehicle reaches the safety device) becomes a concern, the control module 8 and/or the remote module 6 may operate in a mode where the wireless transceiver and/or wireless transmitter are operational (“awake”) at all times.
  • Another example of a power saving feature that the control module 8 and/or the remote module 6 may utilize is a mode of operation where the control module 8 and/or the remote module 6 puts its main control processor to “sleep.” Because the wireless transceiver (in the control module 8) and/or the wireless transmitter (in the remote module 6) have sufficient built-in intelligence to maintain a wireless link without requiring constant transmission and processing of substantive signals about vehicles, the main control processor in the control module 8 and/or the remote module 6 may sleep when there is inactivity in the system. The wireless link is maintained autonomously while the main processor is powered down. If the remote module 6 requires any substantive communication with the control module 8, such as a status update or a detection of a vehicle on the rail, it can wake up its own processor and/or signal to the control module 8, through the wireless radio link, to wake up its processor.
  • Referring to FIG. 23, in one embodiment, an external system (e.g., the rail line sensing and safety system 2 of FIG. 1) is installed as a backup or supplemental system to an existing sensing and safety system (ESSS) 414. In this embodiment, the control module 8 may interface with the card racks that are currently available inside the existing control bungalow 3. For example, the control module may plug into existing auxiliary inputs of the existing sensing and safety system. In operation, if the existing sensing and safety system either fails completely to detect an incoming train or is late in lowering the gates, the backup/supplemental system will provide an input signal to lower the gates, and then the existing sensing and safety system may activate and control the gates.
  • Referring to FIG. 24, in another embodiment, the rail line sensing and safety system 2 is installed as a primary control to a safety device 10 that may include gates, bells, lights, etc. In this embodiment, the control module 8 interfaces directly with the safety device 10, whereby the control module 8 interfaces with the safety device 10 such that the control module 8 instructs the safety device 10 to engage. For example, the control module 8 may directly instruct the safety system 10 to lower its gates.
  • As explained above, and considering FIG. 1, the rail line sensing and safety system 2 may have a single detection module 4 mounted a distance down the rail on each side of the safety device 10. Furthermore, as explained above, the rail line sensing and safety system 2 may have, one per side, a single radio link, including a transmitter located in the remote module 6 and transceiver located in the control module 8.
  • Alternatively, and considering FIG. 2, the rail line sensing and safety system 2 may be configured with added redundancy 20. The added redundancy 20 may consist of at least one additional detection module 22 mounted a distance down the rail 11 on each side of the safety device 10, such that each side has at least 2 detection modules 4, 22. Additionally, the added redundancy 20 may consist of at least one additional radio link 24 (transmitter and transceiver) on each side of the safety device 10. Each redundant radio link may operate on a different frequency than the initial radio link. Although the redundancy 20 is portrayed and explained as only one additional detection module per side and one additional radio link per side, it should be understood that the redundancy could be increased to include more than one detection module per side and more than one radio link per side. Additionally, the redundancy could include duplicates of other parts of the rail line sensing and safety system 2, to further enhance the reliable detection of light, fast-moving vehicles.
  • The redundancy 20 may be especially important if the rail line sensing and safety system 2 is installed as the primary control to a safety device 10, as shown in FIG. 24 and as explained above. In this embodiment, the rail line sensing and safety system 2 replaces an existing sensing and safety system completely or is installed instead of a more expensive system. Because no other sensing and safety system is installed, the redundancy 20, importantly, enhances the reliability of the detection modules and the radio links, such that the safety device 10 activates when a vehicle travels on the rail past the detection modules.
  • Although the redundancy 20 may be especially preferred when the rail line sensing and safety system 2 is installed as the primary control to a safety device 10, it may also be used in the embodiment (shown in FIG. 23 and explained above) where the rail line sensing and safety system 2 is installed as a backup or a supplement to an existing sensing and safety system. In this setup, the redundancy 20 acts as an additional layer of backup.
  • Regardless of whether the rail line sensing and safety system 2 is configured as a primary control to a safety device, or as a backup/supplement to an existing sensing and safety system, and regardless of whether the rail line sensing and safety system 2 is configured to included redundancies, the rail line sensing and safety system 2 provides several advantages over existing/current railroad sensing and safety systems.
  • It should be understood in regards to the following descriptions of an “existing system” or a “current system” that these current systems as described are examples of systems that the rail line sensing and safety system 2 of this disclosure may backup or supplement in the embodiment described herein where the rail line sensing and safety system 2 is configured to backup or supplement an existing sensing and safety system. Thus, the existing sensing and safety systems described in this disclosure may be similar to the current system described as follows, including the disadvantages of the current system.
  • The advantages of the rail line sensing and safety system 2 over the current system can be seen by looking at how the current system in use at many railroad crossing locations detects an approaching train. The current system sends an electrical signal down a rail, whereby the rail is used as a conductor for the signal to travel through. When a train approaches, the signal is shorted by a metallic wheel of the approaching train. This shorting requires that an electrical contact be made between the metallic rail and the metallic wheel. The change in the signal due to this shorting is then processed by the system to determine if a train is present, and if so, the system signals the crossing gates to lower.
  • There are several drawbacks to the current system that are not present if the rail line sensing and safety system is used. One drawback to the current system is that due to “interference” (for example, corrosion of the rail, weather or other environmental factors), the wheel of the train may not contact the rail with sufficient contact force to establish the required electrical connection between the wheel and the rail. In the best case scenario, this interference causes inconsistent readings in the system. In the worst case scenario, the system does not detect the approaching train and the crossing gate is never lowered, or it is lowered too late to prevent a collision with a vehicle crossing the tracks. In the current system, attempts are sometimes made to improve consistency by adding additional axles (cars) to the train to add additional electrical contacts as well as additional weight and additional contact force. However, these extra cars often travel empty, resulting in higher operating costs due to reduced fuel economy.
  • Another drawback to the current system is that the rated speed at which it can operate (i.e. at which trains can travel) is relatively low, currently limited to between 60 and 80 miles-per-hour. The current system requires this lower speed because, at a lower speed, the chances are higher of establishing the required electrical connection between the wheel and the rail. At higher train speeds, the train wheels may lose contact with the rail for longer periods as the wheels travel over minute hills and valleys (natural variations) in the rail.
  • The rail line sensing and safety system 2 does not suffer from the disadvantages of the current system. Interference with an electrical connection between the wheel and the rail is not an issue in the rail line sensing and safety system because the rail line sensing and safety system may use an advanced induction proximity sensor. This proximity sensor does not rely on the rail as a conductor and operates reliably even if the rail is contaminated. Therefore, by using the rail line sensing and safety system, the vehicles traveling on the rail need not carry additional empty cars nor limit their speed.
  • FIG. 25 shows a schematic view of an ultra-wideband (UWB) based rail line sensing and safety system. Shown in FIG. 25 is an ultra-wideband (UWB) based crossing warning enhancement (CWE) system 500.
  • The CWE system 500 may comprise suitable components (including circuitry) for providing rail line sensing and safety. In this regard, the CWE system 500 may be similar rail line sensing and safety systems described above—e.g., the rail line sensing and safety system (RLSSS) 2 of FIG. 1. However, the CWE system 500 may be configured for using ultra-wideband (UWB) based signals/communications in conjunction with rail line sensing and safety functions, such as with respect to providing warnings to trains approaching crossings. In this regard, use UWB may be desirable for various reasons, such as due to its wide frequency bandwidth, which makes UWB communications and/or signals particularly resistant to conditions associated with railway systems.
  • For example, UWB communications and/or signals may be un-effected by the normal mechanical obstructions and interfaces that may be present in train locations, such as supporting beams and other structures normally found in a subway tunnels or other track locations. Further, UWB communications and/or signals may be used for different purposes—e.g., for communication of data, ranging (e.g., time of flight based ranging), in which precise distances may be measured, and rates of closure can be calculated, such as for collision avoidance applications, etc.
  • The use of UWB in rail line sensing and safety systems may enhance the functions of these systems. For example, in the embodiments described with respect to FIGS. 1-24, the devices of the rail line sensing and safety systems may function as backup to crossing gate system, with axle counters used to locate the train and determine its speed at that location, and sending a wireless notice to the existing crossing bungalow where the legacy system is located, and notifying it to lower the gates if it did not assert the system at the proper point. In systems implemented in accordance with the present disclosure (e.g., the CWE system 500 of FIG. 25), use of UWB is added and/or incorporated into the sensing system, providing a redundant sensing path, which may improve the accuracy of the gate timing. Such enhancement (to gate timing) may be desirable as it may provide added protection in instances where persons (pedestrians, drivers, etc.) may ignore that gates—e.g., where somebody attempts to drive around crossing gates is if the train's arrival is delayed, as the current system is not very accurate as far as the gate timing is concerned, particularly if the train changes speed as it approaches the crossing.
  • In various implementations, the CWE system 500 may comprise at least one wheel detector (WD) 504, which is substantially similar to the detection module (DM) 4 as described above, at least one detection control module (DCM) 506, which is substantially similar to the remote module (RM) 6 as described above, and at least one signaling gateway module (SGM) 508, which is substantially similar to the control module (CM) 8 as described above. The CWE system 500 may also incorporate UWB radios (and related circuitry), which may be incorporated into the various components of the system, to provide UWB based signals and/or communications.
  • In the example implementation shown in FIG. 25, the CWE system 500 comprises a single SGM 508 (e.g., deployed in an existing crossing bungalow 503) and two wheel detectors and two DCMs, one of each located on each side of a safety device 510, each substantially similar to the safety device 10 as described above. However, as with the systems described with respect to the figures, above, in other implementations the CWE systems may be arranged differently—e.g., comprising more than one SGM 508, more wheel detectors and DCMs on one or both sides of the crossing. The single SGM 508 may be configured to accept signals sent from multiple DCMs 506. Additionally, although the following description may refer to the safety device 510 as a crossing gate or other type safety device, it should be understood that the safety device 510 may comprise many types of safety and warning devices, such as crossing gates, lights, bells, visual, audio or physical warnings, and combinations thereof.
  • Each wheel detectors 504 may be connected with the closest DCM 506, such as via wireless and/or wired connection(s) 512. For example, in one example implementation, each wheel detectors 504 may be connected with the closest DCM 506 via a hard-wired connection. As described above, the wheel detectors 504 may be powered by the peer DCM 506. In this regard, in some implementations, the DCMs 506 may comprise power related components, such as solar panel(s), battery pack(s), power control module(s), etc. Alternatively, the wheel detectors 504 may be powered by other power sources—e.g., a power source located in or near the SGM 508.
  • In operation, the CWE system 500 may provide sensing and safety functions as described above—that is, with the wheel detectors 504, the DCMs 506, and the SGM 508 detecting (sensing) approaching trains (e.g., train 501 in FIG. 25 operating on track 511) and controlling safety devices 510 in substantially similar manner as described above with respect to the rail line sensing and safety system (RLSSS) 2. However, in the CWE system 500, the UWB radios incorporated into the train 501, the DCMs 506, and the SGM 508 may provide redundant sensing, as described above, to enhance performance of the systems—e.g., with respect to timing of the safety devices 510.
  • Use of UWB based signaling may enhance the gate timing as the range and reliability of UWB signals may allow for controlling of the opening/closing of the gate from the train adaptively—e.g., where the speed at which the train approaches the crossing would affect the timing of the gate operation on a continuous basis.
  • For example, in an example use scenario where the train is approaching the railroad crossing slowly, such as 15 mph, and the wheel detectors are located 4,000 feet in advance of the crossing. At the current speed, the train will require three minutes to reach the crossing. If the desired actuation timing is 30 seconds prior to arrival, the processing in the SGM 508 will delay for 150 seconds (2½ minutes) before triggering the crossing gates safety device 510. In this regard, in the context of this use scenario the 150 seconds allows for a 2 second delay in the safety device 510 response because at distance of 4,000 ft, a trains traveling at 15 mph will take ˜181.8 seconds to reach the crossing. Thus, with a delay 150 seconds, it will be ˜31.8 seconds before the train arrives at crossing. If the train accelerates after passing the DCM 506, it may reach the crossing before the gate is even actuated.
  • Continuous monitoring of the approach train speed in the DCM may allow the CWE system 500 to reduce the delay to ensure that the safety device 510 is actuated far enough in advance to properly protect the crossing. If, however, the train is of minimal length, the train wheels may clear the wheel detector 504 while the train is still accelerating, resulting in improper timing (late triggering) of the safety device.
  • UWB range measurements between the train 501 and the SGM in the bungalow 503 allows the CWE system 500 to continuously and dynamically maintain the desired 30 second advanced triggering of the safety device 510.
  • In some implementations, UWB communication links between the train 501 and the CWE system 500 may allow for communication of sensing and safety related information. For example, the train may receive confirmation about gate operation, such as if the gates are lowered, if there is a vehicle there blocking the crossing, etc. Such information may be conveyed to the engineer operating the locomotive, alerting the engineer that additional safety actions may be required, such as increased operation of the train whistle, or braking the train to avoid, or in the case where the train cannot stop prior to the crossing, braking to reduce the severity of collision.
  • In some implementations, UWB communication links between the train and the system may also be used for communication of sensing and safety related information to external applications. This exported data may be configured for use with online applications. For example, data obtained based on sensing and safety related UWB communications may be utilized to notify apps such as Waze and Google Maps of what is happening at the crossings (e.g., whether the gates deployed, which direction the train is coming from, etc.). This allows the reduction of traffic congestion due to slow trains blocking railroad crossings for extended periods. Traffic may instead be diverted to routes which avoid the crossing, such as roads which have a tunnel below or a bridge above the railroad tracks. Alternatively, such exported data may be used for safety enhancement, such as to properly equipped vehicles to enhance safety—e.g., a school bus or petroleum tank truck. For example, such exported data may be used for safety enhancement by providing warning notifications directly to an operator of a vehicle, such as indications that a train is approaching a nearby crossing, and the expected time of arrival of the train.
  • The UWB transceiver in the remote sensing DCM 506 may also be used in a radar sensing mode of operation after the UWB-equipped train engine passes as it heads for the railroad crossing. The large, metallic rail cars following the train engine provide a robust radar reflection target, allow the DCM to continue measurement of the train speed (and even direction) using the Doppler effect as the trailing cars pass the DCM.
  • Because of regulatory restrictions on UWB transmitting power and/or topological conditions in the track on the approach between the DCM 506 and the crossing, the UWB ranging system in the SGM 508 may not be capable of reliably completing range measurements with the UWB antenna in the train 501 until the train approaches relatively close to the crossing. Thus, in some implementations, a secondary UWB-only sensing system (e.g., similar to the DCM 506) may be installed closer to the crossing on both approaches to the crossing. Use of such auxiliary sensing location may facilitate improved accuracy of timing of the safety device 510 for short and/or slower speed trains.
  • The secondary UWB-only sensing DCM 506 may be particularly advantageous in heavily populated areas where there are significant numbers of pedestrians and/or vehicles which may be waiting at crossings, some impatiently. A delay in train arrival after initiation of signals may result in people crossing the tracks after erroneously concluding that a train is not approaching. In the event of a short train, UWB range measurements may be performed repeatedly as the train approaches, providing highly accurate and continuous measurements of the train speed and direction. This may provide more accurate triggering of the crossing safety device 510, as well as detect train reversal. An example implementation is shown in FIG. 26.
  • FIG. 26 shows a schematic view of another example ultra-wideband (UWB) based rail line sensing and safety system. Shown in FIG. 26 is an ultra-wideband (UWB) based crossing warning enhancement (CWE) system 600.
  • The CWE system 600 may be substantially similar to the CWE system 500 of FIG. 25, and may be configured to operate in substantially similar manner. The CWE system 600, however, is modified to provide a standalone rail line sensing and safety, as described above. Specifically, in the CWE system 600 there may not be an existing sensing system. Rather, the system comprises an outer detection site 620 and an inner detection site 606, which may be deployed in proximity of the track. In this regard, the spacing between each of the crossing, the outer detection site 620, and the inner detection site 606 may be selected or determined based on pertinent conditions or parameters—e.g., topology of the section of the track, existing structures, etc.
  • The outer detection site 620 may comprise suitable circuitry, other hardware and the like for supporting detection functions performed thereby as described herein. For example, the outer detection site 620 may comprise one or more controllers (comprising suitable circuity for, e.g., processing input, supporting communication functions, etc.), power sources (e.g., battery, solar panels, etc.), and antenna(s) (as well as suitable transceiver(s) for facilitating use of the antennas). In this regard, as shown in FIG. 26, the outer detection site 620 comprises redundant vital controllers, a battery and solar panel for providing power, and two data antennas.
  • The inner detection site 606 may comprise suitable circuitry, other hardware and the like for supporting detection functions performed thereby as described herein. For example, the inner detection site 606 may comprise one or more controllers (comprising suitable circuity for, e.g., processing input, supporting communication functions, etc.), power sources (e.g., battery, solar panels, etc.), and antenna(s) (as well as suitable transceiver(s) for facilitating use of the antennas). In this regard, as shown in FIG. 26, the inner detection site 606 comprises a single vital controller, a battery and solar panel for providing power, and single data antenna and a dual-channel (e.g., for ranging and data communication) antenna.
  • Vital (redundant) set of wheel sensors 604 (e.g., axle counters) may be installed on the track, for use in detecting approaching train (e.g., train 601 in FIG. 26), and may be connected to the outer detection site 620. The redundant vital controllers of the outer detection site 620 process the wheel sensor output and detect when a train is approaching the crossing as well as the speed of the train. The outer detection site 620 may then take action in adaptive manner. For example, when the train is moving slowly, data from the outer detection site 620 does not trigger an immediate actuation of safety device(s) 610 at the crossing.
  • When it is determined based on the information relating to the approaching train (e.g., the train is moving fast) that the safety device(s) 610 need to be actuated, the outer detection site 620 may trigger an immediate actuation of the safety devices 610. This may be done via a signal site 608, with the data being communicated thereto. In this regard, the data may be communicated (relayed) via the inner detection site 606.
  • The signal site 608 may comprise suitable circuitry, other hardware and the like for controlling operation of the safety devices (e.g., facilitating actuation thereof). For example, the signal site 608 may comprise one or more controllers (comprising suitable circuity for, e.g., processing input, supporting communication functions, etc.), power sources, and antenna(s). In this regard, as shown in FIG. 26, the signal site 608 comprises a dual vital controllers (e.g., for redundancy), a battery for providing power, and two data antennas.
  • At the inner detection site 606, an UWB ranging measurement installation may be used for automatic adjustment of the warning time when there are drastic reductions in the speed of an approaching train. To that end, the trains may be configured to support UWB communication (e.g., using suitable UWB transceiver(s) and antenna(s) deployed therein). UWB ranging allows continuous high-resolution range measurements at distances greater than a quarter mile distance prior to the wayside UWB radio. By combining multiple range measurement results and the elapsed time between measurements, the resulting “delta-range” values allow determination of the train speed and direction. This additional data allows for accurate determination of the expected arrival time of a slower moving train at the grade crossing.
  • In some implementations, there may be more than one inner detection site 606 installed on the approach to the crossing to allow an extended range of UWB measurement capability.
  • An example system for train control, in accordance with the present disclosure comprises a detection control module, configured for deployment on or near rail tracks in a rail network, and signaling gateway module. The detection control module comprises one or more antennas, one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas, and one or more circuits. The signaling gateway module comprising one or more circuits. The signaling gateway module is configured to control a safety device deployed at a crossing on a rail track, and one or both of the detection control module and the signaling gateway module are configured to communicate signals with any train-based transceiver that comes within communication range, the signals comprising ultra-wideband (UWB) signals, obtain based on at least processing of received UWB signals range measurements corresponding to a train traveling on the rail track, and generate control signals for controlling safety device based on the range measurements.
  • In an example implementation, the system further comprises one or more sensors attached to the rail track, wherein each sensor is configured to generate a coupling signal in response to a train traveling on the rail track, the coupling signal is communicated to the detection control module.
  • In an example implementation, the detection control module is configured to generate one or more output signals based on coupling signals received from the one or more sensors, wherein each output signal is generated based on one or more characteristics of at least one corresponding coupling signals.
  • In an example implementation, the safety device includes a gate.
  • In an example implementation, one or both of the detection control module and the signaling gateway module are configured to generate at least one control signal for controlling or adjusting timing of the safety device.
  • In an example implementation, one or both of the detection control module and the signaling gateway module are configured to determine based on the range measurements train-related information associated with the train, and generate or adjust the control signals based on the train-related information.
  • In an example implementation, one or both of the detection control module and the signaling gateway module are configured to communicate to the train information relating to the safety device and/or operation of the safety device.
  • In an example implementation, one or both of the detection control module and the signaling gateway module are configured to communicate to one or more vehicles approaching the crossing information relating to the safety device and/or operation of the safety device.
  • In an example implementation, the signaling gateway module further comprises one or more antennas, and one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas, the signaling gateway module being configured to communicate with one or both of the detection control module and the safety device using wireless signals.
  • An example system for train control, in accordance with the present disclosure comprises a plurality of detection control modules configured for deployment on or near rail tracks in a rail network, with each detection control module comprising one or more antennas, one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas, and one or more circuits. The plurality of detection control modules comprises at least a first detection control module and a second detection control module, with the first detection control module deployed physically closer to a crossing on a rail track than the second detection control module, the second detection control module is configured to generate in response to physical detection of a train traveling on the rail track, a detection signal, and communicate the detection signal to the first detection control module, the first detection control module is configured to communicate signals with any train-based transceiver that comes within communication range, the signals comprising ultra-wideband (UWB) signals, and obtain based on at least processing of received UWB signals range measurements corresponding to a train traveling on the rail track. The range measurements and the detection signal are used in controlling a safety device deployed at the crossing.
  • In an example implementation, the system further comprises a signaling gateway module is configured to control the safety device, and wherein the one or both of the signaling gateway module and the first detection control module are configured to generate control signals for controlling safety device based on the range measurements and the detection signal.
  • In an example implementation, one or both of the first detection control module and the signaling gateway module are configured to generate at least of control signal for controlling or adjusting timing of the safety device.
  • In an example implementation, one or both of the first detection control module and the signaling gateway module are configured to determine based on the range measurements train-related information associated with the train, and generate or adjust the control signals based on the train-related information.
  • In an example implementation, the signaling gateway module further comprises one or more antennas, and one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas, the signaling gateway module being configured to communicate with one or both of the first detection control module and the safety gate using wireless signals.
  • In an example implementation, the first detection control module is configured to communicate to the train information relating to the safety device and/or operation of the safety device.
  • In an example implementation, the system further comprises one or more sensors attached to the rail track, wherein each sensor is configured to generate a coupling signal in response to a train traveling on the rail track, the coupling signal is communicated to the second detection control module.
  • In an example implementation, the first detection control module is configured to the detection signal based on coupling signals received from the one or more sensors.
  • In an example implementation, the safety device includes a gate.
  • Aspects of the techniques described herein may be implemented in digital electronic circuitry, computer software, firmware, or hardware, including the structures disclosed herein and their structural equivalents, or in various combinations. Aspects of the techniques described herein may be implemented using a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the processes as described herein.
  • Each of the computer programs may have, for example, one or more sets of program instructions residing on or encoded in the non-transitory computer-readable storage medium for execution by, or to control the operation of, one or more processors of the machine or the computer. Alternatively or in addition, the instructions may be encoded on an artificially-generated propagated signal, for example, a machine-generated electrical, optical, or electromagnetic signal that may be generated to encode information for transmission to a suitable receiver apparatus for execution by one or more processors.
  • A non-transitory computer-readable medium may be, or be included in, a non-transitory computer-readable storage device, a non-transitory computer-readable storage substrate, a random or serial access memory array or device, various combinations thereof. Moreover, while a non-transitory computer-readable medium may or may not be a propagated signal, a non-transitory computer-readable medium may be a source or destination of program instructions encoded in an artificially-generated propagated signal. The non-transitory computer-readable medium may also be, or be included in, one or more separate physical components or media (for example, CDs, disks, or other storage devices).
  • Certain techniques described in this specification may be implemented as operations performed by one or more processors on data stored on one or more computer-readable mediums or received from other sources. The term “processor” may encompass various kinds of apparatuses, devices, or machines for processing data, including by way of example a central processing unit, a microprocessor, a microcontroller, a digital-signal processor, programmable processor, a computer, a system on a chip, or various combinations thereof. The processor may include special purpose logic circuitry, for example, a field programmable gate array or an application-specific integrated circuit.
  • Program instructions (for example, a program, software, software application, script, or code) may be written in various programming languages, including compiled or interpreted languages, declarative or procedural languages, and may be deployed in various forms, for example as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment. Program instructions may correspond to a file in a file system. Program instructions may be stored in a portion of a file that holds other programs or data (for example, one or more scripts stored in a markup language document), in a dedicated file or in multiple coordinated files (for example, files that store one or more modules, sub-programs, or portions of code). Program instructions may be deployed to be executed on one or more processors located at one site or distributed across multiple sites connected by a network.
  • The present technology has now been described in such full, clear, concise and exact terms as to enable any person skilled in the art to which it pertains, to practice the same. It is to be understood that the foregoing describes preferred embodiments and examples of the present technology and that modifications may be made therein without departing from the spirit or scope of the invention as set forth in the claims. Moreover, it is also understood that the embodiments shown in the drawings, if any, and as described above are merely for illustrative purposes and not intended to limit the scope of the invention. As used in this description, the singular forms “a,” “an,” and “the” include plural reference such as “more than one” unless the context clearly dictates otherwise. Where the term “comprising” appears, it is contemplated that the terms “consisting essentially of” or “consisting of” could be used in its place to describe certain embodiments of the present technology. Further, all references cited herein are incorporated in their entireties.
  • Accordingly, various embodiments in accordance with the present invention may be realized in hardware, software, or a combination of hardware and software. The present invention may be realized in a centralized fashion in at least one computing system, or in a distributed fashion where different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein. Another typical implementation may comprise an application specific integrated circuit or chip.
  • Various embodiments in accordance with the present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
  • While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.

Claims (18)

What is claimed is:
1. A system for train control, comprising:
a detection control module configured for deployment on or near rail tracks in a rail network, the detection control module comprising:
one or more antennas;
one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas; and
one or more circuits;
signaling gateway module comprising one or more circuits;
wherein:
the signaling gateway module is configured to control a safety device deployed at a crossing on a rail track; and
one or both of the detection control module and the signaling gateway module are configured to:
communicate signals with any train-based transceiver that comes within communication range, the signals comprising ultra-wideband (UWB) signals;
obtain based on at least processing of received UWB signals range measurements corresponding to a train traveling on the rail track; and
generate control signals for controlling safety device based on the range measurements.
2. The system of claim 1, further comprising one or more sensors attached to the rail track, wherein each sensor is configured to generate a coupling signal in response to a train traveling on the rail track, the coupling signal is communicated to the detection control module.
3. The system of claim 2, the detection control module is configured to generate one or more output signals based on coupling signals received from the one or more sensors, wherein each output signal is generated based on one or more characteristics of at least one corresponding coupling signals.
4. The system of claim 1, wherein the safety device includes a gate.
5. The system of claim 1, wherein one or both of the detection control module and the signaling gateway module are configured to generate at least one control signal for controlling or adjusting timing of the safety device.
6. The system of claim 1, wherein one or both of the detection control module and the signaling gateway module are configured to:
determine based on the range measurements train-related information associated with the train; and
generate or adjust the control signals based on the train-related information.
7. The system of claim 1, wherein one or both of the detection control module and the signaling gateway module are configured to communicate to the train information relating to the safety device and/or operation of the safety device.
8. The system of claim 1, wherein one or both of the detection control module and the signaling gateway module are configured to communicate to one or more vehicles approaching the crossing information relating to the safety device and/or operation of the safety device.
9. The system of claim 1, wherein the signaling gateway module further comprises:
one or more antennas; and
one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas; and
wherein the signaling gateway module is configured to communicate with one or both of the detection control module and the safety device using wireless signals.
10. A system for train control, comprising:
a plurality of detection control modules configured for deployment on or near rail tracks in a rail network, wherein each detection control module comprises:
one or more antennas;
one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas; and
one or more circuits;
wherein:
the plurality of detection control modules comprises at least a first detection control module and a second detection control module;
the first detection control module is deployed physically closer to a crossing on a rail track than a second detection control module;
the second detection control module is configured to:
generate in response to physical detection of a train traveling on the rail track, a detection signal; and
communicate the detection signal to the first detection control module; and
the first detection control module is configured to:
communicate signals with any train-based transceiver that comes within communication range, the signals comprising ultra-wideband (UWB) signals; and
obtain based on at least processing of received UWB signals range measurements corresponding to a train traveling on the rail track; and
wherein the range measurements and the detection signal are used in controlling a safety device deployed at the crossing.
11. The system of claim 10, further comprising a signaling gateway module configured to control the safety device; and wherein the one or both of the signaling gateway module and the first detection control module are configured to generate control signals for controlling safety device based on the range measurements and the detection signal.
12. The system of claim 11, wherein one or both of the first detection control module and the signaling gateway module are configured to generate at least of control signal for controlling or adjusting timing of the safety device.
13. The system of claim 11, wherein one or both of the first detection control module and the signaling gateway module are configured to:
determine based on the range measurements train-related information associated with the train; and
generate or adjust the control signals based on the train-related information.
14. The system of claim 11, wherein the signaling gateway module further comprises:
one or more antennas; and
one or more transceivers configured for transmitting and/or receiving wireless signals via the one or more antennas; and
wherein the signaling gateway module is configured to communicate with one or both of the first detection control module and the safety gate using wireless signals.
15. The system of claim 10, wherein the first detection control module is configured to communicate to the train information relating to the safety device and/or operation of the safety device.
16. The system of claim 10, further comprising one or more sensors attached to the rail track, wherein each sensor is configured to generate a coupling signal in response to a train traveling on the rail track, the coupling signal is communicated to the second detection control module.
17. The system of claim 16, the first detection control module is configured to the detection signal based on coupling signals received from the one or more sensors.
18. The system of claim 10, wherein the safety device includes a gate.
US17/157,523 2020-01-23 2021-01-25 Methods and systems for ultra-wideband (uwb) based rail line sensing and safety Pending US20210229716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/157,523 US20210229716A1 (en) 2020-01-23 2021-01-25 Methods and systems for ultra-wideband (uwb) based rail line sensing and safety

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062964830P 2020-01-23 2020-01-23
US17/157,523 US20210229716A1 (en) 2020-01-23 2021-01-25 Methods and systems for ultra-wideband (uwb) based rail line sensing and safety

Publications (1)

Publication Number Publication Date
US20210229716A1 true US20210229716A1 (en) 2021-07-29

Family

ID=76969803

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/157,523 Pending US20210229716A1 (en) 2020-01-23 2021-01-25 Methods and systems for ultra-wideband (uwb) based rail line sensing and safety

Country Status (1)

Country Link
US (1) US20210229716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188146A (en) * 2022-06-27 2022-10-14 国网湖北省电力有限公司直流公司 Panel computer fence system based on UWB technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275513A1 (en) * 2001-09-21 2005-12-15 Grisham William T Wireless danger proximity warning system and method
RU2608789C2 (en) * 2010-09-17 2017-01-24 Вэйвтрейн Системз Ас System and method for early detection of train
US20190248395A1 (en) * 2016-06-27 2019-08-15 Siemens Mobility GmbH Method and arrangement for securing a railroad crossing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275513A1 (en) * 2001-09-21 2005-12-15 Grisham William T Wireless danger proximity warning system and method
RU2608789C2 (en) * 2010-09-17 2017-01-24 Вэйвтрейн Системз Ас System and method for early detection of train
US20190248395A1 (en) * 2016-06-27 2019-08-15 Siemens Mobility GmbH Method and arrangement for securing a railroad crossing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
English translation of RU-2608789-C2 (Year: 2017) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188146A (en) * 2022-06-27 2022-10-14 国网湖北省电力有限公司直流公司 Panel computer fence system based on UWB technology

Similar Documents

Publication Publication Date Title
US8752797B2 (en) Rail line sensing and safety system
US20230192164A1 (en) Rail Vehicle Signal Enforcement and Separation Control
US8469319B2 (en) Railway sensor communication system and method
CN108146467B (en) Precise positioning auxiliary device and method for magnetic-levitation train
RU2667107C2 (en) Guided ground vehicle including device for controlling derailment of vehicle, and associated derailment control method
US3758775A (en) Railroad crossing signalling system
US20210229716A1 (en) Methods and systems for ultra-wideband (uwb) based rail line sensing and safety
CN102756748A (en) Train anticollision system on basis of sound wave communication and anticollision method thereof
CN205675038U (en) Train Approaching precaution device
CA2906093C (en) Wireless and/or wired frequency programmable termination shunts
US10988151B2 (en) System and method for controlling a level crossing of a railway track
JP4176311B2 (en) Method for measuring speed of rail vehicle and apparatus therefor
CN111795650A (en) Locomotive inductance coil height measuring system and monitoring method
CN102765409A (en) Train collision avoidance system based on acoustic echo detection and collision avoidance method thereof
CN203268063U (en) Railway train approaching intelligent safety alarm system
CN205365644U (en) Train is close early warning device
CN208172976U (en) A kind of subway platform route human body sensing warning device
CN205769344U (en) Train approaching prewarning device
CN202935393U (en) Railroad and train bidirectional pre-warning system
NL1043288B1 (en) This invention relates to a device, a system and a method of monitoring railway track conditions.
CN203020335U (en) Device for prompting coming of railway train
JP6284723B2 (en) Train position correction method
CN202703633U (en) Train early-warning system based on tunnel piston wind
CN102745211B (en) Train pre-warning system and pre-warning method based on tunnel piston wind
CN220865426U (en) Wireless rail alarm receiving controller

Legal Events

Date Code Title Description
AS Assignment

Owner name: METROM RAIL, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARLSON, RICHARD C.;GUNTHER, KURT A.;REEL/FRAME:055074/0106

Effective date: 20210125

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED