US20210218184A1 - Magnetically securing detachable electronic cable assembly and method - Google Patents

Magnetically securing detachable electronic cable assembly and method Download PDF

Info

Publication number
US20210218184A1
US20210218184A1 US17/216,166 US202117216166A US2021218184A1 US 20210218184 A1 US20210218184 A1 US 20210218184A1 US 202117216166 A US202117216166 A US 202117216166A US 2021218184 A1 US2021218184 A1 US 2021218184A1
Authority
US
United States
Prior art keywords
bodies
elements
mated
magnetically
electrical terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/216,166
Inventor
Calista A. Termini
Jennifer J. Termini
John W. Cramer, IV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US17/216,166 priority Critical patent/US20210218184A1/en
Publication of US20210218184A1 publication Critical patent/US20210218184A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/6205Two-part coupling devices held in engagement by a magnet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/15Pins, blades or sockets having separate spring member for producing or increasing contact pressure
    • H01R13/17Pins, blades or sockets having separate spring member for producing or increasing contact pressure with spring member on the pin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/64Means for preventing incorrect coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/86Parallel contacts arranged about a common axis

Definitions

  • This invention relates to electronic cable and connector assemblies used in linking electronic devices, and more specifically digital implements such as mobile phones, computers and their peripherals.
  • Electronic devices such as mobile phones, tablets, and computer workstations and their peripheral devices often require a multitude of interconnections through electronic cables that become easily entangled and connectors that may be inadvertently unplugged.
  • a laptop computer may electronically connect to an outboard, portable, external hard disk drive via a cable engaging their respective USB ports.
  • Such cables can be inadvertently tripped over causing the devices to be pulled from their resting positions on the desktop, and onto the floor, potentially resulting in mechanical shock damage to the devices.
  • USB type-A connector plug connects in a single angular orientation, yet the plug often has the same substantial appearance in two angular orientations.
  • the incorrect orientation may appear to be correct, frustrating attempts to establish the connection. This can be time consuming for users seeking to establish rapid connections.
  • the principal and secondary objects of the invention are to provide an improved breakaway electronic cable connection. These and other objects are achieved by a magnetically biased connector wherein the strength of a magnetic connection can be adjusted.
  • a device for linking electronic apparatuses which comprises: a first body comprising a first number of electrical terminals; a second body separate from said first body; said second body comprising a second number of electrical terminals; wherein said first and second number of electrical terminals are arranged to conductively interconnect when said first and second bodies are mated; a first element comprising a magnet attached to said first body; a second element comprising magnetic material attached to said second body; and, wherein at least one of said first and second elements is securably movable with respect to one of said first and second bodies to which said at least one of said first and second elements is attached.
  • said at least one of said first and second elements is axially translatable in relation to an other one of said first and second elements while said electrical terminals remain mated.
  • said device further comprises: an actuator attached to said at least one of said first and second elements; wherein said actuator shaped and dimensioned to be hand-manipulated, and wherein manipulation of said actuator causes movement of said at least one of said first and second elements with respect to one of said first and second bodies to which it is attached.
  • said device further comprises: a tubular carriage carrying said at least one of said first and second elements; said tubular carriage having an externally threaded portion; and, wherein said one of said first and second bodies comprises an internally treaded cavity engaged by said externally treaded portion.
  • said one of said first and second bodies comprises an indicator which is illuminated when said cooperating mating electrical terminals are mated.
  • said first number and said second number are equal; and wherein said device further comprises a first electrically conductive cable extending from said first body, and a second electrically conductive cable extending from said second body.
  • said first and second bodies comprise mutually compatible mating interfaces having an angularly keyed surfaces whereby said first and second bodies mate in a specific relative angular orientation.
  • said angularly keyed surfaces have a sinusoidally undulating shapes nestingly in phase with one another.
  • each of said first and second bodies has a truncated ovoid shape.
  • each of a plurality of said terminals comprises: a post outwardly biased from a support block by a biasing member.
  • the device further comprises: an aggregate biasing force consisting of a summation of a biasing force for each of said biasing member for all of said plurality of said terminals; and, said aggregate biasing force is overcome by a magnetic attractive force between said magnet element and said magnetic material.
  • a method for releaseably electrically interconnecting a pair of separate bodies having a plurality of electrical terminals comprises: selecting said bodies so that a first one of said bodies carries a first magnetically cooperative element and a second one of said bodies carries second magnetically cooperative element; wherein said first and second magnetically cooperative elements are oriented to cooperatively bias said bodies toward one another while said bodies are mated; mating said bodies along a pair of angularly keyed interfacing surfaces; wherein said mating establishes a disconnectable electrical connection between said bodies through said plurality of electrical terminals; and, adjusting an attractive force between said first and second magnetically cooperative elements while said bodies are mated.
  • said pair of angularly keyed interfacing surfaces comprise sinusoidally undulating shapes nestingly in phase with one another.
  • said method further comprises: illuminating an indicator on said first one of said bodies when said bodies are mated.
  • said adjusting comprises: manipulating a hand-manipulatable actuator determining an axial position of said first magnetically cooperative element.
  • the above embodiments can provide cable assemblies and connectors with a degree of stability and retention that can be configured and adjusted in order to prevent accidental failures or equipment damage.
  • FIG. 1 is a diagrammatic side elevational view of a disconnected matable pair of connector bodies for magnetically securing cable assembly according to an exemplary embodiment of the invention.
  • FIG. 2 is a diagrammatic side elevational view of the assembly of FIG. 1 in a mated configuration.
  • FIG. 3 is a diagrammatic front end elevational view of the male connector body.
  • FIG. 4 is a diagrammatic perspective view of the assembly of FIG. 1 showing the interfaces of both the male and female connector bodies.
  • FIG. 5 is a diagrammatic cross-sectional side view of the male connector body.
  • FIG. 6 is a diagrammatic cross-sectional side view of a spring-loaded connector pin sub-assembly.
  • FIG. 7 is a flow chart diagram of a method for electrically interconnecting cables according to an exemplary embodiment of the invention.
  • FIG. 8 is a front, top, left perspective view of a magnetically securing cable plug showing a single male connector body according to an embodiment of our design.
  • FIG. 9 is a back, bottom, right perspective view thereof.
  • FIG. 10 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 11 is a top plan view thereof.
  • FIG. 12 is a bottom plan view thereof.
  • FIG. 13 is a front elevational view thereof.
  • FIG. 14 is a back elevational view thereof.
  • FIG. 15 is a front, top, left perspective view of a magnetically securing cable plug showing a matable pair of connector bodies according to an alternate embodiment of our design.
  • FIG. 16 is a back, bottom, right perspective view thereof.
  • FIG. 17 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 18 is a top plan view thereof.
  • FIG. 19 is a bottom plan view thereof.
  • FIG. 20 is a front elevational view thereof, the back elevational view being a mirror image thereof.
  • FIG. 21 is a front, top, left perspective view of a magnetically securing cable plug showing a matable pair of connector bodies disclaiming the electrical connectors according to an alternate embodiment of our design.
  • FIG. 22 is a back, bottom, right perspective view thereof.
  • FIG. 23 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 24 is a top plan view thereof.
  • FIG. 25 is a bottom plan view thereof.
  • FIG. 26 is a front elevational view thereof, the back elevational view being a mirror image thereof.
  • FIG. 27 is a front, top, left perspective view of a magnetically securing cable plug showing a matable pair of connector bodies disclaiming the electrical connectors according to an alternate embodiment of our design.
  • FIG. 28 is a back, bottom, right perspective view thereof.
  • FIG. 29 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 30 is a top plan view thereof.
  • FIG. 31 is a bottom plan view thereof.
  • FIG. 32 is a front elevational view thereof, the back elevational view being a mirror image thereof.
  • FIG. 33 is a front, top, left perspective view of an undulating, keyed orientation interface for a matable pair of connector bodies for a magnetically securing cable plug according to an alternate embodiment of our design.
  • FIG. 34 is a back, bottom, right perspective view thereof.
  • FIG. 35 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 36 is a top plan view thereof.
  • FIG. 37 is a bottom plan view thereof.
  • FIG. 38 is a front elevational view thereof, the back elevational view being a mirror image thereof.
  • FIGS. 1-4 a cable assembly 10 particularly suited to linking two electronic devices equipped with standard USB connectors.
  • the assembly comprises a male connector body 11 and a female connector body 12 each mounted on the ends of respective cables 13 , 14 which can be terminated at their opposite ends by a USB or other device terminator such as a plug.
  • One of the bodies includes a permanent magnet and the other body includes magnetic material, such as ferrous material or another magnet.
  • each body carries an element which is magnetically cooperative with a separate element on the other body.
  • a first one of the magnetically cooperative elements can be either a permanent magnet or other ferromagnetic material which can attractively cooperate with a corresponding magnetically cooperative element attached to the other connector body. In other words, a magnetically attractive force can be established between the two magnetically cooperative elements so that the connector bodies are biased toward one another while properly mated and the electrical connection maintained.
  • Mated connectors can be separated by applying a sufficient axial separating force component which overcomes the attractive force keeping the bodies mated.
  • This breakaway characteristic of the cable assembly can be useful to automatically disconnect the bodies when unexpected axial tension forces are applied to the cable, such as when a person trips against the connected cable, thus avoiding damage to the connected devices, and/or injury.
  • the strength of the attractive force between the bodies can be adjusted by changing the axial separation between the magnetically cooperative elements while the bodies are engaged.
  • the male connector body 11 carries the permanent magnet
  • the female connector body carries the corresponding magnetic material.
  • the word “substantially” is used because manufacturing imprecision and inaccuracies can lead to non-symmetricity and other inexactitudes in the shape, dimensioning and orientation of various structures.
  • Both the male connector body 11 and the female connector body 12 can include a housing 15 , 16 having a generally truncated ellipsoidal shape substantially symmetric about an axis 9 . This shape allows both bodies to be made using common tooling, to be uniformly balanced between the two bodies, and to provide a smooth outer surface to help avoid snags.
  • the interface surfaces between the bodies can have shapes which are not axially symmetric as will be described below.
  • Both bodies can have a substantially circular cable entry aperture at a first narrow end 21 , 22 for accepting the cable carrying electrically conductive wiring.
  • Both bodies can have an opposite end 23 , 24 for forming an interface 25 , 26 with the other body.
  • the interface 25 of the male connector body can include a substantially circular central opening 27 providing access to a male connector 29 which includes a number of electrical terminals formed by spring-loaded electrical contact pin sub-assemblies 31 radially and angularly spaced apart by an electrically insulating support block 28 .
  • the interface 26 of the female connector body includes a centrally extending female connector 30 having a central receptacle 34 which includes a number of electrical terminals in the form of electrically conductive contact pads 33 oriented to contact the ends of the contact pin sub-assemblies when the connectors are connected.
  • the pin sub-assemblies and contact pads provide cooperating mating electrical terminals between the two bodies.
  • the number of pin sub-assemblies and contact pads can be equal, providing a one-to-one correspondence. Alternately, the number of pin sub-assemblies and contact pads can be unequal, where one of the bodies having a greater number of terminals can interface with two or more types of mating bodies, each having a different number of terminals.
  • each interface can have an axially and angularly undulating outer surface just inside the radial periphery of the housing such that the resultant shape of each interface can be described as resembling the intersection of a solid cylinder with the surface of a sinusoidal planar surface wave.
  • the surface can be generally ring-shaped.
  • the surface can have a generally sinusoidal shape.
  • the shapes on the respective mutually compatible mating interfaces have angularly keyed, abutting surfaces whereby the bodies mate in a specific relative angular orientation when in axial alignment.
  • the abutting surfaces have a sinusoidally undulating shape nestingly in phase with one another.
  • the male connector plug body 11 includes an axially slidable and securable tubular carriage 40 which can be formed by a substantially cylindrical sleeve having externally threaded portion 41 engaged by the internally threaded cavity 44 of a thumb wheel 42 rotatively mounted within a circumferential channel 43 radially penetrating through the outer wall of the housing 15 .
  • the carriage carries a hollow substantially cylindrical magnetically cooperative element, in this case a magnet 33 .
  • the thumb wheel acts as a hand-manipulatable actuator for axially translating the carriage and thus the magnet with respect to the male connector plug body as indicated by the arrows.
  • the support block 28 resides radially inwardly from the carriage in order to avoid interfering with the axial movement of the carriage.
  • the female connector plug body 12 also carries the female connector 30 formed by a substantially cylindrical tubular ferrule 47 surrounding the receptacle 34 .
  • the ferrule is made from ferromagnetic material and thus acts as a magnetically cooperative element in reaction to the magnet 33 in the male connector body 11 . Both the magnet and the ferrule can have commensurate diameters so that the two elements are brought into close proximity when the bodies are properly mated. Further, the size of the central opening 27 of the male connector body is shaped and dimensioned to accommodate penetration of the female connector therethough.
  • the tubular carriage 40 including the magnet 33 can be translated axially toward or away from the interface 25 thereby increasing or decreasing the distance between the magnet and its corresponding magnetic material element on the other body, and thus decreasing or increasing respectively the magnet attractive force between them while the bodies are mated and the electrical connection between the bodies is maintained.
  • the engaged threaded structures 41 , 44 allow the magnet to be securably moveable with respect to the male connector plug body 11 .
  • the axial position of the magnet can be adjusted in a non-discrete, fine adjustment manner where, at every position, the magnet is secured from inadvertent further movement.
  • threaded engagement is typically preferred due to simplicity and ease of manufacture and use
  • other types of discrete position, and non-discrete position securably moveable connections can be used such as friction lockable telescoping structures as are often used for example in camera tripods, or spring-loaded locking slide structures as are often used for example in box cutter knives.
  • Other axial adjustment mechanisms known to the art may also be used.
  • the male connector body 11 housing 15 has a hollow interior 41 for containing the male connector mechanisms.
  • the cable 13 includes a number of insulated wires 44 , 45 and a wrapping, braided shield (not shown) electrically connected to electrical ground structures in the male connector body.
  • Each of the wires can be soldered to one of the electrically conductive contact pin sub-assemblies 31 to other electrical terminals within the housing 15 , or can remain unconnected.
  • each spring-loaded electrical contact pin sub-assembly 31 can include an electrically conductive sheath 51 elongated along an elongation axis 50 .
  • the sheath can be slidingly engaged by an electrically conductive post 52 which can travel axially though the central lumen 53 of the sheath between a distal extended position as shown and more proximal axial positions.
  • the post is biased toward the extended position by a compression spring 54 located in the lumen and bearing against the post and the proximal end 55 of the lumen.
  • a wire 44 can be soldered 56 to a terminal 57 on the sheath to establish an electrical connection between the distal tip of the post and the wire. In this way the post can retract slightly within the sheath as it comes into contact with a corresponding contact pad 33 on the female connector 30 ensuring an electrical connection between the post and pad even though the distance between the male connector 29 and female connector varies slightly.
  • Both the male connector body 11 and the female connector body 12 can include an indicator 61 , 62 which is illuminated when the electrical terminals are mated.
  • the indicator 61 can be a window made of translucent material such as clear plastic which engages a passageway through the housing 15 .
  • the window can be illuminated by a light source such as an LED 65 powered by an electronic module 66 electrically connected 67 to at least one of the pin subassemblies 31 .
  • Similar illumination circuitry can be employed in the female connector body 12 to illuminate its indicator 62 .
  • the electrical connection between the male connector 29 and the female connector 30 may be established regardless of the telescoping setting of the carriage 40 .
  • the furthest range of axial movement of the carriage is selected to go from a maximum attractive magnetic potential without interfering with the intimate seating of the interface surfaces, to a minimum attractive magnetic potential when the carriage is fully retracted within the housing of the male connector.
  • the strength of the magnetic attractive force between the two magnetically cooperative elements, namely the magnet 33 and the ferrule 47 is strong enough to overcome the combined force of the compression springs 54 of all the contact pin sub-assemblies 31 . Otherwise, the combine force of the compression springs would drive the connectors apart. In other words, the summation of a biasing forces for all of the compression springs forms an aggregate biasing force which is overcome by the magnetic attractive force between the magnetically cooperative elements 33 , 47 .
  • the sinusoidal surface of the respective interfaces 25 , 26 can cause movement between the interfaces toward their proper angular orientation and facilitates proper pitch and yaw orientation to help the connectors dock with one another.
  • the gently curving sinusoidal surfaces allow sliding and turning of the surfaces while they are in contact with one another as the two bodies come into proper relative axial alignment and angular orientation for the connectors to mate.
  • the unique surfaces also act as a readily observable indication of misalignment when the surfaces do not nest.
  • a further advantage of the adjustable magnetic attractive strength is that the strength can be selected to be within a range where the bodies must be properly nested before the bodies are held together by the attractive force, overcoming gravity and thus the weight of the plug and cable. At greater separation distances, such as when the interface surfaces are misaligned, the attractive force can be made to be too weak to hold the bodies together. In this way, users are provided an unambiguous indication that the bodies are properly mated by the mere fact that they remain stuck together.
  • adjustable magnetic attractive strength is that the strength can be selected so that the force is strong enough to drive the bodies to auto-rotate to bring them into proper alignment.
  • the smooth interfacing surfaces of the bodies contact one another in an angularly misaligned condition, those surfaces are at acute, non-zero angles with respect to the axial attractive force. This can create torsional force components on the bodies which drive them toward angular alignment.
  • the pair of bodies can electrically join a medial portion of a multi-conductor electronic cable.
  • the bodies are located away from the end plugs of the cable, thus reducing the stresses on the end plugs/receptacles.
  • the user can disconnect the cable at the bodies, rather than disconnecting at the end plugs, further reducing the number of connection/disconnection cycles on the end plugs/receptacles.
  • a method 70 for releaseably electrically interconnecting a pair of separate bodies at the ends of multi-conductor electronic cables includes selecting the bodies so that they have angularly keyed interface surfaces, electrical interconnect terminals located to interface and connect with one another, and magnetically cooperative elements so that there is an attractive force between the two bodies when mated 71 .
  • the bodies are then mated 72 by orienting them in a substantially coaxial, interface-to-interface manner, and rotating them relative to one another until their interfaces are in angular alignment, then pushing them together. Angular alignment can be easily discerned by the undulating surfaces of the interfaces.
  • the attractive force between said first and second magnetically cooperative elements can be adjusted 73 by rotating a thumb wheel on one of the bodies which moves a carriage carrying one of the magnetically cooperative elements.
  • FIGS. 8-14 show and claim our design for a magnetically securing cable assembly for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items, including a magnetically securable keyed orientation interface.
  • FIGS. 15-20 show and claim our design for a mating pair of magnetically securing cable assemblies for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items, including a magnetically securable keyed orientation interface.
  • FIGS. 21-26 show and claim our design for a mating pair of magnetically securing cable assemblies for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items, including a magnetically securable keyed orientation interface, disclaiming the electronic contacts.
  • FIGS. 27-32 show and claim our alternate design for a mating pair of magnetically securing cable assemblies for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items, including a magnetically securable keyed orientation interface, disclaiming the electronic contacts.
  • FIGS. 33-38 show and claim our alternate design for an undulating, keyed orientation interface for a matable pair of connector bodies for a magnetically securing cable assembly for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

A versatile device for quickly and conveniently linking electronic apparatuses includes a pair of cooperating bodies with mating interfaces, and magnetically coupling elements having an adjustable degree of attraction and retention. Angularly keyed, selective geometrical interfaces between the bodies facilitate and assure correct relative orientation and mating. A light indicator attests to proper electrical connection between the bodies.

Description

    PRIOR APPLICATION
  • This is a continuation of copending U.S. patent application Ser. No. 16/708,799, filed 2019 Dec. 10, which is a continuation of U.S. patent application Ser. No. 16/138,843, filed 2018 Sep. 21, now U.S. patent Ser. No. 10/522,943, issued 2019 Dec. 31, all of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to electronic cable and connector assemblies used in linking electronic devices, and more specifically digital implements such as mobile phones, computers and their peripherals.
  • BACKGROUND
  • Electronic devices such as mobile phones, tablets, and computer workstations and their peripheral devices often require a multitude of interconnections through electronic cables that become easily entangled and connectors that may be inadvertently unplugged. For example, a laptop computer may electronically connect to an outboard, portable, external hard disk drive via a cable engaging their respective USB ports. Such cables can be inadvertently tripped over causing the devices to be pulled from their resting positions on the desktop, and onto the floor, potentially resulting in mechanical shock damage to the devices.
  • Another problem faced by many modern cables is that the plugs at the end of the cables and/or the receptacles into which they are engaged can often become damaged by tweaking motions over many cycles of connecting and disconnecting, resulting in ineffectual electronic connection.
  • Another problem faced by many cables is there may be a single angular orientation of the plug which allows it to connect to the receptacle of the device. For example USB type-A connector plug connects in a single angular orientation, yet the plug often has the same substantial appearance in two angular orientations. The incorrect orientation may appear to be correct, frustrating attempts to establish the connection. This can be time consuming for users seeking to establish rapid connections.
  • Various so-called break-away cables have been proposed, such as in Lindberg et al., U.S. Pat. No. 7,637,746. However, the strength of the magnetic force may be too weak in some circumstances where rigorous activity is anticipated between the connected devices. Alternately, the strength of the magnetic force may be too strong in those circumstances where there may be some difficulty disconnecting the cables by persons who lack the adequate strength or dexterity, or where the cables themselves may be subject to damage by repetitively disengaging a strong magnetic connection.
  • Therefore, there is a need for an electronic cable interconnect device and method which addresses one or more of the above problems.
  • SUMMARY
  • The principal and secondary objects of the invention are to provide an improved breakaway electronic cable connection. These and other objects are achieved by a magnetically biased connector wherein the strength of a magnetic connection can be adjusted.
  • In some embodiments there is provided a device for linking electronic apparatuses which comprises: a first body comprising a first number of electrical terminals; a second body separate from said first body; said second body comprising a second number of electrical terminals; wherein said first and second number of electrical terminals are arranged to conductively interconnect when said first and second bodies are mated; a first element comprising a magnet attached to said first body; a second element comprising magnetic material attached to said second body; and, wherein at least one of said first and second elements is securably movable with respect to one of said first and second bodies to which said at least one of said first and second elements is attached.
  • In some embodiments said at least one of said first and second elements is axially translatable in relation to an other one of said first and second elements while said electrical terminals remain mated.
  • In some embodiments said device further comprises: an actuator attached to said at least one of said first and second elements; wherein said actuator shaped and dimensioned to be hand-manipulated, and wherein manipulation of said actuator causes movement of said at least one of said first and second elements with respect to one of said first and second bodies to which it is attached.
  • In some embodiments said device further comprises: a tubular carriage carrying said at least one of said first and second elements; said tubular carriage having an externally threaded portion; and, wherein said one of said first and second bodies comprises an internally treaded cavity engaged by said externally treaded portion.
  • In some embodiments said one of said first and second bodies comprises an indicator which is illuminated when said cooperating mating electrical terminals are mated.
  • In some embodiments said first number and said second number are equal; and wherein said device further comprises a first electrically conductive cable extending from said first body, and a second electrically conductive cable extending from said second body.
  • In some embodiments said first and second bodies comprise mutually compatible mating interfaces having an angularly keyed surfaces whereby said first and second bodies mate in a specific relative angular orientation.
  • In some embodiments said angularly keyed surfaces have a sinusoidally undulating shapes nestingly in phase with one another.
  • In some embodiments each of said first and second bodies has a truncated ovoid shape.
  • In some embodiments each of a plurality of said terminals comprises: a post outwardly biased from a support block by a biasing member.
  • In some embodiments the device further comprises: an aggregate biasing force consisting of a summation of a biasing force for each of said biasing member for all of said plurality of said terminals; and, said aggregate biasing force is overcome by a magnetic attractive force between said magnet element and said magnetic material.
  • In some embodiments there is provided a method for releaseably electrically interconnecting a pair of separate bodies having a plurality of electrical terminals said method comprises: selecting said bodies so that a first one of said bodies carries a first magnetically cooperative element and a second one of said bodies carries second magnetically cooperative element; wherein said first and second magnetically cooperative elements are oriented to cooperatively bias said bodies toward one another while said bodies are mated; mating said bodies along a pair of angularly keyed interfacing surfaces; wherein said mating establishes a disconnectable electrical connection between said bodies through said plurality of electrical terminals; and, adjusting an attractive force between said first and second magnetically cooperative elements while said bodies are mated.
  • In some embodiments said pair of angularly keyed interfacing surfaces comprise sinusoidally undulating shapes nestingly in phase with one another.
  • In some embodiments said method further comprises: illuminating an indicator on said first one of said bodies when said bodies are mated.
  • In some embodiments said adjusting comprises: manipulating a hand-manipulatable actuator determining an axial position of said first magnetically cooperative element.
  • The original text of the original claims is incorporated herein by reference as describing features in some embodiments.
  • In this way the above embodiments can provide cable assemblies and connectors with a degree of stability and retention that can be configured and adjusted in order to prevent accidental failures or equipment damage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic side elevational view of a disconnected matable pair of connector bodies for magnetically securing cable assembly according to an exemplary embodiment of the invention.
  • FIG. 2 is a diagrammatic side elevational view of the assembly of FIG. 1 in a mated configuration.
  • FIG. 3 is a diagrammatic front end elevational view of the male connector body.
  • FIG. 4 is a diagrammatic perspective view of the assembly of FIG. 1 showing the interfaces of both the male and female connector bodies.
  • FIG. 5 is a diagrammatic cross-sectional side view of the male connector body.
  • FIG. 6 is a diagrammatic cross-sectional side view of a spring-loaded connector pin sub-assembly.
  • FIG. 7 is a flow chart diagram of a method for electrically interconnecting cables according to an exemplary embodiment of the invention.
  • FIG. 8 is a front, top, left perspective view of a magnetically securing cable plug showing a single male connector body according to an embodiment of our design.
  • FIG. 9 is a back, bottom, right perspective view thereof.
  • FIG. 10 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 11 is a top plan view thereof.
  • FIG. 12 is a bottom plan view thereof.
  • FIG. 13 is a front elevational view thereof.
  • FIG. 14 is a back elevational view thereof.
  • FIG. 15 is a front, top, left perspective view of a magnetically securing cable plug showing a matable pair of connector bodies according to an alternate embodiment of our design.
  • FIG. 16 is a back, bottom, right perspective view thereof.
  • FIG. 17 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 18 is a top plan view thereof.
  • FIG. 19 is a bottom plan view thereof.
  • FIG. 20 is a front elevational view thereof, the back elevational view being a mirror image thereof.
  • FIG. 21 is a front, top, left perspective view of a magnetically securing cable plug showing a matable pair of connector bodies disclaiming the electrical connectors according to an alternate embodiment of our design.
  • FIG. 22 is a back, bottom, right perspective view thereof.
  • FIG. 23 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 24 is a top plan view thereof.
  • FIG. 25 is a bottom plan view thereof.
  • FIG. 26 is a front elevational view thereof, the back elevational view being a mirror image thereof.
  • FIG. 27 is a front, top, left perspective view of a magnetically securing cable plug showing a matable pair of connector bodies disclaiming the electrical connectors according to an alternate embodiment of our design.
  • FIG. 28 is a back, bottom, right perspective view thereof.
  • FIG. 29 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 30 is a top plan view thereof.
  • FIG. 31 is a bottom plan view thereof.
  • FIG. 32 is a front elevational view thereof, the back elevational view being a mirror image thereof.
  • FIG. 33 is a front, top, left perspective view of an undulating, keyed orientation interface for a matable pair of connector bodies for a magnetically securing cable plug according to an alternate embodiment of our design.
  • FIG. 34 is a back, bottom, right perspective view thereof.
  • FIG. 35 is a left side elevation view thereof, the right side elevation view being a mirror image thereof.
  • FIG. 36 is a top plan view thereof.
  • FIG. 37 is a bottom plan view thereof.
  • FIG. 38 is a front elevational view thereof, the back elevational view being a mirror image thereof.
  • DESCRIPTION OF THE EXEMPLARY EMBODIMENT(S)
  • Referring now to the drawing, there is shown in FIGS. 1-4 a cable assembly 10 particularly suited to linking two electronic devices equipped with standard USB connectors. The assembly comprises a male connector body 11 and a female connector body 12 each mounted on the ends of respective cables 13,14 which can be terminated at their opposite ends by a USB or other device terminator such as a plug. One of the bodies includes a permanent magnet and the other body includes magnetic material, such as ferrous material or another magnet. In this way it can be said that each body carries an element which is magnetically cooperative with a separate element on the other body. A first one of the magnetically cooperative elements can be either a permanent magnet or other ferromagnetic material which can attractively cooperate with a corresponding magnetically cooperative element attached to the other connector body. In other words, a magnetically attractive force can be established between the two magnetically cooperative elements so that the connector bodies are biased toward one another while properly mated and the electrical connection maintained.
  • When the male and female connectors are mated, electrical conductivity between the cables is established. Mated connectors can be separated by applying a sufficient axial separating force component which overcomes the attractive force keeping the bodies mated. This breakaway characteristic of the cable assembly can be useful to automatically disconnect the bodies when unexpected axial tension forces are applied to the cable, such as when a person trips against the connected cable, thus avoiding damage to the connected devices, and/or injury. The strength of the attractive force between the bodies can be adjusted by changing the axial separation between the magnetically cooperative elements while the bodies are engaged.
  • In the following exemplary embodiment, the male connector body 11 carries the permanent magnet, and the female connector body carries the corresponding magnetic material. Those skilled in the art will readily appreciate how those parts can be swapped. The word “substantially” is used because manufacturing imprecision and inaccuracies can lead to non-symmetricity and other inexactitudes in the shape, dimensioning and orientation of various structures.
  • Both the male connector body 11 and the female connector body 12 can include a housing 15,16 having a generally truncated ellipsoidal shape substantially symmetric about an axis 9. This shape allows both bodies to be made using common tooling, to be uniformly balanced between the two bodies, and to provide a smooth outer surface to help avoid snags.
  • The interface surfaces between the bodies can have shapes which are not axially symmetric as will be described below. Both bodies can have a substantially circular cable entry aperture at a first narrow end 21,22 for accepting the cable carrying electrically conductive wiring. Both bodies can have an opposite end 23,24 for forming an interface 25,26 with the other body. The interface 25 of the male connector body can include a substantially circular central opening 27 providing access to a male connector 29 which includes a number of electrical terminals formed by spring-loaded electrical contact pin sub-assemblies 31 radially and angularly spaced apart by an electrically insulating support block 28. The interface 26 of the female connector body includes a centrally extending female connector 30 having a central receptacle 34 which includes a number of electrical terminals in the form of electrically conductive contact pads 33 oriented to contact the ends of the contact pin sub-assemblies when the connectors are connected. Thus, the pin sub-assemblies and contact pads provide cooperating mating electrical terminals between the two bodies. The number of pin sub-assemblies and contact pads can be equal, providing a one-to-one correspondence. Alternately, the number of pin sub-assemblies and contact pads can be unequal, where one of the bodies having a greater number of terminals can interface with two or more types of mating bodies, each having a different number of terminals.
  • The selective geometrical interfaces 25,26 of the respective connector bodies 11,12 are angularly keyed so that the interfaces mate in a specific relative angular orientation. Specifically, each interface can have an axially and angularly undulating outer surface just inside the radial periphery of the housing such that the resultant shape of each interface can be described as resembling the intersection of a solid cylinder with the surface of a sinusoidal planar surface wave. When viewed from the end, as shown in FIG. 3, the surface can be generally ring-shaped. When viewed from the side, as shown in FIG. 1, the surface can have a generally sinusoidal shape. In other words, the shapes on the respective mutually compatible mating interfaces have angularly keyed, abutting surfaces whereby the bodies mate in a specific relative angular orientation when in axial alignment. In this exemplary embodiment the abutting surfaces have a sinusoidally undulating shape nestingly in phase with one another. Thus, when the connectors are properly mated, as shown in FIG. 2, the surfaces intimately and nestingly contact one another in axial and angular alignment. This unique shape also acts a readily ascertainable indicator of angular alignment in that the bodies will clearly and visibly not nest together while the bodies are out of angular alignment. This unique body shape also both bodies to have substantially the same housing shape and thereby reduce manufacturing costs.
  • Referring now to FIG. 5, the male connector plug body 11 includes an axially slidable and securable tubular carriage 40 which can be formed by a substantially cylindrical sleeve having externally threaded portion 41 engaged by the internally threaded cavity 44 of a thumb wheel 42 rotatively mounted within a circumferential channel 43 radially penetrating through the outer wall of the housing 15. The carriage carries a hollow substantially cylindrical magnetically cooperative element, in this case a magnet 33. The thumb wheel acts as a hand-manipulatable actuator for axially translating the carriage and thus the magnet with respect to the male connector plug body as indicated by the arrows. The support block 28 resides radially inwardly from the carriage in order to avoid interfering with the axial movement of the carriage.
  • As shown in FIG. 4, the female connector plug body 12 also carries the female connector 30 formed by a substantially cylindrical tubular ferrule 47 surrounding the receptacle 34. The ferrule is made from ferromagnetic material and thus acts as a magnetically cooperative element in reaction to the magnet 33 in the male connector body 11. Both the magnet and the ferrule can have commensurate diameters so that the two elements are brought into close proximity when the bodies are properly mated. Further, the size of the central opening 27 of the male connector body is shaped and dimensioned to accommodate penetration of the female connector therethough.
  • By manipulating the thumb wheel 42, the tubular carriage 40 including the magnet 33 can be translated axially toward or away from the interface 25 thereby increasing or decreasing the distance between the magnet and its corresponding magnetic material element on the other body, and thus decreasing or increasing respectively the magnet attractive force between them while the bodies are mated and the electrical connection between the bodies is maintained. The engaged threaded structures 41,44 allow the magnet to be securably moveable with respect to the male connector plug body 11. In other words, the axial position of the magnet can be adjusted in a non-discrete, fine adjustment manner where, at every position, the magnet is secured from inadvertent further movement. Although, the threaded engagement is typically preferred due to simplicity and ease of manufacture and use, other types of discrete position, and non-discrete position securably moveable connections can be used such as friction lockable telescoping structures as are often used for example in camera tripods, or spring-loaded locking slide structures as are often used for example in box cutter knives. Other axial adjustment mechanisms known to the art may also be used.
  • As shown in FIG. 5, the male connector body 11 housing 15 has a hollow interior 41 for containing the male connector mechanisms. The cable 13 includes a number of insulated wires 44,45 and a wrapping, braided shield (not shown) electrically connected to electrical ground structures in the male connector body. Each of the wires can be soldered to one of the electrically conductive contact pin sub-assemblies 31 to other electrical terminals within the housing 15, or can remain unconnected.
  • As shown in FIG. 6, each spring-loaded electrical contact pin sub-assembly 31 can include an electrically conductive sheath 51 elongated along an elongation axis 50. The sheath can be slidingly engaged by an electrically conductive post 52 which can travel axially though the central lumen 53 of the sheath between a distal extended position as shown and more proximal axial positions. The post is biased toward the extended position by a compression spring 54 located in the lumen and bearing against the post and the proximal end 55 of the lumen. A wire 44 can be soldered 56 to a terminal 57 on the sheath to establish an electrical connection between the distal tip of the post and the wire. In this way the post can retract slightly within the sheath as it comes into contact with a corresponding contact pad 33 on the female connector 30 ensuring an electrical connection between the post and pad even though the distance between the male connector 29 and female connector varies slightly.
  • Both the male connector body 11 and the female connector body 12 can include an indicator 61,62 which is illuminated when the electrical terminals are mated. Alternately, one or the other, or neither of the connector bodies can include the illuminatable indicator. The indicator 61 can be a window made of translucent material such as clear plastic which engages a passageway through the housing 15. The window can be illuminated by a light source such as an LED 65 powered by an electronic module 66 electrically connected 67 to at least one of the pin subassemblies 31. Similar illumination circuitry can be employed in the female connector body 12 to illuminate its indicator 62.
  • It is important to note that the electrical connection between the male connector 29 and the female connector 30 may be established regardless of the telescoping setting of the carriage 40. The furthest range of axial movement of the carriage is selected to go from a maximum attractive magnetic potential without interfering with the intimate seating of the interface surfaces, to a minimum attractive magnetic potential when the carriage is fully retracted within the housing of the male connector.
  • It is further important to note that the strength of the magnetic attractive force between the two magnetically cooperative elements, namely the magnet 33 and the ferrule 47 is strong enough to overcome the combined force of the compression springs 54 of all the contact pin sub-assemblies 31. Otherwise, the combine force of the compression springs would drive the connectors apart. In other words, the summation of a biasing forces for all of the compression springs forms an aggregate biasing force which is overcome by the magnetic attractive force between the magnetically cooperative elements 33,47.
  • It is further important to note that the sinusoidal surface of the respective interfaces 25,26 can cause movement between the interfaces toward their proper angular orientation and facilitates proper pitch and yaw orientation to help the connectors dock with one another. In other words, the gently curving sinusoidal surfaces allow sliding and turning of the surfaces while they are in contact with one another as the two bodies come into proper relative axial alignment and angular orientation for the connectors to mate. As stated above the unique surfaces also act as a readily observable indication of misalignment when the surfaces do not nest.
  • A further advantage of the adjustable magnetic attractive strength is that the strength can be selected to be within a range where the bodies must be properly nested before the bodies are held together by the attractive force, overcoming gravity and thus the weight of the plug and cable. At greater separation distances, such as when the interface surfaces are misaligned, the attractive force can be made to be too weak to hold the bodies together. In this way, users are provided an unambiguous indication that the bodies are properly mated by the mere fact that they remain stuck together.
  • Another further advantage of the adjustable magnetic attractive strength is that the strength can be selected so that the force is strong enough to drive the bodies to auto-rotate to bring them into proper alignment. In other words, when the smooth interfacing surfaces of the bodies contact one another in an angularly misaligned condition, those surfaces are at acute, non-zero angles with respect to the axial attractive force. This can create torsional force components on the bodies which drive them toward angular alignment.
  • Another advantage of the above-described structures is that the pair of bodies can electrically join a medial portion of a multi-conductor electronic cable. By being located at a medial location on the cable, the bodies are located away from the end plugs of the cable, thus reducing the stresses on the end plugs/receptacles. In addition, the user can disconnect the cable at the bodies, rather than disconnecting at the end plugs, further reducing the number of connection/disconnection cycles on the end plugs/receptacles.
  • Referring to FIG. 7, there is shown a method 70 for releaseably electrically interconnecting a pair of separate bodies at the ends of multi-conductor electronic cables. The method includes selecting the bodies so that they have angularly keyed interface surfaces, electrical interconnect terminals located to interface and connect with one another, and magnetically cooperative elements so that there is an attractive force between the two bodies when mated 71. The bodies are then mated 72 by orienting them in a substantially coaxial, interface-to-interface manner, and rotating them relative to one another until their interfaces are in angular alignment, then pushing them together. Angular alignment can be easily discerned by the undulating surfaces of the interfaces. While the bodies are mated, the attractive force between said first and second magnetically cooperative elements can be adjusted 73 by rotating a thumb wheel on one of the bodies which moves a carriage carrying one of the magnetically cooperative elements.
  • FIGS. 8-14 show and claim our design for a magnetically securing cable assembly for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items, including a magnetically securable keyed orientation interface.
  • FIGS. 15-20 show and claim our design for a mating pair of magnetically securing cable assemblies for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items, including a magnetically securable keyed orientation interface.
  • FIGS. 21-26 show and claim our design for a mating pair of magnetically securing cable assemblies for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items, including a magnetically securable keyed orientation interface, disclaiming the electronic contacts.
  • FIGS. 27-32 show and claim our alternate design for a mating pair of magnetically securing cable assemblies for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items, including a magnetically securable keyed orientation interface, disclaiming the electronic contacts.
  • FIGS. 33-38 show and claim our alternate design for an undulating, keyed orientation interface for a matable pair of connector bodies for a magnetically securing cable assembly for use on personal electronic items such as computers, tablets, mobile phones and similar portable personal items.
  • While the exemplary embodiments of the invention have been described, modifications can be made and other embodiments may be devised without departing from the spirit of the invention and the scope of the appended claims.

Claims (16)

What is claimed is:
1. A device for linking electronic apparatuses which comprises:
a first body comprising a first number of electrical terminals;
a second body separate from said first body;
said second body comprising a second number of electrical terminals;
wherein said first and second number of electrical terminals are arranged to conductively interconnect when said first and second bodies are mated;
a first element comprising a magnet attached to said first body;
a second element comprising magnetic material attached to said second body; and,
wherein at least one of said first and second elements is securably movable with respect to one of said first and second bodies to which said at least one of said first and second elements is attached.
2. The device of claim 1, wherein said at least one of said first and second elements is axially translatable in relation to an other one of said first and second elements while said electrical terminals remain mated.
3. The device of claim 1, wherein said device further comprises:
an actuator attached to said at least one of said first and second elements;
wherein said actuator is shaped and dimensioned to be hand-manipulated, and wherein manipulation of said actuator causes movement of said at least one of said first and second elements with respect to one of said first and second bodies to which it is attached.
4. The device of claim 3, wherein said device further comprises:
a tubular carriage carrying said at least one of said first and second elements;
said tubular carriage having an externally threaded portion; and,
wherein said one of said first and second bodies comprises an internally treaded cavity engaged by said externally treaded portion.
5. The device of claim 1, wherein said one of said first and second bodies comprises an indicator which is illuminated when said cooperating mating electrical terminals are mated.
6. The device of claim 1, wherein said first number and said second number are equal; and wherein said device further comprises a first electrically conductive cable extending from said first body, and a second electrically conductive cable extending from said second body.
7. The device of claim 1, wherein said first and second bodies comprise mutually compatible mating interfaces having an angularly keyed surfaces whereby said first and second bodies mate in a specific relative angular orientation.
8. The device of claim 7, wherein said angularly keyed surfaces have a sinusoidally undulating shapes nestingly in phase with one another.
9. The device of claim 1, wherein each of said first and second bodies has a truncated ovoid shape.
10. The device of claim 1, wherein each of a plurality of said terminals comprises:
a post outwardly biased from a support block by a biasing member.
11. The device of claim 10, which further comprises:
an aggregate biasing force consisting of a summation of a biasing force for each of said biasing member for all of said plurality of said terminals; and,
said aggregate biasing force is overcome by a magnetic attractive force between said magnet element and said magnetic material.
12. A method for releaseably electrically interconnecting a pair of separate bodies having a plurality of electrical terminals said method comprises:
selecting said bodies so that a first one of said bodies carries a first magnetically cooperative element and a second one of said bodies carries second magnetically cooperative element;
wherein said first and second magnetically cooperative elements are oriented to cooperatively bias said bodies toward one another while said bodies are mated;
mating said bodies along a pair of angularly keyed interfacing surfaces;
wherein said mating establishes a disconnectable electrical connection between said bodies through said plurality of electrical terminals; and,
adjusting an attractive force between said first and second magnetically cooperative elements while said bodies are mated.
13. The method of claim 12, wherein said pair of angularly keyed interfacing surfaces comprise sinusoidally undulating shapes nestingly in phase with one another.
14. The method of claim 12, which further comprises:
illuminating an indicator on said first one of said bodies when said bodies are mated.
15. The method of claim 12, wherein said adjusting comprises:
manipulating a hand-manipulatable actuator determining an axial position of said first magnetically cooperative element.
16. The method of claim 15, wherein said adjusting further comprises:
rotating a thumb wheel on said first one of said bodies, wherein said thumb wheel is internally threaded and engages an externally threaded portion of a tubular carriage carrying said first magnetically cooperative element.
US17/216,166 2018-09-21 2021-03-29 Magnetically securing detachable electronic cable assembly and method Abandoned US20210218184A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/216,166 US20210218184A1 (en) 2018-09-21 2021-03-29 Magnetically securing detachable electronic cable assembly and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/138,843 US10522943B1 (en) 2018-09-21 2018-09-21 Magnetically securing detachable electronic cable assembly and method
US16/708,799 US20200112124A1 (en) 2018-09-21 2019-12-10 Magnetically securing detachable electronic cable assembly and method
US17/216,166 US20210218184A1 (en) 2018-09-21 2021-03-29 Magnetically securing detachable electronic cable assembly and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/708,799 Continuation US20200112124A1 (en) 2018-09-21 2019-12-10 Magnetically securing detachable electronic cable assembly and method

Publications (1)

Publication Number Publication Date
US20210218184A1 true US20210218184A1 (en) 2021-07-15

Family

ID=69057555

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/138,843 Expired - Fee Related US10522943B1 (en) 2018-09-21 2018-09-21 Magnetically securing detachable electronic cable assembly and method
US16/708,799 Abandoned US20200112124A1 (en) 2018-09-21 2019-12-10 Magnetically securing detachable electronic cable assembly and method
US17/216,166 Abandoned US20210218184A1 (en) 2018-09-21 2021-03-29 Magnetically securing detachable electronic cable assembly and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/138,843 Expired - Fee Related US10522943B1 (en) 2018-09-21 2018-09-21 Magnetically securing detachable electronic cable assembly and method
US16/708,799 Abandoned US20200112124A1 (en) 2018-09-21 2019-12-10 Magnetically securing detachable electronic cable assembly and method

Country Status (1)

Country Link
US (3) US10522943B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205291B2 (en) 2015-02-06 2019-02-12 Masimo Corporation Pogo pin connector
JP6817213B2 (en) 2015-02-06 2021-01-20 マシモ・コーポレイション How to Efficiently Manufacture Flex Circuit Physiological Sensors
US10522943B1 (en) * 2018-09-21 2019-12-31 Calista A. Termini Magnetically securing detachable electronic cable assembly and method
USD966197S1 (en) * 2018-09-21 2022-10-11 Calista A. Termini Magnetically securing cable plug
WO2020113508A1 (en) * 2018-12-06 2020-06-11 Microsoft Technology Licensing, Llc Magnetic plug
US11121493B2 (en) * 2019-01-11 2021-09-14 Te Connectivity Corporation Replaceable pin for terminal of charging inlet assembly
US11509087B1 (en) * 2020-04-03 2022-11-22 Mill-Max Mfg. Corp. Electrical connector having a barrel enclosing a coil spring which pushes on a spherical ball movable within the barrel

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144527A (en) * 1961-09-13 1964-08-11 Manuel J Tolegian Magnetic electrical coupling
US3786391A (en) * 1972-07-11 1974-01-15 W Mathauser Magnetic self-aligning electrical connector
US3808577A (en) * 1973-03-05 1974-04-30 W Mathauser Magnetic self-aligning quick-disconnect for a telephone or other communications equipment
US4004298A (en) * 1975-03-31 1977-01-25 Sinai Hospital Of Detroit Magnetically aligned releasable connector
US4025964A (en) * 1976-07-30 1977-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic electrical connectors for biomedical percutaneous implants
US4844582A (en) * 1987-12-09 1989-07-04 Giannini Gabriel M Hybrid electro-optical connectors
US5015061A (en) * 1987-12-09 1991-05-14 Giannini Gabriel M Optical connector
US5829987A (en) * 1995-04-01 1998-11-03 Fritsch; Klaus-Dieter Electromechanical connection device
US5873737A (en) * 1996-02-16 1999-02-23 Yazaki Corporation Connector with low passing-through magnet force
US6464509B1 (en) * 2001-04-26 2002-10-15 International Business Machines Corporation System and method requiring zero insertion force and positive retention of removable storage media in a data storage subsystem
US6966781B1 (en) * 1996-06-22 2005-11-22 Achim Bullinger Electromechanical connector
US7329128B1 (en) * 2007-01-26 2008-02-12 The General Electric Company Cable connector
US7497693B1 (en) * 2007-11-30 2009-03-03 Hon Hai Precision Ind. Co., Ltd. Electrical interconnection system using magnetic retention
US7658613B1 (en) * 2007-01-16 2010-02-09 Griffin Technology Inc Magnetic connector
US7901216B2 (en) * 2005-09-26 2011-03-08 Apple Inc. Magnetic connector for electronic device
US8348678B2 (en) * 2010-01-11 2013-01-08 Automotive Industrial Marketing Corp. Magnetic cable connector systems
US8596881B2 (en) * 2010-12-09 2013-12-03 Microsoft Corporation Power and data connector
US8696366B2 (en) * 2012-04-03 2014-04-15 Inhon International Co. Ltd. Connector module having a male connector and a female connector each having a magnetic part, a cathode contact and an anode contact
US8702594B2 (en) * 2010-10-21 2014-04-22 Avram Allan Edidin Imaging system having a quick connect coupling interface
US9147965B2 (en) * 2012-09-26 2015-09-29 Kc Magcon, Inc. Magnetic-enabled connector device
US9306322B2 (en) * 2012-08-23 2016-04-05 Stryker Corporation Patient support apparatus connectors
US9893451B2 (en) * 2016-05-17 2018-02-13 Foxconn Interconnect Technology Limited Plug connector having a terminal protector
US9927580B2 (en) * 2014-02-07 2018-03-27 Commscope Technologies Llc Hardened optical power connection system
US9985384B1 (en) * 2017-10-13 2018-05-29 Onanon, Inc. Magnetic latching connector
US10056713B2 (en) * 2016-01-22 2018-08-21 Method Lights, LLC Charger extension for elevated devices
US10096938B2 (en) * 2011-10-04 2018-10-09 Todd Doobrow Quick-disconnect power adapters
US10148035B2 (en) * 2015-10-20 2018-12-04 Itt Manufacturing Enterprises Llc Connection interfaces with coupling mechanisms
US10298037B2 (en) * 2017-09-29 2019-05-21 Apple Inc. Smart charging systems for portable electronic devices
US10297950B2 (en) * 2016-12-23 2019-05-21 Shenzhen Pomagtor Precision Electronics Co., Ltd Magnetic connector and garment and protective clothing for intelligent heating
US10361508B2 (en) * 2016-03-14 2019-07-23 Drägerwerk AG & Co. KGaA Docking devices and cable connectors for patient monitoring systems
US10381782B2 (en) * 2017-06-12 2019-08-13 Byrne Norman R Electrical connector with haptic feedback
US10483688B2 (en) * 2017-06-14 2019-11-19 Microsoft Technology Licensing, Llc Magnetically activated latch mechanism
US10522943B1 (en) * 2018-09-21 2019-12-31 Calista A. Termini Magnetically securing detachable electronic cable assembly and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1849966A (en) * 1927-12-02 1932-03-15 Nathan L Ureles Lighting fixture
US2170287A (en) 1937-06-14 1939-08-22 Walter L Kinnebrew Detachable electrical connector
US2933711A (en) * 1955-06-28 1960-04-19 Frederic N Eaton Breakaway electrical connector
US4146288A (en) * 1977-11-11 1979-03-27 International Standard Electric Corporation Bayonet connector coupling arrangement
US4168105A (en) * 1978-06-27 1979-09-18 Amp Incorporated Resiliently loaded coupling ring
GB0216448D0 (en) 2002-07-16 2002-08-21 Mcleish Graham Connector
CN1762073A (en) * 2003-03-18 2006-04-19 信越高分子材料株式会社 Pressure contact hold type connector
US7467948B2 (en) 2006-06-08 2008-12-23 Nokia Corporation Magnetic connector for mobile electronic devices
US20120257346A1 (en) * 2011-04-05 2012-10-11 Hulet Kelvin G Biased stand or tripod adapter for handheld electronic devices
US8905795B2 (en) * 2011-10-12 2014-12-09 Apple Inc. Spring-loaded contacts
US8944826B1 (en) 2013-07-16 2015-02-03 Curbell Medical Products, Inc. Magnetic connection for cable assembly of electronic device
KR200473045Y1 (en) * 2014-01-17 2014-06-27 (주)에스피에스 A double contact point switch and a magnetic connector having the double contact point switch
US10355402B2 (en) * 2017-09-29 2019-07-16 Apple Inc. Axisymmetric magnetic articulating connector

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144527A (en) * 1961-09-13 1964-08-11 Manuel J Tolegian Magnetic electrical coupling
US3786391A (en) * 1972-07-11 1974-01-15 W Mathauser Magnetic self-aligning electrical connector
US3808577A (en) * 1973-03-05 1974-04-30 W Mathauser Magnetic self-aligning quick-disconnect for a telephone or other communications equipment
US4004298A (en) * 1975-03-31 1977-01-25 Sinai Hospital Of Detroit Magnetically aligned releasable connector
US4025964A (en) * 1976-07-30 1977-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic electrical connectors for biomedical percutaneous implants
US4844582A (en) * 1987-12-09 1989-07-04 Giannini Gabriel M Hybrid electro-optical connectors
US5015061A (en) * 1987-12-09 1991-05-14 Giannini Gabriel M Optical connector
US5829987A (en) * 1995-04-01 1998-11-03 Fritsch; Klaus-Dieter Electromechanical connection device
US5873737A (en) * 1996-02-16 1999-02-23 Yazaki Corporation Connector with low passing-through magnet force
US6966781B1 (en) * 1996-06-22 2005-11-22 Achim Bullinger Electromechanical connector
US6464509B1 (en) * 2001-04-26 2002-10-15 International Business Machines Corporation System and method requiring zero insertion force and positive retention of removable storage media in a data storage subsystem
US7901216B2 (en) * 2005-09-26 2011-03-08 Apple Inc. Magnetic connector for electronic device
US7658613B1 (en) * 2007-01-16 2010-02-09 Griffin Technology Inc Magnetic connector
US7329128B1 (en) * 2007-01-26 2008-02-12 The General Electric Company Cable connector
US7497693B1 (en) * 2007-11-30 2009-03-03 Hon Hai Precision Ind. Co., Ltd. Electrical interconnection system using magnetic retention
US8348678B2 (en) * 2010-01-11 2013-01-08 Automotive Industrial Marketing Corp. Magnetic cable connector systems
US8702594B2 (en) * 2010-10-21 2014-04-22 Avram Allan Edidin Imaging system having a quick connect coupling interface
US8596881B2 (en) * 2010-12-09 2013-12-03 Microsoft Corporation Power and data connector
US10096938B2 (en) * 2011-10-04 2018-10-09 Todd Doobrow Quick-disconnect power adapters
US8696366B2 (en) * 2012-04-03 2014-04-15 Inhon International Co. Ltd. Connector module having a male connector and a female connector each having a magnetic part, a cathode contact and an anode contact
US9306322B2 (en) * 2012-08-23 2016-04-05 Stryker Corporation Patient support apparatus connectors
US9147965B2 (en) * 2012-09-26 2015-09-29 Kc Magcon, Inc. Magnetic-enabled connector device
US9927580B2 (en) * 2014-02-07 2018-03-27 Commscope Technologies Llc Hardened optical power connection system
US10148035B2 (en) * 2015-10-20 2018-12-04 Itt Manufacturing Enterprises Llc Connection interfaces with coupling mechanisms
US10056713B2 (en) * 2016-01-22 2018-08-21 Method Lights, LLC Charger extension for elevated devices
US10361508B2 (en) * 2016-03-14 2019-07-23 Drägerwerk AG & Co. KGaA Docking devices and cable connectors for patient monitoring systems
US9893451B2 (en) * 2016-05-17 2018-02-13 Foxconn Interconnect Technology Limited Plug connector having a terminal protector
US10297950B2 (en) * 2016-12-23 2019-05-21 Shenzhen Pomagtor Precision Electronics Co., Ltd Magnetic connector and garment and protective clothing for intelligent heating
US10381782B2 (en) * 2017-06-12 2019-08-13 Byrne Norman R Electrical connector with haptic feedback
US10483688B2 (en) * 2017-06-14 2019-11-19 Microsoft Technology Licensing, Llc Magnetically activated latch mechanism
US10298037B2 (en) * 2017-09-29 2019-05-21 Apple Inc. Smart charging systems for portable electronic devices
US9985384B1 (en) * 2017-10-13 2018-05-29 Onanon, Inc. Magnetic latching connector
US10522943B1 (en) * 2018-09-21 2019-12-31 Calista A. Termini Magnetically securing detachable electronic cable assembly and method

Also Published As

Publication number Publication date
US20200112124A1 (en) 2020-04-09
US10522943B1 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
US20210218184A1 (en) Magnetically securing detachable electronic cable assembly and method
US11374353B2 (en) Magnetic latching connector
US6561841B2 (en) Connector assembly having visual indicator
US7021964B1 (en) RJ “F”, modular connector for coaxial cables
CN1258842C (en) Electronic interconnecting device for high-speed signal and data transmission
US6776657B1 (en) Connector capable of connecting to coaxial cable without using tool
US20070259536A1 (en) Communication Connector
US10574006B2 (en) Multipolar connector with circular contacts
US4533796A (en) Rotatable electrical connector for telephone cord
US4813887A (en) Electrical connector for multiple outer conductor coaxial cable
US5092793A (en) Swivel apparatus providing strain relief for an electrical conductor
US9843131B2 (en) Cable connectors and methods for the assembly thereof
JP2008530754A5 (en)
US9028261B2 (en) Snap electrical connector having a circumferential groove and prong interconnection
US8657623B2 (en) Connect/disconnect connector for coaxial cable
JPH02501340A (en) self-matching electrical connectors
US4998891A (en) Holder for maintaining electrical connections
US5074796A (en) Stacking and orientation independent electrical connector
US5167532A (en) Captivation assembly of dielectric elements for supporting and retaining a center contact in a coaxial connector
US3529276A (en) Electrical connector
CN219458146U (en) Anti-vibration plug
US5087209A (en) Electrical plug and socket arrangement
US20050186822A1 (en) Hybrid connector
US10483689B2 (en) Releasable connection for cables
US3639889A (en) Electrical connector

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION